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Exercice 1.

Exprimons les hypothèses sous une forme équivalente:

• Comme f est dérivable en a, on a f(x) = f(a) + f ′(a)(x− a) + (x− a)ε1(x− a), ∀x ∈ I, pour une
certaine fonction ε1 qui satisfait limh→0 ε1(h) = 0;

• Comme g est dérivable en f(a), on a g(y) = g(f(a)) + g′(f(a))(y − f(a)) + (y − f(a))ε2(y − f(a)),
∀y ∈ J , pour une certaine fonction ε2 qui satisfait limh→0 ε2(h) = 0;

En prenant y = f(x), il s’ensuit:

g(f(x)) = g(f(a)) + g′(f(a))(f(x)− f(a)) + (f(x)− f(a))ε2(f(x)− f(a))

= g(f(a)) + g′(f(a)) · f ′(a) · (x− a) + g′(f(a)) · (x− a) · ε1(x− a)︸ ︷︷ ︸
r1(x−a)

+ (f(x)− f(a))ε2(f(x)− f(a))︸ ︷︷ ︸
r2(x−a)

Or on a

r1(x− a)

x− a
= g′(f(a))·ε1(x−a) −−−→

x→a
0 et

r2(x− a)

x− a
=
f(x)− f(a)

x− a
ε2(f(x)−f(a)) −−−→

x→a
f ′(a)·0 = 0.

Ainsi r1(x− a) + r2(x− a) = o(x− a). On a donc montré:

g(f(x)) = g(f(a)) + g′(f(a)) · f ′(a) · (x− a) + o(x− a)

ce qui est équivalent au fait que g ◦ f est dérivable en a, de dérivée g′(f(a)) · f ′(a).

Remarque: Il existe une autre approche pour démontrer cette formule qui consiste à écrire:

g(f(x))− g(f(a))

x− a
=

{
0 = g′(f(a)) · f(x)−f(a)

x−a si f(x) = f(a)
g(f(x))−g(f(a))

f(x)−f(a)
f(x)−f(a)

x−a si f(x) 6= f(a).

Dans les deux cas, l’expression admet pour limite g′(f(a))f ′(a) (notamment, pour le deuxième cas,
car limx→a f(x) = f(a) et par composition des limites), ce qui montre le théorème. Cette approche
est directement liée à la façon “physicienne” d’écrire symboliquement la chain rule qui est, si l’on
pose y = f(x) et z = g(y):

dz

dx
=

dz

dy

dy

dx
.

Ici on a utilisé la notation de Leibniz pour les dérivées, qui correspond à dy
dx = f ′, dz

dy = g′ et
dz
dx = (g ◦ f)′ (notez que cette notation laisse une ambigüıté à propos des points en lesquels ces
fonctions sont évaluées).

Exercice 2.

Soit f : R→ R définie par f(x) =

{
x3 si x ∈ Q,
0 si x /∈ Q.

• f est dérivable en zéro car f ′(0) = limx→0
f(x)−f(0)

x−0 = limx→0
x3

x = 0.
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• f n’est pas dérivable sur R∗. On montre pour cela que f n’est pas continue sur R∗. En effet, pour
tout x0 ∈ R∗, on peut construire une suite (an)n≥0 ⊂ Q et une suite (bn)n≥0 ⊂ R \Q telles que

lim
n→∞

an = lim
n→∞

bn = x0 ∈ R∗.

Puisque
lim
n→∞

f(an) = x3
0 6= 0 = lim

n→∞
f(bn),

on en déduit que la fonction f n’est pas continue en x0.

Exercice 3.

(i) Les propriétés vues en cours s’appliquent sans problème :

f ′(x) =
1 + x4 − x · 4x3

(1 + x4)2
=

1− 3x4

(1 + x4)2
.

(ii) Si x ∈ R \ Z, alors il existe z ∈ Z tel que x ∈]z, z + 1[. Ainsi f(x) = x2z et

f ′(x) = 2xz = 2bxcx pour tout x ∈ ]z, z + 1[.

• Si x = 0, f(0) = 0. Par ailleurs, si x est dans un voisinage suffisamment petit de 0, alors f(x) = 0

ou f(x) = −x2 selon le signe de x. Il s’ensuit que limx→0
f(x)
x = 0 et donc f ′(0) = 0.

• Si x ∈ Z∗ alors limx→z− f(x) = z2(z − 1) et limx→z+ f(x) = z3. Ainsi f n’est pas continue en z et
donc f ′(z) n’existe pas.

En résumé : f ′(x) = 2bzcx si x ∈ R \ Z∗ et cette formule reste correcte dans le cas spécial x = 0;
par contre, f ′(x) n’existe pas si x ∈ Z∗.

Exercice 4.

[ =⇒ ] : Si f est dérivable alors

lim
h→0

f(a+ h)− f(a)

h
= f ′(a),

et par suite

lim
h→0

f(a+ h)− f(a− h)

2h
=

1

2
lim
h→0

f(a+ h)− f(a)

h
+

1

2
lim
h→0

f(a)− f(a− h)

h
.

Par ailleurs, puisque h→ 0 ⇐⇒ −h→ 0,

lim
h→0

f(a)− f(a− h)

h
= lim

h→0

f(a)− f(a+ h)

−h
= f ′(a).

Donc la limite demandée est bien 1
2f
′(a) + 1

2f
′(a) = f ′(a).

[⇐= ] : En revanche, l’existence de cette dernière limite n’entrâıne pas celle de f ′(a), même si f est
continue en a. Voici un contre-exemple : f(x) = |x| et a = 0.

Exercice 5.

On a que arctan est dérivable sur R, que

∀x ∈ R, arctan′ x =
1

1 + x2
,

et que x 7→ 1
1+x2 est indéfiniment dérivable sur R car, d’après les règles de dérivation, sa dérivée en

tout ordre peut s’exprimer comme une fonction rationnelle définie sur R. Montrons la formule pour la
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dérivée n-ième sur R∗ par récurrence sur n. En calcul préliminaire, remarquons que pour u ∈ R∗, si
l’on écrit s = sin(arctan(u)) et c = cos(arctan(u)) alors on a c2 +s2 = 1 et (s/c) = tan(arctan(u)) = u.
En résolvant ce système d’équations, on obtient s = u√

u2+1
et c = 1√

u2+1
(pour déterminer le signe de

s on a utilisé le fait qu’il doit être le même que celui de u).

Récurrence sur n

1) Pour n = 1,

(−1)n−1(n− 1)!

(1 + x2)n/2
sin

(
n arctan

1

x

)
=

1√
1 + x2

sin

(
arctan

1

x

)
=

1√
1 + x2

· 1/x√
1 + (1/x)2

=
1

1 + x2
= arctan′(x).

2) Supposons la formule vraie pour un entier n. L’expression de la dérivée à l’ordre n est
dérivable sur R donc la fonction arctan est n + 1 fois dérivable. On utilise la notation de Leibniz:
f (n)(x) ≡ dn

dxn f(x) qui est parfois plus pratique ou claire (notamment ici car il s’agit de différentier de
grosses expressions). On a alors

d

dx

(
dn

dxn
(arctanx)

)
=

d

dx

(
(−1)n−1(n− 1)!

(1 + x2)n/2
sin

(
n arctan

1

x

))
= (−1)n−1(n− 1)!

[
−n

2
(1 + x2)−n/2−12x sin

(
n arctan

1

x

)
+(1 + x2)−n/2n cos

(
n arctan

1

x

)
·
(
− (1/x)2

1 + (1/x)2

)]
= (−1)nn!(1 + x2)−

n+1
2

[
x√

1 + x2
sin

(
n arctan

1

x

)
+

1√
1 + x2

cos

(
n arctan

1

x

)]
= (−1)nn!(1 + x2)−

n+1
2 sin

(
(n+ 1) arctan

1

x

)
puisque

x√
1 + x2

= cos

(
arctan

1

x

)
et

1√
1 + x2

= sin

(
arctan

1

x

)
.

On a aussi utilisé la formule de trigonométrie: sin(a+ b) = cos(a) sin(b) + sin(a) cos(b).
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