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Exercice 1.

1. L’étude de la convergence simple revient à étudier la convergence des suites (fn(x))n≥1, lorsque
x ≥ 0 est fixé. Mais x étant fixé, puisque 1 + x > 0, on a fn(x) −−−−→

n→∞
1/(1 + x). Donc la suite de

fonctions (fn) tend simplement sur [0,+∞[ vers la fonction f définie par f(x) = 1
1+x .

2. On calcule fn(x)− f(x), puis on majore |fn(x)− f(x)|. On a

fn(x)− f(x) =
n

1 + n(1 + x)
− 1

1 + x
=
n(1 + x)− 1− n(1 + x)

(1 + x) + n(1 + x)2
=

−1

(1 + x) + n(1 + x)2
.

Or, pour x ≥ 0, on a
1 + x+ n(1 + x)2 ≥ n(1 + x)2 ≥ n

et donc

|fn(x)− f(x)| = 1

(1 + x) + n(1 + x)2
≤ 1

n
.

Cette dernière quantité ne dépend plus de x ∈ [0,+∞[ et tend vers 0 (on a supx∈[0,+∞[ |fn(x)−
f(x)| ≤ 1/n −−−−→

n→∞
0), donc (fn) converge uniformément vers f sur [0,+∞[.

Exercice 2.

1. Soit ε > 0. On a

(i) ∃N1 ∈ N, ∀n ≥ N1, ∀y ∈ I, |fn(y)− f(y)| < ε
2 (convergence uniforme de (fn) vers f)

(ii) ∃δ > 0, ∀y ∈ I, (|y − x| < δ =⇒ |f(y)− f(x)| < ε
2 ) (continuité de f en x)

(iii) ∃N2 ∈ N, ∀n ≥ N2, |xn − x| < δ (convergence de (xn) vers x)

Alors on en déduit, pour tout n ≥ max{N1, N2}, par (i) et (ii) avec y = xn:

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| < ε

2
+
ε

2
= ε. (1)

Ceci montre que fn(xn) −−−−→
n→∞

f(x).

2. On peut utiliser l’exemple vu en cours, avec I = [0, 1] et ∀n ≥ 1

fn(x) =


2nx si x ∈ [0, 1/(2n)]

2− 2nx si x ∈ [1/(2n), 1/n]

0 si x ∈ [1/n, 1]

qui est dans C0(I) pour tout n ≥ 1 et converge simplement vers f = 0 ∈ C0(I) (mais pas
uniformément). Alors en prenant la suite définie par xn = 1/(2n) pour n ∈ N∗, on a limn→∞ xn =
0 et

lim
n→∞

fn(xn) = 1 6= f(0) = 0.

Exercice 3.
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1. Montrons que 0 ≤ Pn(x) ≤ Pn+1(x) ≤
√
x, ∀x ∈ [0, 1].

• Commençons par montrer par récurrence que 0 ≤ Pn(x) ≤
√
x, ∀x ∈ [0, 1].

Puisque P0(x) = 0, ∀x ∈ [0, 1], on a 0 ≤ P0(x) ≤
√
x, ∀x ∈ [0, 1]. Supposons donc que pour

n ≥ 0 on ait
0 ≤ Pj(x) ≤

√
x, ∀x ∈ [0, 1], j = 0, 1, 2, . . . , n

et montrons que
0 ≤ Pn+1(x) ≤

√
x, ∀x ∈ [0, 1].

En utilisant la définition de Pn+1 on a
√
x− Pn+1(x) = (

√
x− Pn(x))

(
1− 1

2 (
√
x+ Pn(x))

)
.

Puisque par hypothèse de récurrence on a 0 ≤ Pn(x) ≤
√
x, ∀x ∈ [0, 1], les facteurs

√
x− Pn(x) et 1− 1

2

(√
x+ Pn(x)

)
,

sont positifs ou nuls pour tout x ∈ [0, 1]. Ainsi
√
x− Pn+1(x) ≥ 0, ∀x ∈ [0, 1], ce qui montre

que Pn+1(x) ≤
√
x. De façon évidente, puisque 0 ≤ Pn(x) ≤

√
x, on a Pn+1(x) ≥ 0, ∀x ∈ [0, 1]

qui découle de la définition de Pn+1.

• Puisque 0 ≤ Pn(x) ≤
√
x, ∀x ∈ [0, 1], on a x− Pn(x)2 ≥ 0 et donc

Pn+1(x) = Pn(x) +
1

2

(
x− Pn(x)2

)
≥ Pn(x), ∀x ∈ [0, 1].

Ainsi, la suite (Pn)∞n=0 est croissante.

2. Si x ∈ [0, 1] est fixé, la suite (Pn(x))∞n=0 est une suite numérique croissante et bornée par
√
x.

Elle est donc convergente et on pose

f(x) = lim
n→∞

Pn(x).

On obtient ainsi f(x) = f(x) + 1
2

(
x− f(x)2

)
, ce qui implique f(x)2 = x et donc f(x) =

√
x (le

signe − est à exclure car Pn ≥ 0).
Ainsi (Pn)∞n=0 est une suite croissante de fonctions continues sur [0, 1] qui converge ponctuellement
vers la fonction continue f : [0, 1]→ R définie par f(x) =

√
x. Le théorème de Dini permet de

conclure que limn→∞ Pn = f uniformément sur [0, 1].

3. La fonction g : [−1, 1]→ R est définie par g(x) = |x| (fonction paire). Puisque limn→∞ Pn(x) =√
x uniformément sur [0, 1], on a limn→∞ Pn(x2) = |x| uniformément sur [−1, 1] et Pn(x2) est

un polynôme.

Exercice 4.

1. Par hypothèse, il existe A1, A2 > 0 et C1, C2 > 0 tels que ∀x ≥ A1 on a |f(x)| ≤ C1|g(x)|
et ∀x ≥ A2 on a |g(x)| ≤ C2|h(x)|. On en déduit que pour tout x ≥ max{A1, A2}, on a
|f(x)| ≤ C1 · C2 · |h(x)|, qui qui montre que f = O(h) au voisinage de +∞.

2. En posant wn =
√
unvn, ∀n ∈ N , on a

un
wn

=

√
un
vn
−−−−→
n→∞

0 et
wn

vn
=

√
un
vn
−−−−→
n→∞

0

Exercice 5.

Soit ε > 0. D’une part, la fonction f étant continue sur [a, b], elle est uniformément continue sur
cet intervalle. Par conséquent, il existe un nombre δ > 0 tel que pour tout couple u, v ∈ [a, b] vérifiant
|u− v| ≤ δ :

|f(u)− f(v)| ≤ ε

2
.
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D’autre part, R étant archimédien, il existe un entier m > 0 tel que b−a
m < δ et posons xk = a+ k b−a

m
avec k = 0, . . . ,m. Ainsi, puisque la suite (fn) converge simplement vers la fonction f , à chaque entier
0 ≤ k ≤ m, on peut associer un entier nk ∈ N tel que pour tout n ≥ nk :

|fn(xk)− f(xk)| ≤ ε

2
.

Finalement, en posant nε = max(n1, . . . , nm), on a que pour tout entier 0 ≤ k ≤ m et tout n ≥ nε:

|fn(xk)− f(xk)| ≤ ε

2
.

Soit x ∈ [a, b] et n ≥ nε. Alors, il existe un entier 1 ≤ p ≤ m tel que xp−1 ≤ x ≤ xp, et la fonction fn
étant croissante, on a :

fn(x)− f(x) ≤ fn(xp)− f(x) = (fn(xp)− f(xp)) + (f(xp)− f(x) ≤ ε

et
fn(x)− f(x) ≥ fn(xp−1)− f(x) = (fn(xp−1)− f(xp−1)) + (f(xp−1)− f(x)) ≥ −ε.

D’où |fn(x)− f(x)| ≤ ε.
Ce résultat étant valable quel que soit x ∈ [a, b], on a ainsi démontré que pour tout entier n ≥ nε :

sup
a≤x≤b

|fn(x)− f(x)| ≤ ε,

ce qui revient à dire que la convergence est uniforme.
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