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Corrigé 7.1 — mardi 29 octobre 2024

Exercice 1.

1. Ona f(0) = f(0+0) = f(0) + f(0), ce qui implique f(0) = 0.
2. Si (z,)52, est telle que lim,, o ¢, =0, on a
f(xn+a) :f(zn)+f(a) = f(In) :f(zn“i’a)*f(a)

On pose a,, = T, + a et puisque lim,,_,, , = 0, on a lim,_, a, = a. Comme f est continue
en a, on a

lim f(a,) = f(@) = lim f(z,) = lim (f(a,) ~ f(a)) =0 = f(0).

n—oo n— oo
Ainsi f est continue en z = 0.
3. Si (bn)S2y C R converge vers b € R, on a
f(bn) = f(bn —b+b) = f(bn — ) + f(b) = f(bn) — f(b) = f(bn — D).
Puisque lim,,—, o0 (b, — b) = 0 et f est continue en x = 0, on conclut que

lim (f(bn) — f(b)) = 0.

n—oo
4. Sin e N* on a

fn)=fln=1)+f(1) = f(n=2)+2f(1) =... = f(0) + nf(1) = nf(1).
De méme on a f(—n) = —nf(1). Ainsi Vz € Z on a f(z) = zf(1).

5. Sixe@,onang,pﬂEZ,Q#OQt

pf(1)=f(p)=f<q§)=f<§+2+--~+§>=qf<§>.

Ainsi f(z) = xf(1),Vz € Q. La fonction ¢ définie par g(x) = xf(1) est trivialement continue et
de f(z) = g(x),Vx € Q, on déduit f(x) = g(x),Vx € R par densité de Q.

f(z) =zf(1),Vz € R.

Exercice 2.

La fonction f:]0,1] — R avec f(x) = (1 — x)sin(1/z) satisfait f(]0,1]) =] — 1,1[. En effet, soit
I = f(]0,1]). On sait que 'image d’un intervalle par une fonction continue est un intervalle, donc
I est un intervalle. Il reste & déterminer ses bornes inf(I) et sup(J) et déterminer s’il les contient.

On peut construire deux suites (a,,) et (b,) telles que lim f(a,) =1 et lim f(b,) = —1 (par exemple,
prendre a, = 1/(2nm + 7/2) et b, = 1/(2n7m — 7/2), Vn € N*). Donc inf(I) < —1 et sup(I) > —1.
Mais par ailleurs, puisque |sin(1/x)| < 1,on a |f(z)| < |1 —z| <1, Vz €]0,1], donc I =] —1,1].
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Graphe de f(z) = (1 — x)sin(1/z).

Exercice 3.

i)

ii)

iii)

La fonction f(z) = 2° — 3z — 1 est un polynome, donc elle est continue. On a f(1) = —3 et
f(2) = 25, donc par le Théoreme des valeurs intermédiaires, il existe zo tel que f(xg) = 0,
c’est-a-dire ¥ — 3z = 1.

On utilise le Théoréme des valeurs intermédiaires sur la fonction continue g(x) = f(z) — «.
Puisque f(a) > a et f(b) < b, on a g(a) > 0 et g(b) < 0. Donc il existe Z, t.q. g(z) = 0,
c’est-a-dire f(Z) = Z.

Donnons nous un grand cercle sur le globe terrestre (par exemple I’équateur) et un point xg
sur ce cercle, et indiquons la position d’un point sur ce grand cercle par € R (sa position
en radians par rapport & xg, déterminée modulo 27). On note T': R — R la fonction telle
que T'(x) est la température au point x & un instant donné. Par construction, T est 27-
périodique, et on fait I'hypothése (raisonnable) que T est continue. On pose maintenant
flx) = T(z) — T(x + ) la différence de température en 2 points antipodaux. Si f(0) = 0
alors on a terminé. Sinon, supposons que f(0) > 0 (autre cas est similaire). Alors on a
f(m)=T(r) —T(2r) =T(r) —T(0) = —f(0) < 0. Comme f est continue sur 'intervalle [0, 7],
f(0) >0 et f(m) <0, on en déduit par le Thm. des valeurs intermédiaires qu'il existe zo € [0, 7]
tel que f(zg) =0 et donc T(xp) = T'(xo + 7).

Remarque: On peut méme montrer, en utilisant des outils d’analyse (plus précisément de
topologie) plus avancés (le Théoreme de Borsuk-Ulam), qu’il existe toujours au moins un point
a la surface de la Terre ou la température et la pression de l'air sont identiques a celles de
Pantipode. On pourra aussi regarder cette vidéo (en anglais) pour voir comment le théoréme des
valeurs intermédiaires garantit que ’on peut toujours stabiliser une table bancale en la tournant
(du moment que le probleme d’irrégularité vient du sol, et pas de la table).

Exercice 4.

On suppose f strictement croissante, 'autre cas se traitant de fagon similaire.

1.

Soit a € I tel que f est définie & droite de a. On a déja vu (cours et série 6.2 exercice 4) que f
admet une limite a droite en a et que

fl@)< inf  f(z)= lim f(z)=1~¢.
z€lIN]a,+oo| z—at
Vérifions que £ = f(a) en supposant, par ’absurde que f(a) < £. Soit b € Ja,+oo[ NI tel que
f(b) > ¢. Puisque J est un intervalle, il contient I'intervalle [f(a), f(b)] qui lui méme contient ¢

et (f(a)+£)/2. Par surjectivité de f, il existe donc z €]a, b] tel que f(z) = (f(a) +£)/2 < £, ce
qui est une contradiction (revoir la définition de £ en tant qu’infimum).


https://en.wikipedia.org/wiki/Borsuk%E2%80%93Ulam_theorem
https://www.youtube.com/watch?v=OuF-WB7mD6k

En résumé, f(a) = lim,_,,+ f(x), c’est & dire que f est continue & droite en a. Si f est définie &
gauche de a on montre de méme que f(a) = lim,_,,— f(x). Et aussi, si f est définie au voisinage
de a, alors f est continue en a.

2. La fonction f, étant surjective strictement monotone sur I, est donc bijective. Autrement dit, la
fonction f : I — J admet une fonction réciproque f~1 :.J — I. D’autre part, .J est un intervalle
de R et on vérifie facilement que f~! est strictement monotone sur J. Ainsi, f~!:J — I est
une fonction surjective strictement monotone sur un intervalle J, ce qui implique, d’apres ce que
nous venons de démontrer, que la fonction f~! est continue sur J.

Exercice 5.

1. On cherche a faire apparaitre une somme téléscopique. On a pour N € N,

S g iyl 1y
e (Bn+2)(Bn—1) “<3\3n-1 3n+2) 3\2 3N+2) V7%

La série converge (absolument, car ses termes sont > 0) et sa somme vaut 1/6 .

2. On cherche a faire apparaitre une somme téléscopique. Il nous faut d’abord factoriser le
dénominateur (en trouvant ses racines) n? + 7n + 10 = (n + 5)(n +2). On a pour N € N,
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3. Soit un:%,VneN. Si a = b, alors u,, = 0 pour tout n, et donc (u,) converge vers 0. Si

a > b, alors a™ est prépondérant sur b" au sens que

b" b\"
— = () —0
a™ a
puisque |g’ < 1. On factorise donc par a” au numérateur et au dénominateur :
b n
a”(l—(a) ) 1
ar (14 (5)") 1+

On en déduit que dans ce cas, (u,) converge vers 1. Si b > a, on factorise cette fois par b" et
c’est (a/b)™ qui converge vers 0. On trouve :

Up =

o

-1+ a\"
1+ (%)
(up,) converge donc vers —1 dans ce cas.
4. Pour n > 2, 0n a
1 1 n-2
1< =Nkl < —(n —1)! — -2 =1+ -+ ——
_n!; (ol (=Dl (n=2)(n =2)) =14 2+ Sy

La premiere inégalité est obtenue en ne gardant que le plus grand terme de la somme, et la
seconde en majorant les (n — 2) plus petits termes de la somme par (n — 2)!. On en déduit, par
le théoreme d’encadrement, que lim, o0 5 Yp_; k! = 1.



