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Exercice 1.

1. On a f(0) = f(0 + 0) = f(0) + f(0), ce qui implique f(0) = 0.

2. Si (xn)∞n=0 est telle que limn→∞ xn = 0, on a

f(xn + a) = f(xn) + f(a) =⇒ f(xn) = f(xn + a)− f(a).

On pose an = xn + a et puisque limn→∞ xn = 0, on a limn→∞ an = a. Comme f est continue
en a, on a

lim
n→∞

f(an) = f(a)⇒ lim
n→∞

f(xn) = lim
n→∞

(f(an)− f(a)) = 0 = f(0).

Ainsi f est continue en x = 0.

3. Si (bn)∞n=0 ⊂ R converge vers b ∈ R, on a

f(bn) = f(bn − b+ b) = f(bn − b) + f(b)⇒ f(bn)− f(b) = f(bn − b).

Puisque limn→∞(bn − b) = 0 et f est continue en x = 0, on conclut que

lim
n→∞

(f(bn)− f(b)) = 0.

4. Si n ∈ N∗, on a

f(n) = f(n− 1) + f(1) = f(n− 2) + 2f(1) = . . . = f(0) + nf(1) = nf(1).

De même on a f(−n) = −nf(1). Ainsi ∀z ∈ Z on a f(z) = zf(1).

5. Si x ∈ Q, on a x = p
q , p, q ∈ Z, q 6= 0 et

pf (1) = f (p) = f

(
q
p

q

)
= f

(
p

q
+
p

q
+ · · ·+ p

q

)
= qf

(
p

q

)
.

Ainsi f(x) = xf(1),∀x ∈ Q. La fonction g définie par g(x) = xf(1) est trivialement continue et
de f(x) = g(x),∀x ∈ Q, on déduit f(x) = g(x),∀x ∈ R par densité de Q.

f(x) = xf(1),∀x ∈ R.

Exercice 2.

La fonction f : ]0, 1]→ R avec f(x) = (1− x) sin(1/x) satisfait f(]0, 1]) = ]− 1, 1[. En effet, soit
I = f(]0, 1]). On sait que l’image d’un intervalle par une fonction continue est un intervalle, donc
I est un intervalle. Il reste à déterminer ses bornes inf(I) et sup(I) et déterminer s’il les contient.
On peut construire deux suites (an) et (bn) telles que lim f(an) = 1 et lim f(bn) = −1 (par exemple,
prendre an = 1/(2nπ + π/2) et bn = 1/(2nπ − π/2), ∀n ∈ N∗). Donc inf(I) ≤ −1 et sup(I) ≥ −1.
Mais par ailleurs, puisque | sin(1/x)| ≤ 1, on a |f(x)| ≤ |1− x| < 1, ∀x ∈ ]0, 1], donc I = ]− 1, 1[.
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Graphe de f(x) = (1− x) sin(1/x).

Exercice 3.

i) La fonction f(x) = x5 − 3x − 1 est un polynôme, donc elle est continue. On a f(1) = −3 et
f(2) = 25, donc par le Théorème des valeurs intermédiaires, il existe x0 tel que f(x0) = 0,
c’est-à-dire x5

0 − 3x0 = 1.

ii) On utilise le Théorème des valeurs intermédiaires sur la fonction continue g(x) = f(x) − x.
Puisque f(a) ≥ a et f(b) ≤ b, on a g(a) ≥ 0 et g(b) ≤ 0. Donc il existe x̄, t.q. g(x̄) = 0,
c’est-à-dire f(x̄) = x̄.

iii) Donnons nous un grand cercle sur le globe terrestre (par exemple l’équateur) et un point x0

sur ce cercle, et indiquons la position d’un point sur ce grand cercle par x ∈ R (sa position
en radians par rapport à x0, déterminée modulo 2π). On note T : R → R la fonction telle
que T (x) est la température au point x à un instant donné. Par construction, T est 2π-
périodique, et on fait l’hypothèse (raisonnable) que T est continue. On pose maintenant
f(x) = T (x) − T (x + π) la différence de température en 2 points antipodaux. Si f(0) = 0
alors on a terminé. Sinon, supposons que f(0) > 0 (l’autre cas est similaire). Alors on a
f(π) = T (π)− T (2π) = T (π)− T (0) = −f(0) < 0. Comme f est continue sur l’intervalle [0, π],
f(0) > 0 et f(π) < 0, on en déduit par le Thm. des valeurs intermédiaires qu’il existe x0 ∈ [0, π]
tel que f(x0) = 0 et donc T (x0) = T (x0 + π).

Remarque: On peut même montrer, en utilisant des outils d’analyse (plus précisément de
topologie) plus avancés (le Théorème de Borsuk-Ulam), qu’il existe toujours au moins un point
à la surface de la Terre où la température et la pression de l’air sont identiques à celles de
l’antipode. On pourra aussi regarder cette vidéo (en anglais) pour voir comment le théorème des
valeurs intermédiaires garantit que l’on peut toujours stabiliser une table bancale en la tournant
(du moment que le problème d’irrégularité vient du sol, et pas de la table).

Exercice 4.

On suppose f strictement croissante, l’autre cas se traitant de façon similaire.

1. Soit a ∈ I tel que f est définie à droite de a. On a déjà vu (cours et série 6.2 exercice 4) que f
admet une limite à droite en a et que

f(a) ≤ inf
x∈I∩]a,+∞[

f(x) = lim
x→a+

f(x) =: `.

Vérifions que ` = f(a) en supposant, par l’absurde que f(a) < `. Soit b ∈ ]a,+∞[ ∩ I tel que
f(b) ≥ `. Puisque J est un intervalle, il contient l’intervalle [f(a), f(b)] qui lui même contient `
et (f(a) + `)/2. Par surjectivité de f , il existe donc z ∈]a, b] tel que f(z) = (f(a) + `)/2 < `, ce
qui est une contradiction (revoir la définition de ` en tant qu’infimum).
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https://en.wikipedia.org/wiki/Borsuk%E2%80%93Ulam_theorem
https://www.youtube.com/watch?v=OuF-WB7mD6k


En résumé, f(a) = limx→a+ f(x), c’est à dire que f est continue à droite en a. Si f est définie à
gauche de a on montre de même que f(a) = limx→a− f(x). Et aussi, si f est définie au voisinage
de a, alors f est continue en a.

2. La fonction f , étant surjective strictement monotone sur I, est donc bijective. Autrement dit, la
fonction f : I → J admet une fonction réciproque f−1 : J → I. D’autre part, J est un intervalle
de R et on vérifie facilement que f−1 est strictement monotone sur J . Ainsi, f−1 : J → I est
une fonction surjective strictement monotone sur un intervalle J , ce qui implique, d’après ce que
nous venons de démontrer, que la fonction f−1 est continue sur J .

Exercice 5.

1. On cherche à faire apparâıtre une somme téléscopique. On a pour N ∈ N,

N∑
n=1

1

(3n+ 2)(3n− 1)
=

N∑
n=1

1

3

(
1

3n− 1
− 1

3n+ 2

)
=

1

3

(
1

2
− 1

3N + 2

)
→N→∞

1

6
.

La série converge (absolument, car ses termes sont ≥ 0) et sa somme vaut 1/6 .

2. On cherche à faire apparâıtre une somme téléscopique. Il nous faut d’abord factoriser le
dénominateur (en trouvant ses racines) n2 + 7n+ 10 = (n+ 5)(n+ 2). On a pour N ∈ N,

N∑
n=1

1

n2 + 7n+ 10
=

N∑
n=1

1

(n+ 5)(n+ 2)
=

N∑
n=1

1

3

(
1

n+ 2
− 1

n+ 5

)
=

1

3

(
1

3
+

1

4
+

1

5
− 1

N + 3
− 1

N + 4
− 1

N + 5

)
→N→∞

47

180
.

3. Soit un = an−bn
an+bn , ∀n ∈ N. Si a = b, alors un = 0 pour tout n, et donc (un) converge vers 0. Si

a > b, alors an est prépondérant sur bn au sens que

bn

an
=

(
b

a

)n

→ 0

puisque
∣∣ b
a

∣∣ < 1. On factorise donc par an au numérateur et au dénominateur :

un =
an
(

1−
(
b
a

)n)
an
(

1 +
(
b
a

)n) =
1−

(
b
a

)n
1 +

(
b
a

)n .
On en déduit que dans ce cas, (un) converge vers 1. Si b > a, on factorise cette fois par bn et
c’est (a/b)n qui converge vers 0. On trouve :

un =
−1 +

(
a
b

)n
1 +

(
a
b

)n .

(un) converge donc vers −1 dans ce cas.

4. Pour n ≥ 2, on a

1 ≤ 1

n!

n∑
k=1

k! ≤ 1

n!
(n! + (n− 1)! + (n− 2)(n− 2)!) = 1 +

1

n
+

n− 2

n(n− 1)
.

La première inégalité est obtenue en ne gardant que le plus grand terme de la somme, et la
seconde en majorant les (n− 2) plus petits termes de la somme par (n− 2)!. On en déduit, par
le théorème d’encadrement, que limn→∞

1
n!

∑n
k=1 k! = 1.
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