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Exercice 1.

Soit f : R→ R bijective et impaire. Montrons que f−1 est aussi impaire. Pour cela, soit y ∈ R.
Par bijectivité, il existe x ∈ R tel que y = f(x) et x = f−1(y). Par conséquent, on a

f−1(−y) = f−1(−f(x)) = f−1(f(−x)) = −x = −f−1(y).

On montre ainsi que f−1 est impaire.

Exercice 2.

On veut montrer que limx→0
sin(x)
x = 1. Pour tout x ∈ ]0, π2 [, on a

sin(x) < x < tan(x) ⇐⇒ sin(x) < x <
sinx

cosx
⇐⇒ 1 <

x

sinx
<

1

cosx
⇐⇒ cos(x) <

sinx

x
< 1.

Remarquons que l’on a également pour tout x ∈ ]− π
2 , 0[:

cos(x) = cos(−x) <
sin(−x)

−x
=

sin(x)

x
< 1.

Donc, pour tout 0 < |x| < π
2 , nous avons la relation: cos(x) < sin(x)

x < 1. Comme limx→0 cos(x) = 1,
on obtient par le théorème des gendarmes le résultat recherché.

Exercice 3.

a) On a
x3 − 1 = (x− 1)(x2 + x+ 1) et (x2 − 1) = (x− 1)(x+ 1).

Ainsi

f(x) =
x2 + x+ 1

x+ 1
, ∀x ∈ D.

Si x0 = 1, on a, par les règles algébriques des limites,

lim
x→1

f(x) =
3

2
.

b) Si f : R→ R est définie par

f(x) =

{
x si x ∈ Q,
0 si x /∈ Q,

on a, pour tout ε > 0,
|x− 0| ≤ ε ⇒ |f(x)− 0| ≤ ε.

En posant donc ` = 0, x0 = 0 et δ = ε, on obtient:

∀ε > 0,∃δ = ε tel que si |x− x0| ≤ δ alors |f(x)− `| ≤ ε,

ce qui prouve que limx→0 f(x) = 0 lorsque x0 = 0.
Ainsi donc

lim
x→0

f(x) = 0.

c) En reprenant la fonction ci-dessus et en posant x0 = 1, on constate:
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1◦) Si (an)∞n=0 ⊂ Q, est telle que limn→∞ an = 1 et an > 1, ∀n ∈ N, alors limn→∞ f(an) = 1.

2◦) Si (bn)∞n=0 ⊂ R \Q, est telle que limn→∞ bn = 1 et bn > 1, ∀n ∈ N, alors limn→∞ f(bn) = 0.

Ces deux propriétés prouvent ensemble que limx→1 f(x) n’existe pas.

Exercice 4.

Soit A ⊂ R le sous-ensemble de R défini par:

A =

{
1

kπ
: k ∈ Z, k 6= 0

}
,

et soit f : R→ R la fonction donnée par:

f(x) =


0, si x ∈ Q,
1, si x ∈ A,
x sin

(
1
x

)
, si x /∈ (Q ∪A).

Remarquons pour commencer que, puisque f est définie sur tout R, on a que f est définie au
voisinage de x0 pour tout point x0 ∈ R.

1. Montrons que f admet une limite en tous les points de A.

Soit donc k ∈ Z, k 6= 0 et posons x0 = 1
kπ . Si (an)∞n=0 ⊂ R est une suite de nombres réels telle

que an 6= x0, ∀n ∈ N et limn→∞ an = x0, on va montrer que

lim
n→∞

f(an) = 0

ce qui montrera que
lim
x→x0

f(x) = 0.

Si δ > 0 est tel que ]x0 − δ, x0 + δ[∩A = {x0}, alors il existe N > 0 tel que ∀n ≥ N on
a an ∈]x0 − δ, x0 + δ[. Puisque on a supposé que an 6= x0, ∀n ∈ N, on obtient si n ≥ N :
an ∈]x0 − δ, x0 + δ[ et an /∈ A. Ainsi, lorsque n ≥ N :

f(an) =

{
an sin

(
1
an

)
si an /∈ Q,

0 si an ∈ Q.

On a limn→∞
1
an

= 1
x0

= kπ et limn→∞ sin
(

1
an

)
= sin(kπ) = 0. On conclut que

lim
n→∞

an sin

(
1

an

)
= 0.

Soit maintenant ε > 0. Il existe M > N tel que ∀n ≥M on a∣∣∣∣an sin

(
1

an

)∣∣∣∣ ≤ ε.
Si n ≥ M , alors ou bien an ∈ Q et alors f(an) = 0, ou bien an /∈ Q et dans ce cas |f(an)| =∣∣∣an sin

(
1
an

)∣∣∣ ≤ ε. Dans tous les cas on a bien

|f(an)| ≤ ε,∀n ≥M,

ce qui montre que limn→∞ f(an) = 0 et donc que

lim
x→x0

f(x) = 0.
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2. Montrons que f n’admet pas de limite au point x0 = 0.

En effet,

• Si (an)∞n=0 est une suite telle que an 6= 0, ∀n ∈ N, an /∈ (Q ∪A), et limn→∞ an = 0 on obtient
limn→∞ f(an) = 0.

• Par contre, si an = 1
nπ où n ∈ N∗, on a bien an 6= 0, ∀n ∈ N et limn→∞ an = 0 mais

limn→∞ f(an) = 1.

Ceci prouve que limx→x0 f(x) n’existe pas.

3. Montrons que si x0 /∈ A, limx→x0
f(x) n’existe pas.

On a déjà montré que limx→0 f(x) n’existe pas.

Posons g(x) = x sin
(

1
x

)
, ∀x ∈ R∗. Si x0 /∈ A et x0 6= 0, on montre que

lim
x→x0

g(x) = x0 sin

(
1

x0

)
6= 0.

• Si (an)∞n=0 est une suite telle que an /∈ (Q ∪A), ∀n ∈ N, an 6= x0, ∀n ∈ N et limn→∞ an = x0,

on a limn→∞ f(an) = x0 sin
(

1
x0

)
6= 0.

• Par contre, par densité de Q dans R, il existe (an)∞n=0 ⊂ Q, an 6= x0, ∀n ∈ N telle que
limn→∞ an = x0 et on a limn→∞ f(an) = 0.

Ce qui implique, encore une fois que limx→x0
f(x) n’existe pas.

Exercice 5.

Soit a ∈ ]0, 1[. Remarquons en premier lieu que f est bien définie au voisinage de a. Soit ε > 0 et
soit N = b 1

ε c+ 1. On pose

K+ = {x ∈ ]a, 1[ ; x ∈ ∪Nn=0An}, M = minK+

K− = {x ∈ ]0, a[ ; x ∈ ∪Nn=0An}, m = maxK−.

Comme K+ et K− sont des sous-ensembles finis de R, leur maximum et minimum est bien défini, et
l’on a δ = min{|M − a|, |m− a|} > 0 car m 6= a et M 6= a.

Par construction, ∀x ∈ ]a− δ, a+ δ[ \ {a}, on a x /∈ ∪Nn=0An donc |f(x)| ≤ 1
N < ε. Ainsi,

∀x ∈ ]a− δ, a+ δ[ \ {a}, on a |f(x)− 0| < ε, ce qui montre que limx→a f(x) = 0.

3


