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Exercice 1.

1. Pour ∀(x, y) ∈ R2, on a d’après l’inégalité triangulaire:

|x| = |x− y + y| ≤ |x− y|+ |y|

donc |x| − |y| ≤ |x− y|. De même, on a |y| − |x| ≤ |x− y|. Donc ||x| − |y|| ≤ |y − x|.

2. La direction ⇐ de l’équivalence est claire puisque que si x = 0, alors 0 < ε, ∀ε ∈ R∗+ (par
définition de R∗+). Montrons la direction ⇒ par contraposition (on rappelle que si A et B sont
deux propositions logiques, alors (A⇒ B) a la même valeur de vérité que (non(B)⇒ non(A)). Si
x 6= 0 alors |x| > 0. En posant ε = |x|/2 ∈ R∗+ on a |x| ≥ ε. Donc (x 6= 0)⇒ (∃ε ∈ R∗+, |x| ≥ ε).
Donc par contraposition, (∀ε ∈ R∗+, |x| < ε)⇒ (x = 0), ce qui conclut la preuve.

Exercice 2.

1. xn = −1/n, n ∈ N∗; xn = 1− exp(−n), n ∈ N (en utilisant la monotonie de l’exponentielle, que
l’on pourra montrer plus tard), ...

2. xn = n · (−1)n, n ∈ N ; xn =
√
n · cos(nπ/4), n ∈ N, ...

3. xn = (−1)n/n, n ∈ N∗, ...

Exercice 3.
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2. Démonstration de la limite limn→∞ xn = 1
2

Soit ε > 0 donné. En choisissant N = N(ε) > 1√
2ε

, on a par l’étape précédente :∣∣∣∣xn − 1
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Ainsi, on conclut que :
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Exercice 4.

Pour tout n ∈ N, notons Un =
∑n

k=0 uk et Vn =
∑n

k=0 vk. On a, pour tout n ∈ N:
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Exercice 5.

On définit la partie fractionnelle de a comme mant(a) = a− bac si a ≥ 0 et comme −mant(−a) si
a ≤ 0 (on utilisera plus loin la propriété: |mant(a)| = mant(|a|)). Supposons par l’absurde que pour
k = 1, 2, . . . , n− 1, on ait:

1

n
< mant(ka) < 1− 1

n
.

(Remarquez qu’il s’agit bien de la négation de la proposition que nous souhaitons démontrer.) Cela
signifie que les n−1 nombres mant(ka) sont tous contenus dans un intervalle d’amplitude n−2

n . Il existe
donc deux indices k1 et k2 tels que (essayez de détailler le raisonnement derrière cette affirmation):

0 ≤ mant(k1a)−mant(k2a) ≤ 1

n
.

Observons que si mant(x) > mant(y) et x > y > 0, on a:

|mant(x− y)| = mant(x− y) = mant(x)−mant(y),

tandis que si mant(x) > mant(y) et 0 < x < y, on a:

|mant(x− y)| = −mant(x− y) = 1 + mant(y)−mant(x).

Ainsi, on en déduit que:

0 ≤ |mant((k1 − k2)a)| ≤ 1

n
ou 1 ≥ |mant((k1 − k2)a)| ≥ 1− 1

n
.

Dans les deux cas, |k1 − k2|a diffère d’un entier d’au plus 1
n (et |k1 − k2| ∈ {1, . . . , n − 1}), ce qui

mène à une contradiction.

2


