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Corrigé 14.2 — mardi 18 décembre 2024

(Ce corrigé étant long, il n’est pas rédigé avec autant de soin qu’habituellement).
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Intégration

Exercice 1.

1. fOTZZ log(sint)dt. Converge car pour tout ¢t €]0, 1], log(sin(t)) = log(sin(t)/t) + log(t). Le

premier terme est fonction prolongeable par continuité sur [0, 1] et le second est intégrable en
0+ (par calcul direct). On peut aussi adopter 'approche plus générique qui consiste a écrire:
log(sint) = log(t+o(t)) = log(t) +log(1+o0(1)) = log(t) +o(1) au voisinage de 0. Alors 'intégrale
converge par comparaison avec log(t) qui est intégrable au voisinage de 0+.

& _ 3_«a o . .
) f t3(1 S ——~——d¢t. Puisque Vo ti7%(14 o(1)) au voisinage de 0+, on a par comparaison

que f1/2 Wdt converge. Puisque %/% = (1 —1t)"Y4(1 + o(1)) au voisinage de 1—,

on a par comparaison que f1 /2 Wdt converge. D’ou fOlJ: V%dt converge pour tout
a > 0.

3. Sia=1. [; # [log(log(log(t)))]3°° = +oo diverge. Sia # 1, [, m

t(logt)(log(logt)) —
[(log(log(t))l o ] +oo
3

l1-a

qui converge ssi a > 1.

Exercice 2.

1. Vérifions que l'intégrale généralisée

+oo
sint
/ sinf g
. t

est convergente, mais pas absolument convergente.

Une intégration par parties donne, pour x > 7,

/ Smtdt /I (—cost) gt — | —eost :c_/z cost .,
. . t t ﬂ . 12

Comme [t~2 cost| < t72 sur [r, +oo| et I'intégrale généralisée

+oo
/ t=2dt

converge, il en résulte par comparaison que l'intégrale généralisée

“+oo
cost
” t

est absolument convergente, et donc convergente. Ainsi

. T sint
lim —dt
T—+00

existe dans R.



2. D’autre part, on obtient aussi pour tout n € N*

(n+1)m n (k+1)m
/ a=> [
™ —1 km

k

I;k—kl / sint Zk+1

sint sm t

t

n (k1)
Z Gl / | sin(t)| dt

La série harmonique étant divergente et = +— f;f ’Si;‘t} dt étant une fonction croissante sur
[, +00[, on en déduit que
¥ |sint (D7 1 gint
lim — | dt = lim dt =
z—+oo [ n—+oo [ t

. . . , , ., 400 g
et ainsi que l'intégrale généralisée fw %nt dt n’est pas absolument convergente.

Exercice 3.

Vrai. Soit f: Ry — Ry une fonction uniformément continue telle que f ne converge pas vers 0
en +oo. Montrons alors que f n’est pas intégrable (ce qui est la contraposée de I’énoncé a prouver).
Par hypothese de non-convergence vers 0, il existe € > 0 tel que VM > 0, il existe x > M tel que
f(z) > e. On peut donc construire une suite strictement croissante (z,,) de réels supérieurs a 1 tels
que f(xn) > eet xpp1 >z + 2.

Par uniforme continuité, il existe 0 < 6 < 1 tel que V,y € Ry, (Jz—y| < d = |f(x)—f(y)] < €/2).
On en déduit que pour tout n € N, Vu € [z, — §,z,, + 6] on a f(u) > /2. Il s’ensuit, en minorant
lintégrale de f sur un intervalle par I'aire des rectangles centrés en (zy) de base 20 et hauteur /2
inclus dans cet intervalle, que

Tp+1 n
/ ' F(dt >3 £(28) = ne.
0 Pt 2

Ainsi z — fo t)dt n’est pas majorée et, comme il s’agit de I'intégrale d’une fonction positive, elle
diverge donc vers +oo.

Exercice 4.

Par intégration par parties on a

I, = /2 sin™(x)dx = /2 sin ™! () sin(z)dx
0 0

w3
NE

= [ —sin" ! 2 cos? x] +(n-1) / sin" "% x cos® wdx (1)
0

[}

™

=(n-— 1)/2 sin" 2 x(1 —sin*2)dz = (n — V)I,,_o — (n — 1)1,
0

”;1[,1_2. Mais nous savons que Iy = g et que I; = 1. Donc

et donc I,, =

1.3-5--(2k—1) g _

9462k 2 pourn = 2k

= 2)
% pour n =2k + 1

2n+1

Pour z € ]O, g[ on a que sin x < sin®"x < sin® "z et donc Iopi1 < Ion < Iop_1, c--d.

2.4-6---(2n) 1-3---(2n—1) 7 2-4-6---(2n—2)
< =<
1-3-5---(2n+1) 2.4-.-(2n) 2 1-3-5---(2n—1)




ou, également,

(ot ) iy < (Ao ) 2

et donc nous avons la double inégalité

(246 (20) 21< 2n 41
"\135@n-1) n "

On conclut par le thm. des gendarmes.

Exercice 5.

1. On a que, six €] —1,1]

22 2 ozt 2b
loglto)=¢42——+ — — — + —---
og(ltw) =o— o £ -3
et donc
1 2 2 2
1og<1i_z>zlog(1+x)—1og(1—x)=2x+3x3+5x5+-~-+2m+12’”+1+~-~
et si on choisit z = 2n1+1 on a que
) n+1 2 + 2 n 2 n
le) =
S\ n m+1 32n+1)7°  5(2n+ 1)
donc
o] 00 1
1 n+1 1 2 1 2 ©arnz 1
=1 — ) =1 < 14= —_— =1l —— =14 —
<"+2> °g< n ) +kZ:1(2k+l)(2n+1)2k +3k2:1(2”+1)2k +31_W ASTTICESY)

On obtient donc la double inégalité

1< (nti)og(1+i) et —F
= 2) % n 12n(n+ 1)

On prend 'exponentielle et divise par e pour obtenir
1 1\""* .
1<—-(14-— < eTIn(nFD)
T e n

1
2. Onaque -2 =1 (1+ %)"—“ et donc

Tn+1

1
Tn e12n

<

1<

_
Tn41 e12(n+1)
On déduit que (z,,) est une suite positive et décroissante (et donc convergente), tandis que
1 . . JRE . . R
(e~ 2mx,) est croissante. Puisque e~ 2n — 1, on a que lim, x,, = lim,, e” 2=z, =: L.
. _1 _0_ o 1
Puisque e rnx, < L < x, = e T2nx,, par la continuité de e~ %, il existe 6, €]0,1[ t.q.
On N bn
L =e Tong,, ca-d. x, =et2n L.
3. Il reste & montrer que L = v/27. Par I'exercice précédent, on a

1 2.4-6---2n 1 22n(nl)?
= lim — = lim =1
VT nggo\/ﬁ<1-3-5-~-(2n—1)> noo /i (2n)!

Mais nous avons vu que n! = \/ﬁ(%)nxn = \/ﬁ(%)nefT"nL et donc on a

1 227 (n))? 1 22 (2) e L2 L w0 L
e LEOE U EMEPEL L L
n—)oo\/ﬁ (277,)' n— o0 \/ﬁ\/%(?n) 6242L \/>n—>oo \/i



2 Une fonction continue partout, dérivable nulle part

1. On observe que 0 < D(z) < 1/2 pour tout z € R. Comme la suite (f,(x)), est croissante, la
convergence vient du fait que pour tout n € N, on a

1
f@) <5 Y 27h =1
k=0

2. Le fait que la convergence est uniforme suit de I'inégalité suivante

J) — fa@l= 3 2D < 30 2k gt
k=n+1 k=n+1

3. Comme toutes les fonctions f, sont continues et périodiques de période 1, et que la convergence
est uniforme, on en déduit que f est continue et périodique de période 1. Finalement, on fonction
continue et périodique est uniformément continue (& détailler: on utilise ici le fait quune fonction
continue sur un intervalle fermé borné est uniformément continue; et que par périodicité on peut
se ramener & un intervalle fermé borné).

~

(a) Remarquons que pour tout k > n, 28" € N et donc D(2*~™¢) = 0. On a donc:
o) o) n—1
flan) =Y "27FD(2%a,) = 27 D2k 0) = Y 27FD(2%a,)
k=0 k=0 k=0

De méme, f(b,) = S p_y 2 "D (2"b,).

(b) Soit ¢, := a, + 27" le point se situant au milieu de I'intervalle [a,,b,]. Lors de la
(n+ 1)-éme étape, le segment joignant le point (ay, f(ay)) au point (by,, f(b,)) est remplacé
par deux segments reliant, respectivement, le point (a,, f(a,)) au point (c,, f(c,)) et le
point (¢, f(c,)) au point (by,, f(b,)). Par construction,

flea) = w +o27n L, (B.3)

Il y a, a présent, deux cas a considérer, selon que xg < ¢, ou Ty > Cy.

pente p, — 1

pentepn-i—l\):i / I
2—71—1
pente py, ——

Figure B.3: Le segment de droite reliant les points (ay, f(ay)) et (b, f(by)) du graphe de la fonction
fn a une pente p,,. Les segments de droite reliant, respectivement, les points (a,, f(a,)) et (¢, f(cn))
et les points (¢, f(cn)) et (b, f(bn)) du graphe de la fonction f,, 11 ont une pente égale, respectivement,
apn,+letap,—1.

Supposons tout d’abord que xy < ¢,. Dans ce cas, an+1 = ay €t by41 = ¢,. Donc, par

(B.3),
f(bnt1) = flangt) _ flen) — flan)

bpi1 — Qnai (b, — an)/2

Lorsque z¢p > ¢y, on a a1 = ¢, €t by41 = by, ce qui implique que

f(bn+1) - f(anJrl) _ f(bn) B f(cn) _

Pn = = =p, — 1.
i bn—i—l — Qp41 (bn - an)/Q

Pn+1 = =p, + 1.

Ainsi, quel que soit xg, on a |pp+1 — pn| = 1. En particulier,

la suite (p,)nen n'est pas convergente. (B.4)



(c) Supposons, par I'absurde, que f soit dérivable en . En posant A\, := (b, —x0)/(bp —a,) €
[0, 1], on peut écrire

oo L) =10 | Fa) = flaw),
bn — X Ty — Ap
Ceci implique que

f(bn) = £ (o)

bn_xO

fxo) = flan)

Ty — Gn

po — /(0] < A - f’(wo)‘ LA = P

Or, comme on a supposé f dérivable en xq, le membre de droite tend vers 0 lorsque n — +o0,
ce qui implique que la suite (p,) converge vers f’(zg), en contradiction avec (B.4).

3 Quelques révisions

Exercice 1.
On pose
an = sup{an, Ont1, Wnt2,--- f,  bn = sup{Bn, Bn+1, Bnt2s--- }

Cn = Sup{anﬂm Ont1Bns1, O‘n+2ﬂn+27 cee }
On a

limsup a, = lim a,, limsupf, = lim b,, limsup(a,B,)= lim c,.
n—oo n—oo n— oo n—oo n—oo n—oo

Par définition de a,, et b,, on a pour n € N:
0<a; <an, Vj>n, 0<B;<b,, Vj=>n.
Ainsi, 0 < ;85 < anby, Vj > n et donc ¢, < anb,. Puisque (an)nlg, (bn)ozg et (cn)o, sont des
suites décroissantes et bornées, on a
lim ¢, < lim a,b, = lim a, - lim b,
n—roo n—oo n—roo n—oo

d’ou le résultat.

Exercice 2.

1. On a: ) )
R = - — e R= - - -
lim sup,,_, o |an|™ lim sup,,_, o |an|™|an|™
Les suites (|an |7 )% et o] 7)22, sont bornées et non-négatives. En effet, si (|an|" )%, n'était

pas bornée, on aurait R = 0.

D’apres 'exercice précédent:

lim sup |an|%|an|% < lim sup \an\% -lim sup |an|%
n—0o0

n—oo n—00
et donc
1 T | |L| |L <1 | |L 1
— = limsup |a, |7 |a,|™ imsup |a,|” = =
R ’I’L‘)()Op " " - ’I'L*}()Op " R’

ce qui prouve que R > R.



2. Supposons maintenant que lim,,_, |an\% =1. 810 < e <1 est donné, il existe N € N tel que
1—e<|an|" <1+4e¢ V> N.

Ainsi . . ) )
(1 =¢€)|an|™ < |an|™|an|™ < (14 €)|an|™, Vn > N.
On vérifie que ces deux inégalités impliquent que

(1 — €) lim sup |an|% < limsup(|an|%|an|%) < (1+ ¢)limsup |an|%,
n— oo n— oo n—oo

et par conséquent:

ce qui montre que

+
Comme € > 0 est donné quelconque, on obtient R = R.

Remarque. On ne peut pas remplacer lim,, . |ozn|% =1 par limsup,,_, ., |an|% = 1. En effet, si on
prend

)1, sin est pair, 0, sin est pair,
in = 0, sin est impair, “ 1, sin est impair,
on obtient
l:limsup|an|% =1 et i:limsup|an|%|an\% =0.
R R

n—oo n— oo

Exercice 3.

On considere la fonction f: R% — R définie par f(z) = zl/®,

On a, par définition, pour x > O:

fa) =L e )= (TR

T
1. On a 10% <-lsi0<z<1l/eet e /T =0(|z|*),siz — 0, Va >0 et ainsi,

efl/x

— a=p) g
o =O(|z|*7P),si z — 0.

Dong, lim,_,g+ f(z) = 0 ainsi que lim,_,q+ f’(z) = 0, puisque

logt 11 1
g2$<f— siz > 0.

log
zz?  x3’

2

xT x

2. De méme, lim,_,~ f(x) = 1 puisque lim,_, loix =0 et lim,_,o f'(z) = 0.

3. Calculer le maximum de la fonction f. Le seul point stationnaire de f (ou la dérivée s’annule)
est donné par 1 — logz = 0, i.e., x = e. C’est le maximum global, puisqu’on a f’(z) > 0 pour
0<z<eet f'(x) <0pourxz >e. Ona

fle)=e? > 1.

Exercice 4.

11 suffit d’écrire la relation de convexité:
e pour n — 1 < x < n pour obtenir f(z) < z, et

e pour £ < n < n+ 1 pour obtenir f(z) > z.
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