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Prof. Lénäıc Chizat

Corrigé 14.2 – mardi 18 décembre 2024
(Ce corrigé étant long, il n’est pas rédigé avec autant de soin qu’habituellement).

1 Intégration

Exercice 1.

1.
∫ π/2

0+
log(sin t)dt. Converge car pour tout t ∈]0, 1], log(sin(t)) = log(sin(t)/t) + log(t). Le

premier terme est fonction prolongeable par continuité sur [0, 1] et le second est intégrable en
0+ (par calcul direct). On peut aussi adopter l’approche plus générique qui consiste à écrire:
log(sin t) = log(t+o(t)) = log(t)+log(1+o(1)) = log(t)+o(1) au voisinage de 0. Alors l’intégrale
converge par comparaison avec log(t) qui est intégrable au voisinage de 0+.

2.
∫ 1−

0+
tα

4
√
t3(1−t)

dt. Puisque tα

4
√
t3(1−t)

= t
3
4−α(1 + o(1)) au voisinage de 0+, on a par comparaison

que
∫ 1/2

0+
tα

4
√
t3(1−t)

dt converge. Puisque tα

4
√
t3(1−t)

= (1 − t)−1/4(1 + o(1)) au voisinage de 1−,

on a par comparaison que
∫ 1−

1/2
tα

4
√
t3(1−t)

dt converge. D’où
∫ 1−

0+
tα

4
√
t3(1−t)

dt converge pour tout

α > 0.

3. Si α = 1.
∫ +∞

3
dt

t(log t)(log(log t)) = [log(log(log(t)))]+∞3 = +∞ diverge. Si α 6= 1,
∫ +∞

3
dt

t(log t)(log(log t))α =[
(log(log(t))1−α

1−α

]+∞
3

qui converge ssi α > 1.

Exercice 2.

1. Vérifions que l’intégrale généralisée ∫ +∞

π

sin t

t
dt

est convergente, mais pas absolument convergente.

Une intégration par parties donne, pour x > π,∫ x

π

sin t

t
dt =

∫ x

π

(− cos t)′

t
dt =

[
− cos t

t

]x
π

−
∫ x

π

cos t

t2
dt.

Comme |t−2 cos t| ≤ t−2 sur [π,+∞[ et l’intégrale généralisée∫ +∞

π

t−2 dt

converge, il en résulte par comparaison que l’intégrale généralisée∫ +∞

π

cos t

t2
dt

est absolument convergente, et donc convergente. Ainsi

lim
x→+∞

∫ x

π

sin t

t
dt

existe dans R.
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2. D’autre part, on obtient aussi pour tout n ∈ N∗∫ (n+1)π

π

∣∣∣∣ sin tt
∣∣∣∣ dt =

n∑
k=1

∫ (k+1)π

kπ

∣∣∣∣ sin tt
∣∣∣∣ dt ≥ n∑

k=1

1

(k + 1)π

∫ (k+1)π

kπ

| sin(t)| dt

=

n∑
k=1

1

(k + 1)π

∫ π

0

sin(t) dt =
2

π

n∑
k=1

1

k + 1
.

La série harmonique étant divergente et x 7→
∫ x
π

∣∣ sin t
t

∣∣ dt étant une fonction croissante sur
[π,+∞[, on en déduit que

lim
x→+∞

∫ x

π

∣∣∣∣ sin tt
∣∣∣∣ dt = lim

n→+∞

∫ (n+1)π

π

∣∣∣∣ sin tt
∣∣∣∣ dt = +∞

et ainsi que l’intégrale généralisée
∫ +∞
π

sin t
t dt n’est pas absolument convergente.

Exercice 3.

Vrai. Soit f : R+ → R+ une fonction uniformément continue telle que f ne converge pas vers 0
en +∞. Montrons alors que f n’est pas intégrable (ce qui est la contraposée de l’énoncé à prouver).
Par hypothèse de non-convergence vers 0, il existe ε > 0 tel que ∀M > 0, il existe x ≥ M tel que
f(x) ≥ ε. On peut donc construire une suite strictement croissante (xn) de réels supérieurs à 1 tels
que f(xn) ≥ ε et xn+1 > xn + 2.

Par uniforme continuité, il existe 0 < δ < 1 tel que ∀x, y ∈ R+, (|x−y| ≤ δ =⇒ |f(x)−f(y)| ≤ ε/2).
On en déduit que pour tout n ∈ N, ∀u ∈ [xn − δ, xn + δ] on a f(u) ≥ ε/2. Il s’ensuit, en minorant
l’intégrale de f sur un intervalle par l’aire des rectangles centrés en (xk) de base 2δ et hauteur ε/2
inclus dans cet intervalle, que ∫ xn+1

0

f(t)dt ≥
n∑
k=1

ε

2
(2δ) = nεδ.

Ainsi x 7→
∫ x

0
f(t)dt n’est pas majorée et, comme il s’agit de l’intégrale d’une fonction positive, elle

diverge donc vers +∞.

Exercice 4.

Par intégration par parties on a

In =

∫ π
2

0

sinn(x)dx =

∫ π
2

0

sinn−1(x) sin(x)dx

=
[
− sinn−1 x cos2 x

]π
2

0
+ (n− 1)

∫ π
2

0

sinn−2 x cos2 xdx (1)

= (n− 1)

∫ π
2

0

sinn−2 x(1− sin2 x)dx = (n− 1)In−2 − (n− 1)In

et donc In = n−1
n In−2. Mais nous savons que I0 = π

2 et que I1 = 1. Donc

In =


1·3·5···(2k−1)

2·4·6···(2k) ·
π
2 pour n = 2k

2·4·6···(2k)
1·3·5···(2k+1) pour n = 2k + 1

(2)

Pour x ∈
]
0, π2

[
on a que sin2n+1 x < sin2n x < sin2n−1 x et donc I2n+1 < I2n < I2n−1, c-à-d.

2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n+ 1)
<

1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)
· π

2
<

2 · 4 · 6 · · · (2n− 2)

1 · 3 · 5 · · · (2n− 1)
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ou, également, (
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)

)2
2

2n+ 1
< π <

(
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)

)2
2

2n

et donc nous avons la double inégalité

π <

(
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)

)2
1

n
< π

2n+ 1

2n
.

On conclut par le thm. des gendarmes.

Exercice 5.

1. On a que, si x ∈]− 1, 1[

log(1± x) = ±x− x2

2
± x3

3
− x4

4
± x5

5
· · ·

et donc

log

(
1 + x

1− x

)
= log(1 + x)− log(1− x) = 2x+

2

3
x3 +

2

5
x5 + · · ·+ 2

2m+ 1
x2m+1 + · · ·

et si on choisit x = 1
2n+1 on a que

log

(
n+ 1

n

)
=

2

2n+ 1
+

2

3(2n+ 1)3
+

2

5(2n+ 1)5
+ · · ·

donc(
n+

1

2

)
log

(
n+ 1

n

)
= 1+

∞∑
k=1

1

(2k + 1)(2n+ 1)2k
< 1+

2

3

∞∑
k=1

1

(2n+ 1)2k
= 1+

2

3

1
(2n+1)2

1− 1
(2n+1)2

= 1+
1

12n(n+ 1)
.

On obtient donc la double inégalité

1 ≤
(
n+

1

2

)
log

(
1 +

1

n

)
< 1 +

1

12n(n+ 1)
.

On prend l’exponentielle et divise par e pour obtenir

1 ≤ 1

e

(
1 +

1

n

)n+ 1
2

< e
1

12n(n+1) .

2. On a que xn
xn+1

= 1
e

(
1 + 1

n

)n+ 1
2 et donc

1 ≤ xn
xn+1

≤ e
1

12n

e
1

12(n+1)

.

On déduit que (xn) est une suite positive et décroissante (et donc convergente), tandis que

(e−
1

12nxn) est croissante. Puisque e−
1

12n → 1, on a que limn xn = limn e
− 1

12nxn =: L.

Puisque e−
1

12nxn < L < xn = e−
0

12nxn, par la continuité de e−
1
t , il existe θn ∈]0, 1[ t.q.

L = e−
θn
12nxn, c-à-d. xn = e

θn
12nL.

3. Il reste à montrer que L =
√

2π. Par l’exercice précédent, on a

√
π = lim

n→∞

1√
n

(
2 · 4 · 6 · · · 2n

1 · 3 · 5 · · · (2n− 1)

)
= lim
n→∞

1√
n

22n(n!)2

(2n)!
.

Mais nous avons vu que n! =
√
n
(
n
e

)n
xn =

√
n
(
n
e

)n
e
θn
12nL et donc on a

√
π = lim

n→∞

1√
n

22n(n!)2

(2n)!
= lim
n→∞

1√
n

22nn
(
n
e

)2n
e
θn
6nL2

√
2n
(

2n
e

)2n
e
θ2n
24nL

=
L√
2

lim
n→∞

e
θn
6n−

θ2n
24n =

L√
2
.
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2 Une fonction continue partout, dérivable nulle part

1. On observe que 0 ≤ D(x) ≤ 1/2 pour tout x ∈ R. Comme la suite (fn(x))n est croissante, la
convergence vient du fait que pour tout n ∈ N, on a

fn(x) ≤ 1

2

+∞∑
k=0

2−k = 1.

2. Le fait que la convergence est uniforme suit de l’inégalité suivante

|f(x)− fn(x)| =
∞∑

k=n+1

2−kD(dkx) ≤
∞∑

k=n+1

2−k−1 = 2−n−1.

3. Comme toutes les fonctions fn sont continues et périodiques de période 1, et que la convergence
est uniforme, on en déduit que f est continue et périodique de période 1. Finalement, on fonction
continue et périodique est uniformément continue (à détailler: on utilise ici le fait qu’une fonction
continue sur un intervalle fermé borné est uniformément continue; et que par périodicité on peut
se ramener à un intervalle fermé borné).

4. (a) Remarquons que pour tout k ≥ n, 2k−n ∈ N et donc D(2k−n`) = 0. On a donc:

f(an) =

∞∑
k=0

2−kD(2kan) =

∞∑
k=0

2−kD(2k−n`) =

n−1∑
k=0

2−kD(2kan)

De même, f(bn) =
∑n−1
k=0 2−kD(2kbn).

(b) Soit cn := an + 2−n−1 le point se situant au milieu de l’intervalle [an, bn]. Lors de la
(n+ 1)-ème étape, le segment joignant le point (an, f(an)) au point (bn, f(bn)) est remplacé
par deux segments reliant, respectivement, le point (an, f(an)) au point (cn, f(cn)) et le
point (cn, f(cn)) au point (bn, f(bn)). Par construction,

f(cn) =
f(an) + f(bn)

2
+ 2−n−1. (B.3)

Il y a, à présent, deux cas à considérer, selon que x0 < cn ou x0 ≥ cn.

Figure B.3: Le segment de droite reliant les points (an, f(an)) et (bn, f(bn)) du graphe de la fonction
fn a une pente pn. Les segments de droite reliant, respectivement, les points (an, f(an)) et (cn, f(cn))
et les points (cn, f(cn)) et (bn, f(bn)) du graphe de la fonction fn+1 ont une pente égale, respectivement,
à pn + 1 et à pn − 1.

Supposons tout d’abord que x0 < cn. Dans ce cas, an+1 = an et bn+1 = cn. Donc, par
(B.3),

pn+1 =
f(bn+1)− f(an+1)

bn+1 − an+1
=
f(cn)− f(an)

(bn − an)/2
= pn + 1.

Lorsque x0 ≥ cn, on a an+1 = cn et bn+1 = bn, ce qui implique que

pn+1 =
f(bn+1)− f(an+1)

bn+1 − an+1
=
f(bn)− f(cn)

(bn − an)/2
= pn − 1.

Ainsi, quel que soit x0, on a |pn+1 − pn| = 1. En particulier,

la suite (pn)n∈N n’est pas convergente. (B.4)
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(c) Supposons, par l’absurde, que f soit dérivable en x0. En posant λn := (bn−x0)/(bn−an) ∈
[0, 1], on peut écrire

pn = λn
f(bn)− f(x0)

bn − x0
+ (1− λn)

f(x0)− f(an)

x0 − an
.

Ceci implique que

|pn − f ′(x0)| ≤ λn
∣∣∣∣f(bn)− f(x0)

bn − x0
− f ′(x0)

∣∣∣∣+ (1− λn)

∣∣∣∣f(x0)− f(an)

x0 − an
− f ′(x0)

∣∣∣∣ .
Or, comme on a supposé f dérivable en x0, le membre de droite tend vers 0 lorsque n→ +∞,
ce qui implique que la suite (pn) converge vers f ′(x0), en contradiction avec (B.4).

3 Quelques révisions

Exercice 1.

On pose
an = sup{αn, αn+1, αn+2, . . . }, bn = sup{βn, βn+1, βn+2, . . . },

cn = sup{αnβn, αn+1βn+1, αn+2βn+2, . . . }.

On a
lim sup
n→∞

αn = lim
n→∞

an, lim sup
n→∞

βn = lim
n→∞

bn, lim sup
n→∞

(αnβn) = lim
n→∞

cn.

Par définition de an et bn, on a pour n ∈ N:

0 ≤ αj ≤ an, ∀j ≥ n, 0 ≤ βj ≤ bn, ∀j ≥ n.

Ainsi, 0 ≤ αjβj ≤ anbn, ∀j ≥ n et donc cn ≤ anbn. Puisque (an)∞n=0, (bn)∞n=0 et (cn)∞n=0 sont des
suites décroissantes et bornées, on a

lim
n→∞

cn ≤ lim
n→∞

anbn = lim
n→∞

an · lim
n→∞

bn

d’où le résultat.

Exercice 2.

1. On a :

R =
1

lim supn→∞ |an|
1
n

et R̃ =
1

lim supn→∞ |an|
1
n |αn|

1
n

.

Les suites (|an|
1
n )∞n=0 et |αn|

1
n )∞n=0 sont bornées et non-négatives. En effet, si (|an|

1
n )∞n=0 n’était

pas bornée, on aurait R = 0.

D’après l’exercice précédent:

lim sup
n→∞

|an|
1
n |αn|

1
n ≤ lim sup

n→∞
|an|

1
n · lim sup

n→∞
|αn|

1
n

et donc
1

R̃
= lim sup

n→∞
|an|

1
n |αn|

1
n ≤ lim sup

n→∞
|an|

1
n =

1

R
,

ce qui prouve que R̃ ≥ R.
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2. Supposons maintenant que limn→∞ |αn|
1
n = 1. Si 0 < ε < 1 est donné, il existe N ∈ N tel que

1− ε ≤ |αn|
1
n ≤ 1 + ε, ∀n ≥ N.

Ainsi
(1− ε)|an|

1
n ≤ |αn|

1
n |an|

1
n ≤ (1 + ε)|an|

1
n , ∀n ≥ N.

On vérifie que ces deux inégalités impliquent que

(1− ε) lim sup
n→∞

|an|
1
n ≤ lim sup

n→∞
(|αn|

1
n |an|

1
n ) ≤ (1 + ε) lim sup

n→∞
|an|

1
n ,

et par conséquent:

(1− ε) 1

R
≤ 1

R̃
≤ (1 + ε)

1

R
,

ce qui montre que
R

1− ε
≥ R̃ ≥ R

1 + ε
.

Comme ε > 0 est donné quelconque, on obtient R̃ = R.

Remarque. On ne peut pas remplacer limn→∞ |αn|
1
n = 1 par lim supn→∞ |αn|

1
n = 1. En effet, si on

prend

an =

{
1, si n est pair,

0, si n est impair,
αn =

{
0, si n est pair,

1, si n est impair,

on obtient
1

R
= lim sup

n→∞
|an|

1
n = 1 et

1

R̃
= lim sup

n→∞
|an|

1
n |αn|

1
n = 0.

Exercice 3.

On considère la fonction f : R∗+ → R∗+ définie par f(x) = x1/x.
On a, par définition, pour x > 0:

f(x) = e
log x
x , et f ′(x) = e

log x
x

(
1− log x

x2

)
.

1. On a log x
x < − 1

x , si 0 < x < 1/e et e−1/x = O(|x|α), si x→ 0, ∀α > 0 et ainsi,

e−1/x

xp
= O(|x|α−p), si x→ 0.

Donc, limx→0+ f(x) = 0 ainsi que limx→0+ f ′(x) = 0, puisque

− log x

x2
=

log 1
x

x2
<

1

x

1

x2
=

1

x3
, si x > 0.

2. De même, limx→∞ f(x) = 1 puisque limx→∞
log x
x = 0 et limx→∞ f ′(x) = 0.

3. Calculer le maximum de la fonction f . Le seul point stationnaire de f (où la dérivée s’annule)
est donné par 1− log x = 0, i.e., x = e. C’est le maximum global, puisqu’on a f ′(x) > 0 pour
0 < x < e et f ′(x) < 0 pour x > e. On a

f(e) = e
1
e > 1.

Exercice 4.

Il suffit d’écrire la relation de convexité:

• pour n− 1 < x < n pour obtenir f(x) ≤ x, et

• pour x < n < n+ 1 pour obtenir f(x) ≥ x.
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