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Exercice 1.

Si f ou g est constante égale à 0 alors les intégrales convergent et l’inégalité est triviale (0 ≤ 0). On

suppose donc le cas contraire. Alors il existe A > 0 tel que ∀x ≥ A,
∫ A

0
f(x)2dx > 0 et

∫ A
0
g(x)2dx > 0

(cf. série 12.1 exercice 2).
Supposons maintenant f, g ≥ 0. On a, en développant, pour x ≥ A, que

0 ≤
∫ x

0

(
f(t)

(
∫ x

0
f(s)2ds)

1
2

− g(t)

(
∫ x

0
g(s)2ds)

1
2

)2

dt

= 1 + 1− 2

∫ x
0
f(t)g(t)dt

(
∫ x

0
f(s)2ds)

1
2 · (

∫ x
0
g(s)2ds)

1
2

.

On en déduit∫ x

0

f(t)g(t)dt ≤
(∫ x

0

f(s)2ds

) 1
2

·
(∫ x

0

g(s)2ds

) 1
2

≤
(∫ ∞

0

f(s)2ds

) 1
2

·
(∫ ∞

0

g(s)2ds

) 1
2

Ceci montre, dans le cas f, g ≥ 0 que l’intégrale en question converge et que∫ ∞
0

f(t)g(t)dt ≤
(∫ ∞

0

f(s)2ds

) 1
2

·
(∫ ∞

0

g(s)2ds

) 1
2

.

Dans le cas général, on applique le raisonnement ci-dessus à |f | et |g| et l’on obtient que l’intégrale∫∞
0
f(t)g(t)dt converge absolument et∣∣∣∣∫ ∞

0

f(t)g(t)dt

∣∣∣∣ ≤ ∫ ∞
0

|f(t)g(t)|dt ≤
(∫ ∞

0

f(s)2ds

) 1
2

·
(∫ ∞

0

g(s)2ds

) 1
2

.

Exercice 2.

1. On peut écrire tx−1e−t = tx−1e−t/2e−t/2 et on sait que tx−1e−t/2 converge vers 0 si t→ +∞ ;
il est donc plus petit que 1 pour t assez grand. On a ainsi tx−1e−t ≤ e−t/2 avec e−t/2 intégrable
sur [0,+∞[. Par comparaison, on en déduit que Γ(x) est bien définie car l’intégrale converge.

2. Calculer Γ(1) et montrer ensuite que Γ(α+ 1) = αΓ(α), ∀α > 1.
Indication : intégrer par parties.

On a

Γ(1) = lim
N→∞

∫ N

0

e−t dt = lim
N→∞

[
−e−t

]N
0

= 1,

ainsi que, en intégrant par parties :∫ N

0

tαe−tdt =
[
−tαe−t

]N
0

+ α

∫ N

0

tα−1e−tdt

ce qui donne à la limite N → +∞,

Γ(α+ 1) = αΓ(α).

On en déduit, par récurrence, que

Γ(n+ 1) = n!, ∀n ∈ N.
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3. Montrer que :

log Γ

(
x+ y

2

)
≤ 1

2
(log Γ(x) + log Γ(y)) .

Indication : utiliser Cauchy-Schwarz.

On a, et puisque tout est positif :∫ ∞
0

t
x+y
2 −1e−t dt =

∫ ∞
0

t
x−1
2 e−t/2t

y−1
2 e−t/2dt ≤

(∫ ∞
0

tx−1e−tdt

)1/2(∫ ∞
0

ty−1e−tdt

)1/2

.

En prenant le log, on a le résultat. NB: Même si elle semble plus faible a priori, cette propriété
implique que la fonction log ◦Γ est convexe (on dit que Γ est log-convexe).

4. Soit

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt, pour x, y > 1.

Montrer que :

B(x+ 1, y) =
x

x+ y
B(x, y), ainsi que B(x, y + 1) =

y

x+ y
B(x, y).

Indication : intégrer par parties.

Montrons la première inégalité par intégration par parties. On a :

B(x+ 1, y) =

∫ u

0

t(x+1)−1(1− t)y−1dt

= lim
β→1

∫ β

0

(
t

1− t

)x
︸ ︷︷ ︸

u(t)

(1− t)x+y−1︸ ︷︷ ︸
v′(t)

dt

= lim
β→1
−
[(

t

1− t

)x(
− (1− t)x+y

x+ y

)]β
0

+

∫ β

0

x

(
t

1− t

)x−1
1

(1− t)2

(1− t)x+y

x+ y
dt

=
x

x+ y
B(x, y).

Un changement de variable simple u = 1− t montre B(x, y) = B(y, x).

(5.) En déduire que :

B(n,m) =
Γ(n)Γ(m)

Γ(n+m)
, ∀m,n ∈ N∗.

Indication : par récurrence.

Il suffit de remarquer que le terme de droite et le terme de gauche cöıncident pour (1, 1) (en
effet, B(1, 1) = 1,Γ(1) = 1 = Γ(2)) et obéissent aux mêmes règles de récurrence. En effet :

B(n+ 1,m) =
n

n+m
B(n,m), et

Γ(n+ 1)Γ(m)

Γ(n+ 1 +m)
=

nΓ(n)Γ(m)

(n+m)Γ(n+m)
=

n

n+m

Γ(n)Γ(m)

Γ(n+m)
.

Quelques commentaires: On a vu que la fonction Γ satisfait les propriétés suivantes, pour une
fonction f : R∗+ → R

1. f(1) = 1

2. xf(x) = f(x+ 1), ∀x > 0

3. log f est convexe.
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Il se trouve que le théorème de Bohr–Mollerup montre que c’est l’unique fonction qui satisfait ces 3
propriétés, ce qui en fait une généralisation de la factorielle très naturelle. On remarquera aussi que la
fonction B est l’inverse d’une généralisation des coefficients binomiaux à toutes les paires de réels
x, y > 1 (mais avec une paramétrisation différente au sens où

(
n
k

)
= 1

B(n−k+1,k+1) pour 0 ≤ k ≤ n).

Exercice 3.

Soit x > 0, on a (f(nx))n∈N est une suite de réels positifs, décroissante et tendant vers 0. D’après
le critère des séries alternées, la série converge donc g est bien définie.

Il faut ensuite s’aider d’un dessin pour deviner que la limite cherchée vaut 1
2f(0) (ou bien s’en

rendre compte sur quelques exemples). Voici ensuite comment le démontrer.
On a

g(x)− 1

2
f(0) =

+∞∑
k=0

(
f(2kx)− f((2k + 1)x)

)
+

1

2

∫ +∞

0

f ′(t) dt

= −
+∞∑
k=0

∫ (2k+1)x

2kx

f ′(t) dt+
1

2

+∞∑
k=0

∫ (2k+2)x

2kx

f ′(t) dt

= −1

2

+∞∑
k=0

(∫ (2k+1)x

2kx

f ′(t) dt−
∫ (2k+2)x

(2k+1)x

f ′(t) dt
)

= −1

2

+∞∑
k=0

∫ (2k+1)x

2kx

(
f ′(t)− f ′(t+ x)

)
dt

Par conséquent :

∣∣g(x)− 1

2
f(0)

∣∣ ≤ 1

2

+∞∑
k=0

∫ (2k+1)x

2kx

∣∣f ′(t+ x)− f ′(t)
∣∣dt

≤ 1

2

+∞∑
k=0

∫ (2k+2)x

2kx

∣∣f ′(t+ x)− f ′(t)
∣∣dt

≤ 1

2

∫ +∞

0

∣∣f ′(t+ x)− f ′(t)
∣∣dt

Soient ε > 0 et A > 0 suffisamment grand pour que :∫ +∞

A

|f ′(t)|dt =

∫ +∞

A

(−f ′(t))dt = f(A) ≤ ε

3
.

Pour x > 0, il en découle que :∫ +∞

A

∣∣f ′(t+ x)− f ′(t)
∣∣dt ≤ ∫ +∞

A+x

|f ′(t)|dt+

∫ +∞

A

|f ′(t)|dt ≤ 2ε

3
.

Comme f ′ est continue sur le segment [0, A+ 1], elle y est uniformément continue. Il existe donc
α ∈]0, 1] tel que :

∀(t, x) ∈ [0, A]×]0, α],
∣∣f ′(t+ x)− f ′(t)

∣∣ ≤ ε

3A
.

D’où, pour tout x ∈]0, α] :

∣∣g(x)− 1

2
f(0)

∣∣ =

∫ A

0

|f ′(t+ x)− f ′(t)|dt+

∫ +∞

A

|f ′(t+ x)− f ′(t)|dt

≤
∫ A

0

ε

3A
dt+

2ε

3

=
ε

3
+

2ε

3
= ε.

D’où g(x) −−−→
x→0

1
2f(0).
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https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Bohr-Mollerup

