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Exercice 1.

Si f ou g est constante égale a 0 alors les intégrales convergent et I'inégalité est triviale (O <0). On

suppose donc le cas contraire. Alors il existe A > 0 tel que Va > A, fOA r)dx > 0 et fo x)%dz >0
(cf. série 12.1 exercice 2).
Supposons maintenant f,g > 0. On a, en développant, pour x > A, que
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On en déduit
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Ceci montre, dans le cas f,g > 0 que l'intégrale en question converge et que
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Dans 10 cas général, on applique le raisonnement ci-dessus a |f| et |g| et 'on obtient que lintégrale
fo t)dt converge absolument et
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Exercice 2.

1. On peut écrire t*~le~t = t*~le~t/2e=%/2 et on sait que t*~'e~*/2 converge vers 0 si t — +00 ;
il est donc plus petit que 1 pour ¢ assez grand. On a ainsi t* 'e~* < e~*/2 avec e~*/? intégrable
sur [0, +oo[. Par comparaison, on en déduit que I'(z) est bien définie car l'intégrale converge.

2. Calculer T'(1) et montrer ensuite que I'(a + 1) = oI'(«), Vo > 1.
Indication : intégrer par parties.
On a
N N
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ainsi que, en intégrant par parties :
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ce qui donne a la limite N — 400,
MNa+1) =al(a).
On en déduit, par récurrence, que

I'n+1)=n!l, ¥YneN.



3. Montrer que :
1
logT <x42ry> < B (logT'(x) +1logT'(y)) .

Indication : utiliser Cauchy-Schwarz.

On a, et puisque tout est positif :
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En prenant le log, on a le résultat. NB: Méme si elle semble plus faible a priori, cette propriété
implique que la fonction log oI' est convexe (on dit que I est log-convexe).

4. Soit .
B(x,y) = / t* 11 —t)v"tadt, pour z,y > 1.
0

Montrer que :

Y

B(x+1,y) = B(x,y), ainsi que B(x,y+1)= B(x,y).
( y)xﬂ/(y) Q(y)ﬂy(y)
Indication : intégrer par parties.
Montrons la premiere inégalité par intégration par parties. On a :
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Un changement de variable simple u = 1 — ¢t montre B(z,y) = B(y, x).

(5.) En déduire que :
_ F(n)l'(m) ]
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Indication : par récurrence.

11 suffit de remarquer que le terme de droite et le terme de gauche coincident pour (1,1) (en
effet, B(1,1) = 1,T'(1) = 1 =T'(2)) et obéissent aux mémes régles de récurrence. En effet :
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Quelques commentaires: On a vu que la fonction I' satisfait les propriétés suivantes, pour une
fonction f: R% — R

1. f(1) =1
2. af(x) = f(x+1),Ve >0

3. log f est convexe.



Il se trouve que le théoreme de Bohr—Mollerup montre que c’est 'unique fonction qui satisfait ces 3
propriétés, ce qui en fait une généralisation de la factorielle trés naturelle. On remarquera aussi que la
fonction B est l'inverse d’une généralisation des coefficients binomiaux a toutes les paires de réels

x,y > 1 (mais avec une paramétrisation différente au sens ou (Z) = m pour 0 < k < mn).

Exercice 3.

Soit > 0, on a (f(nz))nen est une suite de réels positifs, décroissante et tendant vers 0. D’apres
le critere des séries alternées, la série converge donc g est bien définie.
Il faut ensuite s’aider d’un dessin pour deviner que la limite cherchée vaut % £(0) (ou bien s’en

rendre compte sur quelques exemples). Voici ensuite comment le démontrer.
On a
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Par conséquent :
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Soient € > 0 et A > 0 suffisamment grand pour que :
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Pour x > 0, il en découle que :
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Comme [’ est continue sur le segment [0, A + 1], elle y est uniformément continue. Il existe donc
a €]0,1] tel que :
€
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