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Mathématiques 1ère année
Prof. Lénäıc Chizat
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Exercice 1.

1. L(1) =
∫ 1

1
dt
t = 0 par la définition de l’intégrale sur un segment réduit à un point. Si 0 < x < y,

alors

L(y)− L(x) =

∫ y

x

dt

t
≥ y − x

y
> 0

donc L est strictement croissante. On peut aussi remarquer que L est dérivable de dérivée
L′(x) = 1/x, par le thm. fondamental de l’analyse; comme L′ est strictement positive sur R∗+,
cela implique que L est strictement croissante (corollaire du TAF). Comme L′ est C∞ sur son
domaine de définition R∗+ (comme toute fonction rationnelle), on a que L est C∞ sur R∗+.

2. En posant successivement les changements de variable u = t/x puis v = 1/u on a pour x, y > 0:∫ xy

1

dt

t
=

∫ y

1/x

du

u
=

∫ 1

1/x

du

u
+

∫ y

1

du

u
= −

∫ 1

x

dv

v
+

∫ y

1

du

u
=

∫ x

1

dv

v
+

∫ y

1

du

u
.

Ceci montre que L(xy) = L(x) + L(y).

3. On en déduit par récurrence que pour n ∈ N∗, L(2n) = nL(2). Or on a L(2) =
∫ 2

1
dt
t ≥ 1 · 1

2 = 1
2 .

Ainsi L(2n) ≥ n/2 ce qui montre que L n’est pas majorée sur R∗+. Comme de plus L est
croissante, ceci implique que limx→+∞ L(x) = +∞. Par ailleurs, pour tout x ∈ R∗+ on a 0 =
L(1) = L(x · x−1) = L(x) +L(x−1), on en déduit que limx→0+ L(x) = − limx→0+ L(x−1) = −∞.

4. En tant que fonction continue et d’après les limites ci-dessus, L est surjective sur R. Elle est
aussi injective car strictement croissante. Donc L : R∗+ → R est bijective et admet une réciproque
E : R→ R∗+ strictement croissante. Par la formule de dérivation d’une réciproque et comme la
dérivée de L ne s’annule pas, on a que E est dérivable et pour y ∈ R, E′(y) = 1

L′(E(y)) = E(y).

On en déduit directement que E est de classe C∞. Enfin, pour x, y ∈ R, il existe u, v ∈ R∗+
(uniques) tels que x = L(u) et y = L(v). On a alors

E(x+ y) = E(L(u) + L(v)) = E(L(u · v)) = u · v = E(x) · E(y).

Exercice 2.

1. L’intégrande est un polynôme multipliant une exponentielle, on fait donc des intégrations par
parties jusqu’à ce que le polynôme soit de degré 1:∫ 1

0

(3x2 + 1)exdx =
[
(3x2 + 1)ex

]1
0
−
∫ 1

0

6xexdx

= 4e− 1− [6xex]
1
0 +

∫ 1

0

6exdx

= 4e− 1− 6e+ 0 + [6ex]
1
0

= 4e− 1− 6e+ 6e− 6

= 4e− 7.
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2. On pose x = u2 avec x ∈ [π2/16, π2/9] et u ∈ [π/4, π/3]. On obtient dx = 2udu et∫ x=π2/9

x=π2/16

cos(
√
x) dx = 2

∫ u=π/3

u=π/4

u cos(u) du

= 2 [u sin(u)]
π/3
π/4 − 2

∫ π/3

π/4

sin(u) du

= 2 [u sin(u) + cos(u)]
π/3
π/4

= 1−
√

2− π
√

2

4
+
π
√

3

3
.

3. On décompose arctan(t) = 1 · arctan(t) pour intégrer par parties:∫ x

0

arctan(t) dt = [t arctan(t)]
x
0 −

∫ x

0

t

1 + t2
dt

=

[
t arctan(t)− 1

2
log(1 + t2)

]x
0

= x arctan(x)− 1

2
log(1 + x2).

4. Posons x = sinh(t) avec t ∈ [0, 1] et x ∈ [0, sinh(1)]. On obtient dx = cosh(t)dt et∫ x=sinh(1)

x=0

√
x2 + 1 dx =

∫ 1

t=0

√
sinh2(t) + 1 · cosh(t)dt =

∫ 1

0

cosh2(t)dt

=

∫ 1

0

e2t + e−2t + 2

4
dt =

[
1

8

(
e2t − e−2t + 4t

)]1

0

=
1

8

(
e2 − e−2 + 4

)
=

1

4
sinh(2) +

1

2
.

5. Posons x = cosh(t) avec t ∈ [0, 1] et x ∈ [1, cosh(1)].

Observons que 0 ≤ sinh(t) =
√

cosh2(t)− 1 si t ∈ [0, 1]. On obtient dx = sinh(t)dt et

∫ x=cosh(1)

x=1

√
x2 − 1 dx =

∫ 1

t=0

√
cosh2(t)− 1 · sinh(t)dt =

∫ 1

0

sinh2(t)dt

=

∫ 1

0

e2t + e−2t − 2

4
dt =

[
1

8

(
e2t − e−2t − 4t

)]1

0

=
1

8

(
e2 − e−2 − 4

)
=

1

4
sinh(2)− 1

2
.

Exercice 3.

Ici, nous ne donnons pas la solution complète (avec le résultat final), mais simplement une aide
pour débloquer les calculs.

1. ∫ 1/2

0

x2 + x+ 1

(x− 1)2(x+ 1)2
dx =

∫ 1/2

0

(
1

4(x+ 1)2
+

3

4(x− 1)2

)
dx =

[
−1

4(x+ 1)
+

−3

4(x− 1)

]1/2

0

=
5

6
.

Remarquons que la décomposition en éléments simples fait intervenir dans ce cas 4 éléments mais
il se trouve que 2 parmi ceux-ci α1/(x+ 1) et α2/(x− 1) ont des coefficients nuls α1 = α2 = 0.

2. ∫ 1

0

x3 + 1

x2 + 1
dx =

∫ 1

0

(
1− x
x2 + 1

+ x

)
dx =

∫ 1

0

(
1

x2 + 1
− x

x2 + 1
+ x

)
dx

=

[
Arctg(x)− log(x2 + 1)

2
+
x2

2

]1

0

=
π − 2 log 2 + 2

4
.
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3. ∫ 1

0

x5

(x+ 1)(x3 + 1)
dx =

∫ 1

0

(
(x− 1) +

x3 − x2 + 1

(x+ 1)2(x2 − x+ 1)

)
dx

=

∫ 1

0

(x− 1) dx+

∫ 1

0

(
4

3(x+ 1)
− 1

3(x+ 1)2
− x

3(x2 − x+ 1)

)
dx

=

[
1

2
(x− 1)2

]1

0

+

[
4

3
log |x+ 1|+ 1

3(x+ 1)
− 1

3 · 2
log |x2 − x+ 1| − 1

3
√

3
Arctg

(
2x− 1√

3

)]1

0

=
−2 + 4 log 2− π/(3

√
3)

3
.

Exercice 4.

Ces exercices ont pour objectif de vous montrer que dès qu’on a affaire à des fractions rationnelles,
il peut être utile d’essayer la décomposition en éléments simples, qui permet parfois de faire apparâıtre
une structure cachée dans des sommes, des récurrences, etc.

1. On décompose la fraction rationnelle en éléments simples:

1

X(X + 1)
=
X + 1−X
X(X + 1)

=
1

X
− 1

X + 1
.

(Remarque de rédaction: ces écritures manipulent la fraction rationnelle “formelle” en tant
qu’objet algébrique, en non pas en tant que fonction. Il n’est donc pas nécessaire de préciser la
nature de la variable X.) On obtient alors une somme téléscopique

n∑
k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
= 1− 1

n+ 1
=

n

n+ 1
.

2. On a
1

X(X + 1)(X + 2)
=

1/2

X
− 1

X + 1
+

1/2

X + 2
,

donc
n∑
k=1

1

k(k + 1)(k + 2)
=

1

4
− 1

2n+ 2
+

1

2n+ 4
.

3. La décomposition en éléments simples donne

1

4X2 − 1
=

1

2

(
1

2X − 1
− 1

2X + 1

)
.

Pour n ∈ N∗, on a donc

n∑
k=1

1

4k2 − 1
=

1

2

n∑
k=1

(
1

2k − 1
− 1

2k + 1

)
.

On obtient une somme télescopique

n∑
k=1

(
1

2k − 1
− 1

2k + 1

)
=

n∑
k=1

(
1

2k − 1
− 1

2(k + 1)− 1

)
= 1− 1

2n+ 1
.

Par opérations sur les limites,

lim
n→+∞

n∑
k=1

1

4k2 − 1
=

1

2
.
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Exercice 5.

On pose (up)p∈N∗ la suite de ces intégrales up =
(∫ b

a
f(x)pdx

) 1
p

. Si M = 0 alors on a up = 0 pour

tout p ∈ N∗ donc le résultat est évident. On suppose donc par la suite que M > 0.
En premier lieu, on a par encadrement de la valeur de l’intégrale et par le fait que s 7→ s1/p est

croissante sur R+ que

up ≤ ((b− a)Mp)1/p = M · exp(log(b− a)/p) −−−−−→
p→+∞

M.

Ainsi, lim supp→∞ up ≤M .
Montrons maintenant que lim infp→∞ up ≥M . Pour cela, fixons ε ∈ ]0,M [. Par continuité de f

sur [a, b] il existe un point x0 ∈ [a, b] tel que f(x0) = M . Si x0 6= b, il existe δ > 0 tel que x0 + δ ≤ b
et ∀x ∈ [x0, x0 + δ] on a f(x) ≥M − ε (si x0 = b, on poursuit le raisonnement de façon analogue en
remplaçant l’intervalle par [x0 − δ, x0]).

Comme f est minorée par la fonction (positive et intégrable) qui vaut M − ε sur [x0, x0 + δ] et 0
partout ailleurs, on obtient l’inégalité suivante (propriété de préservation de l’ordre de l’intégrale):

up ≥ (δ(M − ε)p)1/p = (M − ε) · exp(log(δ)/p) −−−−−→
p→+∞

M − ε

Comme ceci est vrai pour n’importe quel ε > 0, on en déduit que lim infp→∞ up ≥M .
En somme, on a montré lim supp→∞ up ≤M ≤ lim infp→∞ up. Mais pour toute suite bornée on a

toujours lim infp→∞ up ≤ lim supp→∞ up. On conclut donc lim infp→∞ up = lim supp→∞ up = M , ce
qui montre que limp→∞ up = M .

Remarque: On peut rédiger ce même argument sans parler de lim sup/lim inf mais en utilisant le
thm. des gendarmes.
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