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Exercice 1.

1. Il s’agit d’une forme indéterminée +∞
+∞ . Par Bernoulli-L’Hôpital,

lim
x→+∞

log(x)

xα
= lim
x→+∞

x−1

αxα−1
= lim
x→+∞

α−1 · x−α = 0.

2. Il s’agit d’une forme indéterminée +∞
+∞ . Réécrivons d’abord l’expression:

ax

xα
=

exp(x log(a))

exp(α log(x))
= exp

(
x(log(a)− α log(x)/x)

)
.

Par le point précédent, log(x)/x −−−−−→
x→+∞

0 donc x(log(a)− α log(x)/x) −−−−−→
x→+∞

+∞ et comme

limy→+∞ exp(y) = +∞, on obtient, par composition de limites

lim
x→+∞

ax

xα
= +∞.

3. On se ramène au point 1 par le changement de variable y = 1
x . On a, comme log(x) = − log(y):

lim
x→0+

xα log(x) = lim
y→+∞

− log(y)

yα
= 0.

4. On se ramène au point 2 par le changement de variable y = −x:

lim
x→−∞

ax|x|α = lim
y→+∞

|y|α

ay
= 0.

Exercice 2.

En utilisant le résultat sur le produit (dit ”de Cauchy”) de deux séries (exercice 11.1.2.1), on a

exp(x) · exp(y) =

( ∞∑
n=0

xn

n!

)
·

( ∞∑
n=0

yn

n!

)
=

∞∑
n=0

(
n∑
k=0

xk

k!

yn−k

(n− k)!

)
.

Par ailleurs, on a grâce à la formule du binôme de Newton:

exp(x+ y) =

∞∑
n=0

(x+ y)n

n!
=

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
xkyn−k =

∞∑
n=0

n∑
k=0

xkyn−k

k!(n− k)!
.

Les deux expressions étant les mêmes, on a bien montré exp(x+ y) = exp(x) · exp(y).

Exercice 3.

1. Montrons que toutes les dérivées de f existent en x = 0 et s’annulent.
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(a) Pour tout m ∈ N, on a en utilisant le changement de variable y = 1/x:

lim
x→0+

f(x)

xm
= lim
y→+∞

ym

exp(y)
= 0

(par croissances comparées, ou bien en appliquant m-fois Bernoulli-L’Hôpital).

(b) Montrons maintenant la formule pour la dérivée n-ième par récurrence. Pour n = 0 la
formule est trivialement vraie, avec le polynôme p0(x) = 1. Supposons que la fonction f est
n-fois dérivable sur R avec une dérivée de la forme donnée, et montrons que la propriété
est vraie au rang n+ 1. Par calcul direct, la fonction est dérivable sur R∗−, de dérivée nulle
et dérivable sur R∗+ de dérivée

(f (n))′(x) =
p′n(x)x2n − 2n · pn(x)x2n−1 + x2npn(x) · 1

x2

(x2n)2
exp(−1/x)

=
p′n(x)x2 + pn(x)(1− 2nx)

x2n+2
exp(−1/x)

=
pn+1(x)

x2(n+1)
exp(−1/x)

en posant pn+1(x) = p′n(x)x2 + pn(x)(1 − 2nx). Il reste à vérifier que la fonction est
dérivable en 0. À cette fin, calculons la dérivée à droite en 0:

lim
x→0+

f (n)(x)− f (n)(0)

x− 0
= lim
x→0+

pn(x)

x2n+1
exp(−1/x) = 0

d’après notre calcul en a). Comme la dérivée à gauche en 0 est nulle aussi, cela montre que
f (n) est dérivable en 0 de dérivée nulle. En somme, f (n) est dérivable sur R et l’expression
de f (n+1) est bien celle donnée ce qui conclut la preuve par récurrence.

(c) On déduit des points précédents, comme f (n)(0) = 0 pour tout n ∈ N, que la série de Taylor
de f en 0 est

∞∑
n=0

f (n)(0)

n!
xn = 0.

Mais f(x) > 0 pour tout x > 0, donc la fonction f ne coincide pas avec sa série de Taylor
en 0 au voisinage de 0. Cette fonction n’est donc pas analytique au voisinage de 0.

2. On peut définir g : R→ R par

g(x) =
f(x)

f(x) + f(1− x)
.

Comme le dénominateur est strictement positif sur R, cette fonction est de classe C∞(R) (même
régularité que f) et on vérifie qu’elle satisfait bien g(x) = 0 pour x ≤ 0 et g(x) = 1 pour x ≥ 1.

Exercice 4.

1. Expression de acosh: l’application cosh : [0,+∞[→ [1,+∞[ est continue, strictement croissante
et cosh(0) = 1, limx→+∞ cosh(x) = +∞. Donc cette fonction admet une fonction réciproque
acosh : [1,+∞[→ [0,+∞[. Pour tout (x, y) ∈ [1,+∞[×[0,+∞[, on a:

y = acosh(x) ⇐⇒ cosh(y) = x ⇐⇒ x =
1

2
(ey + e−y) ⇐⇒ e2y − 2xey + 1 = 0.

L’équation du second degré Y 2 − 2xY + 1 = 0 (d’inconnue Y ∈ R) admet deux solutions
réelles (si x > 1) Y1 = x −

√
x2 − 1 et Y2 = x +

√
x2 − 1. Puisque y ≥ 0, on a: ey ≥ 1. Mais

0 ≤ Y1 ≤ 1 ≤ Y2 car Y1Y2 = 1 et Y1 + Y2 = x ≥ 0. On déduit:

y = acosh(x) ⇐⇒ ey = Y2 = x+
√
x2 − 1.
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Ainsi
∀x ∈ [1,+∞[, acosh(x) = log(x+

√
x2 − 1).

Expression de atanh: L’application tanh : R →] − 1, 1[ est continue, strictement croissante
et limx→−∞ tanh(x) = −1 et limx→+∞ tanh(x) = 1. Donc cette fonction admet une fonction
réciproque atanh :]− 1, 1[→ R. Pour tout (x, y) ∈]− 1, 1[×R, on a

y = atanh(x) ⇐⇒ x = tanh(y) ⇐⇒ x =
ey − e−y

ey + e−y
⇐⇒ x(e2y + 1) = e2y − 1

⇐⇒ e2y =
1 + x

1− x
⇐⇒ y =

1

2
log

1 + x

1− x
.

On a donc

∀x ∈ ]− 1, 1[, atanh(x) =
1

2
log

1 + x

1− x
.

2. L’ensemble de définition de l’équation est donné par l’intersection des conditions x ∈]− 1, 1[,
x 6= 0 et 1

x ∈ [1,+∞[ ce qui donne x ∈]0, 1[. Alors:

atanhx = acosh
1

x
⇐⇒ 1

2
log

1 + x

1− x
= log

( 1

x
+

√
1

x2
− 1
)

⇐⇒ 1 + x

1− x
=
( 1

x
+

√
1

x2
− 1
)2

⇐⇒ 1 + x

1− x
=

(1 +
√

1− x2)2

x2

⇐⇒ x2(1 + x) = (1− x)(2− x2 + 2
√

1− x2)

⇐⇒ x2 + x3 = 2− 2x− x2 + x3 + 2(1− x)
√

1− x2

⇐⇒ x2 + x− 1 = (1− x)
√

1− x2

⇐⇒ (x2 + x− 1)2 = (1− x)2(1− x2) et x2 + x− 1 ≥ 0.

En développant, on a

(x2+x−1)2 = (1−x)2(1−x2) ⇐⇒ 2x4−x2 = 0 ⇐⇒
(
x2 = 0 ou x2 =

1

2

)
⇐⇒ x ∈

{−1√
2
, 0,

1√
2

}
.

Compte tenu des conditions sur x, on conclut que l’équation proposée admet une unique
solution, qui est 1/

√
2. (On peut ensuite vérifier en insérant cette valeur dans les expressions

logarithmiques de atanh et acosh.)
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