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Exercice 1.

Ces fonctions sont de classe C∞ sur leur domaine de définition. Par application directe de
Taylor-Young (et calcul des dérivées successives):

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+O

(
x8

)
, si x→ 0,

Remarque: le DL à l’ordre 6 demande seulement que le terme de reste soit o(x6); mais ici on donne
une forme plus précise du reste O(x8) (que l’on obtient en appliquant Taylor-Young au degré 8). On a
procédé de même pour les deux autres cas ci-dessous:

cos z = cos(1)− sin(1)(z − 1)− cos(1)

2!
(z − 1)2 +

sin(1)

3!
(z − 1)3 +O

(
|z − 1|4

)
, si z → 1,

log(z) = (z − 1)− 1

2!
(z − 1)2 +O(|z − 1|3), si z → 1.

ou bien, de manière équivalente:

log(1 + x) = x− 1

2!
x2 +O(x3) si x→ 0.

Exercice 2.

Calculons les limites suivantes:

1. limx→0
1−cos x6

x12 : Le développement de Taylor d’ordre 2 de la fonction cos(x) autour de 0 donne:

cos(x) = 1− 1

2
x2 + o(|x|2), si x→ 0

et donc aussi

cos(x6) = 1− 1

2
x12 + o(|x|12), si x→ 0.

On a donc immédiatement limx→0
1−cos x6

x12 = 1
2 .

2. limx→∞
(
1 + 1

x

)x
: On a

lim
x→∞

(
1 +

1

x

)x
= lim
y→0+

(1 + y)
1
y = lim

y→0+
e

log(1+y)
y .

Puisque
log(1 + y) = y + o(|y|), si y → 0

on a donc
log(1 + y)

y
= 1 + r(y)

avec limy→0+ r(y) = 0. Puisque la fonction ex est continue au point 1, on a

lim
x→∞

(
1 +

1

x

)x
= e.
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Exercice 3.

Calculons les limites suivantes par la règle de Bernoulli-L’Hôpital:

1. limx→0
(sin x)m

(1−cos x)n avec m,n ∈ N∗, 1 ≤ m,n ≤ 2:

(a) Pour m = n = 1, la fonction est impaire et limx→0+
sin x

1−cos x = limx→0+
cos x
sin x = +∞. Par

imparité, la limite à gauche de 0 vaut −∞ et donc la limite en 0 n’existe pas (car les limites à
droite et à gauche diffèrent).

(b) Pour m = 1 et n = 2, la fonction est impaire et limx→0+
sin x

(1−cos x)2 = limx→0+
cos x

2(1−cos x) sin x =

+∞. Par imparité, la limite à gauche de 0 vaut −∞ et donc la limite en 0 n’existe pas (car les
limites à droite et à gauche diffèrent).

(c) limx→0
sin2 x

1−cos x = limx→0
2 sin x cos x

sin x = 2.

(d) limx→0
sin2 x

(1−cos x)2 = limx→0
2 sin x cos x

2(1−cos x) sin x = limx→0
2 cos x

2(1−cos x) = +∞.

2. Pour α > 0:

lim
x→0+

xα log x = lim
x→0+

log x

x−α
= lim
x→0+

xα

−α
= 0.

3. Pour α > 0:

lim
x→∞

log x

xα
= lim
x→∞

1

αxα
= 0.

Exercice 4.

Cherchons le développement limité d’ordre m autour de 0 des fonctions suivantes:

1. f : R→ R définie par f(x) = 2x+ cos(x2) et m = 4:
Le DL2(0) de cos(y) s’écrit:

cos(y) = 1− 1

2
y2 + r(y),

où r(z) = O(|z|4) si z → 0, i.e., il existe δ > 0, C > 0 tels que |r(z)| ≤ C|z|4, si |z| ≤ δ.
Puisque limx→0 x

2 = 0, on peut substituer y par x2 dans le développement ci-dessus pour obtenir

cos(x2) = 1− 1

2
x4 + r(x2).

Si |x| ≤
√
δ alors |x|2 ≤ δ et ainsi |r(x2)| ≤ C|x|8.

Finalement, on obtient f(x) = 1 + 2x− 1
2x

4 +O(|x|8) si x→ 0 (note: un reste en o(x4) serait
suffisant pour répondre à la question; mais ici on donne une propriété plus forte sur le terme de
reste, que l’on obtient à peu de frais, donc autant la donner).

2. f : R→ R définie par f(x) = cos(cos(x)) et m = 6:
Si x = 0, on a cos 0 = 1. Développons donc cos z autour de z = 1. On obtient

cos z = cos(1)− sin(1)(z − 1)− cos(1)

2!
(z − 1)2 +

sin(1)

3!
(z − 1)3 +O(|z − 1|4), si z → 1.

Mais le développement de la fonction cos autour de x = 0 donne

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+O(|x|8), si x→ 0.
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Ainsi

cos(cosx) = cos(1)− sin(1)

(
−x

2

2!
+
x4

4!
− x6

6!
+O(|x|8)

)
− cos(1)

2!

(
−x

2

2!
+
x4

4!
+O(x6)

)2

+
sin(1)

3!

(
−x

2

2!
+O(x4)

)3

+O(x8)

= cos(1) +
sin(1)

2
x2 + x4

(
− sin(1)

4!
− cos(1)

2!(2!)2

)
+ x6

(
sin(1)

6!
+

2 cos(1)

(2!)24!
− sin(1)

(2!)33!

)
+O(x8)

= cos(1) +
sin(1)

2
x2 −

(
sin(1)

24
+

cos(1)

8

)
x4 +

(
cos(1)

48
− 7 sin(1)

360

)
x6 +O(x8).

3. f :
]
−π2 ,

π
2

[
→ R définie par f(x) = log(cos(x)) et m = 4:

Puisque cos 0 = 1, on va développer la fonction log(z) autour de 1. On a

log(z) = (z − 1)− 1

2!
(z − 1)2 +O(|z − 1|3), si z → 1,

et

cosx = 1− x2

2!
+
x4

4!
+O(|x|6), si x→ 0.

Ainsi

log(cosx) =

(
−x

2

2!
+
x4

4!
+O(|x|6)

)
− 1

2!

(
−x

2

2!
+O(|x|4)

)2

+O(|x|6).

Finalement, on obtient

log(cosx) = −x
2

2
−x

4

12
+O(|x|6), si x→ 0.

4. f :] − 1,+∞[ définie par f(x) = 1
1−x = (1 − x)−1. On utilise la formule de Taylor-Young, en

utilisant le fait que les dérivées successives ont pour expression f (n)(x) = (n!)(1− x)−n−1 pour
n ∈ N. On obtient le DL2(0) suivant:

1

1− x
= 1 + x+ x2 +O(x3) lorsque x→ 0.

5. f : ]− π
2 ,

π
2 [→ R définie par f(x) = 1

cos(x) . En utilisant le DL de cos en 0, on a pour x ∈]− π
2 ,

π
2 [:

1

cos(x)
=

1

1− x2

2 + x4

24 + o(x5)

= 1 +

(
x2

2
− x4

24

)
+

(
x2

2
− x4

24

)2

+ o(x5)

= 1 +
x2

2
+

5x4

24
+ o(x5).

Exercice 5.

Si on a α = f(x1) + f(x2) + · · ·+ f(xn) avec, par exemple xi 6= xj , alors on définit une nouvelle

configuration (x′1, x
′
2, . . . , x

′
n) avec x′k = xk pour tout k sauf x′i = x′j =

xi+xj

2 . Alors, par la concavité
stricte, on a f(xi) + f(xj) < 2f((xi + xj)/2) et donc β = f(x′1) + f(x′2) + · · ·+ f(x′n) > α. Notons
qu’on a x1 + x2 + · · · + xn = x′1 + x′2 + · · · + x′n. On en conclut qu’il n’y a pas de configuration
maximale avec deux xi différents.

Ainsi une configuration maximale est de la forme (c, . . . , c) avec c ∈ [0, x/n] et la valeur correspon-
dante est f(x1) + · · ·+ f(xn) = nf(c). Comme la fonction f est supposée strictement croissante, la
solution optimale est obtenue avec c = x

n .
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