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Continuité uniforme, convergence uniforme

1a Soit f: R — R une fonction uniformément continue et soit ( f,,).en+ la suite de fonctions définie par
fu(z) = f(z+ %), YV € R. Montrer que ( f,,) converge uniformément vers f.
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1b Dans ce méme contexte, donner un contre-exemple a la convergence uniforme si I'on suppose
seulement que f est continue mais pas uniformément continue.

Une famille d’intégrales

2 Pourn e N¥, on considére l'intégrale généralisée I, = fol log(t)™dt. Montrer que I,, est absolument
convergente et donner (en la démontrant) sa valeur pour tout n € N*.
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Séries
3a Soient p et g deux réels tels que 1 < p < ¢. Montrer que si (a,,),>1 €St une suite de réels positifs alors

+ 00 + 00

Z al converge — Z al converge .
n=1 n=1
3b Pour 1 < p < ¢gdonnés, donner un exemple de suite (a,),»1 telle que ¥, ai converge mais 312 ab
diverge.
.
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Une propriété des intégrales
Soita,beRtelsquea<bet f:[a,b] - R une fonction intégrable.

4a Montrer qu'il existe zg € [a,b] tel que [ f(t)dt = j;’o f(t)dt.
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4b Donner, en justifiant, un exemple qui montre qu'on ne peut pas toujours trouver un tel point 2y dans
I'intervalle ouvert ]a, 0.
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Continuité

5 Soit f: R — R une fonction continue et décroissante. Montrer que f admet un unique point fixe. (On
rappelle qu'un point fixe de f est une solution de I'équation f(z) = z).
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Série entiere
6 Donner le rayon de convergence R > 0 de la série entiere Y, ;—fle"*l et déterminer sa somme
pour z €] - R, R|[.
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Dérivée
7 Soit f : R} - Rune fonction dérivable telle que les suites (ay ) gen+ €t (br ) e+ définies respectivement

par a; = f(log(2k)) et by = f(log(2k + 1)) pour k € N* satisfont limy_, o, ar, = -1 et limy_, o, b = 1.
Montrer que f’ n'est pas bornée.
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Convergence et somme de série

8 Déterminer tous les triplets de réels (a, b, c) tels que la série 3/, x,, de terme

n

général x,, = a\/n + bv/n — 1 + cn/n — 2 converge. Lorsqu’elle converge, calculer sa somme.
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Sous-suites

9 Soit (u,) une suite réelle telle que (u,+1 — u,,) tend vers 0. Montrer que I'ensemble des valeurs
d'adhérence de (u,, ) est un intervalle. (Rappel de cours: on dit qu'un réel ¢ est une valeur d’'adhérence
de (uy) si et seulement si il existe une sous-suite de (u,,) qui converge vers ¢. On rappelle aussi que
I'ensemble vide, ou un singleton, sont des intervalles.)

| 13/16 B |



. 0214.pdf 0348884714

| 14/16 L.



. 0214.pdf 0348884715

| 15/16 E1d



. 0214.pdf 0348884716

| 16 /16 i



