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MATH-100(a)-Analyse avancée
Examen
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Durée de l’examen: 3 h 30 .

Les documents, formulaires et calculatrices ne sont pas autorisés.

En cas de manque de place, utiliser les dernières feuilles du livret et indiquer le renvoi de page. En
dernier recours, vous pouvez ajouter des feuilles libres (dans ce cas, indiquer votre nom et indiquer les
renvois sur le livret).
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Continuité uniforme, convergence uniforme

1a Soit f ∶ R→ R une fonction uniformément continue et soit (fn)n∈N∗ la suite de fonctions définie par
fn(x) = f(x +

1

n
), ∀x ∈ R. Montrer que (fn) converge uniformément vers f .
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1b Dans ce même contexte, donner un contre-exemple à la convergence uniforme si l’on suppose
seulement que f est continue mais pas uniformément continue.

Une famille d’intégrales

2 Pour n ∈ N∗, on considère l’intégrale généralisée In = ∫
1

0
log(t)ndt. Montrer que In est absolument

convergente et donner (en la démontrant) sa valeur pour tout n ∈ N∗.

↶
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↷
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Séries

3a Soient p et q deux réels tels que 1 ≤ p < q. Montrer que si (an)n≥1 est une suite de réels positifs alors

+∞

∑
n=1

apn converge Ô⇒
+∞

∑
n=1

aqn converge .

3b Pour 1 ≤ p < q donnés, donner un exemple de suite (an)n≥1 telle que ∑+∞n=1 a
q
n converge mais ∑+∞n=1 a

p
n

diverge.

↶
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↷

Une propriété des intégrales
Soit a, b ∈ R tels que a < b et f ∶ [a, b]→ R une fonction intégrable.

4a Montrer qu’il existe x0 ∈ [a, b] tel que ∫ x0

a f(t)dt = ∫ b

x0
f(t)dt.

↶
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↷

4b Donner, en justifiant, un exemple qui montre qu’on ne peut pas toujours trouver un tel point x0 dans
l’intervalle ouvert ]a, b[.
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Continuité

5 Soit f ∶ R→ R une fonction continue et décroissante. Montrer que f admet un unique point fixe. (On
rappelle qu’un point fixe de f est une solution de l’équation f(x) = x).

↶
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↷

Série entière

6 Donner le rayon de convergence R > 0 de la série entière ∑+∞n=2 en

n−1
x2n+1 et déterminer sa somme

pour x ∈] −R,R[.

↶
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↷

Dérivée

7 Soit f ∶ R∗
+
→ R une fonction dérivable telle que les suites (ak)k∈N∗ et (bk)k∈N∗ définies respectivement

par ak = f(log(2k)) et bk = f(log(2k + 1)) pour k ∈ N∗ satisfont limk→∞ ak = −1 et limk→∞ bk = 1.
Montrer que f ′ n’est pas bornée.

↶

10 / 16

0214.pdf 0348884710



↷

Convergence et somme de série

8 Déterminer tous les triplets de réels (a, b, c) tels que la série ∑+∞n=2 xn de terme
général xn = a

√
n + b√n − 1 + c√n − 2 converge. Lorsqu’elle converge, calculer sa somme.

↶
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↷

↶

12 / 16

0214.pdf 0348884712



↷

Sous-suites

9 Soit (un) une suite réelle telle que (un+1 − un) tend vers 0. Montrer que l’ensemble des valeurs
d’adhérence de (un) est un intervalle. (Rappel de cours: on dit qu’un réel ℓ est une valeur d’adhérence
de (un) si et seulement si il existe une sous-suite de (un) qui converge vers ℓ. On rappelle aussi que
l’ensemble vide, ou un singleton, sont des intervalles.)

↶
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↷

↶
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↷

↶
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