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Kernel Regression i

▶ suppose we have a sample (yi , xi ), xi ∈ Rd of n observations

i = 1, · · · , n
▶ A kernel is a distance function K (xi , xj) measuring the distance

between items in the feature space

▶ Examples:

• Gaussian kernel K (xi , xj) = e−∥xi−xj∥2/γ where γ is the bandwidth
• Inner product kernels K (xi , xj) = ϕ(x ′i xj)
• Normalized inner product kernels

K (xi , xj) = ψ(∥xi∥)ψ(∥xj∥)ϕ
(

x ′i xj
∥xi∥ ∥xj∥

)
(1)

▶ Kernel Regression:

• Build the matrix K̂ = (K (xi , xj))
n
i,j=1
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Kernel Regression ii

• Build prediction

ŷ(x) = y ′K̂−1k(x), k(x) = (K (xi , x))
n
i=1 (2)

• Kernel Regression is an interpolator

ŷ(xi ) = y ′K̂−1k(xi ) = y ′(δi,j)
n
j=1 = yi (3)

because

K̂−1K̂ = I ⇔ K̂−1k(xi ) = (δi,j)
n
j=1 (4)

▶ Kernel Ridge Regression:

ŷ(x) = y ′(zI + K̂ )−1k(x), k(x) = (K (xi , x))
n
i=1 (5)
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Kernel Regression iii

▶ In matrix form, X = (xi )
n
i=1 ∈ Rn×d and K̂ = K (X ,X ) ∈ Rn×n and

ŷ(X ; z) = y ′(zI + K̂ )−1 K̂ = y ′(zI + K̂ )−1 (zI + K̂ − zI )

= y ′ − zy ′(zI + K̂ )−1︸ ︷︷ ︸
in sample bias

(6)
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Kernel Ridge Versus Linear Ridge Regression

Let X ∈ Rn×d be all features stacked together. Using

(zI + XX ′)−1X = X (zI + X ′X )−1 , (7)

we get

Theorem

When K (xi , xj) = ϕ(x ′i xj) ϕ(x) = x, we get a linear ridge regression:

K̂ = XX ′, k(x) = Xx ,

ŷ(x) = y ′ (zI + XX ′)−1X︸ ︷︷ ︸
=X (zI+X ′X )−1

x = y ′X (zI + X ′X )−1︸ ︷︷ ︸
ridge regression β̂(z)

x (8)
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Inner Product Kernels in High Dimension: Linear Regression

when d ∼ n i

Here, we discuss the remarkable results of El Karoui and the idea of

Gaussian equivalence.

▶ Suppose Xi ∈ Rd are i.i.d., i = 1, · · · , n, and define

Mi ,j = f (X ′
i Xj/d) (9)

▶ n/d and d/n remain bounded, and both n, d go to ∞
▶ Xi = Σ1/2Yi where Yi are i.i.d.

▶ f is smooth
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Inner Product Kernels in High Dimension: Linear Regression

when d ∼ n ii

▶ Then, ∥M − K∥ → 0 where

K = (f (0) + f ′′(0)
tr(Σ2)

2d2
)11′ + f ′(0)

XX ′

d
+ vd In︸︷︷︸

implicit regularization

where

vp = f (tr(Σ)/d)− f (0)− f ′(0) tr(Σ)/d >︸︷︷︸
when f is convex

0
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Distance Kernels in High Dimension: Linear Regression when

d ∼ n i

A similar result holds for distance kernels such as, e.g., the Gaussian kernel

K (xi , xj) = e−∥xi−xj∥2/L2 :

▶ Suppose Xi ∈ Rd are i.i.d., i = 1, · · · , n, and define

Mi ,j = f (∥Xi − Xj∥2/d) (10)

▶ define

τ = 2 tr(Σ)/d

and

ψ = (∥Xi∥2/d − tr(Σ)/d)ni=1

▶ n/d and d/n remain bounded, and both n, d go to ∞
▶ Xi = Σ1/2Yi where Yi are i.i.d.
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Distance Kernels in High Dimension: Linear Regression when

d ∼ n ii

▶ f is smooth

▶ Then, ∥M − K∥ → 0 where

K = f (τ)11′+f ′(τ)[1ψ′+ψ1′−2XX ′/d ]+0.5f ′′(τ)A+ vd In︸︷︷︸
implicit regularization

where

vd = f (0) + τ f ′(τ)− f (τ)

and

A = 1(ψ ◦ ψ)′ + (ψ ◦ ψ)1′ + 2ψψ′ + 4 tr(Σ2)d−211′
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Intuition

Concentration of quadratic forms:

X ′
i Xj/d = Y ′

i Σ
1/2Σ1/2Yj/d ≈ d−1 tr(Σ)δi ,j (11)

Thus,

∥Xi − Xj∥2/d = (1− δi ,j)2d
−1 tr(Σ) . (12)
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What About Out-Of-Sample Performance?

▶ Let us augment

K̃ =

(
K (x , x) K (x ,X )

K (X , x) K (X ,X )

)
= K (X̃ , X̃ ) ∈ R(n+1)×(n+1) (13)

▶ The result still applies:

K̃ ≈ c1X̃ X̃ ′ + c2I + rank three − perturbation (14)

and, hence, kernel ridge prediction is

ŷ(x) = K (x ,X )(zI + K (X ,X ))−1 (15)

is approximately linear in X (up to a rank three-perturbation)
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Picking Non-Linearities with Extreme Non-Smoothness of

Kernels i

▶ So, the kernel is a sort of linear regression when d ∼ n

▶ At least, when f is smooth, the CLT guarantees that the perturbation

is small.

▶ What about non-smooth f ? But does it even matter? The answer is

yes!!

▶ One of the most powerful kernels, K (x1, x2) = e−∥x1−x2∥ is not

smooth at the origin: f (x) = e−x1/2 .

▶ It turns out one can do it, but it is tough Kernel Matrix with

Non-Smooth Kernels
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Picking Non-Linearities with Extreme Non-Smoothness of

Kernels ii

▶ Suppose Xi ∼ N(0, I/P) are i.i.d. and

Mi ,j = f (X ′
i Xj)(1− δi ,j)

(killed diagonal). Then, we get a form of the Marcenko-Pastur

equation that is cubic in m

▶ The trick is to replace Taylor expansion with an expansion in special

orthogonal polynomials
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Summary

▶ Curse of Dimensionality: When d ∼ n, we cannot learn non-linearities

with simple kernel methods. Kernels collapse to a linear ridge

• Why linear? It is linked to eigenfunctions !

▶ non-smooth kernels can help (formulas involve f ′(0)!). E.g.,

f (∥xi − xj∥2) where f ′(0) = ∞, such as f (x) = e−x1/2 .

▶ Need ways to escape the curse of dimensionality: Feature Learning
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Definition of a Positive-Definite Kernel

A positive-definite kernel is a function

K : Ω× Ω → R

such that, for any finite set {x1, . . . , xn} ⊂ Ω, the kernel matrix in Rn×n,

defined by pairwise evaluations
(
K (xi , xj)

)n
i ,j=1

, is symmetric positive

semi-definite.
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Hilbert Spaces i

▶ A (real) Hilbert Space is a set H such that we can take linear

combinations: x , y ∈ H, ax + by ∈ H

▶ And we have an inner product

⟨x , y⟩ (16)

satisfying standard linearity properties:

⟨ax + by , z⟩ = a⟨x , z⟩ + b⟨y , z⟩ (17)

▶ It is complete under the norm

∥x∥ = ⟨x , x⟩1/2
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Hilbert Spaces ii

▶ In asset pricing, H = L2(Ω), and

⟨X ,Y ⟩ = E [XY ] .

In particular, for an SDF M, we can write prices as

P(X ) = E [MX ] = ⟨M,X ⟩
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Kernels and Feature Maps i

Theorem

A kernel is positive definite if and only if

K (xi , xj) =

∫
Θ
f (xi ; θ)f (xj ; θ)p(θ)dθ (18)

for some f . Let H = L2(Θ; p(θ)dθ). Let also

f : x → f (x) = (f (x ; θ))θ∈Θ ∈ H be the feature map (so, we map Rd

to the Hilbert space H). Then,

K (xi ; xj) = Eθ[f (xi )f (xj)] = ⟨f (xi ), f (xj)⟩H (19)
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Kernels and Feature Maps ii

Proof of Sufficiency:

a′K̂a =
∑
i ,j

K (xi , xj)aiaj =
∑
i ,j

E [f (xi )f (xj)]aiaj

= E [(
∑
i

ai f (xi ))
2] ≥ 0 .

(20)
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Examples of Feature Maps i

Theorem 1 (Bochner). A continuous kernel k(x , y) = k(x − y) on Rd is

positive definite if and only if k(δ) is the Fourier transform of a

non-negative measure.

k(x−y) =

∫
Rd

p(ω)e iω
⊤(x−y)dω = Eω[ζω(x)ζ̄ω(y)], ζω(x) = e iω

⊤x (21)

so ζω(x)ζω(y)
∗ is an unbiased estimate of k(x , y) when ω is drawn from p.

Kernel Name k(∆) p(ω)

Gaussian e−∥∆∥22/2 (2π)−D/2e−∥ω∥22/2

Laplacian e−∥∆∥1 ∏
d

1
π(1+ω2

d )

Cauchy
∏

d
2

1+∆2
d

e−∥∆∥1

Table: Popular shift-invariant kernels and their corresponding Fourier transforms.
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Examples of Feature Maps ii

To obtain a real-valued random feature for k(x , y) = e−∥x−y∥2/2, note

that both the probability distribution p(ω) and the kernel k(∆) are real, so

the integrand e iω
⊤(x−y) may be replaced with cosω⊤(x − y). Defining

zω(x) =

[
cos(ω⊤x)

sin(ω⊤x)

]

gives a real-valued mapping that satisfies the condition

E[zω(x)⊤zω(y)] = k(x , y), since zω(x)
⊤zω(y) = cosω⊤(x − y). Other

mappings such as zω(x) =
√
2 cos(ω⊤x + b), where ω is drawn from p(ω)

and b is drawn uniformly from [0, 2π], also satisfy the condition

E[zω(x)⊤zω(y)] = k(x , y).

To express the kernel k(x − y) in terms of real-valued random features, we

can use the following integral representation:
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Examples of Feature Maps iii

k(x − y) = Eω,b
[√

2 cos(ω⊤x + b) ·
√
2 cos(ω⊤y + b)

]
,

where b ∼ Uniform[0, 2π], and ω is drawn from the Fourier transform p(ω)

of the kernel k(∆). Expanding the cosine terms, we have:

cos(ω⊤x+b)·cos(ω⊤y+b) =
1

2

[
cos(ω⊤(x − y)) + cos(ω⊤(x + y) + 2b)

]
.

Taking the expectation over b, the second term averages out to zero since

b is uniformly distributed, leaving:

k(x − y) =

∫
Rd

p(ω) cos(ω⊤(x − y)) dω.

Alternatively, using the 2-dimensional real-valued mapping:
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Examples of Feature Maps iv

zω(x) =

[
cos(ω⊤x)

sin(ω⊤x)

]
,

we obtain:

k(x − y) = Eω
[
zω(x)

⊤zω(y)
]
,

where the inner product zω(x)
⊤zω(y) simplifies to:

cos(ω⊤x) cos(ω⊤y) + sin(ω⊤x) sin(ω⊤y) = cos(ω⊤(x − y)).

Thus, the integral representation becomes:

k(x − y) =

∫
Rd

p(ω) cos(ω⊤(x − y)) dω.
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General Random Features and Kernel Ridge Regression i

▶ using a discrete approximation

K (xi , xj) =

∫
f (xi ; θ)f (xj ; θ)p(θ)dθ ≈ P−1

∑
k

f (xi ; θk)f (xj ; θk)

(22)

implies that we can:

▶ Generate random features: Sample θk , k = 1, · · · ,P from p(θ)

▶ compute random features

Si = P−1/2(f (xi ; θk))
P
k=1 = P−1/2f (xi ) (23)

▶ run a ridge regression of yi on Si ∈ RP
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General Random Features and Kernel Ridge Regression ii

▶ indeed, (22) implies with S = (P−1/2(f (xi ; θk))) ∈ Rn×P that

K̂ = (K (xi , xj))
n
i ,j=1 ≈

∑
k

(P−1f (xi ; θk)f (xj ; θk))
n
i ,j=1 = SS ′ (24)

and

k(x) = (K (x ; xi ))
n
i=1 ≈

∑
k

(P−1f (x ; θk)f (xi ; θk))
n
i=1 = P−1/2Sf (x)

(25)

so that using

S ′(zI + SS ′)−1 = (zI + S ′S)−1S ′, (26)
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General Random Features and Kernel Ridge Regression iii

we get

ŷ(x) = k(x)′(zI + K̂ )−1y ≈ P−1/2f (x)′S ′(zI + SS ′)−1y

= P−1/2f (x)′ (zI + S ′S)−1S ′y︸ ︷︷ ︸
β̂

(27)

▶ most common choice: choose an activation function σ(x) and define

random features as

Si = P−1/2(σ(θ′kxi + bk))
P
k=1 (28)

where θi are weights and bi are biases.

Theorem

Kernel Ridge Regression = Neural Network with one hidden layer and a

linear output neuron where the hidden layer weights are not trained

Deep (and Shallow) Learning for Finance 27



Kernel=Shallow Neural Network

Hidden

Layer

= Un-

trained

Random

Features

Sk =

f (x ; θk )

Input

Data

x ∈ Rd

Prediction

S′β
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Link

Understanding Kernels
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Kernels in Plato’s Cave

▶ An ML model is a map

x → f̂ ( x︸︷︷︸
test features

; X , y︸︷︷︸
train data

) (29)

▶ In the standard parametric world, in the interpolation regime, we solve

f (Xi ; θ) = yi , θ ∈ RP , i = 1, · · · , n . (30)

▶ This defines a foliation: over each (y ,X ), we have a

(P − n)-dimensional manifold attached.

▶ Gradient descent picks particular points on this manifold: Is is a form

of projection

▶ Kernels also project ground truth on something

▶ How can we describe this something?
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Spectral Theorem for Symmetric Matrices

Theorem

If A = (A(i , j))ni ,j=1 is symmetric, then A = U diag(λj)U
′. A defines an

operator

Ax = UDU ′x , x ∈ Rn .

If ϕj are the eigenvectors, then

Ax =
n∑

j=1

λjϕj⟨ϕj , x⟩ .

Furthermore, ∑
i ,j

A2
i ,j =

∑
j

λ2j .
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Mercer Theorem i

Theorem Suppose that K : Ω× Ω → R is a positive definite kernel. Let

us equip Ω with a probability measure p(dx) and let L2(Ω) be the set of

square integrable functions. Define the Integral Operator

TK (f ) = Ex̃ [K (x , x̃)f (x̃)] =

∫
Ω
K (x , x̃)f (x̃)p(dx̃) ≈

∑
i

K (x , x̃i )f (x̃i )

(31)

(like an infinite-dimensional matrix). Suppose that K is square integrable:∫
Ω

∫
Ω
K (x , x̃)2p(dx̃)p(dx) < ∞ . (32)

Deep (and Shallow) Learning for Finance 33



Mercer Theorem ii

Then, TK has an orthonormal basis of eigenfunctions ϕj(x), j ≥ 1, that

depend in a mysterious and complex way on both K and p(dx), with the

corresponding eigenvalues λj ≥ 0, so that

TK (ϕj) = λjϕj ⇔
∫
Ω
K (x , x̃)ϕj(x̃)p(dx̃) = λjϕj(x) (33)

and ϕj form a basis of L2(Ω) so that any function f ∈ L2 can be written as

f (x) =
∞∑
j=1

⟨f , ϕj⟩ϕj(x) (34)

and

TK (f ) = TK (
∞∑
j=1

⟨f , ϕj⟩ϕj(x)) =
∞∑
j=1

⟨f , ϕj⟩TK (ϕj(x))

=
∞∑
j=1

⟨f , ϕj⟩λj ϕj(x) .
(35)
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Mercer Theorem iii

Furthermore, ∫
Ω

∫
Ω
K (x , x̃)2p(dx̃)p(dx) =

∞∑
j=1

λ2j < ∞ . (36)

and, hence,

lim
j→∞

λj = 0 . (37)
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Reprodicing Kernel Hilbert Space i

▶ Let us define the inverse operator T−1
K via

T−1
K f =

∞∑
j=1

⟨f , ϕj⟩λ−1
j ϕj(x) . (38)

By definition,

TK (T
−1
K f ) = TK

 ∞∑
j=1

⟨f , ϕj⟩λ−1
j ϕj(x)

 =
∞∑
j=1

⟨f , ϕj⟩λ−1
j TKϕj(x)

=
∞∑
j=1

⟨f , ϕj⟩λ−1
j λjϕj(x) =

∞∑
j=1

⟨f , ϕj⟩ϕj(x) = f (x) ,

(39)

so this is indeed the inverse.
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Reprodicing Kernel Hilbert Space ii

▶ In finite dimensions (linear algebra!), a symmetric positive definite

matrix A is invertible if and only if all its eigenvalues are positive,

λj > 0. In this case, the operator is surjective: A−1 is defined

everywhere. I.e., for any vector y , there exists an x such that Ax = y .

Equivalently, x = A−1y and A−1 is defined on all vectors.

▶ In infinite dimensions, this is not true anymore!

▶ T−1
K exists but is not bounded (because, λj → 0 by (37)). Is a pure

infinite-dimensional phenomenon.
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Reprodicing Kernel Hilbert Space iii

▶ Define

HK =

f (x) ∈ L2(Ω) :
∞∑
j=1

⟨f , ϕj⟩2 λ−1
j < ∞

 , (40)

and equip it with the inner product

⟨f , g⟩HK
=

∞∑
j=1

⟨f , ϕj⟩ ⟨g , ϕj⟩λ−1
j . (41)
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Reprodicing Kernel Hilbert Space iv

▶ Note that

⟨f , g⟩HK
= ⟨T−1

K f , g⟩L2(Ω) =

∫
Ω
f (x)(T−1

K g)(x)p(dx) (42)

By the definition of the T−1
K operator,

g(x) = TK (T
−1
K g)(x) =

∫
K (x , x̃)(T−1

K g)(x̃)p(dx̃)

=

∫
Ω
Kx(x̃)(T

−1
K g)(x)p(dx) = ⟨Kx , g⟩HK

.

(43)

This remarkable identity is known as the reproducing kernel property.

▶ Hence, HK is called a reproducing kernel Hilbert space.
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OK, So what is RKHS?

Theorem

RKHS = set of functions for which (40) holds:

HK =

f (x) ∈ L2(Ω) :
∞∑
j=1

⟨f , ϕj⟩2 λ−1
j < ∞

 , (44)

▶ Since λj → 0, this is a non-trivial condition: it means that ⟨f , ϕj⟩ go
to zero fast as j → ∞, faster than λ

1/2
j .

▶ ϕj tend to oscillate more when j ia large (a bit like sin(xj) waves)

▶ the smaller j , the smoother the function

▶ thus RKHS = functions that do not oscillate too much; or,

equivalently, functions that are sufficiently smooth
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Why Do We Care? Regression, Alignment, and the Inductive

Bias i

▶ Theorem Ridge regression always generates prediction f̂ (x) ∈ HK .

Thus, kernel ridge always predicts (=extrapolates!), assuming the

function is smooth and does not oscillate too much. If the function

is not smooth and/or oscillates a lot, we are in trouble!

Proof. Kernel Ridge Prediction is

f̂ (x) = K (x ,X )(zI + K (X ,X ))−1y =
n∑

i=1

K (x , xi )ξi ,

ξ = (zI + K (X ,X ))−1y ∈ Rn .

(45)
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Why Do We Care? Regression, Alignment, and the Inductive

Bias ii

Now, Kxi (x) = K (x , xi ) ∈ HK always! It follows from the definition

of RKHS, but let us do a direct derivation; it is instructive. We have

Kxi (x) = K (x , xi ) =
∞∑
j=1

λjϕj(xi )︸ ︷︷ ︸
basis coefficients

ϕj(x) , (46)

implying that the basis coefficients are λjϕj(xi ). Then, we need to

check that they satisfy (40):

∞∑
j=1

(λjϕj(xi ))
2 λ−1

j =
∞∑
j=1

λj(ϕj(xi ))
2 = K (xi , xi ) < ∞ . (47)

This is striking: while RKHS does depend on the underlying

distribution p(dx), the prediction of the ridge regression always

belongs to the intersection of all possible RKHS generated by K .
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Kernel Inductive Bias and Minimum Norm Interpolation i

Theorem

f̂ (x) = K (x ,X )(zI + K (X ,X ))−1y . (48)

If yi = f ∗(xi ) + εi , E [εi |x ] = 0, and xi , εi are i.i.d. and f ∗(x) ∈ HK ,

then f̂ (x) → f ∗(x) in HK as n → ∞, with probability one.

So, what exactly does f̂ pick in finite samples?
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Kernel Inductive Bias and Minimum Norm Interpolation ii

Theorem (Kernel Ridge Inductive Bias=Small HK -norm)

f̂ = arg min
f ∈HK

{
n∑

i=1

(yi − f (xi ))
2 + z∥f ∥2HK

}
. (49)

When z = 0, we get the minimum HK -norm interpolator,

f̂ = arg min
f ∈HK

{∥f ∥2HK
: (yi − f (xi )) = 0 ∀ i} . (50)

Why is this striking? Well, HK depends on the true probability

distribution, which we do not know! And yet, mysteriously, Ridge

regression finds it! Small HK is the smoothness inductive bias of kernels!!

The proof is based on the Representer Theorem
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Representer Theorem

Theorem: The solution to a regularized empirical risk minimization

problem in RKHS has the form:

f ∗(x) =
n∑

i=1

αiK (x , xi ).

▶ Instead of searching over all functions in HK , we optimize over α.

▶ This allows efficient computation using kernel matrices.
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Proof of Representer Theorem

Step 1: Function Decomposition

f = f∥ + f⊥, f∥ ∈ Hn, f⊥ ⊥ Hn.

▶ Hn = span{K (·, xi )}ni=1.

▶ f⊥ is orthogonal and does not affect the empirical risk because

f (xi ) = ⟨f ,K (·, xi )⟩ = ⟨f∥,K (·, xi )⟩ = f∥(xi ) (51)

so that

n∑
i=1

(yi − f (xi ))
2 + z∥f ∥2HK

=
n∑

i=1

(yi − f∥(xi ))
2 + z(∥f∥∥2HK

+ ∥f⊥∥2HK
)
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Conclusion of the Proof

Step 2: Regularization Effect

∥f ∥2HK
= ∥f∥∥2HK

+ ∥f⊥∥2HK
.

Since f⊥ only increases the regularization term, the optimal solution

satisfies f⊥ = 0. Hence,

f ∗(x) =
n∑

i=1

αiK (x , xi ).

Conclusion: Every minimizer of the regularized problem is a linear

combination of kernel evaluations.
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Homework

Complete the proof: minimization over f ∗(x) =
∑n

i=1 αiK (x , xi ) (i.e., over

αi ) gives the kernel ridge.

Also, prove the z = 0 case!
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Hermite Polynomials i

There are many equivalent ways to define the Hermite polynomials. A

natural one is through the so-called Rodrigues’ formula:

Hk(x) = (−1)k ex
2 dk

dxk
[
e−x2

]
.

From this definition, one can deduce:

H0(x) = 1, H1(x) = − ex
2
[
− 2x e−x2

]
= 2x ,

H2(x) = ex
2
[
(−2x)e−x2 − 2 e−x2

]
= 4x2 − 2, . . .

(52)

Other simple properties (provable by recursion) include:

▶ Hk(x) is a polynomial of degree k .

▶ Hk(x) has the same parity as k (even/odd).
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Hermite Polynomials ii

▶ The leading coefficient of Hk(x) is 2
k .

Using integration by parts, one shows that for k ̸= ℓ,∫ +∞

−∞
Hk(x)Hℓ(x) e

−x2 dx = 0,

and for k = ℓ, ∫ +∞

−∞

(
Hk(x)

)2
e−x2 dx =

√
π 2k k!.

Hence, the Hermite polynomials {Hk} are orthogonal with respect to the

Gaussian distribution of mean 0 and variance 1/2.

Defining the Hermite functions

ψk(x) =
(√
π 2k k!

)−1
2 Hk(x) e

−x2/2,
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Hermite Polynomials iii

we obtain an orthonormal basis of L2(R). As k increases, these functions

have increasingly wide “effective support” (though they extend over the

entire real line) and exhibit increasingly oscillatory behavior, much like

sines and cosines in the Fourier basis.
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Hermite Polynomials iv

Figure: Hermite polynomial animation.
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Hermite Polynomials v

Among such orthonormal bases, the Hermite functions happen to

diagonalize the Fourier transform operator. In other words, the Fourier

transform of ψk (for the definition making it an isometry of L2(dx)) is

equal to

(Fψk)(ω) =
1√
2π

∫ +∞

−∞
ψk(x) e

−iωx dx = (−i)k ψk(ω).

(Note that the eigenvalues are all of unit modulus, since we have an

isometry.) I am not aware of any applications of this property in machine

learning or statistics (though there probably are some).

In order to compute Hermite polynomials, the following recurrence relation

is particularly useful:

Hk+1(x) = 2x Hk(x) − 2k Hk−1(x). (1)
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Hermite Polynomials vi

Such recurrences are always available for orthogonal polynomials (see ?),

but it takes here a particularly simple form

The following property is central in many proofs of the properties of

Hermite polynomials: for all real t, we have

∞∑
k=0

tk

k!
Hk(x) = e 2xt−t2 . (2)

For |ρ| < 1, it states:

exp
(
− ρ

1−ρ2 (x−y)2
)

=
√

1− ρ2
∞∑
k=0

ρk

2k k!
Hk(x)Hk(y) exp

(
− ρ

1+ρ(x
2+y2)

)
.
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Hermite Polynomials vii

so that∫ ∞

−∞
Hk(x) exp

(
− (x − ρ y)2

1− ρ2

)
dx =

√
π ρk

√
1− ρ2 Hk(y). (3)
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Orthonormal Basis

Theorem

Define

fk(x) =
1√
Nk

Hk(x) exp
(
− ρ

1 + ρ
x2
)
,

where Nk = 2k k!
√

1−ρ
1+ρ , and Hk(x) is the kth Hermite polynomial.

Then, {fk}∞k=0 is an orthonormal basis for L2(dµ) when dµ is the

Gaussian distribution of mean 0 and variance 1
2

1+ρ
1−ρ .

Homework: Prove this Theorem (this follows from the orthogonality

property of Hermite polynomials).
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Theorem

The Gaussian kernel admits the decomposition

K (x , y) = exp
(
− ρ

1−ρ2 (x − y)2
)

=
∞∑
k=0

(1− ρ) ρk fk(x) fk(y).

Thus, the kernel operator in L2(dµ) when dµ is the Gaussian distribution

of mean 0 and variance 1
2

1+ρ
1−ρ has fk as eigenfunctions and

λk = (1− ρ) ρk .

as eigenvalues.
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Empirical Eigenvalues and Empirical Eigenfunctions i

Theorem

The eigenvalues λ̂k of the kernel matrix

n−1K (X ,X ) =
1

n
(K (xi , xj))

n
i ,j=1 (53)

converge to those of the kernel operator when xi are sampled i.i.d. from

the µ(dx). Furthermore, given the eigenvectors qk = (qk(i))
n
i=1 ∈ Rn of

the kernel matrix can be used to construct Nystrom approximations to

the true (unobserved!) eigenfunctions

ϕk(x) ≈
n∑

i=1

K (x , xi )qk(i) . (54)
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Empirical Eigenvalues and Empirical Eigenfunctions ii

Heuristic Proof:

λkϕk(x) =

∫
K (x , x̃)ϕk(x̃)dµ(x̃) ≈

n∑
i=1

K (x , x̃i )ϕk(x̃i )

λ̂kqk(i) =
n∑

i=1

K (xi , xj)qk(j)

(55)

Experiments. In order to showcase the exact eigenvalues of the

expectation, we compare the eigenvalues with the ones of the empirical

covariance operator for various values of the number of observations. We

see that as n increases, the empirical eigenvalues match the exact ones for

higher k: smaller eigenvalues are harder to learn!
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Empirical Eigenvalues and Empirical Eigenfunctions iii

Figure: Convergence of Estimated Eigenvalues to λk = (1− ρ) ρk .
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Ideal Kernel i

▶ The ideal kernel to learn y = f (x) is

Kideal(x , x̃) = f (x) f (x̃) (56)

▶ Eigenfunction equation∫
Kideal(x , x̃)ψ(x̃)σ(dx̃) = λψ(x) (57)

takes the form

f (x)

∫
f (x̃)ψ(x̃)σ(dx̃) = λψ(x) (58)

Thus, the only non-trivial eigenfunction is ψ(x) = f (x) with the

eigenvalue

λ =

∫
f (x̃)2σ(dx̃) =

(∫ ∫
K 2(x , x̃)σ(dx)σ(dx̃)

)1/2

, (59)
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Ideal Kernel ii

so that all other eigenvalues are identically zero: λ = λ1,

λ2 = λ3 = · · · = 0.

▶ with an ideal kernel,

K (X ,X ) = (f (xi )f (xj))
n
i ,j=1 = f (X )f (X )⊤ (60)

has rank 1 and, hence, by the Sherman-Morrison formula,

K (x ,X )(zI + K (X ,X ))−1 = f (x)f (X )⊤ (zI + f (X )f (X )⊤)−1

= f (x)f (X )⊤
z−1

1 + z−1∥f (X )∥2
= f (x)f (X )⊤

1

z + ∥f (X )∥2
(61)

and, hence, if y = f (X ) + ε, we get

f̂ (x) = K (x ,X )(zI + K (X ,X ))−1y

= f (x)f (X )⊤
1

z + ∥f (X )∥2
(f (X ) + ε) = c f (x) ,

(62)
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Ideal Kernel iii

where

c =
∥f (X )∥2 + f (X )⊤ε

z + ∥f (X )∥2
=

1
n

∑
i f (Xi )

2 + 1
n

∑
i f (Xi )εi

1
nz + 1

n

∑
i f (Xi )2

≈ 1 (63)

by the law of large numbers when E [f (X )ε] = 0 when n is large.

Thus, ideal kernel has perfect alignment with the data, and hence, we

can learn the true f easily.
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Suppose we have a bunch of random features or other signals,

Sk,t =
1

P1/2 f (Xt ;ωk), k = 1, · · · ,P. They have the true covariance matrix

E [StS
′
t ] = Ψ (64)

That is, assuming that that observations Xt across t are sampled i.i.d.

from the same distribution σ(dx), we get

1

P
E [f (X ;ωj1)f (X ;ωj2)] = Ψj1,j2 . (65)

Let now hj(j1) be eigenvectors of Ψ :

Ψhj(j1) = λ̂j hj(j1) . (66)

We now show a surprising thing: There is a direct link between

eigenvalues of Ψ and eigenvalues of the integral operator KP .

Namely, define

ψ̂j(x) =
P∑
j=1

hj(j1) f (x ;ωj1) . (67)
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Then,∫
KP(x , x̃)ψ̂j(x̃)σ(dx̃) =

∫
KP(x , x̃)

P∑
j=1

hj(j1) f (x ;ωj)σ(dx̃)

=
P∑
j=1

hj(j1)

∫
KP(x , x̃)f (x̃ ;ωj)σ(dx̃)

=
P∑
j=1

hj(j1)

∫
1

P

P∑
j1=1

f (x ;ωj1)f (x̃ ;ωj1)f (x̃ ;ωj)σ(dx̃)

=
P∑
j=1

hj(j1)
1

P

P∑
j1=1

f (x ;ωj1)

∫
f (x̃ ;ωj1)f (x̃ ;ωj)σ(dx̃)

=
P∑
j=1

hj(j1)
1

P

P∑
j1=1

f (x ;ωj1)

∫
f (x̃ ;ωj1)f (x̃ ;ωj)σ(dx̃)

=
P∑
j=1

hj(j1)
P∑

j1=1

f (x ;ωj1)
1

P
E [f (X ;ωj1)f (X ;ωj)]

=
P∑
j=1

hj(j1)
P∑

j1=1

f (x ;ωj1)Ψj1,j

=
P∑

j1=1

P∑
j=1

Ψj1,jhj(j1)︸ ︷︷ ︸
=λjhj (j1)

f (x ;ωj1)

=
P∑

j1=1

λjhj(j1)f (x ;ωj1)

= λj π̂j(x) .

(68)
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Thus, we have proved
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Theorem

For a finite-dimensional kernel

K (x , x̃) =
1

P

P∑
j=1

f (x ;ωj)f (x̃ ;ωj) , (69)

the integral operator TK only has P non-zero eigenvalues λj coinciding

with the eigenvalues of the matrix Ψ,

1

P
E [f (X ;ωj1)f (X ;ωj2)] = Ψj1,j2 . (70)

Furthermore, the eigenfunctions are given by

ψj(x) =
P∑

j1=1

hj(j1)f (x ;ωj1) (71)
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The following is a heuristic formulation of the (incredibly complex) result

of Kernel Ridge in High Dimensions
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Theorem

Suppose now we send n, d → ∞. Let

f (x) =
∞∑
j=1

ψj(x)cj , where cj = ⟨ψj(x), f (x)⟩ = E [ψj(x)f (x)] (72)

Then, there exists an increasing function n∗(d ; L) such that, for

n ∼ n∗(d ; L) and z sufficient small,

f̂n(x) = K (x ,Xn)
⊤(zI + K (Xn,Xn))

−1yn (73)

converges to the projection

P≤L f (x) =
L∑

j=1

ψj(x)cj

Deep (and Shallow) Learning for Finance 72



Implicit Regularization i

Define the implicit shrinkage

Z∗(z ; c) =
z

1 − c + c z m(−z ; c)
(74)

Recall to this end that

m̃(−z ; c) = z−1(1− c + czm̂(−z))

= T−1(T − P)z−1 + T−1 tr((zI + S ′S/T )−1) .
(75)

If P > T , then S ′S/T is degenerate and has the same eigenvalues as

SS ′/T , plus (P − T ) zero eigenvalues. Similarly, if P < T , then SS ′/T

will have T − P zero eigenvalues, so that we always have that

tr((zI + S ′S/T )−1) = z−1(P − T ) + tr((zI + SS ′/T )−1) (76)
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Implicit Regularization ii

Thus,

Z∗(z ; c) =
z

T−1 tr((zI + SS ′/T )−1)
≈ z

T−1 tr((zI + K (X ;X ))−1)
(77)
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Implicit Regularization iii

Theorem

We have

z m(−z ; c) = Z∗(z ; c)m(−Z∗(z ; c)) (78)

That is, (zI + Ψ̂)−1 behaves as if we are doing (Z∗I +Ψ)−1.

Furthermore,

Z∗ = z + cZ∗

∫
xdH(x)

x + Z∗
(79)

so that

Z∗ ∈ [z , z + c] . (80)
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Implicit Regularization iv

Formally, in finite samples,

Z∗ = z + cZ∗

∫
xdH(x)

x + Z∗
≈ z + Z∗

P

T
P−1 tr(Ψ(Ψ + Z∗I )

−1)

= z + Z∗T
−1 tr(Ψ(Ψ + Z∗I )

−1) ≈ z + Z∗T
−1 tr(TK (TK + Z∗I )

−1)

(81)

where

TK (82)

is the infinite-dimensional integral operator and

T−1 tr(TK (TK + Z∗I )
−1) = T−1

∞∑
i=1

λi (λi + Z∗I )
−1

In most real world examples, λi ∼ i−α, α > 1.
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Implicit Regularization v

Let λi = i−α for some α > 0, and define the sum:

S(κ) :=
∞∑
i=1

λi
λi + κ

=
∞∑
i=1

i−α

i−α + κ
.

We want to approximate S(κ) for small κ > 0.

First, note that the function f (i) = i−α

i−α+κ is positive and decreasing. We

approximate the sum by an integral:

S(κ) ≈
∫ ∞

1

x−α

x−α + κ
dx .

Make the substitution t = x−α, which implies x = t−1/α and

dx = − 1

α
t−1/α−1 dt.
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Implicit Regularization vi

Changing variables gives:∫ ∞

1

x−α

x−α + κ
dx =

∫ 1

0

t

t + κ
· 1
α
t−1/α−1 dt =

1

α

∫ 1

0

t−
1
α

t + κ
dt.

Now let u = t/κ, so that t = κu and dt = κdu. Then:

1

α

∫ 1/κ

0

(κu)−
1
α

κu + κ
· κ du =

1

α
κ1−

1
α

∫ 1/κ

0

u−
1
α

u + 1
du.

As κ→ 0, 1/κ→ ∞, and we get:

S(κ) ∼ 1

α
κ1−

1
α

∫ ∞

0

u−
1
α

u + 1
du.
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Implicit Regularization vii

The integral is known:∫ ∞

0

us−1

u + 1
du = π/ sin(πs), for 0 < s < 1.

Setting s = 1− 1
α , we get:∫ ∞

0

u−
1
α

u + 1
du = π/ sin(π/α).

Putting it all together:

S(κ) =
π

α sin(π/α)
κ−1/α + O(1).

Thus,

Z∗ ≈ z + Z∗T
−1 π

α sin(π/α)
Z

−1/α
∗
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Implicit Regularization viii

For z = 0, we get Z∗ ∼ T−α. Thus, we have about T eigenvalues

i−α > T−α.
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Setup: Mercer’s Theorem

Let K : Ω×Ω → R be a continuous, symmetric, positive-definite kernel on

a compact domain Ω ⊂ Rd .

Define the integral operator:

(TK f )(x) :=

∫
Ω
K (x , x ′)f (x ′) dx ′

Mercer’s theorem gives:

K (x , x ′) =
∞∑
i=1

λiϕi (x)ϕi (x
′)

λi : eigenvalues, ϕi : orthonormal eigenfunctions.
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Theorem 1: Sobolev Kernel Decay

Statement: If the RKHS HK is norm-equivalent to the Sobolev space

Hs(Ω), then:

λi ≍ i−2s/d

Conditions:

▶ Ω ⊂ Rd compact with Lipschitz boundary.

▶ K is sufficiently smooth.
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Theorem 2: Analytic Kernels

Statement: If K ∈ C∞(Ω× Ω) is real-analytic, then:

λi ≤ C exp(−c i1/d)

Implication: Exponential or super-polynomial decay of eigenvalues.
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▶ Suppose y = f (x)

▶
1

n
K (X ,X ) =

∞∑
j=1

λj
1

n
ψj(X )ψj(X )⊤ ∈ Rn×n (83)

▶ with many train observations, we have

1

n
ψj1(X )⊤ψj2(X ) =

1

n

∑
i

ψj1(xi )ψj2(xi ) ≈︸︷︷︸
LLN

E [ψj1(x)ψj2(x)] = 0

(84)

Thus, n−1/2ψj(X ) is approximately orthonormal basis of Rn and

(zI + n−1K (X ,X ))−1 ≈
∞∑
j=1

(λj + Z∗I )
−1︸ ︷︷ ︸

implicit regularization

1

n
ψj(X )ψj(X )⊤ (85)
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and

(zI + n−1K (X ,X ))−1y =
∞∑
j=1

(λj + Z∗I )
−1︸ ︷︷ ︸

implicit regularization

1

n
ψj(X )ψj(X )⊤y

=
∞∑
j=1

(λj + Z∗I )
−1︸ ︷︷ ︸

implicit regularization

1

n
ψj(X )ψj(X )⊤f (X )

≈
∞∑
j=1

(λj + Z∗I )
−1︸ ︷︷ ︸

implicit regularization

ψj(X ) cj

(86)
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▶ and, hence,

f̂ (x) =
1

n
K (x ,X )(zI + n−1K (X ,X ))−1y

=
∞∑
j=1

λj
1

n
ψj(x)ψj(X )⊤

∞∑
j1=1

(λj1 + Z∗I )
−1︸ ︷︷ ︸

implicit regularization

ψj1(X ) cj1

≈︸︷︷︸
E [ψjψj1

]=δj,j1

∞∑
j=1

λjψj(x) cj(λj + Z∗I )
−1

(87)

so that

f (x) =
∞∑
j=1

cjψj(x)

f̂ (x) ≈
∞∑
j=1

cj
λj

λj + Z∗
ψj(x) =

∞∑
j=1

cj
1

1 + Z∗/λj
ψj(x)

(88)

where Z∗ is the effective shrinkage (implicit regularization).
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▶ It kills eigenvalues below Z∗ and is irrelevant for eigenvalues above

that threshold.

▶ It is all about alignment: f̂ (x) is close to f (x) if and only if f is

aligned with top eigenfunctions of K
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Multiple Descent

Multiple Descent
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Kernels and Gaussian Processes i

▶ A Gaussian Process is a Gaussian distribution on functions.

▶ Basically, instead of randomly sampling a vector f ∈ RP , nature

randomly samples a whole function f (x) : Rd → R. Each value

x ∈ Rd is a “coordinate” (thus, there is a continuum of

coordinates)

▶ A Gaussian vector f ∈ RP is defined by a µ,Σ :

µ(i) = E [f (i)], Σ(i , j) = Cov(f (i), f (j))

▶ In a Gaussian process, we just replace coordinates i , j = 1, · · · ,P with

variables x1, x2 ∈ Rd . Thus, a Gaussian process is defined by

µ(x) = E [f (x)] (89)

and

K (x , x̃) = E [f (x) f (x̃)] (90)
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Kernels and Gaussian Processes ii

Here, K is the covariance kernel of the Gaussian Process

▶ Standard notation: f (x) ∼ GP(µ(x),Σ(x))

▶ Suppose now we are trying to learn a function f (x) from many

observations. We observe f (xi ), i = 1, · · · , n and we want to learn

f (x). Well, we can use the Gaussian conditioning formula:(
X

Y

)
∼ N(

(
µX
µY

)
,

(
ΣXX ΣXY

ΣYX ΣYY

)
)

E [X |Y ] = µX + ΣXYΣ
−1
YY (Y − µY )

Var[X |Y ] = ΣXX − ΣXYΣ
−1
YYΣYX

(91)

Similarly,(
f (x)

f (X )

)
∼ N(

(
µ(x)

µ(X )

)
,

(
K (x , x) K (x ,X )

K (X , x) K (X ,X )

)
) (92)
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and, hence

E [f (x)|(f (x1), · · · , f (xn))] = µ(x)︸︷︷︸
=E [f (x)]

+ K (x ,X )︸ ︷︷ ︸
=Cov(f (x),f (X ))

K (X ,X )−1︸ ︷︷ ︸
Var[f (X )]−1

(f (X ) − µ(X ))

Var[f (x)|(f (x1), · · · , f (xn))]
= K (x , x)︸ ︷︷ ︸

=Var[f (x)]

− K (x ,X )K (X ,X )−1K (X , x)

(93)

▶ If we have multiple OOS points, we get that, from the Bayesian

point of view, we have that

Var[f (XOOS)|(f (x1), · · · , f (xn))]
= K (XOOS ,XOOS) − K (XOOS ,X )K (X ,X )−1K (X ,XOOS)

(94)
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▶ Similarly, if we observe f (xi ) + εi , we replace K (X ,X ) with

K (X ,X ) + σ2ε I .
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