

Kernels Homework 1.

April 5, 2025

1. Go through the notebook

[Understanding Kernels](#)

2. Verify numerically that

$$e^{-\|x-y\|^2/2} = \mathbb{E}_{\omega,b} \left[\sqrt{2} \cos(\omega^\top x + b) \cdot \sqrt{2} \cos(\omega^\top y + b) \right]$$

using a Monte-Carlo approximation on the right-hand side, where ω is drawn from $p(\omega) = N(0, 1)$ and b is drawn uniformly from $[0, 2\pi]$. how big of a P do you need to make it work?

3. Verify this approximation numerically.

$$\begin{aligned} \hat{y}(x) &= k(x)'(zI + \hat{K})^{-1}y \approx P^{-1/2}f(x)'S'(zI + SS')^{-1}y \\ &= P^{-1/2}f(x)' \underbrace{(zI + S'S)^{-1}S'y}_{\hat{\beta}} \end{aligned} \tag{1}$$

where S are random features from the previous problem.

4. Verify numerically that

[Theorem 1.](#) The Gaussian kernel

$$K(x, y) = \exp\left(-\frac{\rho}{1-\rho^2}(x-y)^2\right)$$

in $L^2(d\mu)$ when $d\mu$ is the Gaussian distribution of mean 0 and variance $\frac{1}{2} \frac{1+\rho}{1-\rho}$ has f_k as eigenfunctions and

$$\lambda_k = (1 - \rho) \rho^k.$$

as eigenvalues.

To this end, use Monte-Carlo approximation to verify numerically that

$$\int K(x, \tilde{x}) f_k(\tilde{x}) d\mu(\tilde{x}) = \lambda_k f_k(x)$$

Reproduce the plot of $f_k(x)$ from the lecture.

5. Check that f_k for large k is "hard to learn" because it "oscillates too much." To this end, fix, say, $n = 500$ observations, simulate 200 Out-of-sample (OOS) observations, and compute OOS MSE of kernel ridge for the simulation $y_i = f_k(x_i)$. What do you see and why? What is the RKHS norm $\|f_k\|_{\mathcal{H}_K}$?
6. Complete the proof of the representer theorem: minimization over $f^*(x) = \sum_{i=1}^n \alpha_i K(x, x_i)$ (i.e., over α_i) gives the kernel ridge.

Also, prove the $z = 0$ case!