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1 Kernels and (Random) Features




Kernel Regression i

» suppose we have a sample (y;, x;), x; € R? of n observations
i=1,---.n

» A kernel is a distance function K(x;,x;) measuring the distance
between items in the feature space

» Examples:

® Gaussian kernel K(x;,xj) = e=1=xI"/7 where ~ is the bandwidth
® Inner product kernels K(x;, x;) = ¢(x/x;)
® Normalized inner product kernels

K, ) = w(||x;)w(||xj||)¢(nxf”fﬁij) 1)
> Kernel Regression:

® Build the matrix K = (K(x;, x}))

n
ij=1



Kernel Regression ii

® Build prediction

® Kernel Regression is an interpolator

A

y(6) = YK k() = y'(0i)]e = i (3)

because

A A

KK =1 & Kk(x) = (0i)) (4)
> Kernel Ridge Regression:

A

90) = ¥+ R)k(x), k() = (KGo)y  (5)



Kernel Regression iii

» In matrix form, X = (x;)"_; € R4 and K = K(X,X) € R™" and

9(X;z) = y(d+K)TK = y'(z+ K) 2l + K - zl)
=y — z(z2+K)? (6)
~_———

in sample bias




Kernel Ridge Versus Linear Ridge Regression

Let X € R"% be all features stacked together. Using
(zI + XX)7IX = X(z1 + X'X)71, (7)

we get
Theorem
When K(xi, xj) = ¢(x/x;) ¢(x) = x, we get a linear ridge regression:
K = XX, k(x) = Xx,
9(x) = ¥ (2 + XX)Txx = yX(z + X'X)7 x (8)

=X(zI+X'X)~1 ridge regression 3(z)




Inner Product Kernels in High Dimension: Linear Regression
when d ~n i

Here, we discuss the remarkable results of El Karoui and the idea of
Gaussian equivalence.

» Suppose X; € RY arei.i.d., i=1,---,n, and define
Mij = f(X{X;/d) (9)

» n/d and d/n remain bounded, and both n,d go to co
> X = Zl/zY,- where Y; are i.i.d.

» f is smooth


https://statistics.berkeley.edu/sites/default/files/tech-reports/748.pdf

Inner Product Kernels in High Dimension: Linear Regression
when d ~ n ii

» Then, |[M — K| — 0 where

" tr(z2) / / XX’
= 11" + £(0)—— s
K = (F(0) + F'(0) 1Y + F(0) = + vy
implicit regularization
where
v, = f(tr(X)/d) — £(0) — f'(0) tr(X)/d > 0

~~

when f is convex




Distance Kernels in High Dimension: Linear Regression when
d~n i

A similar result holds for distance kernels such as, e.g., the Gaussian kernel
K(xi,xj) = e~ Ilxi—xlI?/L% .
» Suppose X; € RY are i.i.d., i=1,---,n, and define
Mij = f(IIX; — X;[?/d) (10)

» define
T = 2tr(X)/d
and
v o= (IXil?/d = tr(T)/d)y
» n/d and d/n remain bounded, and both n, d go to oo
> X; = X1/2Y; where Y; are i.i.d.
S S e G e s



Distance Kernels in High Dimension: Linear Regression when
d~n ii

» f is smooth

» Then, |[M — K| — 0 where

K = f(7)11+F'(7)[1¢/ +1'=2XX" ) d]+0.5" (1) A + vgl,
implicit regularization
where
va = F(0)+7F(r) — £(r)
and

A = 1@porp) + (o)l + 2y + 4tr(X?)d 211



Intuition

Concentration of quadratic forms:
X/X;/d = Y!TV25V2Y,/d ~ d71tr(T)d;, (11)

Thus,

IX; = Xjl1?/d = (1~ 6:)2d " tr(E). (12)




What About Out-Of-Sample Performance?

> Let us augment
B (K(X,X) K(X,X)> _ K(X,X) e RO (13)

> The result still applies:
K ~ aXX' + ol + rank_three — perturbation (14)
and, hence, kernel ridge prediction is

P(x) = K(x, X)(zl + K(X, X))t (15)

is approximately linear in X (up to a rank_three-perturbation)



Picking Non-Linearities with Extreme Non-Smoothness of
Kernels i

» So, the kernel is a sort of linear regression when d ~ n

» At least, when f is smooth, the CLT guarantees that the perturbation
is small.

» What about non-smooth f? But does it even matter? The answer is
yes!!
» One of the most powerful kernels, K(x1,x2) = e~ la—xll js not

smooth at the origin: f(x) = e,

» It turns out one can do it, but it is tough Kernel Matrix with
Non-Smooth Kernels


https://arxiv.org/abs/1202.3155
https://arxiv.org/abs/1202.3155

Picking Non-Linearities with Extreme Non-Smoothness of
Kernels ii

» Suppose X; ~ N(0,//P) are i.i.d. and
Mij = f(XiX;)(1 = di)

(killed diagonal). Then, we get a form of the Marcenko-Pastur
equation that is cubic in m

> The trick is to replace Taylor expansion with an expansion in special

orthogonal polynomials




Summary

» Curse of Dimensionality: When d ~ n, we cannot learn non-linearities
with simple kernel methods. Kernels collapse to a linear ridge

® Why linear? It is linked to eigenfunctions !

» non-smooth kernels can help (formulas involve f'(0)!). E.g.,
F(lIx — x[12) where £/(0) = oo, such as F(x) = "

P> Need ways to escape the curse of dimensionality: Feature Learning



https://arxiv.org/pdf/2212.13881.pdf
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2 Kernels, Shallow Neural Nets, and Random Features




Definition of a Positive-Definite Kernel

A positive-definite kernel is a function
K:QxQ — R

such that, for any finite set {xi,...,x,} C Q, the kernel matrix in R"*",

defined by pairwise evaluations (K (x;,x;))’

ij=1'15 symmetric positive

semi-definite.




Hilbert Spaces i

» A (real) Hilbert Space is a set H such that we can take linear
combinations: x,y € H, ax+ by ¢ H

» And we have an inner product
(x,y) (16)
satisfying standard linearity properties:
(ax + by,z) = a(x,z) + b(y,z) (17)
» |t is complete under the norm

Ixll = (x, )12



Hilbert Spaces ii

» In asset pricing, H = L»(R2), and
(X,Y) = E[XY].

In particular, for an SDF M, we can write prices as

P(X) = E[MX] = (M,X)




Kernels and Feature Maps

Theorem

A kernel is positive definite if and only if

Kn) = [ Fsi0)FCgi0)p(6)de (18)

for some f. Let H = L>(©; p(0)d0). Let also
f: x— f(x) = (f(x;0))gco be the feature map. Then,

K(xiix) = Eolf(xi)f(x)] (19)
Proof of Sufficiency:
dKa = ZKX,,XJ e — ZE[fx, ) (xj)]aia;

Za, Xi) ]>O

(20)



Examples of Feature Maps i

Theorem 1 (Bochner). A continuous kernel k(x,y) = k(x — y) on R9 is
positive definite if and only if k(0) is the Fourier transform of a
non-negative measure.

Kix=y) = [ pl)e " do = BulG(0%0] Gule) = €7 (2)

50 (w(Xx)Cw(y)* is an unbiased estimate of k(x,y) when w is drawn from p.

Kernel Name | k(A) p(w)
Gaussian e—l1A13/2 (271)—D/2e—\\w||§/2
E A 1
Laplacian e~ 1Al Hdm

Cauch i ean”l
Y I 1+A2

Table: Popular shift-invariant kernels and their corresponding Fourier transforms.



Examples of Feature Maps ii

To obtain a real-valued random feature for k(x,y) = e Ix¥I*/2 note
that both the probability distribution p(w) and the kernel k(A) are real, so
the integrand eiw’ (x=y) may be replaced with cosw ' (x — y). Defining

[cos(wa)]

Z(x) = sin(wx)

gives a real-valued mapping that satisfies the condition

E[zu(x) T zo(y)] = k(x, y), since z,(x) " z,(y) = cosw ' (x — y). Other
mappings such as z,(x) = v2cos(w ' x + b), where w is drawn from p(w)
and b is drawn uniformly from [0, 27|, also satisfy the condition
E[z.(x) T zo(y)] = k(x,y).

To express the kernel k(x — y) in terms of real-valued random features, we
can use the following integral representation:



Examples of Feature Maps iii

k(x—y)=E,» [\@cos(w—rx + b) - V2cos(w'y + b)|,

where b ~ Uniform[0, 27], and w is drawn from the Fourier transform p(w)
of the kernel k(A). Expanding the cosine terms, we have:

cos(w ' x+b)-cos(w ' y+b) = % cos(w ' (x — y)) + cos(w ' (x + y) + 2b)} :

Taking the expectation over b, the second term averages out to zero since
b is uniformly distributed, leaving:

kix=9) = [ ple)cost” (x = y)) s

Alternatively, using the 2-dimensional real-valued mapping:



Examples of Feature Maps iv

L ) — cos(w " x)
w() [sin(wa)] 7
we obtain:

Kix—y) = By [200 2,00,

where the inner product z,(x) " z,(y) simplifies to:

T T

cos(w " x) cos(w " y) + sin(w ' x)sin(w'y) = cos(w' (x — y)).

Thus, the integral representation becomes:

kix=y) = [ ple)cost” (x = y)) ds



General Random Features and Kernel Ridge Regression i

P using a discrete approximation

K(xi,x) = /f(x,-;e)f(x,-;e)p(e)de ~ PR (i 01)F (% k)

k
(22)
implies that we can:
» Generate random features: Sample 6y, k =1,--- P from p(6)
» compute random features
Si = PY2(f(xii0k))hey = PY2f(x) (23)

» run a ridge regression of y; on S; € RP



General Random Features and Kernel Ridge Regression ii

> indeed, (22) implies with S = (P~Y/2(f(x;; 0x))) € R"™*" that

K = (K(ax))jm = D (P70 66)f (i 0K))0js = S (24)

k
and
k(x) = (K(x; %))y =~ Z(P‘lf(x; 0 )f(xi; k)i = P_1/2Sf(x)
k
(25)
so that using
S'(zl + 55"t = (21 +5'5)71s, (26)



General Random Features and Kernel Ridge Regression iii
we get
J(x) = k(x)(zl + K)ty ~ P7Y2f(x)'S'(zl +SS') Ly
= P7Y2f(x) (2l + §'S)"1S'y (27)

B

» most common choice: choose an activation function o(x) and define
random features as

Si = P7V2(a(8)xi + bi))fe—s (28)

where 0; are weights and b; are biases.

Theorem
Kernel Ridge Regression = Neural Network with one hidden layer and a
linear output neuron where the hidden layer weights are not trained



Kernel=Shallow Neural Network

Hidden
Layer

| = Un-
I;p;‘t trained Prediction
ata ’
Random s'B
x € R9 A

Features
S =
f(x; 0x)

o
’\ ‘
. «
[




Link

Understanding Kernels



https://colab.research.google.com/drive/1iFrgb1Wo6cPPcBPVGss0PY9XGbtmLtoq
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3 The Inductive Biases of Kernels




Kernels in Plato’s Cave

» An ML model is a map

x — f( X X,y ) (29)

test features train data

» In the standard parametric world, in the interpolation regime, we solve
f(X;0) = yi, 0cRP, i=1---n. (30)

» This defines a foliation: over each (y, X), we have a
(P — n)-dimensional manifold attached.

» Gradient descent picks particular points on this manifold: Is is a form
of projection

> Kernels also project ground truth on something

> How can we describe this something?



Spectral Theorem for Symmetric Matrices

Theorem

If A= (A(i,}))} ;=1 is symmetric, then A= U diag()\;)U’. A defines an
operator
Ax = UDU'x, x € R".

If ¢; are the eigenvectors, then

Ax = Y Noj(d),x) -
j=1

Furthermore,

DA =) N
i F



Mercer Theorem i

Theorem Suppose that K : Q2 x Q — R is a positive definite kernel. Let
us equip Q with a probability measure p(dx) and let Lo(€2) be the set of
square integrable functions. Define the Integral Operator

Tilf) = EAK( AR = [ KxDFRPIR) ~ 3 K% ()

(31)
(like an infinite-dimensional matrix). Suppose that K is square integrable:

/ / e PR < so. (32)
QJQ




Mercer Theorem ii

Then, Tk has an orthonormal basis of eigenfunctions ¢;(x), j > 1, that
depend in a mysterious and complex way on both K and p(dx), with the
corresponding eigenvalues \; > 0, so that

Te(é) = Noj & /Q K(x, R)oi(R)p(d5) = Nej(x)  (33)

and ¢; form a basis of L»(£2) so that any function f € L, can be written as

o0

F(x) = > (f,¢,)¢(x) (34)

Jj=1
and

Tk(f) = Tk _(F.81)0i(x)) = D> _(F, ) Tr(g(x))
=il

J Jj=1 (35)

o0

(£, j) Aj dj(x) -
j=1
S e S e G e E



Mercer Theorem iii

Furthermore,

D ~ _ - 2
/Q/QK(X,X) p(dX)p(dx) = ;/\j < 00. (36)

and, hence,

lim Aj = 0. (37)

J—00




Reprodicing Kernel Hilbert Space i

» Let us define the inverse operator T;l via

o0

T = ) (o) A\ gi(x). (38)

j=1
By definition,

Tk(Ti'f) = Tk (Z< L) A gi(x )) = > (o) N\ Tkdi(x)

j=1

Z ¢J>‘ )‘Jd)J Z = f(x),
j=1

Jj=1
so this is indeed the inverse.



Reprodicing Kernel Hilbert Space ii

» In finite dimensions (linear algebra!), a symmetric positive definite
matrix A is invertible if and only if all its eigenvalues are positive,
Aj > 0. In this case, the operator is surjective: A~1 is defined
everywhere. |l.e., for any vector y, there exists an x such that Ax = y.
Equivalently, x = A~'y and A1 is defined on all vectors.

» In infinite dimensions, this is not true anymore!

> T,' exists but is not bounded (because, \; — 0 by (37)). Is a pure
infinite-dimensional phenomenon.




Reprodicing Kernel Hilbert Space iii

» Define

HK{ )€ La(Q) 1 Y (Fo)2 A <oo}, (40)
j=1

and equip it with the inner product

=1




Reprodicing Kernel Hilbert Space iv

» Note that
(Fo e = (T 8)m) = / f(x oldx)  (42)

By the definition of the T;l operator,

g(x) = Te(Telg)(x) = / K(x, )(Ticg)(%)p(d5)

(43)
_ /Q Ke(R)(Tic'@)()p(dx) = (K, 8)auic

which is the reproducing kernel property!




OK, So what is RKHS?

Theorem
RKHS = set of functions for which (40) holds:

Hk = < f(x) € La(Q Z ._1 < 00y, (44)
j=1

» Since \; — 0, this is a non-trivial condition: it means that (f, ¢;) go
to zero fast as j — oo, faster than )\}/2.

> ¢; tend to oscillate more when j ia large (a bit like sin(xj) waves)
» the smaller j, the smoother the function

» thus RKHS = functions that do not oscillate too much; or,
equivalently, functions that are sufficiently smooth



Why Do We Care? Regression, Alignment, and the Inductive
Bias i

» Theorem Ridge regression always generates prediction (x) € Hg.
Thus, kernel ridge always predicts (=extrapolates!), assuming the
function is smooth and does not oscillate too much. If the function
is not smooth and/or oscillates a lot, we are in trouble!

Proof. Kernel Ridge Prediction is

f(x) = K(x, X)(zl + K(X, X))ty = : K(x, xi)&i,
( > (45)

¢ = (z +K(X, X))ty € R".




Why Do We Care? Regression, Alignment, and the Inductive
Bias ii
Now, Ki.(x) = K(x,x;i) € Hk always! It follows from the definition
of RKHS, but let us do a direct derivation; it is instructive. We have

Ko(x) = K(x,x) = Y Ngi(x)  ¢i(x), (46)
=1 basis coefficients

implying that the basis coefficients are Aj¢;(x;). Then, we need to
check that they satisfy (40):

DB AT = D N(i(x))? = K(xi,xi) < oo.  (47)
j=1 Jj=1

This is striking: while RKHS does depend on the underlying
distribution p(dx), the prediction of the ridge regression always
belongs to the intersection of all possible RKHS generated by K.



Kernel Inductive Bias and Minimum Norm Interpolation i

Theorem

f(x) = K(x,X)(zl + K(X, X)) y. (48)

If yi = f*(xi) +¢€i, E[ei|x] =0, and x;,e; are i.i.d. and f*(x) € H,
then f(x) — f*(x) in Hx as n — oo, with probability one.

So, what exactly does f pick in finite samples?




Kernel Inductive Bias and Minimum Norm Interpolation ii
Theorem (Kernel Ridge Inductive Bias=Small 7 x-norm)

f= arg frg}i[nK {Z(y,- — f(x,-))2 + sz||§_lK} . (49)

i=

When z = 0, we get the minimum H-norm interpolator,

F = arg min {13, : (i — F(x)) =0V i}. (50)

Why is this striking? Well, Hx depends on the true probability
distribution, which we do not know! And yet, mysteriously, Ridge
regression finds it! Small Hy is the smoothness inductive bias of kernels!!

The proof is based on the Representer Theorem



Representer Theorem

Theorem: The solution to a regularized empirical risk minimization
problem in RKHS has the form:

*(x) = Z aiK(x, x;).

» Instead of searching over all functions in Hy, we optimize over a.

» This allows efficient computation using kernel matrices.




Proof of Representer Theorem

Step 1: Function Decomposition

f=fi+f, fieH, f LH,

> Hn = span{K(, xi)}i-

> f), is orthogonal and does not affect the empirical risk because

f(xi) = (f,K(x)) = (fj, K(-x)) = fi(x) (51)

so that
> i — D + 2l f 3 = D (i — {0 + 2113, + 11113,
i=1 i=1



Conclusion of the Proof

Step 2: Regularization Effect

Since f| only increases the regularization term, the optimal solution
satisfies f| = 0. Hence,

*(x) = Z a;iK(x, x;).
i=1

Conclusion: Every minimizer of the regularized problem is a linear
combination of kernel evaluations.



Homework

Complete the proof: minimization over f*(x) = Y 7_; a;K(x,x;) (i.e., over
«;j) gives the kernel ridge.

Also, prove the z = 0 case!
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4 Eigenfunctions for the Gaussian Kernels




Hermite Polynomials i

There are many equivalent ways to define the Hermite polynomials. A
natural one is through the so-called Rodrigues’ formula:

k
k x? d —x2
Hk(X) = (—1) e W[e ]
From this definition, one can deduce:
Ho(x) = 1, Hi(x) = — e [— 2xe | = 2x,

R (52)
Ha(x) = e |(—2x)e™™

Other simple properties (provable by recursion) include:

» Hi(x) is a polynomial of degree k.
» Hi(x) has the same parity as k (even/odd).



Hermite Polynomials ii

» The leading coefficient of Hi(x) is 2X.

Using integration by parts, one shows that for k # ¢,

o0 o
/ Hi(x) He(x) e dx = 0,
and for k =/,
e 2 _x? k
(He(x))" e ™ dx = /m 2" k!

—00

Hence, the Hermite polynomials {H} are orthogonal with respect to the
Gaussian distribution of mean 0 and variance 1/2.

Defining the Hermite functions

() = (VE2K k)2 () 2,
S



Hermite Polynomials iii

we obtain an orthonormal basis of L2(R). As k increases, these functions
have increasingly wide “effective support” (though they extend over the

entire real line) and exhibit increasingly oscillatory behavior, much like

sines and cosines in the Fourier basis.




Hermite Polynomials iv

Hermite -k=0

0.8

-0.2
-0.4
-5 0 5

Figure: Hermite polynomial animation.




Hermite Polynomials v

Among such orthonormal bases, the Hermite functions happen to
diagonalize the Fourier transform operator. In other words, the Fourier
transform of 1)y (for the definition making it an isometry of L?(dx)) is
equal to

1 Feo

(Fu)(w) = Nz Yk(x) €% dx = (1) Pr(w).

(Note that the eigenvalues are all of unit modulus, since we have an
isometry.) | am not aware of any applications of this property in machine
learning or statistics (though there probably are some).

In order to compute Hermite polynomials, the following recurrence relation
is particularly useful:

Hk+1(X) = 2XHk(X) — 2k kal(X). (1)
S S e e s



Hermite Polynomials vi

Such recurrences are always available for orthogonal polynomials (see ?),

but it takes here a particularly simple form

The following property is central in many proofs of the properties of
Hermite polynomials: for all real t, we have

> tk 2

o Hi(x) = et 1, (2)
k=0 '

For the later developments, we need other properties which are less

standard (there are many other interesting properties, which are not useful

for this post, see here).

For |p| < 1, it states:

P 2 _ D) . pk P 2 2
eXP(—l,pz (x=y) ) = Vi1-p kg Hi(x) Hily) exp(—m(x +y ))
k=0 '



Hermite Polynomials vii

so that




Orthonormal Basis

Theorem

Define 1
fil(x) = \/—Nika(x)exp(—?ppﬁ),

where Ny = 2k k! ,/ , and Hy(x) is the kth Hermite polynomial.

Then, {fi}32, is an orthonorma/ basis for L?(du) when du is the

Gaussian distribution of mean 0 and variance ; }JFZ

Homework: Prove this Theorem (this follows from the orthogonality
property of Hermite polynomials).



Theorem

The Gaussian kernel admits the decomposition

(o)

K(xy) = exp(— 2z (x = v)?) = D_(1=p) oK () ey).

k=0

Thus, the kernel operator in L2(dp) when du is the Gaussian distribution

of mean 0 and variance % %Z has f as eigenfunctions and

M = (1-p)p~.

as eigenvalues.




Empirical Eigenvalues and Empirical Eigenfunctions i

Theorem

The eigenvalues M« of the kernel matrix
_ 1
nK(X,X) = E(K(thj))?,j:l (53)

converge to those of the kernel operator when x; are sampled i.i.d. from
the p(dx). Furthermore, given the eigenvectors qx = (qk(i))7_; € R" of
the kernel matrix can be used to construct Nystrom approximations to
the true (unobserved!) eigenfunctions

gbk(X) ~ ZK(X,X;)qk(i). (54)



Empirical Eigenvalues and Empirical Eigenfunctions ii

Heuristic Proof:

Medi(x) = / K(x, 2)e(%) ZK(X %)éu(%)
(55)

Meqr (i) ZK Xi5 %) k()

Experiments. In order to showcase the exact eigenvalues of the
expectation, we compare the eigenvalues with the ones of the empirical
covariance operator for various values of the number of observations. We
see that as n increases, the empirical eigenvalues match the exact ones for

higher k: smaller eigenvalues are harder to learn!



Empirical Eigenvalues and Empirical Eigenfunctions iii

5 ‘n=32‘

—*—expectation
——empirical

0 10 20 30
k

Figure: Convergence of Estimated Eigenvalues to A\

= (1-p)p~




Ideal Kernel i

> The ideal kernel to learn y = f(x) is
Kiaeat(x,%) = F(x) F(5) (56)
> Eigenfunction equation
[ Kienx, 2)0(2)0(d5) = A6(x) (57)
takes the form
70 [ FRER(ER) = A (55)

Thus, the only non-trivial eigenfunction is 1(x) = f(x) with the
eigenvalue

A = / f(%)%0(dx) = < / / K2(x,)”<)o(dx)a(d>"<)>1/2, (59)



Ideal Kernel ii

so that all other eigenvalues are identically zero: A = Ay,
A=XA3=---=0.

» with an ideal kernel,
KX, X) = (FO)F() e = FOXOFX)T (60)
has rank 1 and, hence, by the Sherman-Morrison formula,

K(x, X)(zl + K(X, X)) = FO)F(X)T (2l + F(X)F(X)T) 7T
zt _ £y T 1 (61)
100 A e 15

= f()f(X)"

and, hence, if y = f(X) + &, we get

f(x) = K(x, X)(zl + K(X, X))ty

= f(x)F(X)" ! f(X = cf (62
= (X)()W(()‘*‘f)—c(x),



Ideal Kernel iii

where

_FOIR+FX)Te A A6+ L5 F(X0)e
TR T Lz 1 Iy A

~ 1 (63)

by the law of large numbers when E[f(X)e] = 0 when n is large.
Thus, ideal kernel has perfect alignment with the data, and hence, we

can learn the true f easily.
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5 Regression world




Suppose we have a bunch of random features or other signals,
Skt = P1/2 f(Xt;wk), k=1,---,P. They have the true covariance matrix

E[S:S]] = W (64)

That is, assuming that that observations X; across t are sampled i.i.d.
from the same distribution o(dx), we get

1
pEF(Xiwi)f(Xiwp)] = Wi, - (65)
Let now hj(j1) be eigenvectors of W :
Whi(n) = A hy(r).- (66)

We now show a surprising thing: There is a direct link between
eigenvalues of V and eigenvalues of the integral operator K. Namely,
define

P
= > (i) f(xiw;)- (67)
j=1
D e e e






Thus, we have proved




Theorem

For a finite-dimensional kernel
P
K(x,%X) = P;f(x;wj)f(f(; wj), (69)
J:

the integral operator Tx only has P eigenvalues \; coinciding with the
eigenvalues of the matrix W,

S EIF(Xwa) ()] = Wiy (70)

Furthermore, the eigenfunctions are given by

P

Gilx) = Y hli)f(xw;) (71)

j1=1
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6 The Projection Theorem



The following is a heuristic formulation of the (incredibly complex) result

of Kernel Ridge in High Dimensions



https://arxiv.org/abs/2101.10588

Theorem

Suppose now we send n,d — co. Let
Z% x)¢j, where ¢; = (j(x),f(x)) = E[i(x)f(x)] (72)

Then, there exists an increasing function n.(d; L) such that, for
n ~ n.(d; L) and z sufficient small,

fn(x) = K(x, Xn) " (2l + K(Xn, Xn)) yn (73)

converges to the projection

P<Lf Zd}_]




» Suppose y = f(x)

KX, X) = ZA % )yi(X)" € R™ (74)
> with many train observations, we have

L0 TUs(X Zwﬂ V() = Ela(va(0] = 0
LLN
(75)

Thus, n=/24;(X) is approximately orthonormal basis of R” and

(zI + nTK(X, X))t =~ i (\+2z)t %%’(X)%‘(X)T (76)

; ——
Jj=1

imilicit reiularization



and

o0

(2l +n " KX, X))y = > N+ 2Z) %wJ(X)wJ(X)Ty

=1. .. P
J implicit regularization

Z W20 B0 TAX)

/mp/lat regularization

Z N +Z) (X)) g

lmphc:t regularization

(77)




	Kernels and (Random) Features
	Kernels, Shallow Neural Nets, and Random Features
	The Inductive Biases of Kernels
	Eigenfunctions for the Gaussian Kernels
	Orthogonality with respect to a Gaussian weight
	Hermite functions and an orthonormal basis in L2

	Hermite Functions and the Fourier Transform
	Recurrence
	Generating Function

	Further (less standard) properties
	Mehler formula

	Regression world
	The Projection Theorem

	anm1: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


