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@ What is Machine Learning (=Atrtificial Intelligence)?



Basic Setup i

» Data : A vector x € RY.
» A (Machine Learning) Model = family of functions
Function(Data; Parameters) = f(x;0) (1)
where
Parameters = (Parametery,--- ,Parameterp) = 0 = (f1,---,0p) € RF (2)

» P = parametrization

» large P = rich parametrization

Optimizing a model = selecting a “good” parameter vector 6, ¢ R”



Parametric Families and Neural Networks i

Examples:
» Linear functions family: x € R, § = (6p,0:) € R? :
Function(Data; Parameters) = f(x;0) = 6y + 61 x (3)

» 2-dimensional linear functions family: x = (x1,x%) € R?, 6§ = (6o,01,0,) € R3:

1
1
f(x;0) = 0y + 01x1 + boaxa = (00,601,602) | x1 | = 9/<X> (4
X2 N——

matrix multiplication
inner product

where we have used the notation

to
/
Q) = 01 , 0 . = (6o,01,62) (5)
02 transposition horizontal vector
——

vertical vector



Parametric Families and Neural Networks ii
» when x = (x1,- -+, xy) is d-dimensional, linear family always has parametrization

P =d+1: linear families have few(er) parameters
» Simplest non-linear family: Pick a function h(x) and create

f(x;0) = h(0'x) (6)
This function family is non-linear. E.g., a popular choice is
x, x>0

0, x<0
» We can now take linear combinations of such functions. E.g.,

RelLu(x) = max(x,0) = {

fi(x) = h(wiix1 + wo1%2)

H(x) = h(wi2x1 + wr2x2)

f3(x) = h(wizxi + w23%) (7)
f(x;0) = Wifi(x) + Wah(x) + Wsfh(x)

0 = (Wi, Wo, Ws,w1 1, w21, w12, w22, w13, w2,3)



Parametric Families and Neural Networks iii

P=9 > d +1=3
N—_—— ~—
parametrization data dimension

» Observation: Non-linear Models = Rich parametrization

> Note: Human Beings Always construct recursive functions. Perhaps this is how our
brains function. In the example above:

Linear Combinations — Non — linearity h(x) — Linear Combinations (8)



Parametric Families and Neural Networks iv
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Deep Neural Networks: Huge P
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So, What is Machine Learning? i
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Figure: Linear family f(x; o, 8) = ~ + tan( )x. Error = y — f(x; o, B)



So, What is Machine Learning? ii

Ingredients:

» A (Machine Learning) Model = family of functions
Function(Data; Parameters) = f(x;6)

» Stuff to be modelled/Explained = labels = y

» Training Data: T observations on which the model learns (=In-Sample Data); and
Testing Data: observations on which the model is tested Out-Of-Sample

Training Data = (label(t), Data(t))=1....7 = ( y(t), x(t) )/, (9)

observation number t

» Errors

Error(/abel, Data, Parameters) = label — Function(Data; Parameters) (10)



So, What is Machine Learning? iii

» Objective function. E.g., distance between labels and decisions: and

Objective(0; Training Data)

Mean Squared Error

7SumData(t) € Training Data (Error(label(t), Data(t), Parameters))
_

, (11)
. 2
72 $e) = fx(e)i6))

Error on t—th observation

» But in finance (asset pricing), there are other, more natural objectives (more on this
later)

» A learning algorithm tries to solve

0, = arg mein Objective(d; Training Data)

(12)



So, What is Machine Learning? iv

» But what we really care about is the out-of-sample performance of the model: We want
the model to work for 7 > T so that

Test Error = Average((Error(Testing label, Testing Data, Parameters))?)

1 T+ Thest 2 (13)
=] E ( Yr - f(XT’ 0*) )
Ttest =Tl ~~ N——
out—of —sample label out—of —sample predictions
to be small.



The Billion Dollar Question: Which Model (Parametrization) To Choose? i

» Conventional wisdom if we have n observations, we should have P << n.

» Intuition: To avoid Overfit

» P parameters can be used to perfectly fit P observations (one parameter per
observation).



The Billion Dollar Question: Which Model (Parametrization) To Choose? ii

s

Knowledge




The Billion Dollar Question: Which Model (Parametrization) To Choose? iii

Exact solution
= Neural network prediction
Training data
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@ Double Descent: Why Big Models are (Often) Better and What it Means for Finance



So, How do we Choose a Model? i

» Consider a classical problem of predicting returns on the US stock market

» In this case, labels are returns R;.;.

» A comprehensive analysis presented in Goyal and Welch (2008) suggests the following 12
indicators to predict the next month's stock market return: X; € R'?:

> Stock Variance (svar), Cross-Sectional Premium (csp), Book-to-Market Ratio (b/m), Net
Equity Expansion (ntis), Percent Equity Issuing (eqis), Treasury Bills (tbl), Long Term
Yield (Ity), The Term Spread (tms), Default Yield Spread (dfy), The Default Return
Spread (dfr), Inflation (infl), Investment to Capital Ratio (i/k), and

SVAR;
CSP;

X, = | (B/M): (14)

(1K),
D e e GRS



So, How do we Choose a Model? i

» A simple model would be, say, a linear model with P = d + 1:
Riy1 = 0s,a'SVAR; + 0. CSP: + 0p/m(B/M): + -+ + 0i/(1/K); (15)

» However, we could also try to build a wide neural net.
» We generate a bunch of random weight vectors W, e RY, k=1,--- P
» We generate a bunch of random features ¢(X] W) and build

P
F(Xi0) = Y o(X[Wi)o
k=1
g., if Wy =(0.1,-0.5,0.7,--- ,3.1) and ¢(x) = ReLu(x) = max(x,0), then
Featurel, = ¢(X;W;)
= max(0.1SVAR; — 05CSP; + 0.7(B/M); + --- + 3.1(I/K);, 0)



So, How do we Choose a Model? iii

» Now, we can again run a linear regression

Rit1 = Ofaturer Featurely + Ofeaturer Feature2, + -+ + Ofaturep FeatureP; + c¢qq

Prediction = combination of features
where

Featureky = ¢(X{Wk)

> E'g'r efeaturel - 7'37 9feature2 - _12~67 and

Prediction = 7.3max (0.1SVAR, — 0.5CSP; + 0.7(B/M); + --- + 3.1(I/K),, 0)

— 12.6 max (0.4 SVAR; — 0.7CSP; — 0.9(B/M); + --- — 4.2(I/K);, 0)
(17)
» Which P do we choose?



So, How do we Choose a Model? iv
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Figure: Riy1 = f(Xe;0) + era




Bias-Variance Tradeoff i



Bias-Variance Tradeoff ii
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» P = model complexity

> Large P — low bias because a complex model can approximate any ground truth.
Always true!

» Large P — high variance: Used to be true in 20th century. Intuition:

Variance = Var[Ofature1] + -+ + Var[ffeaturer] (18)



Bias-Variance Tradeoff, Complexity, Train Error, and Test Error

» As we increase complexity,
Train Error — 0

Test Error /0

(19)



Statistical Wisdom and Overfitting
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FIGURE 2.11. Test and training error as a function of model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder. V,
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i have large test error). In




Statistical Wisdom and Overfitting

22 2. How to Construct Nonparametric Regression Estimates?

L]
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Figure 2.3. The estimate on the right seems to be more reasonable than the
estimate on the left, which interpolates the data.
over F,. Least squares estimates are defined by minimizing the empirical @ s
L risk over a general set of functions F,, (instead of (2.7)). Observe that y

it doesn’t make sense to minimize (2.9) over all (measurable) functions f,
because this may lead to a function which interpolates the data and hence is
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DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT

Preetum Nakkiran* Gal Kaplun' Yamini Bansal' Tristan Yang
Harvard University Harvard University Harvard University Harvard University
Boaz Barak Ilya Sutskever
Harvard University OpenAl

ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to



5= 000

1IN'TN NU'012MIN

QO
00K-: 05=

1NN NU'0IE .

o5 g '*" .1



Scaling Laws for Neural Language Models
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.
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Sharpe Ratios and Timing Strategies i

» modify objective to reduce the gap between Train Error and Test Error, we use ridge
penalty:
S 1
Objective = — D (Rer — £(X:0)) + z |63 (20)
t ridge penalty

> |t penalizes large norm of the coefficients,
oz = > 6%
k

» minimizing the objective gives Prediction,
m:(z) = Prediction; = Orarurer Featurel; + Orearurenr Feature2, + - - - + Ofearurep FeatureP;

» we then build managed returns

R;:Ei) = m(2) Reya



Sharpe Ratios and Timing Strategies ii

> we want these returns to have high mean out-of-sample (OOS) (i.e., on the Test Data)

7(z)
T+1

00S Mean =

S 005 +

» we want these returns to have low variance out-of-sample (OOS) (i.e., on the
Test Data)

0O0S Variance = ! Z (/-?TJr1 — 00s Mean)
005 00s -

» we commonly measure the quality of a strategy is through its Sharpe Ratio (S'R)

SR — 0O0S Mean (21)
v/ 0O0S Variance




Virtue of Complexity for the SR
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Conditional Expectations

o 1
Objective = 72(&+1 — (Xe;0))?

t

Why is this the right objective?



Incorporating Conditional Information: The conditional expectation

» We would like to incorporate conditional information. But how?

| Nagwa < > H X

My love fof you
is UNCONDITIONAL

CONDITIONAL || et
| | oBABLLITY | 57

[) ) 0
P(A(8) = PCANB)
P(8)

PCAIB): PLANB) If PCAIBY = P(A) , and
fee) PCBIA) = PLB), then
® ovents Aand B ace INDEPENDENT




Incorporating Conditional Information: The conditional expectation ii
» Conditional expectation

E(X] = Z x P(X = x|Information at time t)

conditional probability

» Practitioners often use rolling window estimates

1 t
PractitionerE[Ry 1] = T Z R,, T = Rolling Window

T=t—T
» But this is a very naive approach. What if some other signals are informative about stock
returns?

» Here, we will need the notion of conditional expectation. Formally,

Ei[Xit1] = best prediction of X; ;1 given time — t information  (23)
—

conditional expectation



Incorporating Conditional Information: The conditional expectation iii

» Formally, if S; € RP for some huge P! is all our relevant information set at time t,

E:[Xit1] = F.(S;) = best non — linear function of S; that predicts X;1
——
conditional expectation
(24)
» Even more formally,
Fo = argmin E[[[Xen — F(S)I) (25)

» The reality is that we still cannot compute E[-] because we do not have enough data (see
the picture curse of dimensionality)

» So, we will still be doing

o1
F. = argm;n7;|xt+l—F(st)|2 (26)



Understanding Conditional Expectation (Good to Understand it Even we
Cannot Estimate It) i

Theorem

If F(S:) is the true conditional expectation, then

Xevr = F(St) + eenn = E[Xena] + Et+1 (27)
— ~—
predictable part unpredictable noise

and we have the variance decomposition

Var[Xt+1] = Var[Et[Xt+1]] =F Var[€t+1] (28)
N—— — N——
total variation predictable variation unpredictable variation
Proof:
Eleera] = 0, Eleer1Ee[Xera]] = 0, Cov[E[Xeta],eer1] = 0 (29)



Understanding Conditional Expectation (Good to Understand it Even we
Cannot Estimate It) ii

and hence

Var[XH_l] = Var[Et[Xt+1] + Et+1] = Var[Et[Xt_H]] + Var[EH_l] + 2COV[Et[Xt+1],Et+1]

=0

(30)
Why is this important?
» We would like to find the true amount of predictability:
R2 _ Var[Et[Xt+1]] -1 — E[€§+l] (31)
Var [Xt+1] Var [Xt+1]
and the true residuals
Et41 = Xt+1 — F(St) o (32)



Examples: True Expectations

» ARMA process:

Riy1 = T Z R: + e¢y1, Ee[Ret1] = 7 Z (33)
T=t—T =t—
Here,
1 t
Se = (R)iee 7 F(S) = = Z R: (34)
» Linear prediction:
P P
Riy1 = Zﬂjsj,t + €r41, Et[Rena] = Zﬂjsj-f (35)
=1 j=1
Here,
P
) = D BiSie (36)
j=1
is linear
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Learning)



Learning Is Impossible Without Some Kind of Bias

The ugly duckling theorem. Classification is not really possible without some sort of bias.

"Suppose that one is to list the attributes that plums and lawnmowers have in common in
order to judge their similarity. It is easy to see that the list could be infinite: Both weigh less
than 10,000 kg (and less than 10,001 kg), both did not exist 10,000,000 years ago (and
10,000,001 years ago), both cannot hear well, both can be dropped, both take-up space and so
on. Likewise, the list of differences could be infinite... any two entities can be arbitrarily
similar or dissimilar by changing the criterion of what counts as a relevant attribute.”



Inductive Biases

So how do we decide which attributes (features; characteristics) matter?

We use Inductive Biases!

Definition. Inductive bias is the set of assumptions a learning algorithm makes to generalize
beyond the training data. In other words, it's what allows the algorithm to "induce” a
hypothesis from a limited amount of data, guiding it on how to predict unseen examples. For
instance, a linear regression model assumes that the underlying relationship is approximately
linear—even if the true relationship is more complex—so it is biased towards linear solutions.
This bias is essential: without it, an algorithm would have no basis for generalization and might
simply memorize the training data without making any useful predictions on new data.



The Cat-astrophe Bias

Imagine a photo recognition Al trained exclusively on images of cats. Its inductive bias is that
all important entities in the world are cats. Show it a picture of a dog, and it's perplexed. "Is
this some kind of weird cat?” it wonders. A car? "Strange cat with wheels!" A tree? " Clearly,

a tall, wooden cat!”

Is this some kind “sSt
of a weird cat? withr:m':e‘l?’!




An Analyst with Extrapolative Expectations

» | believe past returns predict future returns and | will use

1 t
ERul = = D R

T=t—T

® Fantastic bias if

1 1
Riv = = > R+ evr, ElRu] = = Y R (39)
T=t—T T=t—T
® OK bias if
Riy1 = R + et41, Et[Rt+1] = R: (40)
will be positively related to the analyst’s guess
® Horrible bias if returns are mean-reverting:
Riy1 = —Re + et1, Et[Rey1] = —Re (41)



An Economist Who Believes in Linearity

» | believe that

P
Et[Rt+1] - Z 51'51',1:
Jj=1

® Fantastic bias if

P
Ry = Zﬁjsj,r + et (42)
=
® OK bias if
Riv1 = S1,t + 5517, + ee41, E¢[Rev1] = R: (43)
———

sparse: only 1 and 17 matter
® Horrible bias if non-linear:
2
Riy1 = Sis: + €1 (44)



More Complex Biases

» We believe
Et[Xt+1] = Q/St

but ||0|| is small (small ||@]| inductive bias). Implementation: ridge penalty
0 1 2 2 2 12
min |[R —6¢"S|I* + 2z [lol% [l = ZIHI\
ridge penalty !

» We believe @ is sparse: only a few coordinates are non-zero. The sparsity bias.
Implementation: LASSO

min[R—0'S|I> + 2 [0l 0] = Zl9f|

ridge penalty



Deep Learning Trained by Gradient Descent: The Most Powerful Inductive Bias
Human Beings Have Discovered So Far i

» Inductive Bias of DNNs: The world has a smooth, hierarchical structure



Deep Learning Trained by Gradient Descent: The Most Powerful Inductive Bias
Human Beings Have Discovered So Far ii

Low-Level| |Mid-Level| |High-Level Trainable
— — —_
Feature Feature Feature Classifier




Learning Hierarchical Concepts

LLM concepts by combining nonlinear predictors over multiple layers


https://arxiv.org/pdf/2502.03708
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@ The Magic of Ridgeless Regression and Benign Overfit: Minimal Norm Interpolators



OLS i

» Predictors’ vector S; € R”
» We organize them like an excel spreadsheet, S = (S;)_; € RT*P.

» OLS (linear regression, Carl Friedrich Gauss):

Bots = arg mﬁ@n I

and

2 Q . .
R—-S B |?= argmﬁmztj Rm—;sj,tﬁj



OLS ii

Ur = T1Y 55 = T7'S'S

is the sample covariance matrix

t

(PXxT)x(TxP)

» Defining R = (R:)[_; € RT, we can rewrite

Bots

(T71S'S)"1T71S'R.

c RPXP

(45)



How to Run Regression when P > T? Ridge Regression i

B = argmﬁin(T71||R*55H2+z||m|2)

gives

=1l
B(z) = <z/+ T—125t5;> T SRy = (2 +T1S'S) ' TSR,
t t



Ridgeless Limit and the Moore-Pensore Quasi-Inverse

When P moves beyond T, there are more parameters than observations, and the least squares
problem has multiple solutions. A particularly interesting solution invokes the Moore-Penrose
pseudo-inverse, which can be computed as follows:

A = Udiag(D)U' = A" = Udiag((D™' if D >0 else 0))U’ (47)

As we show below, as the shrinkage parameter approaches zero, we converge to the Ridgeless
Estimator:

+
a 2 1
ﬁ(0+) = zir‘(r)]+ B(Z) = (T—l z St5£) 7 ; Sth+]_.

Proving this is non-trivial and requires a bit of algebra.



The Magic of Ridge: Playing with Dimension i

Lemma (Swapping Dimension)

Let S € RT*P. Then,

(zl+£’§/)’15’ = 5’(z/+35/’/)*1 (48)
TXT PxP

Proof.

We have
(z1 +5'S)71S' =S'(z2l + SS') ! &

S'(zl +SS') = (2l +5'S)S' & (49)
S'z+4+ 5SS = z5' +5'SS’

We use this in the Jupyter Notebook to get fast regression in very high dimensions



The Magic of Ridge: Playing with Dimension ii

Corollary
—1 -1
%) _ -1 ¢/ l / _ / —1 / l
B(z) = (z/JrT if/) TSR_S zZl+ T éi/ TR (50)
PxP TxT
and
il
o) o / /
Blos) = L(&) £ &
PxT \TxT Tx1
Let us now prove that
BO+) = (S'S)TS'R. (52)
Indeed,
B(0+) = S'(SS)'R = (S'S)*S'R (53)

because Im(S’) L ker(S) = ker(S5'S).
D e e TGRS



The Magic of Ridge: Playing with Dimension iii

~

$(0+) is an interpolator:

SA(0+) = SS'(SSY 'R = R

(54)



Orthogonal Projection in Linear Algebra i

Given a vector x and a subspace S of R”, given by the span of columns of a matrix A (denoted
by col(A)), the orthogonal projection P of x onto S, is the closest vector X in S to x.

X

origin

col(A)




Orthogonal Projection in Linear Algebra ii
Lemma
Let M = (AA")TAA'. Then, N is the orthogonal projection onto the col(A).

Proof.
First, I is symmetric and positive definite. Second, AA’ = U diag(D)U’, and hence

(AA)TAA = U(D(D '1p<o))U" = Udiag(1pso)U’ (55)

and hence I is the projection onto the image of AA’, while it kills the kernel of AA". But
AA’x = 0 means x’AA’x = 0 means A’x = 0 and we know

ker A" = (ImA)*. (56)



What does the Ridgeless Regression Do? i

Any solution 3 € RP to the system

B'S: = Rua, t=1,---,T (57)
of T equations and P variables is called an interpolator.
Lemma

Suppose that R € span(S), so that (57) has a solution. Then, any solution [ to (57) can be
written down as

B = BO0T) + Bt (58)
— ~—
€ span(S) orthogonal to span(S)

In particular, B(O"') gives the minimal norm interpolator:

B(0%) = argmin{||8||?: B satisfies (57)} (59)



What does the Ridgeless Regression Do? ii

Proof.
We have
B(0F) = (SS')"S'R (60)
Let
S8 = R (61)
be some other interpolator. Then,
SS'8 = S'R = (85)*SS'3 = (85')*S'R = B(07). (62)

Let 1 = (SS’)TSS’. Then, I is the orthogonal projection onto the span(S). Thus,
ng = (0" (63)

and the claim follows. =



What does the Ridgeless Regression Do? iii

Summarizing, we can formulate the complexity principle.

Theorem (heuristic)

|3(0+)|| is monotone decreasing in P. Thus, if the small norm of 3 is a good inductive
bias, ridgeless regression generalizes better when P gets larger.

Generalizes better= has lower test (out-of-sample) error



Experiments with High Dimensional Regressions

Please click on the link:
Understanding High-Dimensional Regressions

Random Features for Goyal-Welch


https://colab.research.google.com/drive/1oIlP1u5KWtKazdYqT8XJIsbiyp3bCBDo
https://colab.research.google.com/drive/18b164lTcSf4BWkm9XC8HJ9lDMcyZYJFZ
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