
Machine Learning in Finance

Semyon Malamud

EPFL

Machine Learning in Finance 1



Table of Contents

1 What is Machine Learning (=Artificial Intelligence)?

2 Double Descent: Why Big Models are (Often) Better and What it Means for Finance

3 Virtue of Complexity for Portfolio Optimization

4 Computing Conditional Expectations with Good (and Bad) Inductive Biases (and Deep

Learning)

5 The Magic of Ridgeless Regression and Benign Overfit: Minimal Norm Interpolators

Machine Learning in Finance 2



Basic Setup i

▶ Data : A vector x ∈ Rd .

▶ A (Machine Learning) Model = family of functions

Function(Data;Parameters) = f (x ; θ) (1)

where

Parameters = (Parameter1, · · · ,ParameterP) = θ = (θ1, · · · , θP) ∈ RP (2)

▶ P = parametrization

▶ large P = rich parametrization

Optimizing a model = selecting a “good” parameter vector θ∗ ∈ RP
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Parametric Families and Neural Networks i

Examples:

▶ Linear functions family: x ∈ R1, θ = (θ0, θ1) ∈ R2 :

Function(Data;Parameters) = f (x ; θ) = θ0 + θ1 x (3)

▶ 2-dimensional linear functions family: x = (x1, x2) ∈ R2, θ = (θ0, θ1, θ2) ∈ R3 :

f (x ; θ) = θ0 + θ1 x1 + θ2 x2 = (θ0, θ1, θ2)




1

x1
x2




︸ ︷︷ ︸
inner product

= θ′
(
1

x

)

︸ ︷︷ ︸
matrix multiplication

, (4)

where we have used the notation

θ =



θ0
θ1
θ2




︸ ︷︷ ︸
vertical vector

, θ′︸︷︷︸
transposition

= (θ0, θ1, θ2)︸ ︷︷ ︸
horizontal vector

(5)
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Parametric Families and Neural Networks ii

▶ when x = (x1, · · · , xd) is d-dimensional, linear family always has parametrization

P = d + 1 : linear families have few(er) parameters

▶ Simplest non-linear family: Pick a function h(x) and create

f (x ; θ) = h(θ′x) (6)

This function family is non-linear. E.g., a popular choice is

ReLu(x) = max(x , 0) =

{
x , x > 0

0, x ≤ 0

▶ We can now take linear combinations of such functions. E.g.,

f1(x) = h(ω1,1x1 + ω2,1x2)

f2(x) = h(ω1,2x1 + ω2,2x2)

f3(x) = h(ω1,3x1 + ω2,3x2)

f (x ; θ) = W1 f1(x) + W2 f2(x) + W3 f3(x)

θ = (W1,W2,W3, ω1,1, ω2,1, ω1,2, ω2,2, ω1,3, ω2,3)

(7)
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Parametric Families and Neural Networks iii

P = 9︸ ︷︷ ︸
parametrization

> d︸︷︷︸
data dimension

+1 = 3

▶ Observation: Non-linear Models = Rich parametrization

▶ Note: Human Beings Always construct recursive functions. Perhaps this is how our

brains function. In the example above:

Linear Combinations → Non − linearity h(x) → Linear Combinations (8)
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Parametric Families and Neural Networks iv
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Parametric Families and Neural Networks v
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Deep Neural Networks: Huge P
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So, What is Machine Learning? i

Figure: Linear family f (x ;α, β) = α + tan(β)x . Error = y − f (x ;α, β)
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So, What is Machine Learning? ii

Ingredients:

▶ A (Machine Learning) Model = family of functions

Function(Data;Parameters) = f (x ; θ)

▶ Stuff to be modelled/Explained = labels = y

▶ Training Data: T observations on which the model learns (=In-Sample Data); and

Testing Data: observations on which the model is tested Out-Of-Sample

Training Data = (label(t), Data(t))t=1,··· ,T = ( y(t), x(t)︸ ︷︷ ︸
observation number t

)Tt=1 (9)

▶ Errors

Error(label , Data, Parameters) = label − Function(Data;Parameters) (10)
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So, What is Machine Learning? iii

▶ Objective function. E.g., distance between labels and decisions: and

Objective(θ; Training Data) = Mean Squared Error

=
1

T
SumData(t) ∈ Training Data (Error(label(t), Data(t), Parameters))2

=
1

T

T∑

t=1

( y(t) − f (x(t); θ)︸ ︷︷ ︸
Error on t−th observation

)2

(11)

▶ But in finance (asset pricing), there are other, more natural objectives (more on this

later)

▶ A learning algorithm tries to solve

θ∗ = argmin
θ

Objective(θ; Training Data) (12)
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So, What is Machine Learning? iv

▶ But what we really care about is the out-of-sample performance of the model: We want

the model to work for τ > T so that

Test Error = Average((Error(Testing label ,Testing Data, Parameters))2)

=
1

Ttest

T+Ttest∑

τ=T+1

(
yτ︸︷︷︸

out−of−sample label

− f (xτ , θ∗)︸ ︷︷ ︸
out−of−sample predictions

)2 (13)

to be small.
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The Billion Dollar Question: Which Model (Parametrization) To Choose? i

▶ Conventional wisdom if we have n observations, we should have P << n.

▶ Intuition: To avoid Overfit

▶ P parameters can be used to perfectly fit P observations (one parameter per

observation).
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The Billion Dollar Question: Which Model (Parametrization) To Choose? ii
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The Billion Dollar Question: Which Model (Parametrization) To Choose? iii
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So, How do we Choose a Model? i

▶ Consider a classical problem of predicting returns on the US stock market

▶ In this case, labels are returns Rt+1.

▶ A comprehensive analysis presented in Goyal and Welch (2008) suggests the following 12

indicators to predict the next month’s stock market return: Xt ∈ R12 :

▶ Stock Variance (svar), Cross-Sectional Premium (csp), Book-to-Market Ratio (b/m), Net

Equity Expansion (ntis), Percent Equity Issuing (eqis), Treasury Bills (tbl), Long Term

Yield (lty), The Term Spread (tms), Default Yield Spread (dfy), The Default Return

Spread (dfr), Inflation (infl), Investment to Capital Ratio (i/k), and

Xt =




SVARt

CSPt

(B/M)t
...

(I/K)t




(14)
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So, How do we Choose a Model? ii

▶ A simple model would be, say, a linear model with P = d + 1:

Rt+1 = θsvarSVARt + θcsp CSPt + θb/m(B/M)t + · · · + θi/k(I/K)t (15)

▶ However, we could also try to build a wide neural net.

▶ We generate a bunch of random weight vectors Wk ∈ Rd , k = 1, · · · ,P
▶ We generate a bunch of random features ϕ(X ′

tWk) and build

f (Xt ; θ) =
P∑

k=1

ϕ(X ′
tWk)θk

E.g., if W1 = (0.1,−0.5, 0.7, · · · , 3.1)′ and ϕ(x) = ReLu(x) = max(x , 0), then

Feature1t = ϕ(X ′
tW1)

= max (0.1SVARt − 0.5CSPt + 0.7 (B/M)t + · · · + 3.1 (I/K)t , 0)
(16)
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So, How do we Choose a Model? iii

▶ Now, we can again run a linear regression

Rt+1 = θfeature1 Feature1t + θfeature2 Feature2t + · · · + θfeatureP FeaturePt︸ ︷︷ ︸
Prediction = combination of features

+ εt+1

where

Featurek t = ϕ(X ′
tWk)

▶ E.g., θfeature1 = 7.3, θfeature2 = −12.6, and

Prediction = 7.3max (0.1SVARt − 0.5CSPt + 0.7 (B/M)t + · · · + 3.1 (I/K)t , 0)

− 12.6max (0.4SVARt − 0.7CSPt − 0.9 (B/M)t + · · · − 4.2 (I/K)t , 0)

(17)

▶ Which P do we choose?
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So, How do we Choose a Model? iv
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Figure: Rt+1 = f (Xt ; θ) + εt+1
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Bias-Variance Tradeoff i
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Bias-Variance Tradeoff ii
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▶ P = model complexity

▶ Large P → low bias because a complex model can approximate any ground truth.

Always true!

▶ Large P → high variance: Used to be true in 20th century. Intuition:

Variance = Var[θfeature1] + · · · + Var[θfeatureP ] (18)
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Bias-Variance Tradeoff, Complexity, Train Error, and Test Error

▶ As we increase complexity,
Train Error → 0

Test Error ̸→ 0
(19)
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Statistical Wisdom and Overfitting

“... interpolating fits... [are] unlikely to predict future

data well at all.”
see also (B. and Rakhlin, Simons Institute, May 2019)

4 / 33
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Statistical Wisdom and Overfitting
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Sharpe Ratios and Timing Strategies i

▶ modify objective to reduce the gap between Train Error and Test Error, we use ridge

penalty:

Objective =
1

T

∑

t

(Rt+1 − f (Xt ; θ))
2 + z︸︷︷︸

ridge penalty

∥θ∥2 (20)

▶ It penalizes large norm of the coefficients,

∥θ∥2 =
∑

k

θ2k

▶ minimizing the objective gives Predictiont

πt(z) = Predictiont = θfeature1 Feature1t + θfeature2 Feature2t + · · ·+ θfeatureP FeaturePt

▶ we then build managed returns

R
π(z)
t+1 = πt(z)Rt+1
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Sharpe Ratios and Timing Strategies ii

▶ we want these returns to have high mean out-of-sample (OOS) (i.e., on the Test Data)

OOS Mean =
1

TOOS

∑

OOS τ

R
π(z)
τ+1

▶ we want these returns to have low variance out-of-sample (OOS) (i.e., on the

Test Data)

OOS Variance =
1

TOOS

∑

OOS τ

(
R

π(z)
τ+1 − OOS Mean

)2

▶ we commonly measure the quality of a strategy is through its Sharpe Ratio (S’R)

S ′R =
OOS Mean√
OOS Variance

(21)
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Virtue of Complexity for the SR
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Figure: Expected Out-of-sample Timing Strategy Sharpe Ratio
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Conditional Expectations

Objective =
1

T

∑

t

(Rt+1 − f (Xt ; θ))
2 (22)

Why is this the right objective?

Machine Learning in Finance 38



Incorporating Conditional Information: The conditional expectation i

▶ We would like to incorporate conditional information. But how?
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Incorporating Conditional Information: The conditional expectation ii

▶ Conditional expectation

Et [X ] =
∑

x P(X = x |Information at time t)︸ ︷︷ ︸
conditional probability

▶ Practitioners often use rolling window estimates

PractitionerEt [Rt+1] =
1

T

t∑

τ=t−T

Rτ , T = Rolling Window

▶ But this is a very naive approach. What if some other signals are informative about stock

returns?

▶ Here, we will need the notion of conditional expectation. Formally,

Et [Xt+1]︸ ︷︷ ︸
conditional expectation

= best prediction of Xt+1 given time− t information (23)
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Incorporating Conditional Information: The conditional expectation iii

▶ Formally, if St ∈ RP for some huge P! is all our relevant information set at time t,

Et [Xt+1]︸ ︷︷ ︸
conditional expectation

= F∗(St) = best non− linear function of St that predicts Xt+1

(24)

▶ Even more formally,

F∗ = argmin
F

E [∥Xt+1 − F (St)∥2] (25)

▶ The reality is that we still cannot compute E [·] because we do not have enough data (see

the picture curse of dimensionality)

▶ So, we will still be doing

F̂∗ = argmin
F

1

T

∑

t

|Xt+1 − F (St)|2 (26)
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Understanding Conditional Expectation (Good to Understand it Even we

Cannot Estimate It) i

Theorem

If F (St) is the true conditional expectation, then

Xt+1 = F (St) + εt+1 = Et [Xt+1]︸ ︷︷ ︸
predictable part

+ εt+1︸︷︷︸
unpredictable noise

(27)

and we have the variance decomposition

Var[Xt+1]︸ ︷︷ ︸
total variation

= Var[Et [Xt+1]]︸ ︷︷ ︸
predictable variation

+ Var[εt+1]︸ ︷︷ ︸
unpredictable variation

(28)

Proof:

E [εt+1] = 0, E [εt+1Et [Xt+1]] = 0, Cov[Et [Xt+1], εt+1] = 0 (29)
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Understanding Conditional Expectation (Good to Understand it Even we

Cannot Estimate It) ii

and hence

Var[Xt+1] = Var[Et [Xt+1] + εt+1] = Var[Et [Xt+1]] + Var[εt+1] + 2Cov[Et [Xt+1], εt+1]︸ ︷︷ ︸
=0

(30)

Why is this important?

▶ We would like to find the true amount of predictability:

R2 =
Var[Et [Xt+1]]

Var[Xt+1]
= 1 − E [ε2t+1]

Var[Xt+1]
(31)

and the true residuals

εt+1 = Xt+1 − F (St) . (32)
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Examples: True Expectations

▶ ARMA process:

Rt+1 =
1

T

t∑

τ=t−T

Rτ + εt+1, Et [Rt+1] =
1

T

t∑

τ=t−T

Rτ (33)

Here,

St = (Rτ )
t
τ=t−T , F (St) =

1

T

t∑

τ=t−T

Rτ (34)

▶ Linear prediction:

Rt+1 =
P∑

j=1

βjSj,t + εt+1 , Et [Rt+1] =
P∑

j=1

βjSj,t (35)

Here,

F (St) =
P∑

j=1

βjSj,t (36)

is linear
▶ Non-Linear prediction:

Rt+1 =
P∑

j=1

βjSj,t

︸ ︷︷ ︸
P terms

+
P∑

j1,j2=1

βj1,j2Sj1,tSj2,t

︸ ︷︷ ︸
P2 terms

+ εt+1 (37)

Here,

F (St) =
P∑

j=1

βjSj,t +
P∑

j1,j2=1

βj1,j2Sj1,tSj2,t (38)

is non-linear
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Learning Is Impossible Without Some Kind of Bias

The ugly duckling theorem. Classification is not really possible without some sort of bias.

”Suppose that one is to list the attributes that plums and lawnmowers have in common in

order to judge their similarity. It is easy to see that the list could be infinite: Both weigh less

than 10,000 kg (and less than 10,001 kg), both did not exist 10,000,000 years ago (and

10,000,001 years ago), both cannot hear well, both can be dropped, both take-up space and so

on. Likewise, the list of differences could be infinite. . . any two entities can be arbitrarily

similar or dissimilar by changing the criterion of what counts as a relevant attribute.”
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Inductive Biases

So how do we decide which attributes (features; characteristics) matter?

We use Inductive Biases!

Definition. Inductive bias is the set of assumptions a learning algorithm makes to generalize

beyond the training data. In other words, it’s what allows the algorithm to ”induce” a

hypothesis from a limited amount of data, guiding it on how to predict unseen examples. For

instance, a linear regression model assumes that the underlying relationship is approximately

linear—even if the true relationship is more complex—so it is biased towards linear solutions.

This bias is essential: without it, an algorithm would have no basis for generalization and might

simply memorize the training data without making any useful predictions on new data.
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The Cat-astrophe Bias

Imagine a photo recognition AI trained exclusively on images of cats. Its inductive bias is that

all important entities in the world are cats. Show it a picture of a dog, and it’s perplexed. ”Is

this some kind of weird cat?” it wonders. A car? ”Strange cat with wheels!” A tree? ”Clearly,

a tall, wooden cat!”
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An Analyst with Extrapolative Expectations

▶ I believe past returns predict future returns and I will use

Et [Rt+1] =
1

T

t∑

τ=t−T

Rτ

• Fantastic bias if

Rt+1 =
1

T

t∑
τ=t−T

Rτ + εt+1, Et [Rt+1] =
1

T

t∑
τ=t−T

Rτ (39)

• OK bias if

Rt+1 = Rt + εt+1, Et [Rt+1] = Rt (40)

will be positively related to the analyst’s guess
• Horrible bias if returns are mean-reverting:

Rt+1 = −Rt + εt+1, Et [Rt+1] = −Rt (41)
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An Economist Who Believes in Linearity

▶ I believe that

Et [Rt+1] =
P∑

j=1

βjSj,t

• Fantastic bias if

Rt+1 =
P∑
j=1

βjSj,t + εt+1 (42)

• OK bias if

Rt+1 = S1,t + 5S17,t︸ ︷︷ ︸
sparse: only 1 and 17 matter

+ εt+1, Et [Rt+1] = Rt (43)

• Horrible bias if non-linear:

Rt+1 = S2
15,t + εt+1 (44)
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More Complex Biases

▶ We believe

Et [Xt+1] = θ′St

but ∥θ∥ is small (small ∥θ∥ inductive bias). Implementation: ridge penalty

min
θ

∥R − θ′S∥2 + z︸︷︷︸
ridge penalty

∥θ∥2, ∥θ∥2 =
∑

i

|θi |2

▶ We believe θ is sparse: only a few coordinates are non-zero. The sparsity bias.

Implementation: LASSO

min
θ

∥R − θ′S∥2 + z︸︷︷︸
ridge penalty

∥θ∥1, ∥θ∥1 =
∑

i

|θi |

Machine Learning in Finance 51



Deep Learning Trained by Gradient Descent: The Most Powerful Inductive Bias

Human Beings Have Discovered So Far i

▶ Inductive Bias of DNNs: The world has a smooth, hierarchical structure
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Deep Learning Trained by Gradient Descent: The Most Powerful Inductive Bias

Human Beings Have Discovered So Far ii
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Learning Hierarchical Concepts

LLM concepts by combining nonlinear predictors over multiple layers
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OLS i

▶ Predictors’ vector St ∈ RP

▶ We organize them like an excel spreadsheet, S = (St)
T
t=1 ∈ RT×P .

▶ OLS (linear regression, Carl Friedrich Gauss):

β̂OLS = argmin
β

∥ R︸︷︷︸
T×1

− S︸︷︷︸
T×P

β︸︷︷︸
P×1

∥2 = argmin
β

∑

t


Rt+1 −

∑

j

Sj,tβj




2

and

β̂OLS = Ψ̂−1
T︸︷︷︸

P×P

T−1
∑

t

St︸︷︷︸
P×1

Rt+1︸︷︷︸
1×1

∈ RP

Machine Learning in Finance 56



OLS ii

▶

Ψ̂T = T−1
∑

t

StS
′
t = T−1S ′S︸ ︷︷ ︸

(P×T )×(T×P)

∈ RP×P (45)

is the sample covariance matrix

▶ Defining R = (Rt)
T
t=1 ∈ RT , we can rewrite

β̂OLS = (T−1S ′S)−1T−1S ′R . (46)
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How to Run Regression when P > T? Ridge Regression i

β̂ = argmin
β

(T−1∥R − Sβ∥2 + z∥β∥2)

gives

β̂(z) =

(
zI + T−1

∑

t

StS
′
t

)−1

T−1
∑

t

StRt+1 = (zI + T−1S ′S)−1T−1S ′R .
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Ridgeless Limit and the Moore-Pensore Quasi-Inverse

When P moves beyond T , there are more parameters than observations, and the least squares

problem has multiple solutions. A particularly interesting solution invokes the Moore-Penrose

pseudo-inverse, which can be computed as follows:

A = U diag(D)U ′ ⇒ A+ = U diag((D−1 if D > 0 else 0))U ′ (47)

As we show below, as the shrinkage parameter approaches zero, we converge to the Ridgeless

Estimator:

β̂(0+) = lim
z→0+

β̂(z) =

(
T−1

∑

t

StS
′
t

)+
1

T

∑

t

StRt+1.

Proving this is non-trivial and requires a bit of algebra.
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The Magic of Ridge: Playing with Dimension i

Lemma (Swapping Dimension)

Let S ∈ RT×P . Then,

(zI + S ′S︸︷︷︸
T×T

)−1S ′ = S ′(zI + SS ′
︸︷︷︸
P×P

)−1 (48)

Proof.

We have
(zI + S ′S)−1S ′ = S ′(zI + SS ′)−1 ⇔
S ′(zI + SS ′) = (zI + S ′S)S ′ ⇔
S ′z + S ′SS ′ = zS ′ + S ′SS ′

(49)

We use this in the Jupyter Notebook to get fast regression in very high dimensions
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The Magic of Ridge: Playing with Dimension ii

Corollary

β̂(z) =


zI + T−1 S ′S︸︷︷︸

P×P




−1

1

T
S ′R = S ′


zI + T−1 SS ′

︸︷︷︸
T×T




−1

1

T
R (50)

and

β̂(0+) = S ′
︸︷︷︸
P×T


 SS ′
︸︷︷︸
T×T




−1

R︸︷︷︸
T×1

(51)

Let us now prove that

β̂(0+) = (S ′S)+S ′R. (52)

Indeed,

β̂(0+) = S ′(SS ′)−1R = (S ′S)+S ′R (53)

because Im(S ′) ⊥ ker(S) = ker(S ′S).

Machine Learning in Finance 61



The Magic of Ridge: Playing with Dimension iii

β̂(0+) is an interpolator:

S β̂(0+) = SS ′ (SS ′)
−1

R = R (54)
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Orthogonal Projection in Linear Algebra i

Given a vector x and a subspace S of Rn, given by the span of columns of a matrix A (denoted

by col(A)), the orthogonal projection P of x onto S , is the closest vector x̂ in S to x .
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Orthogonal Projection in Linear Algebra ii

Lemma

Let Π = (AA′)+AA′. Then, Π is the orthogonal projection onto the col(A).

Proof.

First, Π is symmetric and positive definite. Second, AA′ = U diag(D)U ′, and hence

(AA′)+AA′ = U(D(D−11D>0))U
′ = U diag(1D>0)U

′ (55)

and hence Π is the projection onto the image of AA′, while it kills the kernel of AA′. But

AA′x = 0 means x ′AA′x = 0 means A′x = 0 and we know

kerA′ = (ImA)⊥ . (56)
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What does the Ridgeless Regression Do? i

Any solution β̂ ∈ RP to the system

β̂′St = Rt+1, t = 1, · · · ,T (57)

of T equations and P variables is called an interpolator.

Lemma

Suppose that R ∈ span(S), so that (57) has a solution. Then, any solution β to (57) can be

written down as

β = β̂(0+)︸ ︷︷ ︸
∈ span(S)

+ β⊥
︸︷︷︸

orthogonal to span(S)

(58)

In particular, β̂(0+) gives the minimal norm interpolator:

β̂(0+) = argmin{∥β∥2 : β satisfies (57)} (59)
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What does the Ridgeless Regression Do? ii

Proof.

We have

β̂(0+) = (SS ′)+S ′R (60)

Let

S ′β = R (61)

be some other interpolator. Then,

SS ′β = S ′R ⇒ (SS ′)+SS ′β = (SS ′)+S ′R = β̂(0+) . (62)

Let Π = (SS ′)+SS ′. Then, Π is the orthogonal projection onto the span(S). Thus,

Πβ = β̂(0+) (63)

and the claim follows.
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What does the Ridgeless Regression Do? iii

Summarizing, we can formulate the complexity principle.

Theorem (heuristic)

∥β̂(0+)∥ is monotone decreasing in P. Thus, if the small norm of β is a good inductive

bias, ridgeless regression generalizes better when P gets larger.

Generalizes better= has lower test (out-of-sample) error
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Experiments with High Dimensional Regressions

Please click on the link:

Understanding High-Dimensional Regressions

Random Features for Goyal-Welch
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