

Random Matrix Theory (RMT)

Homework 1

March 15, 2025

1. Use the uncorrelated case $Y_t = X_t' A_P X_t$ to prove the analogous result for the correlated case $Y_t = S_t' A_P S_t$ with $S_t = \Psi^{1/2} X_t$: Prove that

$$E[Y_t] = \text{tr}(\Psi A_P)$$

and

$$\text{Var}[P^{-1}Y_t] \rightarrow 0$$

2. Solve the Master equation

$$\lim_{T,P \rightarrow \infty, P/T \rightarrow c} \hat{m}(-z) = m(-z; c) \quad (1)$$

exists in probability and $m(-z; c)$ is the unique positive solution to the nonlinear master equation

$$m(-z; c) = \frac{1}{1 - c + cz m(-z; c)} m_\Psi \left(\frac{-z}{1 - c + cz m(-z; c)} \right) \quad (2)$$

when (a) $\Psi = I$ (this is the Marcenko-Pastur Theorem) and (b) when Ψ has just two eigenvalues λ_1, λ_2 . What else matters in addition to λ_1, λ_2 ?

3. Prove the Sherman-Morrison formula:

Lemma 1 (Sherman-Morrison Formula). Suppose $A \in \mathbb{R}^{n \times n}$ is an invertible square matrix and $u, v \in \mathbb{R}^P$ are column vectors. Then $A + uv'$ is invertible if $1 + v'A^{-1}u \neq 0$. In this case,

$$(A + uv')^{-1} = A^{-1} - \frac{A^{-1}uv'A^{-1}}{1 + v'A^{-1}u} \quad (3)$$

and

$$(A + uv')^{-1}u = A^{-1}u \frac{1}{1 + v'A^{-1}u} \quad (4)$$

4. Prove that $\|(zI + \hat{\Psi}_T)^{-1}\| \leq z^{-1}$.