

Asset Pricing

Semyon Malamud

EPFL

Table of Contents

- ① Mean-Variance Optimization
- ② Introduction: Complexity in Cross-Sectional Asset Pricing
- ③ Empirical Asset Pricing Via Machine Learning
- ④ Empirics for the US Stock Market

Mean-Variance Optimization: Unconditional

- assets $i = 1, \dots, N$ have prices $P_{i,t}$ and excess returns

$$R_{i,t+1} = \frac{P_{i,t+1} + D_{i,t+1}}{P_{i,t}} - \underbrace{R_{f,t}}_{\text{risk free rate}} \quad (1)$$

- if you invest fraction $\pi_{i,t}$ of your wealth W_t into security i , the rest stays on your bank account and grows at the rate $R_{f,t}$:

$$W_t = \sum_i \underbrace{\pi_{i,t} W_t}_{\text{investment in stock } i} + \underbrace{(W_t - \sum_i \pi_{i,t} W_t)}_{\text{bank account}} \quad (2)$$

Mean-Variance Optimization: Unconditional ii

and then you sell your investments at time t and collect dividends so that

$$\begin{aligned} W_{t+1} &= \sum_i W_t \pi_{i,t} \frac{P_{i,t+1} + D_{t+1}}{P_{i,t}} + (W_t - \sum_i \pi_{i,t} W_t) R_{f,t} \\ &= W_t R_{f,t} + W_t \sum_i \pi_{i,t} R_{i,t+1} \end{aligned} \tag{3}$$

- Thus, the excess return on your wealth is

$$\frac{W_{t+1}}{W_t} - R_{f,t} = \sum_i \pi_{i,t} R_{i,t+1} = \pi_t' R_{t+1} \tag{4}$$

- Thus, we want π_t that gives good returns. But what is the criterion?

- ▶ Intuitively, we like **high return** and **low variance**, hence, we might try to find a **static** portfolio that maximizes

$$\pi = \arg \max_{\pi} \left(E[\pi' R_{t+1}] - 0.5 \underbrace{\gamma}_{\text{risk aversion}} \text{Var}[\pi' R_{t+1}] \right) \quad (5)$$

- ▶ The solution is Markowitz

$$\pi = \text{Var}[R]^{-1} E[R]. \quad (6)$$

- ▶ Alternatively, one could optimize

$$\pi = \arg \max_{\pi} \left(E[\pi' R_{t+1}] - 0.5 \underbrace{\gamma}_{\text{risk aversion}} E[(\pi' R_{t+1})^2] \right) \quad (7)$$

Mean-Variance Optimization: Unconditional iv

and the solution is

$$\begin{aligned}\tilde{\pi} &= \gamma^{-1} (E[R_{t+1} R'_{t+1}])^{-1} E[R_{t+1}] \\ &= \text{const} \cdot \pi, \quad \text{const} = \frac{1}{1 + E[R_{t+1}]' \text{Var}[R_{t+1}]^{-1} E[R_{t+1}]} \quad (8)\end{aligned}$$

where

$$E[R_{t+1} R'_{t+1}] = \text{Var}[R_{t+1}] + E[R_{t+1}] E[R_{t+1}]' = (E[R_{i,t+1} R_{j,t+1}])_{i,j=1}^N \quad (9)$$

Why Are the Two Markowitz Portfolios Proportional? The Sherman-Morrison formula

The magic behind is the

Lemma (Sherman-Morrison formula)

$$(A + xx')^{-1} = A^{-1} - \frac{A^{-1}xx'A^{-1}}{1 + x'A^{-1}x} \quad (10)$$

and

$$(A + xx')^{-1}x = \frac{A^{-1}x}{1 + x'A^{-1}x} \quad (11)$$

Proof [Proof of the Sherman-Morrison formula] Recall that

$$xx' = (x_i x_j)_{i,j=1}^N$$

Why Are the Two Markowitz Portfolios Proportional? The Sherman-Morrison formula ii

is a symmetric, positive, semi-definite, $rank - 1$ matrix (all columns are proportional to x). Then,

$$\begin{aligned} (A + xx')(A^{-1} - \frac{A^{-1}xx'A^{-1}}{1 + x'A^{-1}x}) \\ = I - \frac{xx'A^{-1}}{1 + x'A^{-1}x} + xx'A^{-1} - xx'A^{-1}\frac{A^{-1}xx'A^{-1}}{1 + x'A^{-1}x} \\ = I - \frac{xx'A^{-1}}{1 + x'A^{-1}x} + xx'A^{-1} - xx'A^{-1}\frac{x'A^{-1}x}{1 + x'A^{-1}x} = I \end{aligned} \tag{12}$$

and

$$(A + xx')^{-1}x = (A^{-1} - \frac{A^{-1}xx'A^{-1}}{1 + x'A^{-1}x})x = \frac{A^{-1}x}{1 + x'A^{-1}x} \tag{13}$$

(Very Big) Issues with Markowitz

- Markowitz **assumes that we know the truth!** The true

$$E[R] = (E[R_{i,t+1}])_{i=1}^{N_t}, \text{Var}[R] = (\text{Cov}(R_{i,t+1}, R_{j,t+1}))_{i,j=1}^{N_t} \quad (14)$$

where N_t is the number of assets (stocks?) available at time t .

- The problem is that:

- **expected stock returns move a lot over time:** Hence, using **static** portfolio is a **very bad idea**
- we just **do not have enough data** to estimate $E[R]$ and $\text{Var}[R]$. We can use naive

$$\bar{E}[R] = \frac{1}{T} \sum_{t=1}^T R_t, \quad \overline{\text{Var}}[R] = \frac{1}{T} \sum_{t=1}^T \underbrace{(R_t - \bar{E}[R])}_{N \times 1} \underbrace{(R_t - \bar{E}[R])'}_{1 \times N} \underbrace{\phantom{(R_t - \bar{E}[R])'}_{1 \times N}}_{N \times N}$$

Incorporating Conditional Information: The conditional expectation i

- We would like to incorporate conditional information.
- For the specific portfolio applications, we would need

$$\begin{aligned} E_t[R_{t+1}] &= \arg \min_{F: \mathbb{R}^P \rightarrow \mathbb{R}^N} E[\|R_{t+1} - F(S_t)\|^2] \\ E_t[R_{t+1} R'_{t+1}] &= \arg \min_{G: \mathbb{R}^P \rightarrow \mathbb{R}^{N \times N}} E[\|R_{t+1} R'_{t+1} - G(S_t)\|^2] \end{aligned} \quad (15)$$

- The reality is that **we still cannot compute $E[\cdot]$** because we do not have enough data. So, we will still be doing

$$E_t[X_{t+1}] = \arg \min_F \frac{1}{T} \sum_t |X_{t+1} - F(S_t)|^2 \quad (16)$$

Incorporating Conditional Information: The conditional Markowitz i

- ▶ mean-variance optimization:

$$\pi_t = \arg \max_{\pi_t} \left(E_t[\pi_t' R_{t+1}] - 0.5 \underbrace{\gamma}_{\text{risk aversion}} \text{Var}_t[\pi_t' R_{t+1}] \right) \quad (17)$$

and hence the **Mean-Variance Efficient (MVE) portfolio is**

$$\underbrace{\pi_t}_{\text{conditional tangency portfolio}} = \gamma^{-1} \underbrace{(\text{Var}_t[R_{t+1}])^{-1}}_{N \times N \text{ covariance matrix}} \underbrace{E_t[R_{t+1}]}_{N \times 1 \text{ expected returns}} \quad (18)$$

Incorporating Conditional Information: The conditional Markowitz ii

- ▶ Similarly,

$$\begin{aligned}\tilde{\pi}_t &= \gamma^{-1} (E_t[R_{t+1} R'_{t+1}])^{-1} E_t[R_{t+1}] \\ &= \frac{1}{1 + E_t[R_{t+1}]' \text{Var}_t[R_{t+1}]^{-1} E_t[R_{t+1}]} \pi_t\end{aligned}\tag{19}$$

where

$$E_t[R_{t+1} R'_{t+1}] = \text{Var}_t[R_{t+1}] + E_t[R_{t+1}] E_t[R_{t+1}]' \tag{20}$$

Table of Contents

- ① Mean-Variance Optimization
- ② Introduction: Complexity in Cross-Sectional Asset Pricing
- ③ Empirical Asset Pricing Via Machine Learning
- ④ Empirics for the US Stock Market

Introduction to Asset Pricing i

- ▶ Intuitively, we expect that

$$P_{i,t} = \underbrace{(R_{f,t})^{-1} E_t[P_{i,t+1} + D_{i,t+1}]}_{\text{Definitely wrong in the data}} \quad (21)$$

because the **discount factor** $(R_{f,t})^{-1}$ is too naive

- ▶ We need a **smart discount factor (SDF)**:

$$P_{i,t} = E_t \left[\underbrace{M_{t,t+1}}_{\text{stochastic discount factor}} (P_{i,t+1} + D_{i,t+1}) \right] \quad (22)$$

- ▶ with a bit of algebra, this is equivalent to

$$E_t[R_{i,t+1} M_{t,t+1}] = 0 \quad (23)$$

Introduction to Asset Pricing ii

- By direct calculation,

$$M_{t+1} = 1 - \tilde{\pi}'_t R_{t+1} \quad (24)$$

does the job:

$$\begin{aligned} E_t[R_{t+1}M_{t,t+1}] &= E_t[R_{t+1}(1 - R'_{t+1}\tilde{\pi}_t)] \\ &= E_t[R_{t+1}] - E_t[R_{t+1}R'_{t+1}]\tilde{\pi}_t = 0 \end{aligned} \quad (25)$$

implies

$$\tilde{\pi}_t = E_t[R_{t+1}R'_{t+1}]^{-1} E_t[R_{t+1}] \quad (26)$$

We now state

Theorem

Nothing Has Alpha Against $\tilde{\pi}'_t R_{t+1}$

Theorem

The following are equivalent:

- R_{t+1}^M is the return on the conditionally efficient portfolio:

$$R_{t+1}^M = a_t^{-1} \pi_t' R_{t+1}, \pi_t = \text{Cov}_t(R_{t+1})^{-1} E_t[R_{t+1}] \text{ for some } a_t \in \mathbb{R}. \quad (27)$$

-

$$E_t[R_{i,t+1}] = \beta_{i,t} E_t[R_{t+1}^M], \beta_{i,t} = \frac{\text{Cov}_t(R_{i,t+1}, R_{t+1}^M)}{\text{Var}_t[R_{t+1}^M]} \quad (28)$$

- Furthermore, R_t^M satisfies (27) with

$a_t = 1 + E_t[R_{t+1}]' \text{Cov}_t(R_{t+1})^{-1} E_t[R_{t+1}]$ if and only if it prices returns on any feasible portfolio unconditionally:

$$E[R_{i,t}] = \beta_i E[R_t^M], \beta_i = \frac{\text{Cov}(R_{i,t}, R_t^M)}{\text{Var}[R_t^M]} \quad (29)$$

Proof i

Lemma (Sherman-Morrison formula)

$$\begin{aligned}(A + xx')^{-1} &= A^{-1} - A^{-1}xx'A^{-1}/(1 + x'A^{-1}x) \\ (A + xx')^{-1}x &= A^{-1}x/(1 + x'A^{-1}x)\end{aligned}\tag{30}$$

for any matrix $A \in \mathbb{R}^{P \times P}$ and any vector $x \in \mathbb{R}^P$.

[Proof of Theorem 3] First, if

$$R_{t+1}^M = \pi_t' R_{t+1},\tag{31}$$

then

$$\text{Var}_t[R_{t+1}^M] = \pi_t' \Sigma_t \pi_t,\tag{32}$$

Proof ii

where $\Sigma_t = \text{Cov}_t(R_{t+1})$, $\mu_t = E_t[R_{t+1}]$, and

$$\begin{aligned}\pi_t &= a_t^{-1} \Sigma_t^{-1} E_t[R_{t+1}] \Leftrightarrow E_t[R_{t+1}] = a_t \Sigma_t \pi_t \\ &= a_t \text{Cov}_t(R_{t+1}, R_{t+1}^M) = a_t \text{Var}_t[R_{t+1}^M] \beta_t,\end{aligned}\tag{33}$$

where

$$a_t \text{Var}_t[R_{t+1}^M] = a_t \pi_t' \Sigma_t \pi_t = a_t^{-1} \mu_t' \Sigma_t^{-1} \mu_t\tag{34}$$

while

$$E_t[R_{t+1}^M] = \pi_t' \mu_t = a_t^{-1} \mu_t' \Sigma_t^{-1} \mu_t.\tag{35}$$

Reversing the arguments, we get that the first two items of the theorem are, in fact, equivalent.

Now, suppose R_{t+1}^M is the efficient portfolio. Then,

$$E[R_{t+1}^Z] = E[Z_t R_{t+1}] = E[Z_t E_t[R_{t+1}]] = E[Z_t \beta_t E_t[R_t^M]].\tag{36}$$

Proof iii

At the same time, by Lemma 4, we have that

$$\begin{aligned} E_t[R_{t+1}R'_{t+1}]^{-1}\mu_t &= (\Sigma_t + \mu_t\mu'_t)^{-1}\mu_t \\ &= \Sigma^{-1}\mu_t / (1 + \mu'_t\Sigma_t^{-1}\mu_t) \\ &= (1 + \theta_{M,t}^2)^{-1}\Sigma_t^{-1}\mu_t, \end{aligned} \tag{37}$$

where $\theta_{M,t}^2 = \mu'_t\Sigma_t^{-1}\mu_t$. Hence, if $R_{t+1}^M = R'_{t+1}\pi_t$, the identity

$$E_t[R_{t+1}] = E_t[R_{t+1}R_{t+1}^M] \tag{38}$$

holds if and only if

$$\pi_t = (1 + \theta_{M,t}^2)^{-1}\Sigma_t^{-1}\mu_t \tag{39}$$

because

$$E_t[R_{t+1}R_{t+1}^M] = E_t[R_{t+1}R_{t+1}]\pi_t \tag{40}$$

Proof iv

Now, standard arguments imply that the conditional identity (38) is equivalent to the unconditional identity

$$E[R_{t+1}^Z] = E[R_{t+1}^Z R_{t+1}^M] \quad (41)$$

holding for any Z . Furthermore,

$$E[R_{t+1}^Z R_{t+1}^M] = \text{Var}[R_{t+1}^M] \beta^Z + E[R_{t+1}^Z] E[R_{t+1}^M] \quad (42)$$

and hence (41) is equivalent to

$$E[R_{t+1}^Z] = \text{Var}[R_{t+1}^M] \beta^Z + E[R_{t+1}^Z] E[R_{t+1}^M], \quad (43)$$

which is equivalent to

$$E[R_{t+1}^Z] = \frac{\text{Var}[R_{t+1}^M]}{1 - E[R_{t+1}^M]} \beta^Z. \quad (44)$$

Proof v

Applying (41) to R_{t+1}^M , we get

$$E[(R_{t+1}^M)^2] = E[R_{t+1}^M] \quad (45)$$

and, hence, after some algebra,

$$\frac{\text{Var}[R_{t+1}^M]}{1 - E[R_{t+1}^M]} = E[R_{t+1}^M]. \quad (46)$$

The proof is complete.

Testing Conditional Efficiency

- We cannot compute $E_t[\cdot]$
- Instead, we can build instruments Z_t and test that

$$E_t[M_{t+1}R_{t+1}] = 0 \Leftrightarrow E[Z_t M_{t+1}R_{t+1}] = 0$$

for **all instruments!**

- Thus, we need to build **infinitely many Z_t** thought machine learning and then test

$$\frac{1}{T} \sum_t Z_t M_{t+1}R_{t+1} \approx 0$$

Complexity is always there!

From Non-Tradable to Tradable SDFs i

- ▶ What about asset pricing theory?
- ▶ the SDF

$$\tilde{M}_{t+1} = \underbrace{\frac{e^{-\rho} U'(C_{t+1})}{U'(C_t)}}_{=IMRS}$$

comes from the Euler equation (things get more complex with Epstein-Zin preferences, expectations, sentiments, etc)

$$E_t \left[\underbrace{\frac{e^{-\rho} U'(C_{t+1})}{U'(C_t)}}_{=IMRS} (R_{t+1} + R_{f,t}) \right] = 1 \Leftrightarrow E_t[\tilde{M}_{t+1} R_{t+1}] = 0 \quad (47)$$

because

$$R_{f,t} = E_t[\tilde{M}_{t+1}]^{-1}. \quad (48)$$

From Non-Tradable to Tradable SDFs ii

- When markets are complete,

$$\tilde{M}_{t+1} = \tilde{a}_t M_{t+1} \quad (49)$$

- In general, we need to **project**

$$\underbrace{\tilde{a}_t M_{t+1}}_{\text{unique tradable}} = \text{Proj}_t(\tilde{M}_{t+1}) = \arg \min_{a, \pi} E_t[(\tilde{M}_{t+1} - (a - \pi' R_{t+1}))^2] \quad (50)$$

- Note the scale \tilde{a}_t is needed to catch the interest rate,

$$E_t[\tilde{a}_t M_{t+1}] = R_{f,t}^{-1} \quad (51)$$

Table of Contents

- ① Mean-Variance Optimization
- ② Introduction: Complexity in Cross-Sectional Asset Pricing
- ③ Empirical Asset Pricing Via Machine Learning
- ④ Empirics for the US Stock Market

Panel Datasets: Leveraging the Power of Big Data i

- ▶ Now comes the big question: **How do we measure the conditional** expectations, $E_t[R_{t+1}]$ and $E_t[R_{t+1}R'_{t+1}]$?
- ▶ Running prediction models **per stock** is infeasible due to insufficient data:

$$E_t[R_{i,t+1}] \underset{\text{bad idea}}{\underset{\curvearrowleft}{=}} g_i(X_{i,t})$$

- ▶ use panel data

$$E_t[R_{i,t+1}] \underset{\text{good idea}}{\underset{\curvearrowleft}{=}} g(X_{i,t})$$

- ▶ panel means **same function** g for all stocks.
- ▶ **non-linear** g means machine learning.

- ▶ Conditional covariance matrix

$$E_t[R_{i,t+1}R_{j,t+1}] = \underbrace{X'_{i,t} \Sigma_F X_{j,t}}_{\text{systematic covariance}} + \underbrace{\delta_{i,j} \sigma_{i,t}^2}_{\text{idiosyncratic variance}}$$

where Σ_F and $\sigma_{i,t}$ are to be estimated.

- ▶ Can we avoid computing the conditional covariance matrix?

Managed Portfolios and Rich Conditional Factor Structures i

- ▶ Suppose $R_{i,t+1} = \underbrace{S'_{i,t}}_{\text{conditional betas}} \cdot \underbrace{\tilde{F}_{t+1}}_{\text{latent factors}} + \varepsilon_{i,t+1}$
- ▶ $E_t[\tilde{F}_{t+1}] = \underbrace{\lambda_F}_{\text{latent factor risk premia}}, E_t[\tilde{F}_{t+1}\tilde{F}'_{t+1}] = \underbrace{\Sigma_F}_{\text{latent factor cov}}$

$$M_{t+1} = 1 - \tilde{\pi}'_t R_{t+1} = 1 - W(S_t)' R_{t+1}, \quad (52)$$

where $\tilde{\pi}_t = E_t[R_{t+1}R'_{t+1}]^{-1}E_t[R_{t+1}]$ and, hence,

$$W(S_t) = \underbrace{(S_t \Sigma_{F,t} S'_t + \Sigma_\varepsilon)^{-1}}_{\text{conditional covariance}} \underbrace{S_t \lambda_F}_{\text{conditional expectation}} \quad (53)$$

- ▶ Define **managed portfolios**

$$F_{t+1} = S_t' R_{t+1}. \quad (54)$$

and the **unconditionally efficient portfolio**

$$\lambda = E[F_{t+1} F_{t+1}']^{-1} E[F_{t+1}] \quad (55)$$

- ▶ By construction,

$$M_{t+1} = 1 - \lambda' F_{t+1} \quad (56)$$

prices factors unconditionally:

$$E[M_{t+1} F_{t+1}] = 0 \quad (57)$$

- ▶ However,

$$E_t[M_{t+1} R_{t+1}] \neq 0$$

$$\lambda' S_t' R_{t+1} \neq \lambda_F' S_t' \Sigma_t^{-1} R_{t+1},$$

with

$$\Sigma_t = (S_t \Sigma_{F,t} S_t' + \Sigma_\varepsilon)$$

Theorem

Suppose that in the limit, as $P \rightarrow \infty$, the vector of latent risk premia λ_F satisfies

$$\lambda_F' A \lambda_F \rightarrow 0 \quad (58)$$

for any symmetric, positive definite A with uniformly bounded trace. Let

$$M_{t+1} = 1 - \lambda' F_{t+1}, \quad (59)$$

be the factor approximation for the SDF with λ . Then, M_{t+1} converges to \tilde{M}_{t+1} and the Sharpe ratio of $\lambda' F_{t+1}$ converges to that of $W(S_t)' R_{t+1}$ as $P \rightarrow \infty$. In particular,

$$E_t[M_{t+1} R_{t+1}] \rightarrow 0$$

Sources of Complexity i

- We now know: If

$$R_{t+1} = \underbrace{S_t}_{N_t \times P \text{ signals}} \underbrace{\tilde{F}_{t+1}}_{P \times 1 \text{ latent factors}} + \underbrace{\varepsilon_{t+1}}_{\text{residuals}} \quad (60)$$

then we build

$$F_{t+1} = S_t' R_{t+1} = (S_t' S_t) \tilde{F}_{t+1} + (S_t' \varepsilon_{t+1}) \quad (61)$$

- But where do S_t come from?
- Suppose

$$R_{i,t+1} = \beta(X_{i,t})' \underbrace{G_{t+1}}_{K \times 1} + u_{i,t+1}, \quad (62)$$

Sources of Complexity ii

$$\beta(X_{i,t}) \approx \sum_{p=1}^P \xi_p S_{i,t,p} = \underbrace{\Xi}_{K \times P} \underbrace{S_{i,t}}_{P \times 1}, \quad (63)$$

where

$$S_{i,t} = A(\Omega X_{i,t}) = (A(\omega'_p X_{i,t}))_{p=1}^P. \quad (64)$$

► This gives

$$\begin{aligned} R_{t+1} &\approx S_t \tilde{F}_{t+1} + u_{t+1}, \quad \text{with} \\ \tilde{F}_{t+1} &= \Xi' G_{t+1}, \quad \nu = E[\tilde{F}_{t+1}] = \Xi' E[G_{t+1}]. \end{aligned} \quad (65)$$

► Thus, if β is non-linear, we need to go for high-dimensional S_t

Sources of Complexity iii

- This gives an SDF

$$M_{t+1} = 1 - \lambda' F_{t+1} = 1 - \lambda' A(X_t)' R_{t+1} = 1 - \sum_{i=1}^P w(X_{i,t}) R_{i,t+1} \quad (66)$$

with

$$w(X_{i,t}) = \sum_p \lambda_p A(\omega_p' X_{i,t})$$

Complexity in the Cross Section: A Brief History i

- Most academic attempts to build an SDF assume

$$M_{t+1}^* = 1 - \sum_{i=1}^N w(X_{i,t}) R_{i,t+1} \quad (67)$$

- Cross-sectional asset pricing is about $w_t = w(X_t)$
 - Explains differences in average returns
 - Defines the MVE portfolio
- Why does cross-section literature rarely start here? Because w must be estimated
 - This is a high-dimensional (*complex*) problem
 - We know: In-sample tangency portfolio behaves horribly out-of-sample
 - Why? Complexity ($n/T \not\rightarrow 0$) \rightarrow LLN doesn't apply \rightarrow IS and OOS diverge

► Standard solution: Restrict w

- E.g., Fama-French: $w_{i,t} = b_0 + b_1 \text{Size}_{i,t} + b_2 \text{Value}_{i,t}$ (Brandt et al. 2007 generalize):

$$\begin{aligned}
 \sum_{i=1}^N w(X_{i,t}) R_{i,t+1} &= \sum_{i=1}^N (b_0 + b_1 \text{Size}_{i,t} + b_2 \text{Value}_{i,t}) R_{i,t+1} \\
 &= b_0 \sum_{i=1}^N R_{i,t+1} + b_1 \sum_{i=1}^N \text{Size}_{i,t} R_{i,t+1} + b_2 \sum_{i=1}^N \text{Value}_{i,t} R_{i,t+1} \\
 &= b_0 \text{MKT}_{t+1} + b_1 \text{SMB}_{t+1} + b_2 \text{HML}_{t+1}.
 \end{aligned} \tag{68}$$

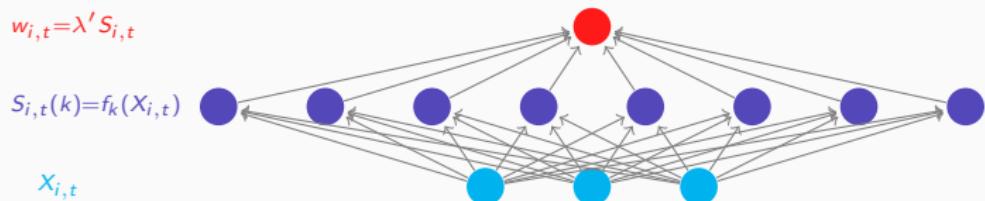
- Reduces parameters, implies factor model:

$$M_{t+1} = 1 - b_0 \text{MKT} - b_1 \text{SMB} - b_2 \text{HML}$$
- “Shrinking the cross-section” Kozak et al. (2020) — use a few PCs of anomaly factors

Complexity in the Cross Section: Machine Learning Perspective i

Rather than restricting $w(X_t)$

- ▶ ...expand parameterization, saturate with conditioning information
- ▶ For example, approximate w with neural network: $w(X_{i,t}) \approx \lambda' S_{i,t}$
- ▶ $P \times 1$ vector $S_{i,t}$ is known nonlinear function of original predictors $X_{i,t}$



Complexity in the Cross Section: Machine Learning Perspective ii

- ▶ Implies that empirical SDF is a high-dimensional factor model

$$\sum_{i=1}^N w(X_{i,t}) R_{i,t+1} = \sum_{i=1}^N \left(\sum_k \lambda_k \underbrace{S_{i,t}(k)}_{S_{i,t}(k) = f_k(X_{i,t})} \right) R_{i,t+1} = \sum_k \lambda_k \underbrace{\sum_{i=1}^N S_{i,t}(k) R_{i,t+1}}_{F_{k,t+1}} \quad (69)$$

$$M_{t+1}^* \approx M_{t+1} = 1 - \lambda' S_t' R_{t+1} = 1 - \lambda' F_{t+1}$$

Complexity in the Cross Section: Machine Learning Perspective

The Objective:

- ▶ Maximize out-of-sample Sharpe ratio (equivalently, minimize out-of-sample pricing errors) of SDF

The Choice:

- ▶ Fix T data points. Decide on “complexity” (number of factors P) to use in approximating model

The Tradeoff:

Complexity in the Cross Section: Machine Learning Perspective ii

- ▶ Simple SDF ($P \ll T$) has low variance (thanks to parsimony) but is a poor approximator of w
- ▶ Complex SDF ($P > T$) is a good approximator but may behave poorly (and requires shrinkage)
- ▶ Which P should the analyst opt for? Does the benefit of more factors justify their cost?

Answer:

- ▶ Use the largest factor model (largest P) that you can compute

Implementation i

- ▶ Build a bunch of features (random features if you want a shallow model; deep features (output layer) if you want a deep model).
- ▶ Call them $S_{i,t}(k) = f_k(X_{i,t}; \theta_k)$, $k = 1, \dots, P$
- ▶ Build the factors

$$F_{t+1}(k) = \sum_{i=1}^{N_t} S_{i,t}(k) R_{i,t+1} \quad (70)$$

- ▶ Take the vector of factors $F_{t+1} = (F_{t+1}(k))_{k=1}^P$ and minimize

$$\min_{\lambda} \frac{1}{T} \sum_{t=1}^T (1 - \lambda' F_{t+1})^2 + z \|\lambda\|^2 \quad (71)$$

This objective is known as the **Maximal Sharpe Ratio Regression (MSRR)**. For a deep model, you need to minimize this objective using GD

Implementation ii

- ▶ Why MSRR? Well,

$$\frac{1}{T} \sum_{t=1}^T (1 - \lambda' F_{t+1})^2 \approx E[(1 - \lambda' F_{t+1})^2] = 1 - 2E[\lambda' F_{t+1}] + E[(\lambda' F_{t+1})^2] \quad (72)$$

where

$$U(x) = x - 0.5x^2$$

- ▶ Now, $\tilde{\pi}_t = E_t[R_{t+1} R'_{t+1}]^{-1} E_t[R_{t+1}]$ solves

$$\max_{\pi} E_t[U(\pi' R_{t+1})] \quad (73)$$

It is conditionally efficient for a quadratic utility. By the law of iterated expectations,

$$E[E_t[U(\pi'_t R_{t+1})]] = E[U(\pi'_t R_{t+1})]$$

Implementation iii

and dynamic consistency gives

$$\max_{\text{all policies } \pi_t} E[U(\pi_t' R_{t+1})] = E[\max_{\pi} E_t[U(\pi_t' R_{t+1})]]$$

- ▶ Thus, MSRR looks for conditional policies that maximize unconditional utility and hence, by consistency, are conditionally optimal.
- ▶ For a shallow model, you can do it in closed form:

$$\hat{\lambda}(z) = \left(zI + \frac{1}{T} \sum_{t=1}^T F_t F_t' \right)^{-1} \frac{1}{T} \sum_{t=1}^T F_t \underbrace{\lambda_*(z)}_{\text{Complexity!}} \quad (74)$$

where

$$\lambda_*(z) = (zI + E[FF'])^{-1} E[F] \quad (75)$$

Implementation iv

► Limits To Learning

$$E[\hat{\lambda}(z)' F_{T+1}] \approx \frac{Z_*(z)}{z} E[\lambda_*(Z_*(z))' F_{T+1}], \quad (76)$$

where

$$Z_*(z) = z(1 + \xi(z)) > z. \quad (77)$$

► In fact,

$$\begin{aligned} E_T[\hat{\lambda}(z)' F_{T+1}] &= \frac{Z_*(z)}{z} E_T[\lambda_*(Z_*(z))' F_{T+1}] \\ &= \frac{Z_*(z)}{z} \lambda_*(Z_*(z))' E[F] = \frac{Z_*(z)}{z} E[F]' (Z_*(z)I + E[FF'])^{-1} E[F] \end{aligned} \quad (78)$$

Implementation v

Proof. Let $E[F] = \mu$, $E[FF'] = \Psi$; everything is i.i.d. across t . Then,

$$\begin{aligned} E[\hat{\lambda}(z)' F_{T+1}] &= E[\hat{\lambda}(z)' \mu] = E\left[\frac{1}{T} \sum_{t=1}^T F_t' \left(zI + \frac{1}{T} \sum_{t=1}^T F_t F_t'\right)^{-1} \mu\right] \\ &\stackrel{\text{symmetry}}{=} E\left[F_t' \left(zI + \frac{1}{T} \sum_{t=1}^T F_t F_t'\right)^{-1} \mu\right] \\ &= E\left[F_t' (zI + \Psi_{T,t})^{-1} \frac{1}{1 + T^{-1} F_t' (zI + \hat{\Psi}_{T,t})^{-1} F_t} \mu\right] \\ &\stackrel{F_t \text{ is independent}}{\approx} \mu' E\left[\left(zI + \hat{\Psi}_{T,t}\right)^{-1}\right] \mu (1 + \xi(z; c))^{-1} \end{aligned} \tag{79}$$

Implementation vi

where

$$\hat{\Psi}_{T,t} = \frac{1}{T} \sum_{\tau=1}^T F_\tau F'_\tau - F_t F'_t$$

where we have used that

$$T^{-1} F'_t \left(zI + \hat{\Psi}_{T,t} \right)^{-1} F_t \approx \xi(z; c) \quad (80)$$

The claim follows now from the Master Theorem:

$$z \mu' \left(zI + \hat{\Psi}_{T,t} \right)^{-1} \mu \approx Z_* (Z_* I + \Psi)^{-1} \quad (81)$$

Table of Contents

- ① Mean-Variance Optimization
- ② Introduction: Complexity in Cross-Sectional Asset Pricing
- ③ Empirical Asset Pricing Via Machine Learning
- ④ Empirics for the US Stock Market

Empirical Analysis

- ▶ Analyze empirical analogues to theoretical comparative statics
- ▶ Study conventional setting with conventional data
 - Forecast target is monthly return of US stocks from CRSP 1963–2021
 - Conditioning info (X_t) is 130 stock characteristics from Jensen, Kelly, and Pedersen (2022)
- ▶ Out-of-sample performance metrics are:
 - SDF Sharpe ratio
 - Mean squared pricing errors (factors as test assets)

Empirical Analysis i

Random Fourier Features

- ▶ Empirical model: $M_{t+1} = 1 - \lambda' S_t' R_{t+1}$
- ▶ Need framework to smoothly transition from low to high complexity
- ▶ Adopt ML method known as “random Fourier features” (RFF)
 - Let $X_{i,t}$ be 130×1 predictors. RFF converts $X_{i,t}$ into

$$S_{\ell,i,t} = \sin(\gamma_{\ell}' X_{i,t}), \quad \gamma_{\ell} \sim iidN(0, \gamma I)$$

- $S_{\ell,i,t}$: Random lin-combo of $X_{i,t}$ fed through non-linear activation
- **we then rank the random features in the cross-section**

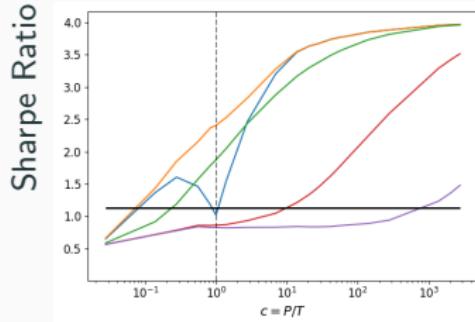
- ▶ For fixed inputs can create an arbitrarily large (or small) feature set
 - Low-dim model (say $P = 1$) draw a single random weight
 - High-dim model (say $P = 10,000$) draw many weights
- ▶ In fact, RFF is a two-layer neural network with fixed weights (γ) in the first layer and optimized weights (λ) in the second layer

Empirical Analysis

Training and Testing

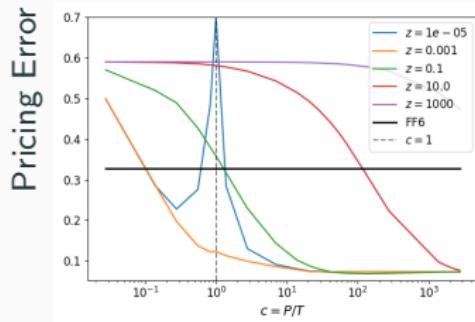
- We estimate out-of-sample SDF with:
 - i. Thirty-year rolling training window ($T = 360$)
 - ii. Various shrinkage levels, $\log_{10}(z) = -12, \dots, 3$
 - iii. Various complexity levels $P = 10^2, \dots, 10^6$
- For each level of complexity $c = P/T$, we plot
 - i. Out-of-sample Sharpe ratio of the kernels and
 - ii. Pricing errors on 10^6 “complex” factors: $F_{t+1} = S_t' R_{t+1}$
- Also report Sharpe ratio and pricing errors of FF6 to benchmark our results

Out-of-sample SDF Performance



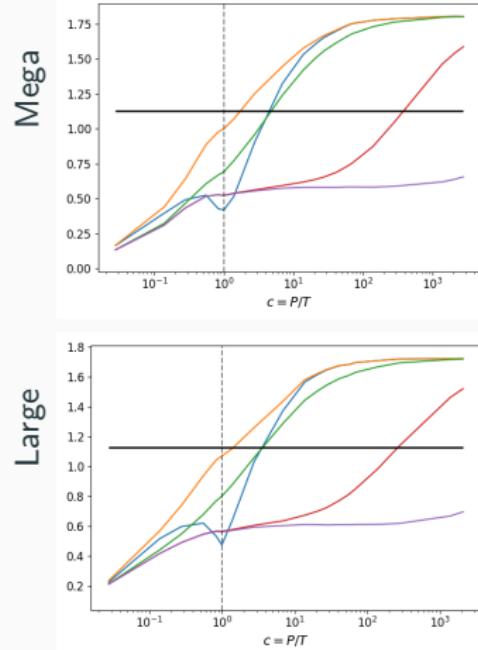
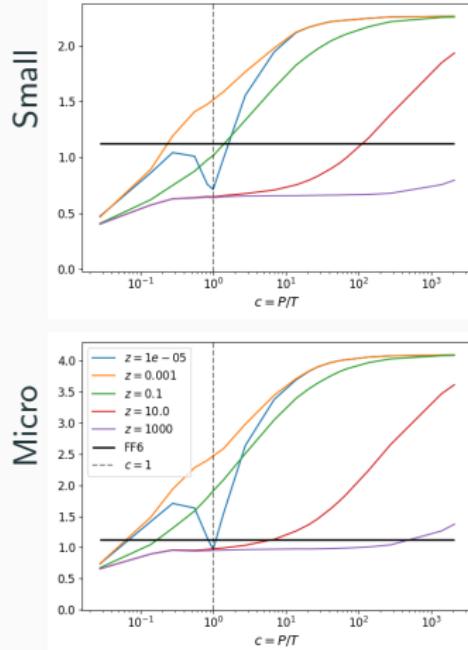
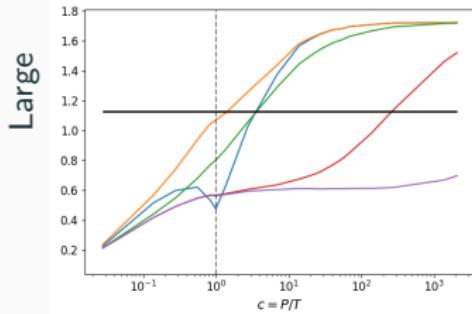
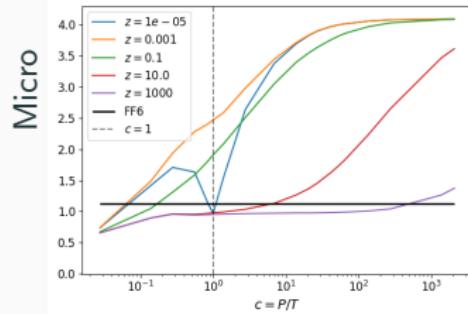
Main Empirical Result

- ▶ OOS behavior of ML-based SDF closely matches theory
- ▶ High complexity models
 - Improve over simple models by a factor of 3 or more
 - Dominate popular benchmarks like FF6



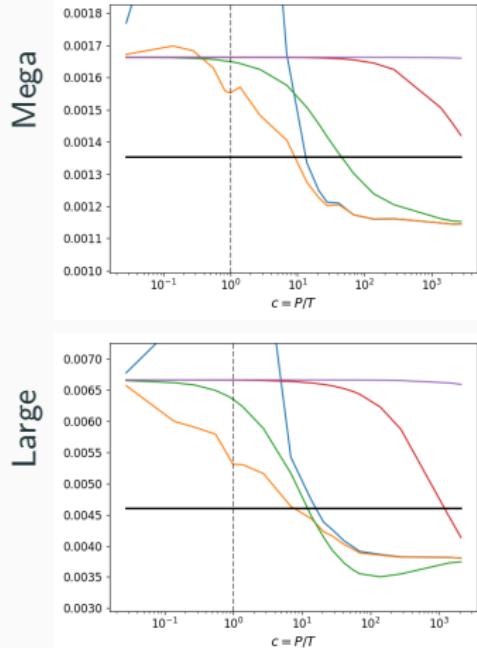
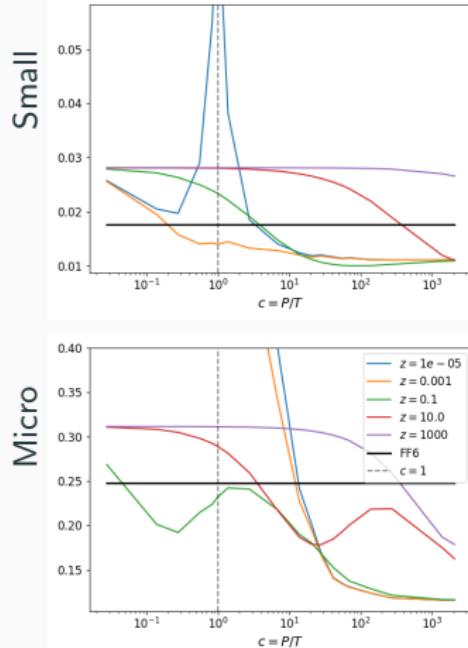
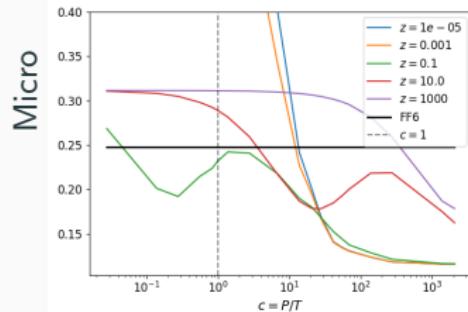
SDF Performance in Restricted Samples: Sharpe Ratio

Market Capitalization Subsamples



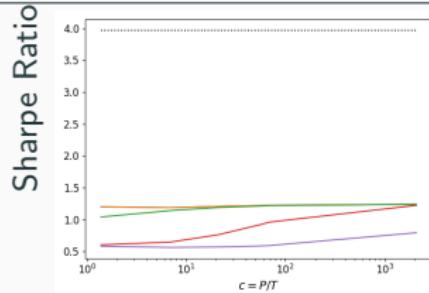
SDF Performance in Restricted Samples: Pricing Errors

Market Capitalization Subsamples

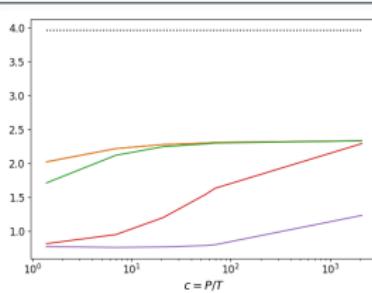


What About “Shrinking” With PCA?

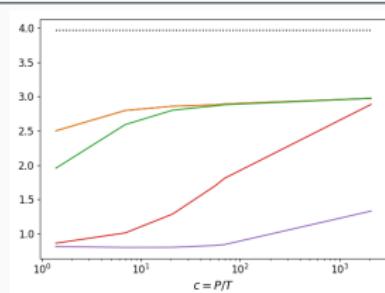
$K = 5$



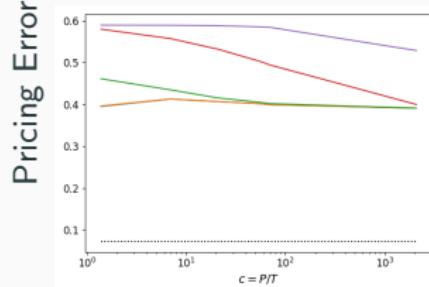
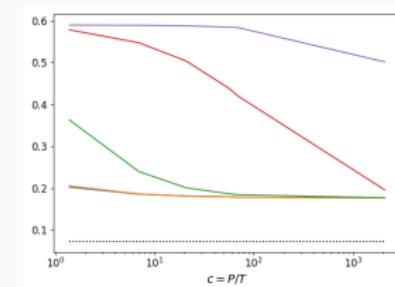
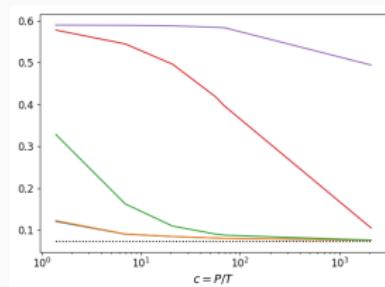
$K = 10$



$K = 25$



Pricing Error



Experiments with Managed Portfolios

Managed Portfolios Notebook