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1 Mean-Variance Optimization




Mean-Variance Optimization: Unconditional i

» assets i = 1,---, N have prices P;; and excess returns
Pit+1+ Ditt1
R;7t+1 = ’P—7 - Rf,t (1)
i,t N~~~

risk free rate

» if you invest fraction 7; ; of your wealth W; into security 7, the rest
stays on your bank account and grows at the rate Ry ; :

We = Z it We + (Wt_zﬂi,twt) (2)

investment in stock i

bank account




Mean-Variance Optimization: Unconditional ii

and then you sell your investments at time t and collect dividends so

that
Pit+1+ Dea
Wip1 = ZWtWi,t% + (Wt—zﬂi,tWt)Rf,t
" " 3)
= WiRf: + Wtzﬂi,tRi,tH
i
> Thus, the excess return on your wealth is
Wi i1
Vt‘;: — R = Zﬂ'i,tRi,tJrl = mRey1 (4)

1

» Thus, we want 7; that gives good returns. But what is the criterion?



Mean-Variance Optimization: Unconditional iii
> Intuitively, we like high return and low variance, hence, we might
try to find a static portfolio that maximizes

T = argmax <E[7T/Rt+]_] - 05 v Var[W/RtJrl]) (5)
w —

risk aversion

» The solution is Markowitz
© = Var[R] ' E[R]. (6)
P Alternatively, one could optimize

7 = argmax (E[w’RtH] ~ 05 v E[(W’Rt+1)2]) (7)

risk aversion



Mean-Variance Optimization: Unconditional iv

and the solution is

# = 7 HE[Re1R41]) " E[Reta]
1 (8)

= const - T, const =
14 E[Rt+1]’Var[Rt+1]_1E[Rt_H]

where

E[Re1Ri 1] = Var[Repa] + E[Res1]E[Re+1] = (E[Rie+1Re1])l e
(9)




Why Are the Two Markowitz Portfolios Proportional? The
Sherman-Morrison formula i

The magic behind is the

Lemma (Sherman-Morrison formula)

_ _ AL/ A7L
(A-i-XX/) 1 — A1 m (10)
and At
_ X
(A+x)"Ix = T A Ix (11)

Proof[Proof of the Sherman-Morrison formula] Recall that
x' = (xx)N

ij=1



Why Are the Two Markowitz Portfolios Proportional? The
Sherman-Morrison formula ii

is a symmetric, positive, semi-definite, rank — 1 matrix (all columns are

proportional to x). Then,

A lxx'A-1
A / A—l _
(e 1+X’A_1X)
xx' A1 S JAT AT
== 1+ x'A1x H 0l AT - 1+ x'A-1x (12)
xx' A1 il L1 XATIx
— “l_ Al Xy
/ 1+x’A*1x+XXA XX T A Tx
and
B - A lxx’A-1 A-1x
(A+x)Ix = (A1 - )x = T+ AT (13)




(Very Big) Issues with Markowiz

» Markowitz assumes that we know the truth! The true
E[R] = (E[Rirqal);, Var[R] = (Cov(Rie1, Rieyn))ly (14)

where N; is the number of assets (stocks?) available at time t.
» The problem is that:
® expected stock returns move a lot over time: Hence, using static
portfolio is a very bad idea

® we just do not have enough data to estimate E[R] and Var[R]. We
can use naive

_ 1 L . 1 < _ _
EIR] = =Y Re, Var[R] = = (R — E[R]) (R. — E[R])
t=1

t=1 Nx1 IxN

NxN



Incorporating Conditional Information: The conditional
expectation i

» We would like to incorporate conditional information.

» For the specific portfolio applications, we would need
Ei[Riz1] = arg min  E[||Rey1 — F(S)]?
Res1) = arg _min  E[|Ress — F(S0)IP]

Et[Rt+1R£+1] = 3rgG min E[HRt+1R£+1* G(St)H2]

RPRNXN

» The reality is that we still cannot compute E|-| because we do not
have enough data. So, we will still be doing

1
E¢[Xt41] = arg min — Zt: [ Xer1 — F(Se)? (16)



Incorporating Conditional Information: The conditional
Markowitz i

P> mean-variance optimization:

me = agmax (E[miRea] — 0.5 7 VardmReal) (17)
Tt —~—

risk aversion

and hence the Mean-Variance Efficient (MVE) portfolio is

~1 1
i =7 (Var¢[Re+1]) Ei[R:41]
~— N Y
conditional tangency portfolio NxN covariance matrix Nx1 expected returns

(18)




Incorporating Conditional Information: The conditional
Markowitz ii

» Similarly,
e = v M (Ee[ReraRi1]) ! Ee[Reval
B 1 (19)
T 1+ ERepa] VareRepa] “Ee[Rera]
where

Et[Rt+1R§+1] = Var¢[Ret1] + Et[Rt+1]Et[Rt+1]/ (20)
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2 Introduction: Complexity in Cross-Sectional Asset Pricing




Intoduction to Asset Pricing i

» Intuitively, we expect that

Pie = (Ree) " Ee[Pits1+ Dieia] (21)

Definitely wrong in the data

because the discount factor (R )~! is too naive

» We need a smart discount factor (SDF):

Pi: = E M 41 (Pit+1+ Djty1)] (22)
~——

stochastic discount factor

> with a bit of algebra, this is equivalent to

Ei[Rit41 Mt ti1] = 0 (23)



Intoduction to Asset Pricing ii
» By direct calculation,
Miy1 = 1 — 7R (24)
does the job:

Ei(Ret1Me 1] = Et[Rep1 (1 — Riiifte)]
= Et[Res1] — Et[Rt+1R§+1]7~Tt =0

implies
e = Et[ReyaRipa] " Ee[Reqa] (26)

We now state
Theorem

Nothing Has Alpha Against 7, Ry11



Theorem
The following are equivalent:

> F\’t’\i1 is the return on the conditionally efficient portfolio:

RtJrl = a; 71'th_|_]_, Ty = COVt(Rt_H_) 1Et[Rt+1] for some a; € R.
(27)

COVt(Ri7t+1, Rl{\il)

E:[R; = Bi:E[RM.], Bir = 28
t[Rijer1] = BitEe[Re4a] , Bie Vare[RY,] (28)
» Furthermore, RM satisfies (27) with
ar = 1 + E¢[Ri41]'Cove(Rer1) "L E¢[Res1] if and only if it prices
returns on any feasible portfolio unconditionally:
Cov(R; ¢, RM
ElR) = GEIRM), g = SRR (29)

Var[RtM ]



Proof i

Lemma (Sherman-Morrison formula)

A+x)t = A7 - A Ixd/A7Y /(1 + XA71x)

(A+x)"Ix = A7 lx/(1+ x'A"1x) (30)
for any matrix A € RP*P and any vector x € RP.
[Proof of Theorem 3] First, if
RM, = miRe1, (31)
then
Var[RY,] = miXim, (32)



Proof ii
where ¥; = Cov¢(Re41), e = Et[Re+1], and

Ty = at_lzt_lEt[Rt+1] = Et[Rt+l] = atztﬂ't

(33)
= atCOVt(Rt_A,_l,Rﬂl) = atVart[Rﬂl]Bt,
where
atVart[RtI\j_l] == at'ﬂ';zt'ﬂ't == at_luézt_l,ut (34)
while
Et[RM1] = mipe = a7 piXy e (35)

Reversing the arguments, we get that the first two items of the theorem
are, in fact, equivalent.

Now, suppose Rt"il is the efficient portfolio. Then,

E[R] = E[ZiRey1] = E[ZE(Rena]] = E[Z:B:EIRM].  (36)
D e ST i e



Proof iii
At the same time, by Lemma 4, we have that

Ee[Rer1Ri 1) e = (S + pepty) " e
=Y e /(1 + T ) (37)
= (1+6%,) 5 .,

where Q%M = ,uQZt_lut. Hence, if Rﬂl = R;,;7t, the identity

Ee[Re1] = Ee[Res1RI1] (38)
holds if and only if
T = (1+9/2v1,t)_1zt_1ﬂt (39)
because
Ee[Rey1RY1] = Ee[Rey1Repa]m: (40)



Proof iv

Now, standard arguments imply that the conditional identity (38) is

equivalent to the unconditional identity
E[RZ4] = E[RELRM (41)
holding for any Z. Furthermore,
E[RE1R] = Var[RIL]8% + E[REAIE[RY: (42)
and hence (41) is equivalent to
E[RZ] = Var[R1]8% + E[RELIEIRY], (43)
which is equivalent to

B Var[RMl] P
E[Rt+1] mﬁ . (44)



Proof v

Applying (41) to Rﬂl, we get

EI(RY1)Y] = EIRM (45)
and, hence, after some algebra,

Var[Rt"j’rl]

“erRig = ERM): (46)

The proof is complete.




Testing Conditional Efficiency

» We cannnot compute E;[']

» Instead, we can build instruments Z; and test that
EiMit1Rit1] = 0 & E[ZeMipiReya] = 0

for all instruments!

» Thus, we need to build infinitely many Z; thought machine learning
and then test

1
724 Mit1Rey1 = 0
t

Complexity is always there!



From Non-Tradable to Tradable SDFs i

» What about asset pricing theory?
» the SDF

=IMRS
comes from the Euler equation (things get more complex with
Epstein-Zin preferences, expectations, sentiments, etc)

e U (Cey1)
U'(Ce)

=IMRS

E (Rp1+Ree)] = 1 & E[MeyiRea] = 0 (47)

because
Ree = Ee[Meq] ™t (48)



From Non-Tradable to Tradable SDFs ii

» When markets are complete,
Mii1 = 3:Meys (49)

» In general, we need to project

5:Mis1 = Proju(Me1) = argmin E[(Mep1 — (a — 7' Res1))?]
—— a,m
unique tradable
(50)
» Note the scale 3; is needed to catch the interest rate,
Et[gtMt+1] = Rf_} (51)
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3 Empirical Asset Pricing Via Machine Learning




Panel Datasets: Leveraging the Power of Big Data i

» Now comes the big question: How do we measure the conditional

expectations, E¢[Ry1] and E¢[Rey 1R 4]?

» Running prediction models per stock is infeasible due to insufficient
data:

EfRitr1] = &(Xit)
bad idea

» use panel data

Et[Ri,t+1] < g(Xi,t)
good idea

» panel means same function g for all stocks.

» non-linear g means machine learning.



Panel Datasets: Leveraging the Power of Big Data ii

» Conditional covariance matrix

/ 2
Et[Ri,t+1Rj,t+1] = X,',t Xt + 5/JU;¢
—_———— ——
systematic covariance idiosyncratic variance

where Y ¢ and o} ; are to be estimated.

> Can we avoid computing the conditional covariance matrix?




Managed Portfolios and Rich Conditional Factor Structures i

, =
» Suppose Rj 11 = it 0 Fii1 + €itt1
~—~ S~~~
conditional betas  latent factors
>
E; 'Et—i-l = AF Et[/:_t-s-l/:_t, 1] = 2F
[Fesal , ) + Ny
latent factor risk premia latent factor cov
>
~/ /
Mt+1 = 1- 7'('th+]_ =1 — W(St) Rt+1 y (52)

where 71, = Et[RHlR;H]_lEt[RtH] and, hence,

! =l
W(St) - = (SfZF,tSt + Zg) St)\F (53)
v .
conditional covariance conditional expectation



Managed Portfolios and Rich Conditional Factor Structures ii
» Define managed portfolios
Fir1 = SiRei1. (54)
and the unconditionally efficient portfolio
A = E[Fer1Fi ] E[Feqa] (55)

» By construction,
Mt+1 = ]. - )\/Ft+1 (56)

prices factors unconditionally:
E[Mt11Fea] = 0 (57)

» However,

Ei[Mty1Re 1] # 0
S S e G e g



Managed Portfolios and Rich Conditional Factor Structures iii

NSIRy1 # M SIZ: MRy,

with

Zt = (StzF,tsi_/'—’_Za)




Theorem

Suppose that in the limit, as P — oo, the vector of latent risk premia \g
satisfies

FANE — 0 (58)
for any symmetric, positive definite A with uniformly bounded trace. Let
Miy1=1—XNFey, (59)

be the factor approximation for the SDF with A. Then, M;,1 converges
to M,,1 and the Sharpe ratio of X' Fy41 converges to that of W(S:) Ry 1
as P — oo. In particular,

EMiy1Rer1] — O




Sources of Complexity i

» We now know: If

Reiqi = S F + ¢ 60
t+1 \,t./ t+1 t+1 ( )
N x P signals Px1 latent factors residuals
then we build
Fiv1 = SiRer1 = (SiSt)Fer1 + (Sieet1) (61)

» But where do S; come from?

» Suppose
Rit41 = B(Xit) Gey1 +uirt1, (62)
——
Kx1



Sources of Complexity ii

P
5 X,' ~ 5,' = =S 5,' ) 63
(Xi) Z_:lﬁp e = =it (63)
p= KxP Px1
where
Si,t:A(QXi,t) = (A(w;Xht))g:l. (64)
> This gives

Rii1 =~ StFty1 + ury1, with

. _ . -, (65)
Fir1==Gty1, v = E[Ft+1] == E[Gt+1]-

» Thus, if 8 is non-linear, we need to go for high-dimensional S;



Sources of Complexity iii

» This gives an SDF

M~

Mt+1 = 1—A/Ft+1 = 1—A/A(Xt)/Rt+1 =1 - W(X,'J-) Rf7t+1

i=1
(66)

with

w(Xit) = D ApAWpXir)
P




Complexity in the Cross Section: A Brief History i

» Most academic attempts to build an SDF assume

w(X; t)Rit+1 (67)

M=

*
t+1 — 1-
i=1

> Cross-sectional asset pricing is about w; = w(X;)
® Explains differences in average returns
® Defines the MVE portfolio
» Why does cross-section literature rarely start here? Because w must be
estimated

® This is a high-dimensional (complex) problem
® \We know: In-sample tangency portfolio behaves horribly out-of-sample
® Why? Complexity (n/ T +# 0) — LLN doesn’t apply — IS and OOS

diverge



Complexity in the Cross Section: A Brief History ii

» Standard solution: Restrict w

® E.g., Fama-French:  w;; = by + b1Size; ; + boValue;;  (Brandt et
al. 2007 generalize):

N N
> w(Xi)Riesr = > _(bo+ biSizej ¢ + byValuej ¢)Ri 41
i=1 i=1
. = " (68)
= b Y Ries1 + b1 Y Sizei Ripi1+ by Y Valuei R
i=1 i=1 i=1

= boMKTyi1 + biSMBei1 + byHML,ys .

® Reduces parameters, implies factor model:
Mii1 =1— bgMKT — by SMB — b HML

® “Shrinking the cross-section” Kozak et al. (2020) — use a few PCs of
anomaly factors



Complexity in the Cross Section: Machine Learning
Perspective i

Rather than restricting w(X})....

> ...expand parameterization, saturate with conditioning information

» For example, approximate w with neural network: W(X,-J) = XS,-J

> P x 1 vector S;; is known nonlinear function of original predictors X; ¢




Complexity in the Cross Section: Machine Learning
Perspective ii

» Implies that empirical SDF is a high-dimensional factor model

N
Rity1 = Z Z M Sie(k)) Ritp1 = zk:/\k;&,t(k)/?i,tﬂ

i=1 i=1 k
Si,e(k)=fie(Xi,¢)

INE
§

Fr,e41

(69)

M;(+1 ~ Mt+1 = ]. - A/5£Rt+1 = ]. - )\IFt+1




Complexity in the Cross Section: Machine Learning
Perspective i

The Objective:

» Maximize out-of-sample Sharpe ratio (equivalently, minimize out-of-sample
pricing errors) of SDF

The Choice:

» Fix T data points. Decide on “complexity” (number of factors P) to use in

approximating model

The Tradeoff:



Complexity in the Cross Section: Machine Learning
Perspective ii

» Simple SDF (P << T) has low variance (thanks to parsimony) but is a poor
approximator of w

» Complex SDF (P > T) is a good approximator but may behave poorly (and
requires shrinkage)

» Which P should the analyst opt for? Does the benefit of more factors justify
their cost?

Answer:

> Use the largest factor model (largest P) that you can compute




Implementation i

» Build a bunch of features (random features if you want a shallow
model; deep features (output layer) if you want a deep model).

» Call them S; ¢(k) = fi(Xi;0k), k=1,---,P

» Build the factors

Ni
Ft+1(k) = Z Si,t(k)Ri,t—irl (70)
=il

» Take the vector of factors Fri1 = (Fey1(k))E_; and minimize
1T
min — ;(1 — NFe1)? + z||A? (71)
This objective is known as the Maximal Sharpe Ratio Regression
(MSRR). For a deep model, you need to minimize this objective
using GD



Implementation ii

» Why MSRR? Well,

.

1

72(1—)\/Ft+1)2 ~ E[(1-NFer1)’] = 1-2EN Fepa HE[(N Fern)?]
=1

(72)
where
U(x) = x —0.5x?
> NOW, 7':("1- = Et[Rt+1R£+1]_lEt[Rt+1] solves
max EU(m}Re1)] (73)

It is conditionally efficient for a quadratic utility. By the law of
iterated expectations,

E[E[U(mtRe1)]] = E[U(miRes1)]
S S e G e



Implementation iii

and dynamic consistency gives

max  E[U(miRe+1)] = E[m;;:\x E:[U(miRe41)]

all policies 7

» Thus, MSRR looks for conditional policies that maximize
unconditional utility and hence, by consistency, are conditionally
optimal.

» For a shallow model, you can do it in closed form:
1 < R
Mz) = <z/ + TZHF{) 725 % Mz)  (78)
=l =1 Complexity!

where
M(z) = (zI + E[FF'])1E[F] (75)



Implementation iv

» Limits To Learning

Z.(z)

ER) Froal ~ ZZED(Z(2) Fral,  (76)
where
Z(z) = z(1+&(2)) > z. (77)
> In fact,
Er[\z)Fri] = Z*iz) Er[M(Z.(2)) Fra4]
= Z*Z(Z))‘*(Z*(Z))/E[F] _ Z*ZZ)E[F]/(Z*(Z)/+E[FF,])_IE[F]

(78)



Implementation v

Proof. Let E[F] = u, E[FF'] = V; everything is i.i.d. across t. Then

T =il
\z)'u] = E[ZF’(zH;;HF;) I

. 1
E[F{ (2l +Vr,)™ —1
1+ T (21 +0r) R

WE((z +07e) (L + £z )

~
~

F: is independent
(79)
S S e G e 4



Implementation vi

where

.
. 1
Ur, = TZIFTF; — FiF]
where we have used that
1 A~ -1
T-1F! (z/+wm) Fo ~ €(z;¢) (80)

The claim follows now from the Master Theorem:

N -1
2i (21 +0re) po~ Zo(Zd ) (81)
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4 Empirics for the US Stock Market




Empirical Analysis

» Analyze empirical analogues to theoretical comparative statics
» Study conventional setting with conventional data

® Forecast target is monthly return of US stocks from CRSP 1963-2021
® Conditioning info (X;) is 130 stock characteristics from Jensen, Kelly,
and Pedersen (2022)

» Out-of-sample performance metrics are:

® SDF Sharpe ratio
® Mean squared pricing errors (factors as test assets)




Empirical Analysis i

Random Fourier Features

» Empirical model: My11 =1 — NS[Rii1

> Need framework to smoothly transition from low to high complexity

\4

Adopt ML method known as “random Fourier features” (RFF)
® let Xi: be 130 x 1 predictors. RFF converts X ; into

Seie = sin(7eXi,t), e ~ iidN(0, y1)
® S;i+: Random lin-combo of X . fed through non-linear activation
® we then rank the random features in the cross-section

» For fixed inputs can create an arbitrarily large (or small) feature set

® Low-dim model (say P = 1) draw a single random weight
® High-dim model (say P = 10,000) draw many weights

» In fact, RFF is a two-layer neural network with fixed weights (7) in
the first layer and optimized weights () in the second layer



Empirical Analysis
Training and Testing

> We estimate out-of-sample SDF with:

i. Thirty-year rolling training window (T = 360)
ii. Various shrinkage levels, log;o(z) = —12,...,3
iii. Various complexity levels P = 102, ..., 10°

» For each level of complexity ¢ = P/ T, we plot

i. Out-of-sample Sharpe ratio of the kernels and
ii. Pricing errors on 10° “complex” factors: Fyy1 = S/Riy1

» Also report Sharpe ratio and pricing errors of FF6 to benchmark our results




Out-of-sample SDF Performance

.9 4.0
2 P—
T 35
m '/// - - .
g y Main Empirical Result
E Z:D //// -
B ous V » OOS behavior of ML-based SDF
w0 — closely matches theory
e e » High complexity models

— = ® |mprove over simple models

- by a factor of 3 or more
— z=1000
-5 ® Dominate popular benchmarks

Pricing Error

0 J k like FF6
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Performance in Restricted Samples: Sharpe Ratio
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SDF Performance in Restricted Samples: Pricing Errors
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What About

“Shrinking” With PCA?

Sharpe Ratio

Pricing Error




Experiments with Managed Portfolios

Managed Portfolios Notebook



https://colab.research.google.com/drive/10GsMup6ugNh4uJc48kk99U48bm_BZsqJ
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