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Decentralized Exchange'

By SEMYON MALAMUD AND MARZENA ROSTEK*

Most assets are traded in multiple interconnected trading venues.
This paper develops an equilibrium model of decentralized markets
that accommodates general market structures with coexisting
exchanges. Decentralized markets can allocate risk among traders
with different risk preferences more efficiently, thus realizing gains
from trade that cannot be reproduced in centralized markets. Market
decentralization always increases price impact. Yet, markets in which
assets are traded in multiple exchanges, whether they are disjoint or
intermediated, can give higher welfare than the centralized market
with the same traders and assets. In decentralized markets, demand
substitutability across assets is endogenous and heterogeneous
among traders. (JEL D43, D44, D85, G11, G12)

In classical economic theory, markets are centralized. All units are exchanged
through a single market clearing at the terms of trade that apply to all agents equally.
In today’s markets, essentially all financial assets are traded in multiple coexisting
and interconnected trading venues. Trade away from centralized exchanges is com-
mon not only for assets and goods with heterogeneous units such as real estate,
but also for homogeneous assets. Indeed, most bonds (government, municipal, and
corporate) are traded over the counter, as are currencies, loans, and (more recently)
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stocks.! In fact, the past two decades have seen new types of marketplaces that offer
different types of market clearing—direct matching with an intermediary, trading in
a dealer network, or an electronic centralized exchange—to institutional and retail
investors. This paper examines the potential for a decentralized market to create
gains from trade. What are the economic mechanisms in decentralized markets that
have no centralized market counterparts?

The growing literature on decentralized trading emphasizes important frictions
that are associated with decentralization of trade, such as search, counterparty risk,
or asymmetric information. With “decentralization” introduced as a friction in a
competitive model, a typical result argues that the absence of frictions would cor-
respond to maximal welfare. To understand the potential for welfare gains with
decentralized trading, we consider markets with any number of strategic traders and
divisible assets. The sole assumption of the centralized market model that we relax
is that a single market clearing determines all agents’ allocations. Namely, the mar-
ket consists of exchanges, each defined by the subset of agents who trade there and
the subset of assets traded, each with a separate market-clearing price. A market is
centralized if there is a single exchange for all traders and assets and decentralized
otherwise. Traders can participate in many exchanges in which the same or dif-
ferent assets may be traded. This accommodates market structures with coexisting
exchanges, including centralized markets and empirically common market struc-
tures with private exchanges (with restricted participation), public exchanges, and
intermediation. Preferences and assets are described by constant absolute risk aver-
sion (CARA) utilities and Gaussian payoffs. Gains from trade come from risk shar-
ing: endowments (which are agents’ private information and are independent) and
risk preferences are heterogeneous. Each exchange operates as a (uniform-price)
double auction, and agents submit demand and supply schedules in the exchanges
in which they participate. Thus, the model is a decentralized market counterpart of
double auction models in the tradition of Kyle (1989), Vives (2011), and the capital
asset pricing model (CAPM). This permits a direct comparison of predictions for
centralized and decentralized markets.

Why might a decentralized market be more efficient? In markets with strategic
traders, the Pareto efficiency result of the First Welfare Theorem does not apply:
even if the total number of traders is large, traders in decentralized markets gener-
ally have a strictly positive price impact in the exchanges where they participate. In
any market, centralized or decentralized, equilibrium allocations of each trader is a
combination of his initial endowment and an aggregate risk portfolio (which cor-
responds to risk nondiversifiable in equilibrium). Our starting observation is that in
noncompetitive centralized markets, unless all traders’ risk preferences are symmet-
ric, the aggregate risk portfolio that all traders trade toward differs from the efficient
portfolio (which maximizes the total utility over feasible allocations, is independent

In the US equity market, the NYSE executes less than one-quarter of the volume in its listed stocks; the
remaining volume is created in over 10 public exchanges, more than 30 private exchanges (liquidity pools), and
over 200 broker-dealer networks. Over the past few years, trading in private exchanges has grown by more than
50 percent in the US and has more than doubled in Europe (Schapiro 2010). Similarly, while prior to 2007, equity
markets in Europe were characterized by dominant exchanges in each domestic market, the Markets in Financial
Instruments Directive (MiFID) in 2007 created more than 200 new trading venues in which equities, bonds, and
even derivatives are traded. As of 2012, these alternative venues accounted for at least 30 percent of total equity
turnover. Duffie (2012) provides an overview.
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of the market structure, and corresponds to risk nondiversifiable in the market, or
systematic risk). In addition, the centralized market allocates risk in a particular
way: relatively less risk-averse agents face a more inelastic residual supply and
hence have larger price impact. Thus, less risk-averse agents will be reluctant to
trade, and highly risk-averse traders will retain a large fraction of their endowment
risk in equilibrium. This suggests that the efficiency of the centralized market allo-
cation depends on the distribution of endowments among agents with different risk
preferences. This further suggests that, to increase welfare, a decentralized market
would have to reallocate systematic risk toward less risk-averse agents. We show
that a decentralized market can increase the total welfare compared to the central-
ized market. In fact, simply breaking up the centralized market to create disjoint
exchanges can increase welfare.

We present the following main results. First, when a market becomes more decen-
tralized—some agents trade with fewer other traders or trade fewer assets—traders’
price impacts weakly increase in any exchange and are thus lowest in the central-
ized market. This holds regardless of the asset structure in the more decentralized
market. Furthermore, a general complementarity holds: any change in the market
structure that lowers price impact “locally” in an exchange lowers price impact in all
other exchanges as long as they are indirectly connected. For instance, creating new
private exchanges, in which participation is restricted, weakly improves liquidity in
the market.?

Second, although the centralized market minimizes price impact for all traders, a
decentralized market with the same traders and assets may give higher total welfare.
The key is that decentralized trading changes the agents’ ability to diversify: since
their participation in the exchanges differs, agents trade distinct components of the
aggregate risk portfolio. Given that the centralized market aggregate risk portfolio is
generally inefficient, utility can increase despite the higher price impact. Moreover,
traders’ equilibrium price impacts are no longer linked to risk preferences in the
particular way in which they are with centralized trading. Essentially, by allowing
heterogeneous access to traders and assets, a decentralized market can allocate risk
among traders whose risk preferences differ more efficiently.

Our results imply that restricting trader participation, while increasing all traders’
price impacts, may increase welfare. In particular, under conditions, the fact that
trading is noncompetitive makes the case for various forms of market decentral-
ization recently implemented or debated: breaking up exchanges and asset decon-
solidation (such as ring-fencing of investment banking units and swaps push-out
required by the Dodd-Frank Act and MiFID, demerger, or specialization in trading
certain assets) may increase welfare;> moving an asset from centralized to OTC
clearing and intermediation may increase welfare.

20ne expects that this holds more generally when new exchanges do not affect too much inference about values
in the existing exchanges. The creation of new exchanges has increased competition and substantially decreased
liquidity costs in the US stock market. Similar decreases in trading costs occurred in Canada, Europe, and Asia,
where different regulatory environments allowed electronic exchanges to develop earlier than those in the United
States (Knight Capital Group 2010; Angel, Harris, and Spatt 2011; and O’Hara and Ye 2011).

3In practice, markets are decentralized (in our sense) also because different participants trade different assets—
by choice or regulation. Even large financial institutions typically participate in only a few trading venues and trade
a small subset of existing securities: e.g., pension funds cannot trade many types of derivatives, banks are allowed to
hold but not trade loans, and most hedge funds have a clear specialization in trading a limited number of securities.
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When should one expect a decentralized market to increase efficiency? We
show that when all traders’ risk aversions are symmetric, the centralized market
maximizes welfare among all market structures. This holds regardless of the distri-
bution of initial endowment risk. With sufficiently heterogeneous risk preferences,
the welfare-maximizing market structure is decentralized for some endowment dis-
tributions, particularly those for which the lowest risk aversion agents hold large
nondiversified endowments initially. More precisely, what matters is not the endow-
ment shocks per se but how the inefficient part of endowments, and hence the need
to trade, is distributed across traders. Welfare gains from decentralization exist even
if the number of traders is arbitrarily large. Sufficient heterogeneity in risk prefer-
ence needs to hold only for a few market participants, and endowments need not
become more extreme as the market grows.

Underlying certain decentralized market effects that have no centralized mar-
ket counterparts is that when trading is decentralized, demand substitutability for
assets (i.e., demand Jacobian) is endogenous and generally differs among trad-
ers. Namely, we show that in centralized markets, all traders’ equilibrium price
impacts are always proportional to the assets’ fundamental covariance. The factor
of proportionality depends on the trader’s risk aversion, with less risk-averse trad-
ers having greater price impact. In contrast, when the market is decentralized, the
within- and across-exchange price impact induced by others’ behavior depends
on who participates in each exchange and which assets are traded so that price
impact is generally not proportional to fundamental risk. This nonproportionality
of incentives in risk implies that demand substitutability for the same assets is
heterogeneous among traders who participate in different exchanges. In contrast,
in centralized markets, agents’ demand substitutability always corresponds to the
assets’ fundamental payoff substitutability and hence is the same for all traders.
The endogenous demand substitutability creates incentives for agents to special-
ize in trading different assets—as specialist intermediaries or non-intermediating
dealers—and may increase welfare in the Pareto sense, even without affecting
aggregate risk. Specifically, by changing who trades which assets without neces-
sarily changing who trades with whom, decentralizing a market may allow for a
reduction in idiosyncratic risk, whose changes do not affect the risk that is nondi-
versifiable in equilibrium.

The methods we introduce will be useful to other researchers studying games
and general equilibrium on networks and hypergraphs. A hypergraph generalizes a
graph by allowing an edge to connect any number of nodes, beyond just two (e.g.,
Berge 1973). Relative to the existing literature on games on networks, such games
allow applications with strategies that have multiple dimensions over actions
and attributes. The model allows equilibrium analysis of traditional industrial
organization questions (market power, competition, pricing, product and market
design, mergers) in decentralized markets. Let us note that decentralized market
games are not (super- or sub-)modular, and results that have been established for
modular games do not allow us to draw conclusions about welfare in decentral-
ized markets. We characterize the comparative statics of equilibrium and welfare
with respect to preferences, assets, and market structure for decentralized mar-
kets with arbitrary market structures, multiple assets, and any number of strategic
agents.
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Related Literature—This paper is part of the growing literature on decentralized
markets. Most modern models are based on graphs, random or fixed. The random
search and matching approach assumes that trade occurs in large markets among
a continuum of traders, in which centralized trading would be efficient (e.g., Gale
1986a,b; Duffie, Garleanu, and Pedersen 2005; Vayanos and Weill 2008; Weill
2008; Duffie, Malamud, and Manso 2009, 2014; Lagos and Rocheteau 2009; Lagos,
Rocheteau, and Weill 2011; Afonso and Lagos 2012; Hugonnier, Lester, and Weill
2014; Atkeson, Eisfeldt, and Weill 2015). Empirically, while some markets are best
described by random meetings among traders who are small relative to the mar-
ket, in others (e.g., dealer networks or interbank systems) relationships are not ran-
dom* and are dominated by large institutional investors, who have price impact.
Dealing with price impact often serves as a primary motivation to create an OTC
exchange.> Thus, the fact that agents are nonnegligible in trading matters for why
markets are decentralized. This paper considers markets with any number of trad-
ers, all of whom are strategic. Allowing (not assuming) noncompetitive behavior is
central to our predictions and turns out to be important for thinking about certain
implications of decentralized trading. We take the market structure (who trades with
whom) as given and, in this sense, are closer to the strand of literature that views
agents as interacting on a fixed network (e.g., Kranton and Minehart 2001; Gale and
Kariv 2007; Blume et al. 2009; Gofman 2011; Manea 2011; Nava 2015; Condorelli,
Galeotti, and Renou 2017; Choi, Galeotti, and Goyal 2017; Babus and Kondor 2016;
Elliott 2015; Rahi and Zigrand 2013; Bramoullé, Kranton, and D’ Amours 2014).
Like the random matching models, the existing networks literature largely views
decentralization as a restriction on the efficiency of trade.

In addition, just as the standard equilibrium theory is based on a single market clear-
ing for all traders and assets, the existing literature on decentralized trading makes the
opposite assumption that all transactions are bilateral.’ We study networked markets
with coexisting exchanges (i.e., hypergraphs). A model which accommodates market
structures described by hypergraphs is not essential to our welfare results. It allows
studying equilibrium in any market structures “between” centralized and bilateral
trading in which groups of traders interact. During the past two decades, transactions
occurring outside open exchanges have largely shifted to “auctions” (market clearing
via aggregation of multiple demands and supplies) introduced for large institutional
traders, dealers and retail investors. Moving beyond bilateral links also enables one
to examine when a decentralized market can behave like the centralized market, why,
and the conditions under which equilibrium behavior differs.

41t is well documented that dealers or brokers trade via an established network structure and that trading rela-
tionships exist between banks. An average bank trades with a small number of counterparties, and most banks
form stable relationships with at least one lending counterparty; e.g., the US Federal Funds market (Bech and
Atalay 2010; Afonso, Kovner, and Schoar 2013), interbank markets (Craig and von Peter 2014; Cocco, Gomes, and
Martins 2009), and US municipal bonds market (Li and Schiirhoff 2012).

5 For example, Biais, Bisiére, and Spatt (2010); Knight Capital Group (2010); Angel, Harris, and Spatt (2011).
Biais and Green (2007) attribute the historical shift in the US municipal and corporate bond markets toward OTC
trading to the increased importance of institutional investors.

6 Corominas-Bosch (2004) and Elliott (2011) allow for multilateral bargaining with search. Some models (see
Duffie, Garleanu, and Pedersen 2005; Lagos and Rocheteau 2009; and Lagos, Rocheteau, and Weill 2011) assume
that trade can only happen through special intermediaries (dealers) who provide liquidity. Rahi and Zigrand (2013)
study trade of price-taking investors intermediated by arbitrageurs.
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Finally, both random and fixed graph models typically derive the terms of trade
from bargaining (e.g., take-it-or-leave-it offers) or posted prices and have efficient
surplus sharing on each link. In our model, trade occurs through the uniform-price
double auction in which agents submit demand or supply schedules (equivalently
and in practice, combinations of limit and market orders) in the exchanges where
they participate. The uniform-price market clearing is a precise analog of the
market clearing in centralized market models—in general equilibrium and their
game-theoretic counterpart of games in demand and supply functions. As we show,
traders have nonnegligible price impact—the behavior of prices and allocations dif-
fers from that in trading environments with efficient risk sharing per link.

I. A Decentralized Market Model

Market: Traders, Assets, and Exchanges.—Consider a market with I traders who
trade K risky assets in N exchanges. Each exchange has separate clearing prices. We
index agents by i, assets by k, and exchanges by n. An exchange n € N is identified
by the subset of agents I(n) C I who trade there and the subset of assets traded
K(n) C K. The set of exchanges M = {(I(n), K(n))},, which we take as a prim-
itive, represents the market structure. Thus, M is a nonempty subset of the power
set of I x K, which, together with the set of agents / and assets K, corresponds to
a hypergraph.” Agents can participate in many different types of trading venues for
possibly nondisjoint subsets of traders (e.g., a public exchange, in which all trad-
ers participate; a private exchange, which restricts participation to a subset of trad-
ers; and intermediation). We assume that at least three agents participate in every
exchange: I(n) > 2foralln.®

The K risky assets have jointly normally distributed payoffs R ~ N(d, X) with
positive definite covariance X; a riskless asset with a zero interest rate (a numéraire)
is also available. Each trader i maximizes the expected CARA utility function
E[—exp(—;(—q%p + (¢° + ¢)™R))], where o; is agent i’s absolute risk aver-
sion, g; is his endowment vector of risky assets, g; is i’s vector of trades of risky
assets, and p denotes the vector of prices. Endowments are (independent) private
information. Using the fact that asset payoffs R; are normally distributed, we have
E[-exp(—a;(—¢{p + (¢! + ¢)"R))] = —exp(—a;Ui(g;)) with

(1) Uig) = d"(a® + a) — F(a® + ) S(a? + 4) - P74

and hence, equivalently, trader i maximizes the quasilinear-quadratic utility func-
tion (1).

In the analysis, we treat assets traded in different exchanges as different assets.
That is, we do not impose a priori that identical assets (in the sense of N(d, X))

7 A hypergraph is defined as a pair (X, E), where X is a set of elements called nodes and E is a set of nonempty
subsets of X called (hyper-)edges. In our model, X = (I, K) and an edge (I(n), K(n)) represents exchange n with
I(n) agents and K(n) assets.

8 As is well known, in centralized markets with two traders, a linear equilibrium with trade does not exist with
independent private values (e.g., Kyle 1989). With negatively correlated values, equilibrium exists for any number
of traders (Rostek and Weretka 2015b).
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will trade at the same prices in different exchanges.® Thus, we treat a market with
K assets traded in N exchanges {(I(n), K(n))}, as a market with ) ,K(n) (replicas
of) assets and a ()_,K(n)) x (}_,K(n)) positive semidefinite covariance matrix V,
induced by covariance ¥ and the set of exchanges. This paper studies how the fact
that exchanges are interlinked, through traders or assets, affects market behavior.
Covariace matrix V describes the interconnectedness among the exchanges via trad-
ers and assets. We use capital bold notation for objects defined directly in a decen-
tralized market.
A trader i who participates in a subset of all exchanges N(i) C N maximizes

o T
(2 Ulg) = le(i)(‘lio +q) — 7’(‘11’0 + ‘Ii) VN(i)(qio + qi) - (pN(i))Tqia

where V ;) is the submatrix of the covariance matrix V, which corresponds to the
assets traded by agent i in exchanges N(i), dy; is the subvector of the expected
payoff vector d, ¢ € RM) and ¢; € R have the dimension of R¥?) given by
Y ey K(n),!0 and pyy = (p)) eny) denotes the vector of prices in exchanges N(i).
Market structure {(1(n), K(n))}, is equivalently described by trader participation in
the exchanges {N(i)};, given agents I and assets K.

Example 1 (Centralized and Decentralized Markets):

(i) The centralized market with multiple assets: All agents I trade assets K in one
exchange; N = {(,K)},andV = X.

(ii) A decentralized market for one asset: All agents I trade the same asset 1 with
avarance ¥ = 0% N = U{(I(£),1)},; and the covariance matrix V is sin-
gular and has rank 1, V = ¢%1 where 1 is a matrix with all elements equal
to 1.

(iil) Private exchanges: In addition to the public exchange for K' C K assets,
defined analogously to (i), there are L private exchanges (e.g., liquidity pools)
in which only subsets of agents can trade different subsets of assets. There
are L (possibly nondisjoint) subsets I(1), ...,I(L) C I of agents, each trad-
ing in exchange | € L; N = {(I,K')} U {((£), K(£))}, with K’ + ) _,K(¢)
assets. Essentially all existing financial assets—most notably currencies,
fixed income instruments (e.g., government and corporate bonds), and all
derivatives—are traded in market structures that can be described as multiple
interconnected private exchanges.

Agents can participate in many different types of trading venues for possibly
non-disjoint subsets of traders (e.g., a centralized exchange, a dealer network,

9 For a discussion of arbitrage, see footnote 21.

10We will be referring to the risky part of endowments, because this is the part that matters for the results.
With K assets, the actual dimension of the endowment vector is K. We use notation RM® to represent that the same
asset can be traded in many exchanges: replicas of the same asset traded in different exchanges correspond to dif-
ferent coordinates, and the split of a given asset’s endowments among the exchanges where it is traded is arbitrary.
Equilibrium allocations do not depend on the split of the endowment across exchanges.
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liquidity pools); there can be intermediation between traders in different types of
trading venues.

Given the quasilinearity of the utility functions in cash (the numéraire), total wel-
fare can be compared across market structures through the sum of the utilities (2)
evaluated at the corresponding equilibrium allocations. Quasilinearity and market
clearing imply that total welfare does not depend on prices,

3) ZUi(%‘) = ;qu,'o - Z%(‘L’O + qi)TVN(i)(qio + q).

It is clear that cash transfers exist for which one market Pareto dominates another if
and only if the sum of equilibrium utilities is larger in the former.

Decentralized Double Auction.—Each exchange n operates as the standard
uniform-price double auction for traders i € I(n) (e.g., Kyle 1989 Vives 2011;
CAPM). Trader i submits a (net) demand schedule g; (py)) : RM) — RM), which
specifies demanded quantities of assets in the exchanges in which he participates;
the demand is strictly downward-sloping in each exchange. The market clears
simultaneously in all exchanges as ) ; g;( Pa@) = 0, where g;(pyg): RY — RV is
defined as equal to g; on N(i) and 0 on other exchanges N\N(i). This market-clearing
condition defines the equilibrium price vector p*; trader i receives ¢; = q;(Px())
and pays pyg) * ¢; = p* + ;- All traders are strategic; in particular, there are no
noise traders.

Equilibrium.—We study the Bayesian Nash equilibrium in linear bid schedules
(hereafter, equilibrium). With divisible goods, equilibrium is invariant to the dis-
tribution of independent private uncertainty.!! Equilibrium with strategic traders
in any market structure, centralized or decentralized, can be characterized through
two conditions which correspond to individual optimization and market clearing
(Proposition 1 and Theorem 1).

I1. Equilibrium in Centralized versus Decentralized Markets

In this section, we compare how centralized and decentralized markets allocate
risk. We begin with centralized trading to separate the changes relative to the com-
petitive equilibrium due to noncompetitiveness itself versus market decentraliza-
tion. The characterization of equilibrium for heterogeneous risk aversion—which,
to the best of our knowledge, is new as is the uniqueness of the linear equilibrium

' Equilibrium schedules are optimal even if traders learn the independent value endowments q? (or equiva-
lently, stochastic marginal utility mtercepts, d = d — aZ§?) of all other agents. The key to this ex post prop-
erty of Bayesian Nash equilibrium is that permitting pointwise optimization—for each price—equilibrium
demand schedules are optimal for any distribution of mdependent private information and are independent
of agents’ expectatlons about others’ endowments. Equilibrium is linear if schedules have the functional form
ofgi(*) = ap+ o qq, + Qi pp. Strategies are not restricted to linear schedules; rather, it is optimal for a trader
to submit a linear demand given that others do. The approach of analyzing the symmetric linear equilibrium is
common in centralized market models (e.g., Kyle 1989; Vayanos 1999; Vives 2011). Our analysis does not assume
equilibrium symmetry.

This content downloaded from
128.178.67.107 on Thu, 17 Sep 2020 13:25:23 UTC
All use subject to https://about.jstor.org/terms



3328 THE AMERICAN ECONOMIC REVIEW NOVEMBER 2017

for many assets (divisible goods) in Proposition 1—is the key to the welfare effects
of centralized and decentralized trading.

A. Equilibrium and Allocation of Risk in Centralized Markets

Suppose that all traders participate in a single exchange: N(i) = N = {(,K)}
andVy; = ¥ = Vforalli € I(Example 1 (i)). In equilibrium, the (net) demand
schedule of trader i equalizes his marginal utility with his marginal payment for
each price,

(4) d— a,-E(q,-O + q,-) = p + Aig;,

where A; measures the price impact of trader i in the exchanges in which he par-
ticipates (i.e., “Kyle’s lambda”). Here, A; is the K x K Jacobian matrix of the
inverse residual supply of trader i, which is defined by aggregation through the
market clearing of the schedules submitted by other traders, {g;(p): R¥ — RX},.
The inverse of price impact is a common measure of liquidity: the lower the price
impact, the smaller the price concession a trader needs to accept to trade, the more
liquid the market. It follows from (4) that if trader i knew his price impact A;, which
is endogenous, he could determine his demand by equalizing his marginal utility
and marginal payment pointwise. Let g -, A;) : R¥ — R¥ be the schedule defined
by pointwise optimization (4) for all prices p by trader i, given his assumed price
impact A;,

(5) %(p.A) = (X +A)7'd-p— xZq)).

Equilibrium price impacts {A;}; can now be determined by market clearing. Namely,
the equilibrium condition requires that the price impact assumed by trader i in his
pointwise optimization (5) is equal to the actual slope of his inverse residual supply,
resulting from the aggregation of the other traders’ submitted schedules. Proposition
1 shows that the system for equilibrium price impacts can be solved explicitly.

PROPOSITION 1 (Centralized Market Equilibrium): A profile of demand schedules
and price impacts {q;( -, A,), A;}; is an equilibrium in a centralized market if and
only if
(i) each trader i submits schedule (5), given his price impact A,
(ii) trader i’s price impact is
— _l .
(6) A,’ = (Zﬁé,(ajz + Aj) l) , 1 = 1, ey 8
Furthermore,
(iii) Equilibrium exists and is unique;
(iv) Trader i’s price impact A; is proportional to the covariance matrix ¥,
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. 2
7 -Ai = ﬁ,-a,-Z with ﬁ,‘ = s
) ab — 2 +1/(a;b)? + 4

where b e R, is the unique  positive  solution to

Yilosb+2+ \/(ajb)2 + 4)—1 = 1/2. A; is monotone decreasing in c;.

Conditions (i) and (ii) jointly provide an equivalent representation of Nash equilib-
rium in schedules: (i) traders optimize given their assumed price impacts, (ii) which
are correct. Analyzing price impact directly will be useful for understanding the
implications of noncompetitive behavior.!? Using (5), trader i submits the schedule

(8) a(p) = 7i(2)"'(d - p — o, Zq)).

With positive price impact A; > 0, trader i demands (or sells) less (y; < 1) than
if he had submitted his competitive schedule; v; = L is the trader’s noncom-
petitive demand reduction relative to his competitive demand (; = 1) and §; can
be interpreted as price impact per unit of risk. That is,as I — oo, then A; — 0 for
all i, and the competitive limit bid coincides with the inverse marginal utility, given
the quasilinearity of the utility function. Panel A of Figure 1 illustrates. It depicts
the best response net demand of trader i given his price impact A; > 0 relative to
his marginal utility. For prices such that g; > 0, trader i is a buyer; for prices such
that ¢; < 0, he is a seller.

The central message of this paper is that, given the set of traders and assets,
the centralized market may be inefficient in allocating risk relative to a decentral-
ized market structure. Corollary 1 characterizes how centralized markets allocate
risk and is the starting point for understanding why decentralized markets might be
more efficient. Let v = (v;) and g° = (g?) be the vectors composed of 7; and g2,
respectively.

2 ::,J and

jaj

COROLLARY 1 (Centralized Market Allocations and Prices): Let & = %

©® ¢'= (Z%) —1;%4}’ = &;q}’+ (Z%) “reov(, ¢9.

i j

Equilibrium trade and allocation of agent i are, respectively,
(100 ¢ = (ai'g*~q¢)) and g+ q = vai'q*+ (1 - 1)g),

and the vector of market-clearing prices is givenbyp = d — Xq*.

!2For symmetric risk aversion, equilibrium from Proposition 1 coincides with that in Rostek and Weretka
(2015a), which coincides with Kyle (1989, without nonstrategic traders and assuming independent values), Vayanos
(1999), and Vives (2011). For a nonstrategic characterization of equilibrium in a general equilibrium setting (i.e., in
terms of price and quantity levels, rather than demand functions), see Weretka (2011). Rostek and Weretka (2015a)
introduce the Nash equilibrium representation and the equivalence result in Proposition 1 for centralized market
games by formulating conditions on demand schedules and price impacts.
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Panel A. Optimal demand schedule Panel B. Example 2
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FIGURE 1

In the competitive centralized market, equilibrium allocation coincides with the
efficient allocation, which maximizes total welfare (3) over the set of all feasible
allocations {{g}; : >_;q; = Y.:q’}, or equivalently, minimizes the total utility loss
due to risk exposure, and is given by

(11) g’ = oj'q*, whereg™ = (Zafl)_lzq}’-
J J

When traders have price impact, each trader’s allocation is a combination of
endowment risk g? and portfolio g*, which is common to all traders. The equilibrium
allocation differs from the competitive one in two ways. First, a trader retains a frac-
tion +; of his initial endowment g°. While ~; can be characterized in terms of primi-
tives, it is useful to relate it to price impact (using v; = (1/(1 + ;) and equation
(7)): the smaller a trader’s price impact, the closer +; is to 1, the less of his initial
endowment the trader retains in equilibrium. Second, the common portfolio ¢* that
gets allocated to all agents differs from the efficient portfolio, unless traders risk
preferences {«;}; are symmetric (then, v; = H for all i). Equilibrium noncompet-
itiveness gives rise to a discrepancy between systematic risk $q**, which is defined
by (11), independent of the market structure and represents risk nondiversifiable in
the market, and the risk that is nondiversifiable in equilibrium, which we refer to as
aggregate risk.

DEFINITION 1 (Aggregate Risk): Aggregate risk d — p represents the risk that is
not diversified in equilibrium and corresponds to the risk premium in prices relative

to the mean return d. In the centralized market, q* is the aggregate risk portfolio:
d—p = Y¥q*

In competitive markets, aggregate and systematic risk coincide and depend on
the aggregate endowment Zj qjo alone. In noncompetitive markets, aggregate risk
is a function of equilibrium price impact. This is intuitive: what constitutes risk
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that is nondiversifiable in equilibrium depends on price impact. A smaller ; lowers
the contribution of agent i’s endowment to aggregate risk and equilibrium prices.
In equation (9), & is the counterpart of aggregate risk aversion in the competitive
market.

Example 2 shows that breaking up the centralized market into disjoint exchanges
can increase welfare. It builds directly on and illustrates Corollary 1.

Example 2 (Splitting the Market Can Increase Welfare): Consider a market for
one asset with variance 0> = 1 and three classes of agents of equal size M > 3,
with risk aversion q; in each class i = 1,2, 3. If all agents’ endowments were effi-
cient, they would not trade (this holds for any market structure, Corollary 2), and
adding or subtracting the efficient allocation would not change the conclusions.
Therefore, without loss of generality, we may conveniently assume that the aggre-
gate endowment Y ;q? is 0, and hence, by (11), g* = 0 for all i.

Suppose that each agent of classes 1 and 2 is endowed with —q and g units of the
asset, respectively, while class 3 has an endowment of 0, and o; < a; < a3. Itis
easy to see that the efficient allocation would have each agent of class 2 sell g units
to class 1, and agents of class 3 would not trade, since they are already holding their
efficient allocation.

However, in the noncompetitive centralized market, class 3 agents do trade
in equilibrium, despite their efficient initial allocation, because the aggregate
portfolio differs from the efficient one: a, > «; implies 7, > ~;; hence by
(9), g* > 0. Price is below its competitive level, which makes it optimal for agents
of class 3 to hold ¢ + g3 = v;a3'q* > 0. The other classes do not diversify
fully: ¢° + ¢ = (1 — v) g’ + voi'q* i = 1,2.

Consider next a decentralized market created by breaking up the centralized mar-
ket into two exchanges, one for classes 1 and 2 and the other for class 3. In the
second exchange, since class 3 agents have identical endowments, they do not trade,
which is efficient; ¢ + qs” it = 0. In the first exchange, price impact increases
strictly for all traders; we will show that an increase in price impact is a general
result of decentralization (Theorem 2). However, having excluded class 3 agents,
the relative price impacts (and weights {v;};) change so that the aggregate risk
increases: denoting the aggregate risk portfolio in the first exchange by g* /"1,

1
we have g*5Pitl = (ZJGI Z,) Yje1 %4 > g*. With sufficient heterogenelty

in initial endowments (for any risk aversion), the increase is such that by buying
a smaller fraction (due to the larger price impact) of the larger aggregate portfolio
class 1 traders attain an allocation closer to the efﬁc1ent allocation of 0 than in the
centralized market; in equilibrium, 0 > ¢{ + ¢; PPl q? + q,. Moreover, com-
pared to the centralized market, the inefficiency is concentrated among class 1 and 2
traders. Given the concavity of utility, with sufficient heterogeneity in endowments,
the total welfare increases (online Appendix D provides details).

Panel B of Figure 1 illustrates the corresponding shifts in demand and residual
supply of class 1. In the centralized market, the residual supply of a class 1 agent
aggregates the net demands of all other agents; in the split market, it aggregates the
net demands of all other traders excludlng class 3. In response to their larger price
impact in the split market, A; < AP class 1 agents reduce their net demands for all
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prices. However, the residual supply of class 1 shifts having excluded class 3 agents
from the exchange and class 1 agents buy more in the split market: gi*"" > g,.

Heterogeneity in risk aversions is crucial: with symmetric risk preferences, aggre-
gate risk would be the same in the two market structures. While allocation would
not be efficient due to price impact, we will show that when this is the only type of
inefficiency, the centralized market is still the second best (Proposition 3). However,
this need not be the case when some traders do not trade monotonically toward the
efficient allocation, as this example illustrates: if some agents’ initial endowments
are close to efficient, in the centralized market they will trade inefficiently (class 3);
conversely, if some agents’ initial endowments are highly inefficient and their risk
aversion is low (price impact is high), they will trade too little relative to what a
decentralized market allows (class 1).

The result of Example 2 is striking. In centralized competitive markets, remov-
ing agents from the market cannot improve welfare for other agents; the competi-
tive allocation is in the core. Equation (9) provides the first key observation: unless
agents’ risk preferences {«;}; are symmetric or agents’ price impacts are 0 (y; = 1
for all i), the aggregate risk portfolio q* differs from the efficient portfolio q**, which
is independent of the market structure. In particular, aggregate risk depends on the
joint distribution of endowment risk {g’}; and risk preferences (equilibrium price
impact {7;};) rather than on the aggregate endowment alone.

The second main observation is that the centralized market allocates risk in a
particular way. Namely, in the centralized market, less risk-averse agents have
greater price impact. if oy < --- < oy, then A} > .-+ > Ay less risk-averse
agents face a more risk-averse residual market, and therefore a less elastic residual
supply (cf. equation (6)). Since less risk-averse agents will be reluctant to buy (or
sell), equilibrium prices will be low (or high), and if their endowment happens to
significantly differ from their efficient allocation, other agents will retain a large
fraction of their nondiversified risk. Thus, in noncompetitive markets, the efficiency
of the centralized market allocation depends on the joint distribution of initial
endowments and risk preferences. This also suggests that a decentralized market can
be more efficient than the centralized market if it reallocates risk so that more risk-
averse agents attain allocation closer to the efficient one. We will next characterize
how in a decentralized market, equilibrium price impact and the aggregate portfolio
depend on the market structure.

B. Equilibrium and Allocation of Risk in Decentralized Markets

Theorem 1 shows that conditions analogous to those in Proposition 1 characterize
equilibrium in the general model of decentralized markets. Consider the optimiza-
tion problem (2) of a trader i who submits a demand schedule in exchanges N(i), in
which he participates,

12)  @(pwwA) = (Vg + A) ™ (dvy — Py — o; Vi ab).-

Recall that V is the covariance matrix of all assets traded on all exchanges and
Vg is its submatrix with rows and columns from exchanges N(i) C N.Inanalogy
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to (5), trader i’s demand equalizes his marginal utility and marginal payment,

which depends on his price impact A; in the exchanges in which he participates:
A(prs- - -\ Prii

the N(i) x N(i) Jacobian matrix A; = Apv--pwo) = (%) . Entry (k,£)
a(qi.lvuw‘hN(i)) 0g; k¢

represents the price change of asset £ that results from a marginal increase in the

demanded quantity of asset k.

In equilibrium, trader i’s price impact A; must equal the slope of his residual inverse
supply, which is defined by aggregation through market clearing of the schedules
submitted by other traders, {g;(pn()): R*) — R¥J},; In a decentralized mar-
ket, traders’ price impacts are of different dimensionality, correspond to different
assets, and in general are not independent across exchanges, so the market-clearing
condition cannot be written exchange-by-exchange. To apply market clearing to all
assets in all exchanges, we use the procedure of lifting, which restores common
dimensionality. For a given subset N(i) C N, decompose R¥ = RM®) g RNWO)
as a direct sum of two subspaces corresponding to coordinates that agent i trades
and those that he does not trade, where R” is the space of asset holdings of dimen-
sion Y_,cn K(n). Any symmetric matrix A can be decomposed into a block form

Ay A
(13) A= (Af.i fL,-,-,)’

where A; ; = Ay(;) acts on subspace RN, A_;_; = An acts on the complemen-
tary subspace R¥W®, and 4; _; is a rectangular block.

DEFINITION 2 (Lifting): For any matrix A;; € R¥OM0, et A, ; denote the lifted
matrix which acts on RY, and with a slight abuse of notation, let A; ! denote its

inverse:13

— .. _ =1
( 14) Ai, i = (A" ! 0) N AE,'I = (A” ! 0) .
0 O 0 O

In what follows, for simplicity of notation, we use g; € R" and g € R to also
denote the vectors ¢; € R¥? and g° € RN “completed” by zeros in their RVW0)
coordinates. In this notation, we can write the lifted demand schedule of agent i
as G;(pve) = (Vg + A)7'd —p — o,V ).

Treating assets traded in different exchanges as distinct assets and dealing with
aggregation through lifting allows us to characterize equilibria in any decentralized
market by two conditions: (i) each trader submits a schedule that equalizes his mar-
ginal utility and marginal payment given his price impact (i.e., submits g;( -, A;)),
and (i) the price impact A, in g( -, A;) is correct (i.e., it equals the slope of the resid-
ual supply resulting from the aggregation of other traders’ schedules, projected on
the assets relevant for trader i). Recall that for two symmetric matrices A, B, matrix
A is larger than B in the positive semidefinite order if A — B is positive semidefinite;
we write A > B.

1347 is the Moore-Penrose pseudoinverse (Penrose 1955) of A, ; if A; ; is not invertible.
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THEOREM 1 (Decentralized Market Equilibrium): A profile of demand schedules
and price impacts {q;( -, A;), A;}; is an equilibrium in a decentralized market with
trader participation {N(i)}; if and only if

(i) each trader i submits schedule (12), given his price impact,

(#i) i’s price impact (projected on the exchanges N(i) where he participates, after
lifting) is

(15) A = ((Z(aﬁ,v(,) + .7\,.)-')") , i€l
J#i NG)
Furthermore,

(iii) Equilibrium exists and is locally unique, generically in risk aversions and the
covariance matrix.'*

(iv) For any decentralized market, the set of equilibrium price impact tuples has
unique maximal and minimal elements in the sense of the positive semidefi-
nite order. Equilibrium price impacts are positive semidefinite. If the covari-
ance matrix Vy; is invertible for any i, price impacts are positive definite.'>

Although covariances Vyy(;) and price impacts A; are for “local” exchanges, when
lifted, the same aggregation condition (6) as in the centralized market applies.
Theorem 1 thus allows a direct comparison of equilibrium in decentralized and cen-
tralized markets. In contrast to centralized markets, price impacts are generally not
proportional to the fundamental covariance matrix. In fact, A; is not proportional
to Vy; for generic V ;). The positive semidefiniteness of price impact is implied by
equilibrium. By (15), if price impact were not positive semidefinite, o; V() + A;
would not be either for some j.' Then, for some portfolioy, y 7 (o V) + A)y <0
and buying an infinite amount of y would be optimal.

The double auction game—centralized and decentralized—can be equivalently
seen as a game in which agents choose their demand slope §; = (o; V) + A)7L
Since these demand slopes are positive semi-definite, we can study them using the
positive semi-definite order extended to tuples and say that one tuple is larger than
another one if it is larger coordinate by coordinate. In the centralized market, the
set of slope tuples {S;}; is a lattice; this follows from the proportionality of price
impact in the covariance so that (o; X + A;) ™! = 7;(;X) ! and hence the order
coincides with the natural order on R’. In decentralized markets, since the set of
symmetric matrices is not a lattice with respect to the positive semidefinite order,'”

14 That is, for almost every positive definite matrix with respect to the measure induced by the Lebesgue mea-
sure on the set of positive definite matrices.

!5Induced by the covariance matrix ¥ and trader participation {N(i)};, Vy; can be singular only if agent i can
trade the same asset in different exchanges. In this case, agents are indifferent about which exchange to trade in and
S0 (resplicas of) assets trade at the same prices.

16Indeed, if a; V) + A; is positive semidefinite for each j, then so is (a; Vi) + A;) ™' (because inversion
preserves positive semi-definiteness), and hence so is also the right-hand side of (15).

171t is generally not possible to define the greatest lower bound and the least upper bound for a bounded set of

positive semidefinite matrices. For example, consider A = ((l) (2)) and B = (: é) Note that both A 2 B and
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Tarski’s fixed point theorem cannot be applied to prove the existence of equilibrium
and comparative statics. Nevertheless, we show that the price impact of each agent
is monotone increasing (in this order) in the price impacts of others; standard argu-
ments then give existence. Exploiting properties of positive definite matrices and
refining the iterative procedure allows us then to prove existence of unique maximal
and minimal elements in the set of equilibria.!® We show that for any equilibrium in
a less decentralized market, there is an equilibrium in the more decentralized market
that has a larger price impact. All statements about more decentralized markets in
Theorem 2 hold for any such equilibrium in these markets. In the sequel, we refer to
either the minimal or maximal equilibria, which are unique.'®

Let us remark that if a trader who knows his own utility knows his own price impact
in the exchanges in which he participates, then by Theorem 1, his strategy g;( -, A;)
would not be altered by knowledge of the market structure {N(i)};, the terms of trade
in exchanges N\N(i), or even the submitted schedules or preferences of the traders
in N\N(i). Despite the potential complexity of the trading environment, through the
fixed-point condition (15), price impact A, is the sufficient statistic for the optimality
of trader i’s schedule in exchanges N(i), given the schedules of all tradersj # iinall
exchangesn € N (ie., A; € RMO*MIjs sufficient for {g;(+): RM) — RMI}).
Thus, the opacity of decentralized markets is without loss of generality for
equilibrium in trading environments with independent private values.

By Theorem 1, analysis of the equilibrium properties effectively reduces to study-
ing the properties of the solution to the fixed point system (15) for price impacts. We
illustrate the properties of this system with the following example.

Example 3 (Equilibrium Price Impacts): Consider a market with two exchanges
for one asset and three classes of agents, with M; agents in each class i = 1,2,3.
Agents of class 1 trade only in exchange 1, agents of class 3 trade only in exchange
2, and the agent of class 2 (M, = 1) trades in both exchanges. Price impacts A,
and A; are scalars, while A, is a matrix. The lifted price impacts and the covariance
matrix for the market are given by

AI_( )’ A3_(0 A3)’ Aa=4s= A AR) v= o o*)’

A £ B hold, because the positive semidefinite order is incomplete. By definition, matrix C = (‘cz Z) is the least
upper bound of A and B if C > A, C > B, and any other matrix C’ satisfying C' > A, C’' > B also satisfies
C' > C.However,C > Aand C > Bisequivalenttoa > 1, b > 2,(a — 1)(b — 2) > max{c? (c — 1)%}.
Clearly, one can decrease a and increase b without violating these inequalities, which implies that C cannot be the
least upper bound. Separately from the absence of the lattice order on strategies, an agent’s utility differences are, in
general, not monotone in the changes of strategies by others—the decentralized-market game is not supermodular.

18 While Theorem 1 only establishes the existence of an equilibrium, we conjecture that equilibrium is glob-
ally unique. This is true in all of the examples in the paper and is confirmed by extensive numerical simulations.
Equilibrium, defined as {g;( -, A;), Aj};, is locally unique for generic parameters (this is a consequence of real ana-
lyticity of the equilibrium system,; see, for example, Hugonnier, Malamud, and Trubowitz 2012).

19L et us relate our uniqueness results in Proposition 1 and Theorem 1 to that in Lambert, Ostrovsky, and Panov
(2016), who consider a (centralized) game in which strategies are quantities (market orders). We analyze games in
demand and supply functions. In that paper, there is a single asset and a single liquidity provider; thus, there is a
scalar price impact, the same for all agents, and this one number solves a quadratic equation that has a unique posi-
tive solution, hence the unique equilibrium. By contrast, we have multiple assets, multiple exchanges, and multiple
heterogeneous price impacts that are matrices and solve a system of nonlinear equations.
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where o2 is the asset variance, and the fixed point system is
(1) A = (M = DA + oy Vi)™ + (Ag + aV)™
+ My (A + 043722)—1)_1)“,
A = ((Ml A1+ o Vi)™ + (A + apV) ™!
+ (My — 1)(A5 + a3v22)—1)_1)22,
Ay = (M(Ay + o Vi)™ + My(Ry + 03{'22)_1)_1-

We can rewrite the equation for A, as follows: by the definition of lifting,

(17) A, = (MI_I(AI + a;Vyy) 0 )

0 M5 (A3 + o3Vy))

We will show (Theorem 2) that equilibrium price impacts of traders in both
exchanges decrease when the number of traders increases in exchange 1 or the con-
nected exchange 2, or their risk aversion decreases: the less risk-averse the traders
of class 1 are and the larger their number M;, the more liquidity they provide to class
2, lowering A,, and in turn, the more liquidity the trader of class 2 provides to class
3, lowering As;.

The interdependence among price impacts is anticipated by Theorem 1. In general,
the equilibrium price impact of trader i in exchanges N(i) depends, and positively
so, not only on the price impacts of other traders in exchanges N(i) but also on the
price impacts of the traders in all other exchanges N\N(i) (in the same connected
component), including those with whom he is linked only through counterparties
(e.g., classes 1 and 3 in Example 3). More generally, a trader’s price impact in a
decentralized market also depends on the price impacts of the traders in exchanges
in which his counterparties do not participate.

Example 3 also shows that even if the total number of traders is large, when
trading is decentralized, traders generally have nonnegligible price impact in the
exchanges in which they participate. In general, when agents have access to a per-
fectly liquid exchange n, they will have strictly positive price impact in the other
exchanges N(i)\{n} in which they participate.

Corollary 2 characterizes equilibrium trades and prices in decentralized markets.
Corollary 4 in online Appendix D explicitly characterizes allocations for markets
with one asset.

COROLLARY 2 (Decentralized Market Allocations and Prices): Let

(18) Q= (;(aij(j) + ]\j)_l)—lzj:quJp,
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andT; = (o; Vg + A)7! ; V(). The equilibrium allocation of agent i is
(19) g+ a’ = (Vyy + N)7'Qiy + (1d — T)g?,

and the vector of market-clearing prices is givenbyp = d — Q*. If the initial allo-
cation is efficient, q° = q}* for all i, then there is no trade.

As in the noncompetitive centralized market equilibrium, each trader is exposed
to endowment and aggregate risks. The term Q* is the decentralized market coun-
terpart of the aggregate risk ¥q*; it represents the risk premium d — p = Q" in
prices and is defined by market clearing applied to all traders’ demands.?>?! Like
Yq*, Q* is also in risk units; unlike Xg*, Q* is not separable in the covariance. In
addition to the effects brought by noncompetitiveness itself (A; > 0)—i.e., allo-
cation retains endowment risk, aggregate and systematic risk differ—decentralized
trading makes both the risk nondiversifiable in equilibrium Q* and a trader’s equi-
librium demand reduction Id — I'; depend on the market structure. Namely, both
are a function of asset covariance, and Q* also depends on distribution of endow-
ments across exchanges. As a result, the quantity of aggregate risk allocated to a
trader in the exchanges in which he participates generally depends on the prefer-
ences of agents and the covariance of assets from all exchanges. We should note that
the dependence of risk Qj(; and weight Id — T'; on the covariances in exchanges
N\N(i) as well as N(i) arises in a decentralized market because price impact A, is no
longer proportional to covariance V ;). Example 4 illustrates how the properties of
aggregate risk differ in decentralized and centralized markets.

Example 4 (Aggregate Risk): Consider the market from Example 2, and sup-
pose that one of the agents of class 1, denoted by 1d (a dealer), can trade in both
exchanges 1 and 2. The market is then less decentralized than the split market (cf.
Definition 3), and agent 1d serves as an intermediary between class 2, class 3, and
other agents of class 1. Using Example 3, the price impact of trader 14 is diagonal,

M= 1) (A + o)™+ M(Ay + o)™ 0 -

A, =
4 0 M(A3 + a3)'1

20The linearity of equilibrium prices in endowments leads us to interpret Corollary 2 in CAPM terms. A decen-
tralized market CAPM holds, even with strategic traders whose price impact is nonnegligible. In each exchange,
expectations of asset payoffs lie on a security-market line defined by an agent-specific portfolio. With many assets,
agents diversify risk through different (and multiple) funds, which depend on their participation in exchanges. See
Malamud and Rostek (2016) for a decentralized market CAPM.

21 Malamud and Rostek (2016) show that when exchanges are linked by one trader, prices of the same asset
generally differ; with two or more common participating traders, price impacts, and prices for the same asset
equalize between exchanges and are generically noncompetitive. In turn, the presence of one (or many) trader(s)
who can engage in pure riskless arbitrage would not affect the main conclusions. In fact, this often is not possible,
for instance, in dealer-intermediated markets. Even if an arbitrageur could place buying and selling orders in two
exchanges, in a noncompetitive market, he would have price impact. A large enough round-trip order would change
prices and result in strictly negative profits. That is, in contrast to competitive markets, profits from arbitrage are
not infinite, but bounded. Thus, unlike the competitive model, sufficient fixed entry costs can discourage outside
investors from arbitraging the liquidity effect. In practice, entry costs involve not only explicit trading costs but also
costs associated with learning and monitoring the characteristics of particular stocks.
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As in Example 2, we assume that class 1 agents are endowed with —g units of the
asset, class 2 agents are endowed with ¢ units, and agents of class 3 have zero initial
endowment. Then,??

£ 0 _ ((MT;— (M- 1)T)q —q/2>
;qu} ( 2 0 ! ) +Fld<_q/2 ;

and Corollary 2 implies that the aggregate risk is given by

L (QY [ (M —1)(A;+ o)+ M(Ay + ap) 0
¢- <Qi> - (( 0 M(As + a3)-1>

-1
+ (A + alv)—l>

X <((MF2 - (1‘; - 1)1"1)‘1) + I‘ld(:z;)), where

o? o*

V= (02 a2>'
Observe that (i) the aggregate risk is common to all traders in a given exchange
n = 1,2; however, (ii) Qj is a weighted average of the endowments of all agents in
the market (in a connected component of the graph on exchanges). In addition, (iii)
since the exchange-specific coordinates Q7 , Q5 of the aggregate risk vector generally
differ, the same asset trades at different prices in different exchanges. In particular,
(iv) in contrast to the centralized market (Definition (1)), the aggregate risk is not
separable in the covariance V due to the nonproportionality of price impact to V in
decentralized markets; contrary to the standard CAPM, the risk premium cannot be
written as VQ for some vector Q —otherwise, prices of identical assets would be
equal across exchanges. Indeed, if V = 1, all coordinates of VQ are equal.?>

The equilibrium allocation of risk in this intermediated market is given by

20) g +q = (Ai+ a)”'Qf - (1 = TY)g,
3+ g = (M + ) 'Qf + (1 — T)g,

(As + a3)71Q3,

Il

3+ a

(s () (1)

22The split of endowment —q of trader 1d across the two exchanges can be arbitrary, because endowment
affects only the marginal utility for the first unit, which is the same in both exchanges (equation (12)).

230;,,@) and Q;, represent how aggregate risk Q* affects a trader or an exchange, respectively. In the presence of
shocks, these trader-specific and exchange-specific risks can be seen as measuring systemic risk, various formaliza-
tions of which in the literature share its dependence on equilibrium and position in the network.
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where the multiplication by (1, 1) in the last line sums the holdings of agent 1d in
exchanges 1 and 2. The intermediary trades both components Q7, Q3 of aggregate
risk, whereas all other traders buy or sell its distinct components.

It follows from Corollary 2 that decentralized trading changes agents’ ability
to diversify in two ways (cf. Proposition 1): aggregate risk (prices) changes, since
agents now acquire exchange-dependent components of Q*, which may make it
optimal for some to trade closer to their efficient allocation; and equally risk-averse
agents with identical endowments need not diversify in the same way. In Example 2,
the component of aggregate risk for class 1 (the natural buyers) increases, thus low-
ering prices, which leads class 1 to buy more, while the natural sellers (classes 2 and
3) sell less. Additionally, classes 2 and 3 do not equalize their equilibrium allocation
of aggregate risk v;0; 1 gP"™" n = 1,2, as they would in the centralized market.

III. Market Decentralization: Price Impact and Welfare

Before we analyze how market decentralization affects welfare, we first examine
how it affects traders’ price impacts. Let us make precise how market structures and
price impacts are ranked.

DEFINITION 3 (More Decentralized Than): Fix the set of traders and assets
(I,K). Consider two markets with the sets of exchanges M = {(I(n),K(n))}, and
M' = {(I(n"), K(n"))},. We say that the market M’ is more decentralized than M if
for any exchange n' in M', there exists an exchange n in M such that I(n') C I(n)
and K(n') C K(n).

Thus, a more decentralized market restricts the participation of some agents in
trading, with respect to traders or assets. By definition, any decentralized market is
more decentralized than the centralized market. Suppose that M’ is more decen-
tralized than M, and let {A,M }; and {A,M }i be the corresponding equilibrium price
impacts (which are symmetric and positive semidefinite, by Theorem 1). We say
that the price impact tuple {A,M}i is smaller than {A,M }; and write {A,M},« < {A,M i
if for all i,

(AuM)N'(i) < AM.

If price impacts are higher in the positive semidefinite order,?* the agents behave
as if the assets they are trading are riskier. Recall that if two symmetric positive
semidefinite matrices A, B satisfy A > B, then the diagonal elements sat-
isfy A; > B; for all i (however, no implication for the ordering of the off-diagonal
elements follows), Ay > By foranyi,andA~' < B~L

240ne cannot generally conclude that the dealer’s price impact in exchange 2 is lower than in the split market:
one can only compare the price impact in the exchanges in which the agent participates in both market structures
(cf. Definition 4 in the online Appendix). In particular, it could happen that AP}, > /\fﬁm if the risk aversion of

class 3 agents is sufficiently low.
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A. Price Impact in Decentralized Markets

Given a map A from the set of positive semi-definite covariance matrices
into the set of positive semi-definite matrices, we say that this map is concave if
A(0.5(V + V') > 0.5(A(V) + A(V')) for any positive semi-definite matrices V,
V'. Similarly, a map A from R/, to the set of positive semi-definite matrices is con-
cave if A(0.5(c + ') > 0.5(A(a) + A(a)) for any o, 0’ € RA.

THEOREM 2 (Price Impact Monotonicity and Concavity): The following is true:

(i) Fix the set of traders and assets (I, K ). If M' is more decentralized than M,
then {A"}; > {AM.

(ii) The equilibrium price impact tuple {A;}; is increasing and concave in risk
aversion {a;}; and the covariance matrix ¥ and is decreasing in the number
of agents in the market.

(iii) Fix the market structure M:
(@) IfN(i) = N(j)and o; < aj, then A; > A;.

(b) If N(i) D N(j) and trader j participates in a single exchange for one
asset, then o;; < a; implies that the equilibrium price impact of trader i
in exchange N(j) is larger than that of trader j,

(M) = A

Theorem 2 reports two complementarity results on how the interconnectedness
among exchanges {N(i)}; affects a trader’s equilibrium price impact in exchanges
N(i): changes in either the market structure or the characteristics of traders or assets
that lower any trader’s price impact in some exchange lower the price impacts of all
traders in all directly and indirectly connected exchanges.

Part (i) of Theorem 2 considers the effect of changes in the market structure on
equilibrium liquidity. Theorem 2 implies that creating a new exchange for a subset of
agents which operates along with the existing exchanges always (weakly) lowers the
price impacts (improves liquidity) in all exchanges. Indeed, if agents participate in a
new exchange, the price impact of these agents in their existing exchanges decreases,
which lowers the price impact of their counterparties in those exchanges, and so
on. In turn, splitting an exchange (e.g., Example 2) always weakly increases price
impact. Moreover, this holds for any asset structure in the new market. In general,
price impact is monotone in both the set inclusion of traders and assets and is thus
minimal in the centralized market. It follows from Theorem 2 that the lowest price
impact that agents / who trade assets K can achieve occurs when all agents participate
in all potential exchanges—a market structure equivalent to a centralized market.?>

25Malamud and Rostek (2016) show that sufficient trader participation among exchanges suffices for liquidity
to be as high as in the centralized market.
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The liquidity effects of market decentralization (i.e., lowering trader participation)
characterized by Theorem 2 hold for any number and risk aversion of traders and any
covariance matrix of assets in the exchanges before and after the change.

Part (ii) of Theorem 2 deals with the impact of varying the primitive characteris-
tics of traders and assets. Relative to the observation that equilibrium price impacts
are interdependent across exchanges (Theorem 1), Theorem 2 demonstrates a gen-
eral complementarity of price impacts in a decentralized market: a trader’s price
impact in exchanges N(i) depends positively (in the sense of the positive semidefinite
order) on the market characteristics in both exchanges N(i) and N\N(i). Intuitively,
an agent’s price impact from increasing his trade in exchanges N(i) represents the
price concessions required for other agents j # i in exchanges N(i) to absorb the
trade. With decreasing marginal utility (o; > 0), more risk-averse counterparties
J in exchanges N(i) demand larger price concessions to compensate for the trade’s
impact on their own marginal utilities (cf. the first-order condition (4)), thus making
residual supply less elastic, and hence price impact larger, for all other agents in N(i).
In addition, when trading is decentralized, the fewer and more risk-averse agent i’s
counterparties’ trading partners are in exchanges N\N(i), the larger the price impacts
of those counterparties j in their exchanges N(j) and the larger the price concessions
they require in exchanges N(i).

The concavity of price impact in the fundamental asset covariance contrasts
sharply with centralized markets, where price impact is proportional to the cova-
riance (Proposition 1). The concavity holds because the riskiness of assets in an
exchange in which trader i participates affects his incentives through the residual
riskiness of these assets, net of the risk that can be diversified in other exchanges by
i and his counterparties. Mathematically, a Gaussian conditioning argument applies.
Denoting by § = ) ;(a;Vy(; + A) ™! the slope of the aggregate (net) market
demand, the condition that price impact is the harmonic mean of (lifted) inverse
demand slopes can be written as follows:

@) A= (e = (570) ™ = (@Vag +4)7)

where ((S™")yp) ™' = i — 8,-:S=_; ST, using the notation for S from (13).26
That is, the projection that defines the residual risk of the assets traded in exchanges
N(i) is endogenous, as it depends on price impacts. Equation (21) is equivalent to

_ _1\-1 -
(Ai '+ (i Vi + A) l) = (S l)N(i)’

and since the harmonic mean function f(x) = (x~! + (v + x)~!) ! is convex, its
functional inverse is concave, hence A; is (weakly) concave as a function of S™!. In
the centralized market, since S ~! is proportional to V = ¥, so0 is A;. In a decentral-
ized market, since price impact depends on the residual risk in ((S~")y() ™ rather
than the fundamental risk 3, proportionality is absent and the concavity matters.

268,.i— S;._i55}_;ST_;is a shorted operator. The proof of Theorem 2 is based on the monotonicity and concavity
properties of the matrix harmonic mean that are derived in Anderson (1971) and Anderson and Duffin (1969) using
the theory of shorted operators.
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Notably, the concavity implies that lower risk (X) or lower risk aversion {¢;}; play
a greater role in the determination of a trader’s price impact than high-risk assets and
highly risk-averse traders. Having access to such low-risk assets or low risk-averse
traders—whether directly in one’s own exchanges N(i) or indirectly via interconnec-
tions with one’s counterparties’ exchanges N\N(i)—lowers the price impact of i’s
trades in N(i) more than access to high-risk assets or highly risk-averse traders would.

Part (iii) of Theorem 2 provides a link between price impact and the participation
of different agents. It implies that one can make a systematic prediction about the link
between the trader’s “position” in the market and price impact: if more connected
agents are weakly less risk-averse, they have higher price impact. This is intuitive:
since the price impact of each agent in a given exchange is determined by the risk
exposure of the other agents in that exchange, the ability of the more connected trader i
to diversify risk in exchanges N(i)\N(j) lowers his risk exposure in exchanges N(j)
relative to trader j’s exposure, and thus the price impact of j in exchanges N(j).

B. Welfare in Decentralized Markets

By Theorem 2, the centralized market minimizes price impact for all traders.
Nevertheless, as Example 2 shows, a decentralized market can give rise to strictly
higher welfare with the same traders and assets. To examine more systematically
the source of the welfare gains from decentralization, we begin with a character-
ization of indirect utility as a function of price impact, substituting equilibrium
trade ¢; = (o V) + Ai)‘l(Q*N(i) - a,-VN(,-)q,p) and price into agents’ utility

. ‘ T
function U;(q;) = dtc(i) (@ +a) — %(‘11‘0 + qi) VN(i)(in + Qi) - (PN(i))T‘Ii1

(22) U{M(Ai;qio) = ( ) dN:)_ (%)Ta VN;)‘L'O+ QiT(%aiVN(i) + A) g

Utility without trade Equilibrium s;r;lus from trade

To interpret, in any market structure—centralized or decentralized, competitive or
noncompetxtlve—equlhbnum utility from trade derives from the risk premium ben-
efit in the payment q; - (dN(, p) = q; - Q"y(; net of the utility cost of buying
risky assets —a; g; VN(,) g:- In the competltlve centrahzed market, Q* = Eq ** and
the equilibrium utility surplus from trade is g; (2 o Y)g = qf (T — 3 16,%)g;. In
a noncompetmve market, price impact exposes a trader to additional risk due to oth-
ers’ equilibrium behavior, hence the marginal equilibrium utility per unit of quantity
traded is (o; Vi) + A;) — a, Vi) in the surplus of equation (22).

Proposition 2 shows that the (non)proportionality of price impact in fun-
damental risk VN(,) has important implications for welfare effects of market
decentralization. It is useful to write equilibrium trade of trader i in utility (22)
as q; = S;(Q"ny) — a,VN q,) where §; = (a,VN(,) + A;)7!is his demand slope
and (Q*ni) — i V)4 9 can be interpreted as his gains from trade (given that trad-
ers have pnce impact):

(23) UiM(Ai;QiO) = (QiO)Td;(i) - %(qio)raiVN(i)in
+ (Q*N(z Q; VN(I U ) T; (Al)( - atVN( i) 9i )
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where matrix T;(A;)) = §; — S i VN(,)S, is the marginal utility per unit of risk,
since both quantities in (Q*y;) — ; Va4 %) are expressed in units of fundamental
risk Q; VN(i)‘

PROPOSITION 2 (Marginal Equlllbnum Utility): Suppose that market M’ is more
decentralized than M, and let A and A;" be the corresponding price impacts.
Then,

) If A,M is proportional to V), then T, (A,M) < T, (A,M );

(ii). In general, Y; (A,M) £ T; (A,M), ie, T; (A ) need not decrease as the
market becomes more decentralized.

Proposition 2 presents the paper’s two main implications for welfare. Using
(23), by part (i), a necessary condition for a decentralized market to increase utility
relative to the centralized market is that the components of the aggregate risk Q*
in (Q*n) — «i'Vag g?) must change in some exchanges so that the equilibrium
allocation can become closer to the efficient one. Indeed, if aggregate risk is the
same as in the centralized market, equation (23) and part (i) of Proposition 2 imply
that every agent is better off in the centralized market. Example 2 illustrates part
(i), in which price impact in the less decentralized market is proportional to the
covariance, as is the case in the centralized market: the element of Q* in exchange
1 increases, and class 1 allocation increases and is more efficient; the element
of Q* in exchange 2 decreases, and class 3 allocation decreases, which is efficient.
Section IIIC further examines this necessary condition. In turn, using (23), part (ii)
of Proposition 2 indicates that making a decentralized market more decentralized
might improve welfare in the Pareto sense, even if it does not affect aggregate risk.
We will show in Example 5 that this is the case and examine the new effect in
Section IIID.

Part (i) of Proposition 2 implies that for market decentralization to increase wel-
fare, risk sharing among traders must improve. Part (ii) implies that decentralizing
a market can also increase welfare by improving diversification, since in a decen-
tralized market, the relative weights across assets in a trader’s equilibrium portfolio
may differ from those in the efficient portfolio. Indeed, a risk-efficient portfo-
lio is given by aiV,T,(l,-) (d — p), while the agent buys (A; + a,-VN(i))‘l(d - p).
If A; = @;3;Vy; is proportional to the fundamental covariance matrix, diver-
sification weights are efficient while risk allocation is imperfect, as the agent
buys only a fraction 1/(1 + ;) of the efficient portfolio. However, when A; is
not proportional to Vy;, both risk allocation and diversification are imperfect.
While Theorem 2 guarantees that making the market more decentralized always
reduces the numbcr of units of the risky assets the agents are willing to absorb
for every price (A > AM) Proposition 2(ii) implies that diversification of an
individual trader can actually become more efficient in a more decentralized mar-
ket, and the latter effect can potentially offset the former in markets with multiple
assets. Mathematically, without proportionality, a change in the market structure
affects how trades of correlated assets substitute in creating utility, i.e., (T;),m
n # m (Example 5 gives the proof of part (ii)).
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C. When Does a Decentralized Market Increase Welfare?

At the primitive level, heterogeneity in risk preferences is central to welfare gains
from market decentralization. Proposition 3 shows that when all traders care equally
about risk, the centralized market maximizes total welfare for any endowment dis-
tribution, regardless of the asset structure in a decentralized market.

PROPOSITION 3 (Welfare and Heterogeneity in Risk Aversion): If traders’ risk
aversions {a;}; are sufficiently close, then the total welfare in the centralized market
is strictly higher than in any decentralized market with the same traders and assets
for any endowments: there exists € > 0 such that total welfare in the centralized
market is strictly higher than in a decentralized market for any endowments when-
ever (max;o;/min;o;;) < 1+e.

Intuitively, recall that a decentralized market trade-offs larger price impact with
the potential benefit from reallocating risk among traders with different risk pref-
erence by letting agents trade distinct components of aggregate risk. Nevertheless,
when traders’ risk preferences are close, the benefit from reallocating risk is small.
Differential allocation merely increases dispersion of allocations, thus reducing
welfare.

Proposition 4 shows that when some traders’ risk preferences are sufficiently
heterogeneous, the welfare-maximizing market structure is decentralized for some
endowment distributions.?’

PROPOSITION 4 (Splitting the Market Can Increase Welfare): Let
a; < ap < -+ < o Supposethat] > 7and a;_3/a; is sufficiently large. Then,
there exists an open set of initial endowments and a partition of the set of traders
into two exchanges such that the total welfare in the split market is higher than that
in the centralized market.

By Proposition 2, for welfare to increase with decentralized trading, the joint pro-
file of risk preferences and endowment risk must be such that the increase in some
agents’ Q}, is sufficiently strong to countervail the higher price impact (lower {;};).
Welfare gains from decentralization exist for some endowment distributions even if
the number of traders is large—the condition on the heterogeneity in risk aversion
in Proposition 4 needs to hold only for a few lowest- and highest-risk-preference
traders. For the same reason, for a market decentralization to increase welfare, the
endowments need not become extreme as the number of traders grows. Propositions
3 and 4 summarize the role of heterogeneity in primitive risk aversion as a necessary
and sufficient condition.

27 Equilibrium exists if there are at least three traders in a market. Hence, there must be at least six traders in the
split market. In addition, for the allocation to be sufficiently affected by the split in at least one group, that group
must have at least four traders. One of these four agents is highly risk-averse; if there were only two agents with
low risk aversion, the residual supply of each would be effectively determined by one other agent, thus it would
be close to inelastic, and so their allocation would be close to their initial endowments, and hence their utility loss
from decentralization would be high.
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One can further ask: which joint distributions of endowments and risk aversion
tend to make the centralized market less efficient than a decentralized market? To
identify a joint condition on the primitives, one must account for both the inefficiency
due to imperfect diversification of the initial endowment (I'; < Id) and the fact that
the equilibrium aggregate portfolio differs from the efficient one. Proposition 10 in
online Appendix D provides two general conclusions: a market structure gives rise
to low welfare compared to other market structures when the highest-price impact
agents have the largest need to trade (i.e., a large (in absolute value) inefficient part
of the endowments). Moreover, since Q* assigns higher weights to the endowments
of less risk-averse traders (cf. (19)), when traders with low risk aversion have large
(nondiversifiable parts of) endowments, the difference between the efficient and
equilibrium allocations for the traders with low and high risk aversion tends to be
the largest. In particular, low risk-averse agents trade too little, and high risk-averse
agents trade too much, as in Example 2.

Splitting the market into two disjoint exchanges in Example 2 is an extreme
instance of market decentralization. An intermediated market may further improve
welfare over a market with disjoint exchanges (Example 6 in online Appendix D).
One can show that when intermediation improves welfare over the centralized
one-asset market, a decrease in the utility of the trader who connects exchanges?®
(relative to an otherwise identical trader who does not intermediate) is a general fea-
ture of two-exchange decentralized markets. Intermediation is socially efficient but
requires compensation. In the next section, we show that types of intermediation spe-
cific to multiple-asset markets do not require compensation to be welfare-improving.

D. Idiosyncratic Risk

In this section, we show that a change in the market structure may improve diver-
sification of idiosyncratic risk, that is, risk whose changes do not affect the risk that
is nondiversifiable in equilibrium Q*. The possibility to improve welfare by chang-
ing idiosyncratic risk alone is specific to markets with multiple assets. We compare
two decentralized markets, M and M, such that M’ is more decentralized than M.
To isolate the role that idiosyncratic risk plays in determining welfare, suppose that
there is no aggregate risk in either market: Q** = Q*M' = (.2° While then the
centralized market is best by Proposition 2(i), Proposition 5 shows that decentraliz-
ing a market may increase welfare in the Pareto sense.

PROPOSITION 5 (Market Decentralization Can Be Pareto Improving): Consider
two decentralized markets M, M' and suppose that Q*M = Q*M = 0. Let
alsoa; < ¢y < -+ < oy

28 This contrasts our welfare effects with those based on price discrimination, where the objective of the monop-
olist (here, the connecting trader) typically involves maximization of the payment alone and is not affected by
diversification motives.

29Consider a subset J of traders who all have the same risk aversion and participation; (a;, N(i)) is independent
of iforalli € J. Then, all traders in J submit identical demand schedules; their aggregate (net) demand depends
only on the aggregate endowment of J, 0f = Y .c;q”; and the aggregate risk Q* is independent of the distribution
of initial endowments within the class.
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(i) Ifthere is one asset, the total welfare is always higher in the more centralized
market.

(ii) If there are at least two assets, I > 5, and a;_,/a; is sufficiently large, then
there exist an open set of covariance matrices, a non-empty set of endow-
ments, and two decentralized markets M and M’ such that M’ is more
decentralized than M, and for any covariance ¥ in this set, each trader is
better off in M’

Result (ii) is due to the endogeneity of demand substitutability in decentralized
markets: the nonproportionality of price impact in the fundamental covariance ¥
implies that demand substitutability, defined by the cross-asset elements of the
demand slope

S-“ S.IZ

(24) S = (aVwp+ M) =),
i i YN(i) i S21 S22 s

J J

is endogenous and differs from the payoff substitutability of the assets, as defined by
the exogenous covariance X. By definition, demand substitutes have a positive cross-
price elasticity (a higher price of one asset increases the demand for other assets),
which corresponds to the negative off-diagonal element of the demand slope. Payoff
substitutes correspond to positive off-diagonal elements of 3. In the centralized
market, demand substitutability always corresponds to the fundamental substitut-
ability of the assets. This applies in decentralized markets when A, is proportional
to Vy, (e.g., the case with disjoint exchanges). More generally, decentralizing a
market changes how assets substitute in traders’ demands. This may increase wel-
fare despite the larger price impact. Example 5 illustrates this point.

Example 5 (Endogenous Demand Substitutability and Welfare): There are two
classes of agents, with risk aversions «; and M; agents in each class i = 1,2, and
two asselts with a nonsingular covariance matrix and variances normalized to 1,
V = (p f) In market M, agents of class 1 trade both assets 1 and 2; agents
of class 2 only trade asset 2. Price impacts A; € R?*?, A, € R satisfy

he = (((g = Dy + at) + M a‘v)_l>_l>n'

Consider a more decentralized market M’, in which some number M of class 1
agents trade only asset 1 and the remaining class members, whom we denote as 1d,
trade both assets; M;; = M; — M. In terms of participation, M is characterized
by {N(1) = {1,2}, N(2) = {2}}, while M’ is characterized by {N'(1\1d) = {1},
N'(2) = {2}, N(1d) = {1,2}}.
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In market M, agents 1d serve as intermediaries who trade with other agents. In
this regard, M’ resembles the market structure in Examples 3 and 4, the main differ-
ences being that the two assets are not identical and intermediation is not monopo-
listic. Price impacts A{, A3, A, are characterized by the system

A= «w—mm+w* 0 )
= 1 -1
0 Mz (Az + 012)

-1
+ My (A + alv)_l) )
1

AL (M(A; + a))! 0 )
t 0 (My — 1)(A3 + )™

-1
+ My (A + alv)_l) ,
2

M(A} + o)} 0 )
Ag = , —1
0 Mz(Az + az)

-1
+ Mg — 1)(A1g + alv)—l) :

Suppose that the heterogeneity in risk aversions is sufficiently large, and p > 0. There
are 6 traders in the market, M| =M, =3 and M = 1,sothatM;; = M; — M =2.

Class 2 agents as well as agents from class 1\1d are worse off in the more decen-
tralized market M, regardless of their endowments. Indeed class 2 agents trade
only one asset, and hence Proposition 2(i) implies that T3! > T3%.30 Likewise,
since agents 1\1d lose the ability to diversify in the exchange for asset 2, we nat-
urally expect that their price impact increases, and TM > TM, i € {1\1a};
thus, their utility surplus decreases as well for all endowments. On the other hand,
agents of class ld may be better off in M" by Proposition 2 (ii), it is possible
that Tld D ’I‘ld because a change in the market structure affects how trades of
different assets substitute in creating utility, i.e., (’I‘ 1d )1,2. This can offset the with-
in-exchange effect and increase equilibrium utility for some initial endowments, as
we show next.

By assumption, two assets are payoff substitutes (p > 0), and hence they are
complements in demand slopes and the utility surplus matrix; that is, (’I‘,’)}1 2 < 0.
Crucially, this surplus complementarity between assets 1 and 2 is endogenous,
since it depends on price impact, and decreases when market M becomes more

30Since they can only trade one asset, both A, and V() are scalar, and hence A, is always proportional to V).
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decentralized: (Tig )12 < (Tiq )12 By equation (23), this lower complementarity
can increase utility if and only if {1 ¥ T4, which is equivalent to

26 (T, — (T4, > Q((Tﬁ)i,i — (T4).0).

using that T{Z‘ - Tf? "is not positive semidefinite if and only if its determinant
is negative. That is, the utility gain from the weaker complementarity (LHS)
must exceed the loss from the higher price impact in each market (RHS of (26)).
If Tﬂf — Tﬁ' is sufficiently large, the total welfare increases despite the lower
surpluses of classes 1 and 2. We used that equilibrium utility (23) allows attributing
welfare effects of market decentralization to changes in price impact of different
assets and exchanges.

When can one expect the welfare effect of the change in idiosyncratic risk to
be significant? Assets must be correlated imperfectly and sufficiently strongly. It
is clear that assets cannot be independent: if correlation p is close to 0, all price
impacts and surplus matrices are almost independent (the LHS of (26) is close
to 0), implying that all agents are worse off in the more decentralized market.
They cannot be perfectly correlated either: if the correlation p is close to 1, both
surplus matrices Tﬁf , Tﬁf and their difference are proportional to the (almost
singular) matrix V, and thus the difference between the left-hand side and the right-
hand side of (26) is close to 0.

Hence, the possibility of a welfare increase by reduction of idiosyncratic risk in
Proposition 5 is a multi-asset effect. In one-asset markets, while the asset traded
in different exchanges can be an imperfect demand substitute, its trades are per-
fect substitutes in the utility surplus Y;3! Since with constant aggregate risk
Q*, (Q*vy — @ Vnya) = X is independent of market structure, Theorem 2
implies that the risk premium benefit X7S;X; in the utility surplus is monotone
decreasing in market decentralization (demand slope S; is always smaller in the more
decentralized market). Thus, for the utility to increase, the cost 0.5q; X S; Vi SiXi
must decrease sufficiently to offset the decrease in X7 S;X,. However, in one-asset
markets, the second part is proportional to V, and hence singular. One can show that
the total welfare gain from decentralization is inverse U-shaped, and for the total
welfare surplus to be positive, p must be sufficiently different from 0 and 1. Then,
there exists an open set of initial endowments such that agents of class 1d are strictly
better off in M’, while other agents have zero endowments and the same utility in
M and M'. That is, M’ weakly Pareto dominates M.

In the more decentralized market M’, some agents of class 1 specialize in trad-
ing asset 1 and refrain from trading asset 2. While such specialization unambigu-
ously increases price impact (Theorem 2), Example 5 shows that it can be Pareto
improving, even among equally risk-averse agents. The gains from trade in the more
decentralized market structure come from the effect of specialization to lower the
demand substitutability of imperfectly correlated assets, which decreases the utility

31The (welfare-improving) decrease in surplus substitutability T, , is exactly offset by the liquidity
decrease T, , within each exchange n.
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cost of holding correlated risky assets Y, ,,, m # n.In fact, the same assets can turn
from demand and utility substitutes into complements (i.e., in the sense of S; and T,
respectively). Changing who trades which assets without necessarily changing who
trades with whom allows reducing idiosyncratic risk without affecting aggregate risk.

With strategic traders and heterogeneous risk preferences, both centralized and
decentralized markets can generally be Pareto efficient (i.e., no other market struc-
ture would make some agents better off, without making others worse off), hence
our focus on total welfare. This section shows that regulation that aims to make
an existing market structure less decentralized, if applied without discretion, might
have unintended consequences for utility of all agents.

IV. Conclusions

The results in this paper recognize the potential for decentralized markets to increase
welfare compared to the centralized market. This holds even with homogeneous assets
and even if locating counterparties has a cost (which we have taken to be 0 throughout).
We have shown that when trading is noncompetitive, the centralized market is efficient
for all endowment distributions only if risk preferences of all market participants are
sufficiently symmetric. Decentralized market structures may strictly dominate in total
welfare sense when risk preferences and need to trade are sufficiently heterogeneous
for some market participants. We identify two ways in which decentralized trading
can enhance the role of markets in allocating risk: it may reallocate more risk to less
risk-averse traders despite the larger price impact, by enabling agents to trade distinct
components of aggregate risk. Additionally, by changing how the trade of correlated
assets substitutes in creating equilibrium utility, it may allow traders to reduce idiosyn-
cratic risk, even without affecting aggregate risk.

We have taken the exchanges and available assets in decentralized markets as
exogenous. Nevertheless, our results imply that in general, allowing agents to choose
with whom they want to trade and which assets will not result in the centralized mar-
ket—some traders would prefer to trade separately. Our analysis also suggests that
the study of the endogenous formation of exchanges in decentralized markets, with
respect to welfare or other objectives, should not be separate from security design.
In fact, the endogenously heterogeneous demand substitutability for identical assets
traded in decentralized markets implies the existence of profit and efficiency oppor-
tunities from security design as well as specialization in trading certain assets that
are not available in centralized markets.

Our results suggest a rich theory of the ways in which intermediation—a decen-
tralized market phenomenon—can improve efficiency and of the forms such inter-
mediation can take. We show that the introduction of strategic intermediaries may
mitigate both inefficiency due to imperfect diversification of idiosyncratic risk and
inefficient aggregate risk.

The centralized market theory of asymmetric information has provided argu-
ments as to why private information (e.g., adverse selection) or more information
(e.g., information revealed through prices) may create incentives for some traders to
trade in a separate market. When these incentives are also associated with a welfare
increase, those results suggest additional reasons for decentralization when trade is
motivated by not only diversification but also asymmetric information (e.g., Rostek
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and Weretka 2015b; Babus and Kondor 2016; the lemon markets model by Akerlof
1970 could also be interpreted this way). This paper shows that arguments based on
risk sharing and diversification can be made for decentralization of trade, even in the
absence of information-related reasons.

One might wonder whether the uniform-price mechanism is significant to the
main conclusions. The starting point for identifying the possibility of welfare
improvements is the inefficiency of (centralized or decentralized market) allocation
due to price impact. Based on the results in the theory of games with (two-sided)
private information, one expects inefficiency to be present in equilibrium and the
welfare gains from market decentralization to exist for other pricing mechanisms.
Fundamentally, these gains stem from the possibilities that decentralized trading
creates for alignment of agents’ risk preferences and their equilibrium risk exposure
via the market structure. One might also wonder if our conclusions based on a static
model are useful given that most markets are dynamic. Dynamic trading changes
incentives and motivates a separate study of welfare effects. In a dynamic model,
traders have price impact in every trading round. The centralized market inefficiency
and all the decentralized market effects that we identify in the static model are pres-
ent in all rounds. With gains to diversification renewed through endowment shocks,
the static effect we identify will be first-order. Our results suggest the potential for
welfare improvements in markets in the cross section (their market structure) as
well as in time series.

APPENDIX
A. Equilibrium Characterization

PROOF OF PROPOSITION 1:

(i),(ii) That the equilibrium characterized by schedules and price impacts
{a:(+, Aj), A;}; is equivalent to a Bayesian Nash Equilibrium in a decentralized mar-
ket follows from Lemma 1 in Rostek and Weretka (2015a).

(iii) For uniqueness, diagonalize ¥ by multiplying (6) from the left and right
by ©/2 and denote A; = L2\, 2712,

(27) A= (Z(a,1d+A ) el

One expects that any solution to this equation is of the form A; = Bio;Id for
some §; > 0, i € I, and consequently A; = (;a;X. Lemma C4 in online
Appendix C shows that this is the case. The analytic characterization of equilibrium
follows by Lemma D.1 in online Appendix D.

Part (iv) follows directly from the harmonic mean condition: defining
B = Y ;(A; + ;)7 and noting that by (iii), A; = B;o; % for some §;, we
get B = bX~! for some b > 0, and (ii) implies A = (B—- N+ o) H,
which is equivalent to 8;a; = (b — (Gioy; + a,-)‘l)‘l. This is a quadratic equatlon
for (3;, and it has only one positive solution given by (7). Substituting 3; into
b = Y;(B;a; + a;)~!, we get the required equation for b. B
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To prove Theorem 1, we will need several auxiliary results. Let S be the set of
I-tuples {A,}; of positive semidefinite matrices with A; € RN®*Mi)_On this set, we
introduce a partial order: {A;}; < {A/}; for a pair of tuples {A;};, {A;};if A; < Aj
for all i € I. Recalling that the negative X; of the slope of i’s demand and i’s price
impact are linked through X; = (o; V) + A;)~!, we can rewrite the fixed point
condition (15) as a fixed point condition for demand slopes as follows. Define the
mapG = {G}; : ' — S'via

() Gl = (((;X,-)")N(i) ¥ a,-vN(,-))", iel

Essentially, the decentralized market model can be seen as a game in which agents
choose their demand slopes. Let us denote by G”({A;};) the nth iteration of the best
response map. Standard properties of the positive semidefinite order imply that G is
monotone increasing in {X};.

LEMMA 1: Map G is monotone increasing on S'.

Let F = {F}; : 8" — S'be the map defined by the right-hand side of (15). By
construction, maps F and G are simple transformations of each other. It is more con-
venient analytically, however, to work directly with map F; consequently, all proofs
that follow use this map. Passing from F to G is then straightforward. The following
result then follows from Theorem 1.

LEMMA 2: A tuple of linear demand schedules with slopes {X}; is an equilibrium
if and only if it is a fixed point of the best response map. That is, {X}; = G({X},)-

PROPOSITION 6 (Monotone Convergence): Pick an arbitrary starting tuple {X"};
such that {XP}; < G({X}) ({X%}: > G({X"}.)). Then, iteration G" ({X?};) is mono-
tone increasing (decreasing) in n and converges to an equilibrium tuple.

Let D = diag(z), z € R" be a diagonal matrix. Multiplication of (15) by Dy
from the left and right gives the following scale invariance property of price impacts.

LEMMA 3: Let V' = DVD. Then, the map given by {A;}; — {Dn()A; Dx(y}, defines a
one-to-one correspondence between equilibria in markets defined by V and V'.

PROOF OF THEOREM 1:

(i), (ii) Treating assets traded in different exchanges as distinct assets and lifting
before aggregation gives the first-order condition (4) and the system of / price impact
harmonic mean equations. Equation (4) gives demand function (5) for each trader i.
Given the lifting procedure, that the equilibrium characterized by schedules and
price impacts {g;(-,A;), A;}; is equivalent to a Bayesian Nash Equilibrium in a
decentralized market follows from Lemma 1 in Rostek and Weretka (2015a).

(iii) Existence of equilibria when V() is nonsingular for any i follows from
Proposition 6. For the general case,let V¢ = V + ¢Id and let F© be the corresponding
map. By Proposition 6, forany e > 0, there exists an equilibrium {A}; corresponding
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to V<. Pick a sequence ¢, = 1/k and an equilibrium {A}*};. Since F¢ is monotone
increasing in ¢, we have

{AF): = F({A?}) > Fo ({AP)),

and hence by Proposition 6, there exists an equilibrium {A;*'}; < {A}*};. Thus, we
can construct a monotone decreasing sequence {A;*}; that converges to an equilib-
rium corresponding to ¢ = 0.

To prove generic determinacy, let, for each i, X; = A; + o; V), and define a
map® : ST — S'via

ot = %~ ((557)").

The equilibrium equation can be written as ®({X};) = {o;Vn(} Let !
be the image of the map V — {a,«VN(,-)}i defined on the set of positive semidefi-
nite matrices.>? Let ©/ be the subset of &' such that for any {X}; € ©', we have
that ®({X};) = {a; V(;}; for some positive definite matrix V. Subset ©'is an alge-
braic variety, and therefore can be represented as a finite union of irreducible alge-
braic sets that are smooth manifolds. The same is true for ¥/. By Sard’s Theorem,
almost every {c; VN(i)}i € U!has a regular preimage under ®; that is, equilibria are
determinate for generic covariance matrices. The finiteness of the set of equilib-
ria follows by the standard compactness arguments and the fact that all equilibria
belong to a compact set.

(iv) For the positive semidefiniteness of price impacts, observe
that A; + @; V) must be positive semidefinite for any trader i in equilibrium.
Suppose otherwise. The utility of agent i who acquires portfolioy € RM) js given
by (¢° + y)Td — yT(p* + Aiy) — 05(q7 + y)" eV (¢ + ), where p* is the
equilibrium price vector if agent i does not trade. If A; + a; V() were not positive
semidefinite, then the agent could attain infinite utility; that is, if there is a y such
thatyT(A; + o; Va@)y < 0, then buying an infinite amount of portfolio y gives an
infinite utility. If A; + o; V ;) is positive semidefinite for any i, then so is A; by (15).

Let now C(V) = diag({V!/?})Vdiag({V!/?}) be the correlation matrix of
the assets. For any exchange n and agent i, define o;,, = o;min(eig(C(V)n)))
and of* = o;max(eig(C(V)n())); @i« and a;* can be interpreted as the bounds
on the assets’ effective riskiness (see Section IIID). For any exchange n, define
two constants \,,(n) = min i, and A™(n) = max,oa;”. Further,

o[ s () Vi — J giao (27 0) Vi
let {ADminki = {dlag( Iin) — 2 )N(i)}i and {ADmuki = {dlag( Tn) -2 )N(i)}i

and

XPminki = {(i Ve + A mad) ™} Xmandi = {2V + A min) '}

32Note that if some of the assets are replicas of each other, the covariance matrix V belongs to a subspace
of R¥*N_ In this case, we apply Sard’s Theorem to the map into this subspace with respect to the induced Lebesgue
measure.
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A direct calculation implies that

{XPminki < G{XPmint) and {XPnaxli > G{X max))s

and, similarly,

{Agmin}i < F ({Agmm}:) and {A max}t > Fi ({A max}t)

We now construct the minimal and maximal equilibria by the explicit iter-
ative procedure described in Proposition 6. To this end, recursively define
two _ sequences {A, mini € S' and {Af % €S, k>1 via {A, minki
= F({AfL.)) and {A mati = F{ANSLD)- By Proposition 6, the sequence {A¥ ..},
k > 0, is monotone increasing, whereas {A max}is K > 0, is monotone decreasing;
these sequences converge to equilibria (the fixed points of map F) that we denote
by {A;, ml“}, and {A; max};> respectively. The corresponding demand slopes are deter-

mined via {Xt mm}z = {(a: VN(z + Al max) l} {Xt max}z = {(a,VN (0] + Ax mm) l}
Pick an arbitrary equilibrium {A;};. Then, foralli € I,

Let F, be the map corresponding to the right-hand side of (29). Then, iterating F,
and using Proposition 6, arrive at the conclusion that F, has a fixed point {A;*};
satisfying {A;}; < {A;*};. By Lemma C.4 in the online Appendix, this is the unique
diagonal fixed point. Then, A}* is diagonal, and for any exchange n, the scalar price
impacts {(A;*),,}; coincide with price impacts in a centralized exchange for a sin-
gle asset with variance 1 and risk aversion «;*. The same iteration argument as
above implies that these price impacts are monotone increasing in o;*, and there-

fore, satisfy

Hence, by the monotonicity of map F, {A}; = F*({A}) < F"({A? maxk)
— {A; mor}:- Similarly,

A = ((é(ajv + Kj)“)_l)N(i) > ((;(G’j,**ldN(j) + Kj)"l)_l)N(i)'

The same argument as above implies that

Ak ()

A > mIdN(i), i €l

and the same iterative procedure completes the proof: {A}; = F"({A})
Fn({A l'l'l.ll'l}l) - {Al,mll'l}l
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B. Comparative Statics and Welfare

PROOF OF THEOREM 2:

(i) Consider two markets which differ only in participation {N(i)}; and {N'(})},
N(i)’ D N(i) for all i € I. Pick an equilibrium {A;}; corresponding to {N'(i)};. By
Lemma E.2 in the online Appendix,

(Adney = ((,; (Vwiy + 1—\1)‘1) —1) > ((J; (@ ¥y + (Kj)N(j))—l) 4)

NG) NG)

for all i € I Therefore, by Proposition 6, there exists an equilibrium {A,}, corre-
sponding to participation {N(i)}; and satisfying {A,}, > {(Aj)wp}; the claim follows.

(i) Fix a parameter o and let us rewrite the equilibrium equation
as {A}}; = F({A}}, @). By definition, for both a = M; and a = o, map F is
monotone increasing in « in the sense of the positive semidefinite partial order.

Fix oy < a; and let {A;()}; be an equilibrium. Then

{Aj(@)y = FA; ()} ) < F({Aj(an)}; ).

By Proposition 6, there exists an equilibrium {A;(a;)}; satisfying

{Ae)l; = {Aj(en)};

The next claims follow by a similar argument using Theorem 24 in Anderson and
Duffin (1969).

Finally, part (iii) follows from Lemma D.3 in the online Appendix. &

PROOF OF PROPOSITION 2:

The expression for the surplus matrix follows by direct calculation: denoting by -
the inner product in RY, we observe that the equilibrium utility is given by
(30)
g -d—g-(p—d)-05q +§) V@ + )

= ¢/ d+3(Q ~ Vg + V) - 05 +3) - V(T + §)

=g d—057" 0,V + ;- (Q* -~ V) —05g;- Vg

=q2-d—053 o,Vg? + (Q* — V@) - (A + o, V) H(Q* — o, V)

- 05(Q" — o, V@) (A + o; Vg ) o V(A + 0 Vi) H(Q* - o, V),

and the claim follows because

(31) Ti(A) = (Ai+ 01,"7N(i))_l — 0.5(A;+ aiVN(i))_laiV(l_\i"' aivN(i))_l
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(i) Suppose that we change a market structure M to a more decentralized market
structure M. Let A;, A] be the corresponding price impacts of agent i, and denote
by X and X' the slopes of the demand schedules in the two market structures. It fol-
lows from Theorem 2 that A{ > (A;)yy;, and therefore by Lemma E.2 in the online
Appendix,

(32) X = (esVay + M) ™" = (Vi + M) ™" = (Vi +A) 7! = X

Using formula (32), we can see that it suffices to show that the inequality
X—-050;XVX > X'—0.50;X'VX' holds if X is proportional to V and X > X"
Let X = AV~! and let ¥ = V!/2X'V'/2, Note that X < (0;V)~' and hence
B < a;!. Then, we have ¥ < AId. Multiplying the required inequality from both
sides by V!/2 yields

X — 050;XVX > X' — 050;X'VX' & (8 — 050;6)ld > ¥ — 050,72,

and the claim follows because f(x) = x — 0.5q;x2 is monotone increasing on
[0,a;71].

Part (ii) follows because by the Léwner Theorem (Donoghue 1974), the function
f(x) is not matrix monotone. B

PROOF OF PROPOSITION 3:
There exists a map (a matrix) £ such that the equilibrium allocation is given by

(g + 47 = (EM (D))

where £M is a function of equilibrium price impacts A;, and can be written as such
explicitly using Corollary 2. The efficiency of a given market structure in allocating
risks is then encoded in the way the matrix £M “redistributes” endowments. For
instance, in the centralized competitive market with a single asset,

EM(@D)i = (e Mig™

That is, the image of the matrix £M is one-dimensional and coincides with the span
of the efficient allocation (a; ). Hence, £ is a projection onto the efficient allo-
cation, and it has only two eigenvalues, 1 and 0. Thus, decomposing any vector of
endowments into the efficient and the inefficient part,

(@) = (0ihig™ + ((aD)i — g™ (o)),

the matrix M keeps the efficient part unchanged and completely eliminates the
inefficient part. _ ~
Denote by S; = (A; + a,-VN(i))‘l the lifted slope of agent i’s demand. We have

(33) EM@D)); = qf + 3i<B-1Xi:‘_S‘iadi? - aivq}))-
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Let D = diag(e;V); and BM = (‘—S,-B‘l:?j): -, and PM = diag(S,). Then, we
have -

M = 1d + (BM - PM)D,
and equilibrium total welfare loss can be rewritten as ((g°))7.A™ (¢?), where
AM = (eM) DeM = (1d + D(BM - PM))D(1d + (BM - PM) D).

Suppose first that all risk aversions are symmetric. For equally risk-averse traders it
is efficient to hold equal shares of the total market portfolio; hence, the set of efficient
allocations coincides with vectors (q,~°) for which g is independent of i. Denote the
subspace of such vectors by X ¢ RX*N, Then, the matrix .A™ keeps that subspace
invariant in the sense that AMx = x for all x € X, and this holds independent
of the market structure M. Indeed, this is the case because both EM = (SM)T
and D keep this subspace invariant, and hence so does AM = (EM)TDEM. The
orthogonal complement A of X in RX*¥ coincides with the set of initial endow-
ment allocations for which the aggregate endowment is 0. Our goal is to show that
the utility loss in a decentralized market is always higher; that is, that AM > A*.
Denote by R the orthogonal projection on XL. Then, by Corollary 1, the cen-

2

tralized market matrix * on that subspace coincides with (Tﬂﬂ) D. That is,
2

RA'R = (%) RDR. Since the matrices .A* and .A* both keep X invariant,

it suffices to show that

2
M * _ ﬂ
RA 'RZ'RA’R—(——I_l_ﬂ) RDR.

Denote B = D + D(BM — PM). Then, by direct calculation, AM = BD~'B
and hence the required inequality takes the form

1+

Using the fact that D and R and D and D commute and multiplying the required
inequality by D~!/2 from both sides, we conclude that we need to show that

2
RBD™'BR > (i) RDR.

2
(RD-2BD"1’R)? » (rﬂﬂ) R,

which is equivalent to RD~/?BD~V/?R > IL'R assuming we can show
min(eig(RD~/2BD~'/2R)) > 0.Thatis, we need to show that all those eigenval-
ues of D~'/2BD~'/2 that are below 1 are also above 3/(1 + f).

Without loss of generality, we normalize the common risk aversiontobe o = 1.
In order to determine the eigenvalues of the matrix D~'/28D~!/2, we note that they
coincide with the eigenvalues of D~V/3(D~1/?BD-1/%D!/2 = DB = £M33

33 For any invertible matrix 7and any matrix C, the eigenvalues of 7~ CT coincide with those of C.
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Fix a v € R and let us calculate the inverse of (£ — v1d). Our goal is to show
that it is invertible for all v below 3/(1 + B).

Writing equation (EM — VId)X = ZwithX = (g; ) we get (1 — v)Id — T) g
+ SQ* = Z, implying that g = ((1 —v)Id — T))"1(Z — S;Q*). Recalling the
definition of Q*, we get

Q" = B').8a,Vg) = BT} S V((1-1)1d-T) ' (z - SQ"),
which is equivalent to
Q* = (B + ZS,CI,V((I - V)Id — f‘i)_lgi)_lz:giaiV((l - V)Id - f‘i)_lZ',

and (€M — v1d) is invertible if and only if the right-hand side of this equation is well
defined and finite. _ _

The first key observation is that for each i, the matrix S;o; V((1 — v)Id — T)) 7! S;
is symmetric. This follows because

(34) Ve (1 - v)ld - r)™! = Ve (1 = v)ld - SiVN(i))_l
= (1 -V Vi -8

The second key observation is that forv < 5 f 5 the matrix Vy(, (1 — v)Id — T;) ™!

is positive semidefinite. This is equivalent to the clalm that (1 — I/)VN -S> 0.
The latter follows because by Theorem 2, S; < g ﬁVN(,) Thus, for v < T ﬂ’

the matrix B+ Y ;S;0;V((1 — v)Ild — T')~'S; is positive definite and hence is
invertible.

Fix now a market structure. Let A be the subset of exchanges for which the
market structure is not equivalent to that of a centralized market (see Malamud
and Rostek 2016 for a full characterization of such market structures). Then, on
the complement of these exchanges, a straightforward application of the iteration
procedure used for equilibrium construction in the proof of Theorem 1 implies that
the price impacts on that subset of exchanges are strictly below ,H Usmg continuity
arguments it is then possible to show that the inequality S; < ﬁ —L_vil (i) still holds
when the heterogeneity in risk aversion is sufficiently small, and then the arguments
above imply the required welfare comparison result. The proof is complete. B

PROOF OF PROPOSITION 4:

Without loss of generality, we normalize the asset’s variance to 1. Let us split the
market in two so that agents I — 2,1 — 1,/ trade in a separate exchange numbered
2. Furthermore, without loss of generality let us normalize o;_3; = 1. Our goal is
to show that for sufficiently small £ = a3 there exists a vector of initial endow-
ments such that the split market has a higher total welfare than the centralized mar-
ket. For simplicity, we assume that «; = a, = a3 = ¢. Denote by ); and )/ the
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price 1mpacts in the two market structures. Then, a direct calculation implies that
b—— 146,b = ”'+00,and

2 1—bpa , 1—8h; .
=5+ g€ g P+ 0(E), /\,-=2—€+ %sZTfl+0(e3), i>3,
WhlleAz =€ — 0062‘; /\2 = E - 00 5 ,where 00 = 22,>3a Z3<,<1_2 a; 1.

Denote by 5; = (\+ o;)7! the lifted slope of agent i’s demand Suppose also
thatg? = Ofori = I—2,1— 1,1 Then, the equilibrium allocation is given by

(35) qj + q]o = qJO + sj(b‘lz:s,-aiqio - ajéjo).

Let D = diag(a;), B = (s;ib~ ]) )i and P = diag(s;). Then, denoting
£ =1d+ (B - P)D,weget £(q1) (g +q; 9) , and the equilibrium total welfare
loss can be rewritten as ((g)) TA(q,O) A = (Id+D(B — P))D(Id + (B — P)D).
Similarly, we use A’, B’, P’ to denote the corresponding objects in the spht mar-
ket. Our goal is to show that there exists a vector of initial endowments (g ); such
that (g2)T A(g?); > (¢°)TA’(g?);. That is, the total welfare loss is higher in the
centralized market. Equivalently, we need to show that max(eig(A — A’)) > 0.
Denote 1; = q;s;. Then,

(36) A= D + 2DBD — 2DPD + DBDBD — DBDPD — DPBDB + DPDPD

= (o5 — 2y + )1y, ; + (2b "+b 2Esm)(nﬂl,),,

— b~ (ym(mi + )i j

Hence, by direct (but tedious) calculation, the difference between A and A’
(restricted to endowments corresponding to agents in the first exchange) is approx-
imately given by

2
(37) (60 — 80) (A — A) ~ —5(Liglicy);; — 75 (0 ),

+e (( 1>3 j>3) K’q)” +3 62 (771 Tb (771 + 77;)),-,,-

for some k; € R, where i = 1 — 0.5 1;c3. Hence, the diagonal elements of this
matrix for all i > 3 are positive, and therefore it cannot be negative semidefinite. &

PROOF OF PROPOSITION 5:

Part (i) is proved in the text. Part (ii): without loss of generality, we may assume
that there are 5 agents in the market. We also assume for simplicity that three low
risk aversion agents have the same risk aversion a;, and the two high risk aversion
agents have the same risk aversion a; > a,. Consider the two market structures
similar to those from Example 5. Namely, we assume that in the more centralized
market, two of the less risk-averse agents trade only asset 2, while two high risk
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aversion agents and the third low risk aversion agent trade both assets. Then, price
impacts satisfy

(38) A, = ((g 2, _g az)‘l) + A+ V) (A5 + aZV)‘l)_l,
b= ((O Z(Azfaz)_l) Halt a‘v)_l)_l’

-1
he = (((g (Az+0a2)‘1) +2(A1+01V)_l+(A3+a2V)—1) )22.

S

In the less centralized market, we prohibit the third low risk aversion agent from
trading asset 2, so that

. ((W+a)t 0 o)
(39) Af = (( 0 2(A§+a2)“)+(Al+alv) ) ,

5= (& g r20i000) ).

(Bt 0 , Ay
2_(« 0 (Aé+az)“)+2(Al+a1V) ) )22‘

When the correlation p is 0, the price impact of class 1 agents satisfies

~

A

A, = diag(A, A1), AL = diag(Aq, Ay),

where X = (2—aybi++/ (a1 b)*+4)/2b, My = (2—abj++/ (e, b)*+4)/2b},

where
(40) 22 + asby +(@b) 2 +4) + 2+ aoby+y (k) +4) = 172,
22+ arby +y(rb) +4) +32+ by +(cab)? +4) | = 1/2.

At the same time, in the less centralized market, we have
-1 -1
(41) 22+ aybi +/(ayb))* +4)  +(2+ abi +/(bi)? +4) = 1/2,
-1 -1
22+ anbs++/(nb3)? +4)  +22+ arbs ++/(by)>+4) = 1/2.

In particular, by = b] and hence liquidity for the first asset is the same in
both markets. At the same time, b < b, and hence liquidity for the sec-
ond asset is higher in the more centralized market. It is possible to show that
when oy — 0, b = 4.8+ 0(ay) and Ay = Ajy = 3+ O(e) while b, ~ 2>

a3 40,
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2 23/2 Ty
and )y =~ —\/ﬁ and \j; = (’;‘/2 Suppose now
thatp ~ p ,{az Then, 12"1 = I‘+,/ T, +O(a2) I‘l ~ I'¥ /@G L+ 0(ay),
where I' = §—0.50,8" with § = dlag(( 3t o) ,a, 1. Our goal is to show

that ', 2 T, for some values of p*.

The first observation is that by Proposition 7 in the online Appendix, to the high-
est order (i.e., ./@;), A; only depends on p through 1 — p? = 1+ O(«,) and hence
A = A* + O(a,). At the same time, ignoring the terms of the order of a;, we have

that
A = ((mf))_l 2(A0§)“) +(Ai+a1V)“)—l,
A} = <<(g 2(A0§)“) +2(A] +a1V)“>-l>“,
Ay = (((méo)_l (Ag_]) +2(Ai+a1V)")_l>22.

Substituting V = 1d + p ,/‘—(0 :

get Aj ~ A, + /a;A. Calculating ' using this expression yields the required
result.

To prove the last claims of Proposition 5, we will need the following auxiliary
result.

) and using the implicit function theorem, we

LEMMA 4: Within Proposition ], let the equilibrium price impact of trader 1 be 1~Xl .
Then, any A, < A, can be attained as an equilibrium price impact by adding an
additional trader to the exchange.

PROOF:
See the online Appendix.

Lemma 4 implies that by adding /removing traders to/from the illiquid exchange,
the required changes in price impact can be achieved. The claim now follows from
Proposition 2(ii).3* Assume that the endowments are such that there is no inter-class
trade and also no intra-class trade, except for agents of class 1. As we discuss in the
main text, this can be done independently of price impacts. For simplicity, we may
assume that the total endowment of each class is 0, so that Q = 0. We can also
assume that class 1 consists of 2 traders with endowments ¢{ and —g?, so that we
are free to choose this endowment without affecting aggregate risk. &

34While Proposition 2(ii) only claims that T may be nonmonotone in A, it is straightforward to show that it is
in fact always nonmonotone in A when A is not proportional to V.
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