

Liquidity, Volume, and Volatility

Vincent Bogousslavsky¹ Pierre Collin-Dufresne²

¹Boston College

²Swiss Finance Institute at EPFL

AFA, San Diego, January 5, 2020

Motivation

We investigate the relation between the **liquidity**, **volume**, and **volatility** of individual U.S. stocks since 2002 (post-decimalization)

- ▶ What drives stock market liquidity?
 - ▶ Adverse selection
 - ▶ Inventory risk
- ▶ Dynamics of liquidity, volume, and volatility important for:
 - ▶ Dynamic portfolio allocation
(Collin-Dufresne, Daniel, and Sağlam (2018))
 - ▶ Costs associated with exiting a position

Liquidity and Trading Volume: Theory

Theoretically, high trading volume is generally associated with high liquidity (\sim low spreads)

- ▶ Adverse selection and market breakdown
 - ▶ More uninformed trading alleviates the adverse selection problem ([Kyle \(1985\)](#))
- ▶ Higher volume implies less risk for market makers who can more easily find off-setting trades ([Demsetz \(1968\)](#))
 - ▶ Lower cost of trading leads to more trading
- ▶ Invariance of Transaction Costs Hypothesis
([Kyle and Obizhaeva \(2016\)](#))

$$\text{▶ \%spread}_{i,t} \propto \left[\frac{\sigma_{i,t}^2}{P_{i,t} V_{i,t}} \right]^{\frac{1}{3}}$$

Liquidity and Trading Volume: Empirical Evidence

- ▶ Positive volume-liquidity relation supported mostly by cross-sectional evidence (Stoll (2000))
- ▶ Only limited (and contradicting) evidence about the time-series relation
 - ▶ Spreads widen in response to higher volume (Lee, Mucklow, and Ready (1993))
 - ▶ Positive correlation between changes in spread and volume at the market level (Chordia et al. (2001))
 - ▶ No relation at market level (Johnson (2008))
 - ▶ Few studies control for volatility

Key Findings

1. Positive association between volume and spread for large stocks, mostly driven by the common component of volume
2. Volatility of high-frequency order imbalances explains (1) and is an important variable for the dynamics of liquidity
3. Volatility of high-frequency order imbalances seems to reflect inventory risk and is priced in the cross-section of weekly returns

Related Literature

- ▶ Volume and volatility (Clark (1973); Epps and Epps (1976); Tauchen and Pitts (1983); Gallant, Rossi, and Tauchen (1992); Andersen (1996))
- ▶ Spreads (Glosten and Harris (1988); Hasbrouck (1991); Foster and Viswanathan (1993); Bollen, Smith, and Whaley (2004))
- ▶ Liquidity and volume (Lee, Mucklow, and Ready (1993); Chordia, Roll, and Subrahmaniam (2000); Johnson (2008); Barinov (2010))
- ▶ Order imbalance (Chordia, Roll, and Subrahmanyam (2002); Chordia, Hu, Subrahmanyam, and Tong (2018))

Data and Variables

Sample:

- ▶ U.S. common stocks; 2002-2017
 - ▶ Price > \$5 and market capitalization > \$100 million

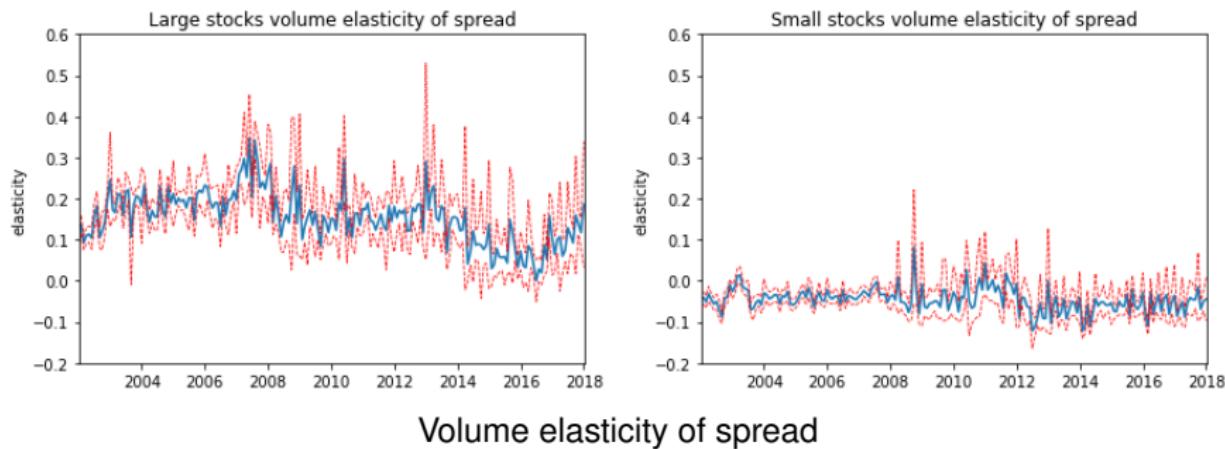
Main variables:

- ▶ **Effective spread:** $2|\ln P_{i,t} - \ln M_{i,t}|$ dollar/share-weighted over the trading day (Holden and Jacobsen (2014))
 - ▶ Similar results with dollar effective spread
- ▶ **Volume:** share turnover (during trading hours)
 - ▶ Similar results with CRSP turnover
- ▶ **Volatility:** average absolute return over the past five trading days or realized volatility
 - ▶ Similar results with $|r_t|$, $|r_{t,\text{intraday}}|$

Methodology

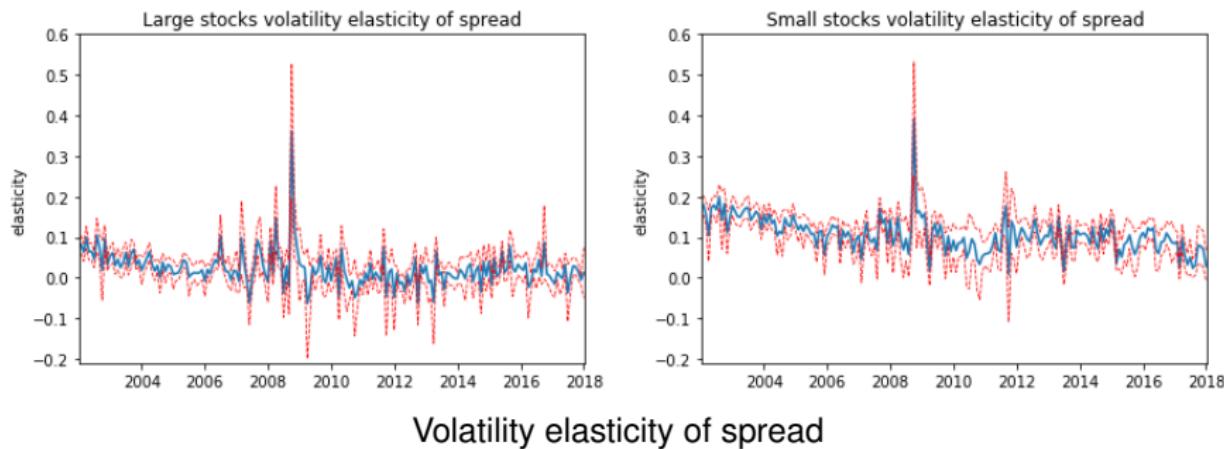
Volume and volatility elasticities of spread:

$$\log s_{i,t} = \alpha_i + \beta_\tau \log \tau_{i,t} + \epsilon_{i,t}$$


$$\log s_{i,t} = \alpha_i + \beta_\sigma \log \sigma_{i,t} + \epsilon_{i,t}$$

$$\log s_{i,t} = \alpha_i + \beta_\tau \log \tau_{i,t} + \beta_\sigma \log \sigma_{i,t} + \text{controls} + \epsilon_{i,t}$$

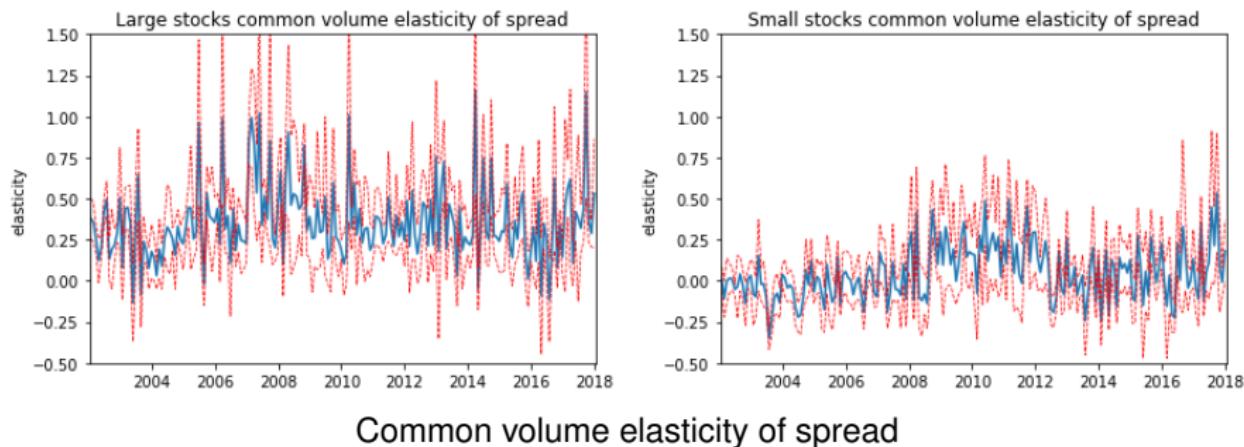
- ▶ Levels, changes, and vector autoregressions
- ▶ Invariance (Kyle and Obizhaeva (2016)): $s_{i,t} \propto \left[\frac{\sigma_{i,t}^2}{P_{i,t} V_{i,t}} \right]^{\frac{1}{3}}$,
where V is the share volume and P is the share price
- ▶ Controls: daily price and market capitalization;
day-of-the-week and month-of-the-year indicators
- ▶ Estimated each month/year on stocks sorted into market capitalization quintiles


Results for Large vs. Small Stocks Volume

$$\log s_{i,t} = \alpha_i + \beta_{\tau} \log \tau_{i,t} + \beta_{\sigma} \log \sigma_{i,t} + \text{controls} + \epsilon_{i,t}$$

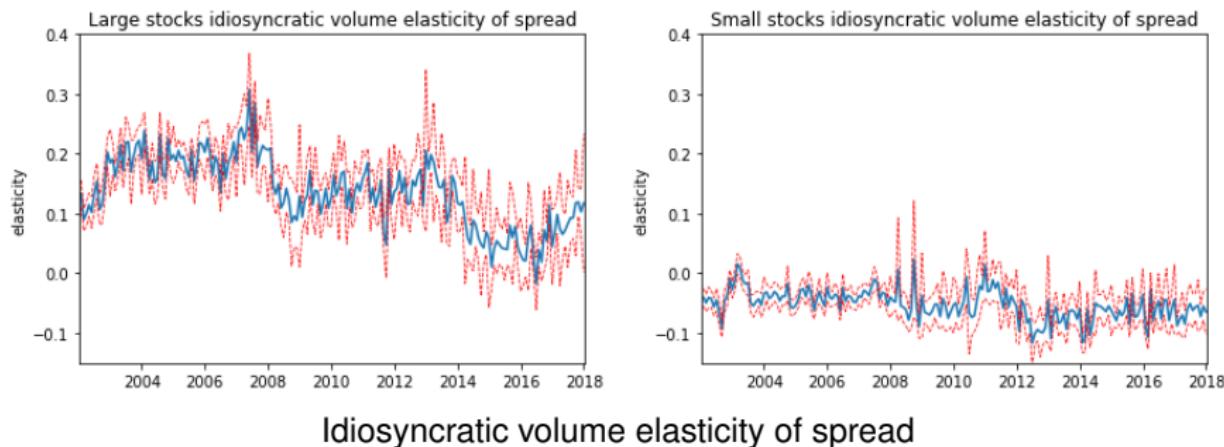
Results for Large vs. Small Stocks Volatility

$$\log s_{i,t} = \alpha_i + \beta_\tau \log \tau_{i,t} + \beta_\sigma \log \sigma_{i,t} + \text{controls} + \epsilon_{i,t}$$

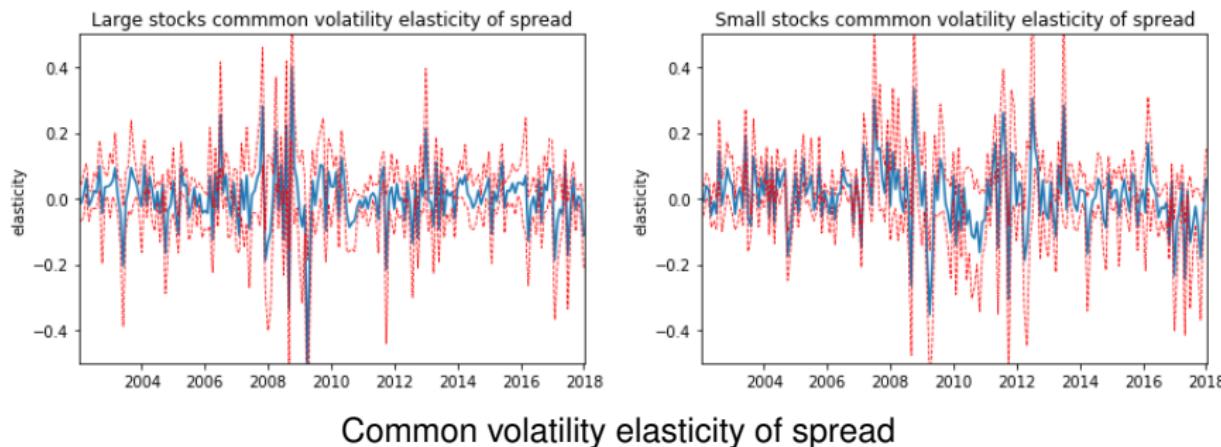

Decomposing Volume and Volatility

Systematic vs. idiosyncratic volume and volatility

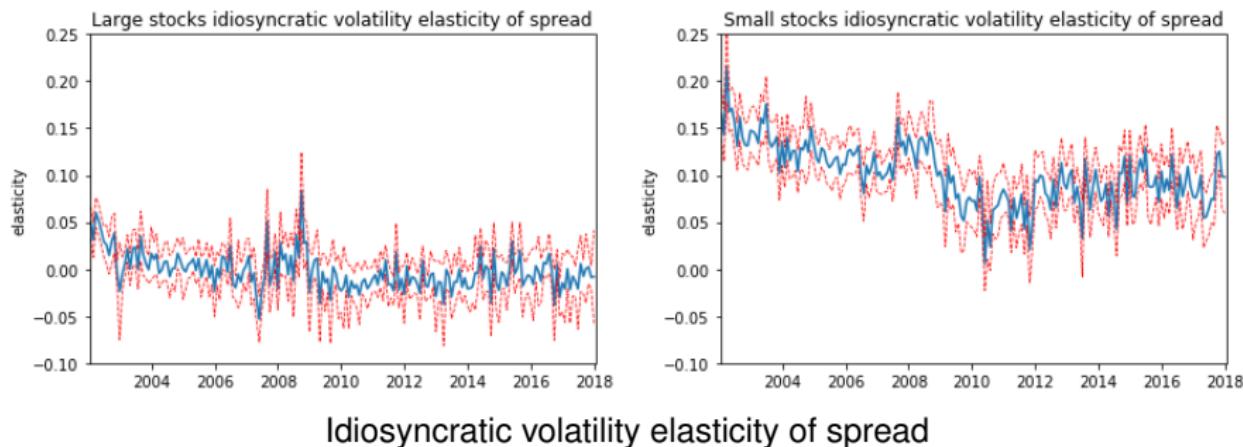
- ▶ *Adverse selection channel:*
 - ▶ Idiosyncratic volatility is naturally linked to 'insider information' and adverse selection
 - ▶ Idiosyncratic volume is more linked to 'information events' that trigger more informed trading
 - ▶ Systematic component can be relevant if adverse-selection due to differential interpretation of public news
- ▶ *Inventory risk channel:*
 - ▶ Systematic volume shock consumes liquidity everywhere


Large vs Small Stocks: Common Volume Component

$$\log s_{i,t} = \alpha_i + \beta_{\tau,C} \tau_{i,t}^C + \beta_{\tau,I} \tau_{i,t}^I + \beta_{\sigma,C} \sigma_{i,t}^C + \beta_{\sigma,I} \sigma_{i,t}^I + \text{controls} + \epsilon_{i,t}$$


Large vs Small Stocks: Idiosyncratic Volume Comp.

$$\log s_{i,t} = \alpha_i + \beta_{\tau,C} \tau_{i,t}^C + \beta_{\tau,I} \tau_{i,t}^I + \beta_{\sigma,C} \sigma_{i,t}^C + \beta_{\sigma,I} \sigma_{i,t}^I + \text{controls} + \epsilon_{i,t}$$


Large vs Small Stocks **Common Volatility Comp.**

$$\log s_{i,t} = \alpha_i + \beta_{\tau,C} \tau_{i,t}^C + \beta_{\tau,I} \tau_{i,t}^I + \beta_{\sigma,C} \sigma_{i,t}^C + \beta_{\sigma,I} \sigma_{i,t}^I + \text{controls} + \epsilon_{i,t}$$

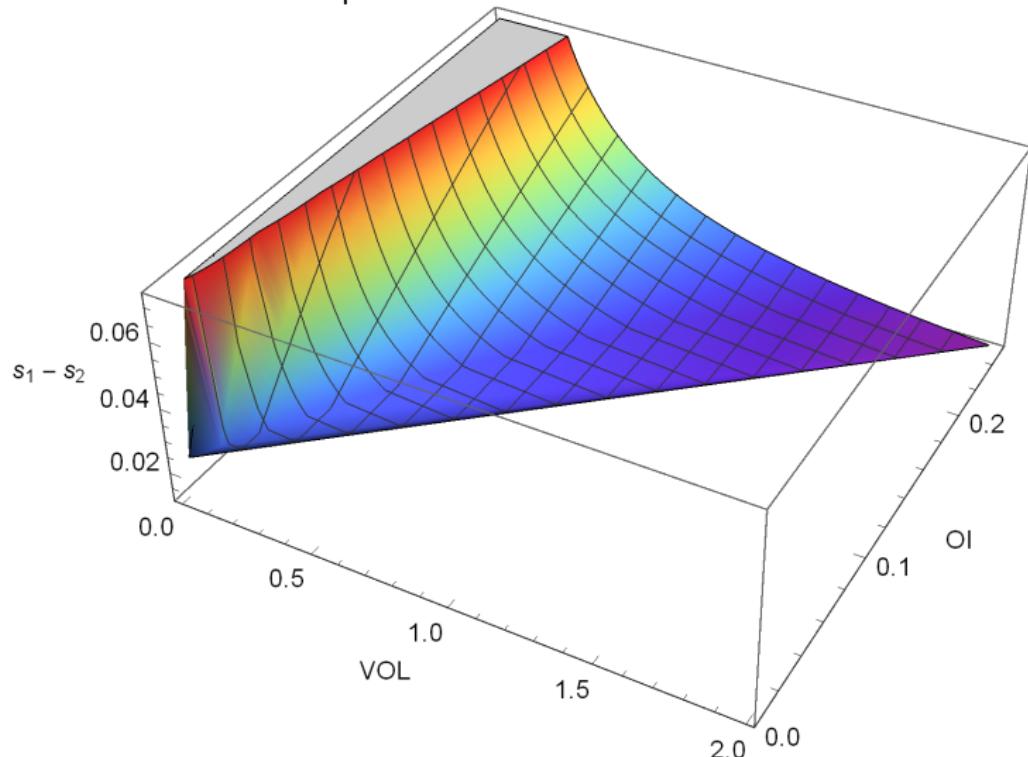
Large vs Small Stocks: Idiosyncratic Volatility Comp.

$$\log s_{i,t} = \alpha_i + \beta_{\tau,C} \tau_{i,t}^C + \beta_{\tau,I} \tau_{i,t}^I + \beta_{\sigma,C} \sigma_{i,t}^C + \beta_{\sigma,I} \sigma_{i,t}^I + \text{controls} + \epsilon_{i,t}$$

Inventory Model

Natural to distinguish between volume and order imbalance
(one-sided volume) (e.g., Chordia et al. (2002))

- ▶ Long-lived liquidity provider with CARA


$$\max_{c_t, n_t} \mathbb{E} \left[\int_0^{\infty} -e^{-\beta t - \alpha c_t} \right]$$

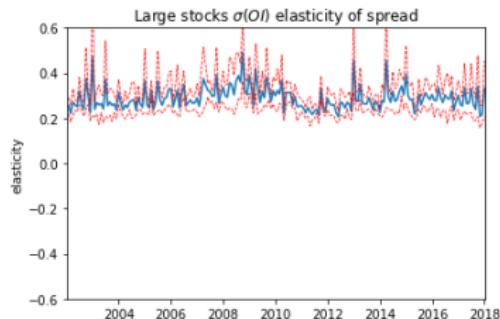
- ▶ One dividend-paying asset and one risk-free asset
- ▶ The liquidity providers absorbs supply shocks from buyers and sellers that arrive asynchronously (price impact)
- ▶ Her inventory follows a Markov chain with transition intensities $\lambda_{i,j}$
- ▶ What is the effect of higher volume on the spread?

Inventory Model

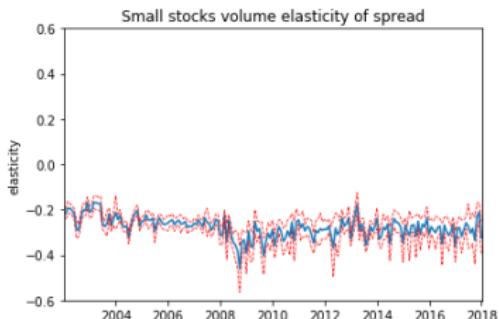
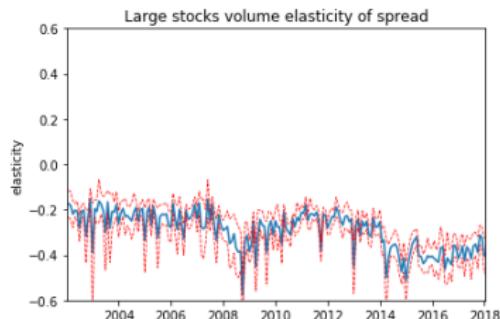
Bid-Ask spread as a function of Volume and Variance of Order Imbalance

Bid and Ask spread as function of Volume and Order Imbalance

Volatility of Order Imbalances


Simple inventory model suggests to distinguish **volume** from **order imbalance** (to capture 'one-sided' volume)

- ▶ Compute order imbalance as a proportion of shares outstanding over every 5mn interval of the trading day
 - ▶ High frequency market making
- ▶ $\sigma(OI)$ is the standard deviation of the 5mn imbalance, computed each day
 - ▶ Control: realized volatility ▶ details

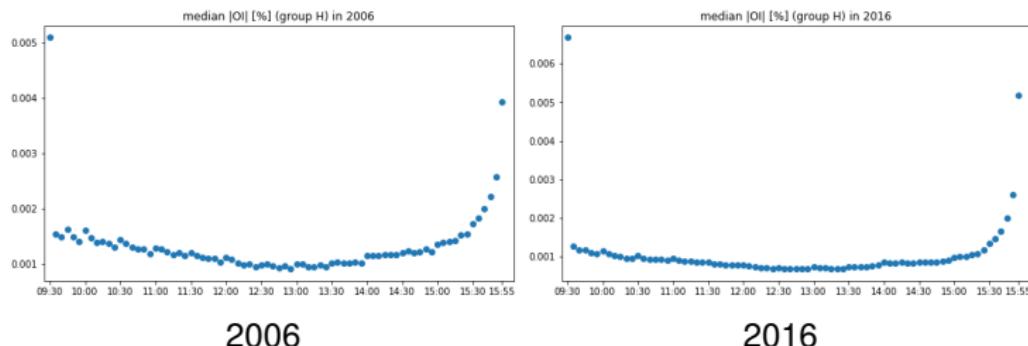


Volatility of Order Imbalances

$$\log s_{i,t} = \alpha_i + \beta_\tau \log \tau_{i,t} + \beta_\sigma \log \sigma_{i,t} + \beta_{\sigma(OI)} \log \sigma(OI)_{i,t} + \text{controls} + \epsilon_{i,t}$$

$\sigma(OI)$
elastic-
ity of
spread

volume
elastic-
ity of
spread

average R^2 increases from 11.48% (14.12%) to 22.82% (19.26%)


Interpretation of Order Imbalance Volatility $\sigma(OI)$

► Relation with other liquidity measures [► details](#)

- $\sigma(OI)$ is positively associated with [price impact \(Amihud\)](#)
- $\sigma(OI)$ is negatively associated with [depth](#)

► Intraday patterns

- Inventory effects should be stronger at the end of the day

Spread Decomposition

Large stocks in 2018

$$\text{effective spread} = \underbrace{\text{realized spread}}_{\text{trsign}*(p_t - m_{t+5})} + \underbrace{\text{adverse selection}}_{\text{trsign}*(m_{t+5} - m_t)}$$

Month	(a) Adverse selection			(b) Realized spread		
	β_{τ}	β_{RVol}	$\beta_{\sigma(\text{OI})}$	β_{τ}	β_{RVol}	$\beta_{\sigma(\text{OI})}$
1	-1.03** (-2.51)	1.85*** (9.00)	0.31 (0.95)	-1.26*** (-9.18)	0.38** (2.16)	1.47*** (11.51)
2	-0.74*** (-3.91)	1.60*** (10.22)	0.19 (1.26)	-1.19*** (-7.06)	0.40** (2.29)	1.37*** (10.98)
3	-1.29*** (-3.57)	1.20*** (4.77)	1.11* (1.78)	-1.31*** (-7.86)	0.22 (0.94)	1.69*** (7.45)
4	-0.73*** (-4.03)	1.45*** (16.55)	0.14 (0.91)	-0.92*** (-9.73)	0.14 (0.69)	1.49*** (8.78)
5	-0.68*** (-3.45)	1.51*** (10.02)	0.15 (0.73)	-1.08*** (-8.62)	0.28** (2.36)	1.30*** (10.26)
6	-1.53*** (-2.72)	1.35*** (4.72)	1.30 (1.49)	-1.33*** (-4.45)	0.31 (1.53)	1.79*** (8.16)
7	-0.77*** (-3.89)	1.53*** (11.51)	0.13 (0.73)	-1.06*** (-7.68)	0.28* (1.91)	1.48*** (9.57)
8	-0.84*** (-3.86)	1.77*** (17.53)	0.22 (1.09)	-1.05*** (-8.98)	0.50*** (3.33)	1.29*** (10.42)
9	-1.24*** (-3.28)	1.31*** (7.14)	1.06 (1.59)	-1.19*** (-6.84)	0.06 (0.51)	1.82*** (6.74)
10	-0.71*** (-4.76)	1.64*** (12.93)	0.13 (0.77)	-0.92*** (-7.99)	0.53*** (3.88)	1.15*** (11.65)
11	0.17 (0.19)	1.35* (1.81)	-0.78** (-2.56)	-1.84** (-2.05)	0.87 (1.25)	2.26*** (6.00)
12	-1.11 (-1.20)	0.75 (0.82)	0.42 (0.91)	-2.21* (-1.90)	1.26 (1.22)	2.74** (2.49)

⇒ Order imbalance volatility mostly associated with realized spread

Pricing: sequential portfolio sorts

NYSE, Amex, and NASDAQ common stocks over 2002-2017 (797 weekly observations); NYSE breakpoints

		α_{FF4}^{VW} (turnover then order imbalance volatility)					
		low $\sigma(OI)$	2	3	4	high $\sigma(OI)$	H-L
low turn.	-0.02	0.02	0.02	0.02	0.08***	0.10**	
	(-0.66)	(0.55)	(0.51)	(0.50)	(2.78)	(2.56)	
2	-0.01	0.05*	-0.00	0.01	0.06*	0.06	
	(-0.30)	(1.72)	(-0.05)	(0.39)	(1.66)	(1.56)	
3	0.00	0.03	0.06**	0.09***	0.11***	0.11***	
	(0.09)	(0.88)	(2.02)	(3.23)	(3.65)	(2.65)	
4	-0.09***	0.00	0.01	-0.04	0.12***	0.20***	
	(-2.91)	(0.13)	(0.24)	(-1.15)	(4.03)	(4.59)	
high turn.	-0.05	-0.07	0.04	-0.05	0.08*	0.13**	
	(-0.94)	(-1.28)	(0.68)	(-0.98)	(1.68)	(1.98)	

Pricing: value-weighted Fama-MacBeth regressions

NYSE, Amex, and NASDAQ common stocks over 2002-2017 (797 weeks)

dependent variable: r_t (weekly return in percent)

	coeff. (t-stat)	coeff. (t-stat)	coeff. (t-stat)
$\sigma(\text{OI})_{t-1}$	0.064** (2.35)	0.086*** (3.02)	0.083*** (3.40)
turn_{t-1}		-0.037 (-1.00)	-0.026 (-0.67)
ME_{t-1}			-0.012 (-0.31)
r_{t-1}			-1.652*** (-3.91)
ILLIQ_{t-1}			-0.009 (-0.25)
RVol_{t-1}			-0.023 (-0.32)
ES_{t-1}			-0.023 (-0.63)
$\sigma(\text{OI}/\text{VOL})_{t-1}^{\text{month}}$			0.056 (1.42)
\bar{N}	2,628	2,628	2,591
\bar{R}^2	0.020	0.036	0.104

Conclusion

- ▶ New evidence about the time-series (and cross-sectional) relation between liquidity, volume, and volatility
 - ▶ Adverse selection theories fit well the day-to-day variation in spread, volume, and volatility of small stocks
 - ▶ Inventory risk seems more important for the day-to-day variation in spread, volume, and volatility of large stocks
- ▶ Controlling for volatility of (high-frequency) order imbalances reconciles evidence between large and small stocks
 - ⇒ is consistent with simple inventory risk model, and
 - ⇒ adds substantial explanatory power
- ▶ Order imbalance volatility seems to reflect inventory risk and is priced in the cross-section of weekly returns

Appendix

Descriptive Statistics (Small Stocks)

		2004	2008	2012	2016
Small caps					
spread [bp]	mean	70.18	96.68	62.69	70.32
	median	51.33	50.35	40.85	44.66
	σ (within)	48.62	103.16	49.98	63.32
turnover [%]	mean	0.50	0.52	0.42	0.48
	median	0.19	0.27	0.23	0.25
	σ (within)	1.38	0.83	0.89	1.28
volatility [%]	mean	1.83	3.06	1.72	1.87
	median	1.53	2.44	1.50	1.51
	σ (within)	1.06	2.13	1.02	1.58
obs.		146,897	132,182	119,480	126,515

Descriptive Statistics (Large Stocks)

back

		2004	2008	2012	2016
Large caps					
spread [bp]	mean	8.27	8.29	4.65	4.77
	median	6.59	6.20	3.65	3.63
	σ (within)	5.95	10.23	3.04	4.31
turnover [%]	mean	0.67	1.42	0.90	0.82
	median	0.46	1.03	0.67	0.61
	σ (within)	0.58	1.22	0.74	0.63
volatility [%]	mean	1.17	2.70	1.16	1.23
	median	1.01	2.03	1.01	1.01
	σ (within)	0.57	1.99	0.58	0.72
obs.		151,157	137,730	121,479	129,411

Correlations

cross-sectional averages of the stocks' time-series correlations [back](#)

	Small caps					
	τ	σ	$ r $	RVol	$ \text{OI} $	$\sigma(\text{OI})$
s	-0.17	0.22	0.18	0.40	-0.06	-0.00
τ		0.24	0.23	0.32	0.59	0.78
σ			0.49	0.47	0.10	0.12
$ r $				0.41	0.13	0.14
RVol					0.12	0.17
$ \text{OI} $						0.60

	Large caps					
	τ	σ	$ r $	RVol	$ \text{OI} $	$\sigma(\text{OI})$
s	0.15	0.34	0.22	0.51	0.15	0.30
τ		0.41	0.32	0.48	0.40	0.72
σ			0.50	0.61	0.14	0.22
$ r $				0.41	0.13	0.19
RVol					0.14	0.26
$ \text{OI} $						0.48

How Does Order Imbalance Volatility Affect Other Liquidity Measures?

► Price impact

- In the line of Amihud (2002):

$$\text{ILLIQ}_{it} = \frac{1}{\#\text{traded intervals}} \sum_{k \in \{j | \text{DVOL}_{itj} > 0\}} \frac{|\text{r}_{itk}|}{\text{DVOL}_{itk}}$$

- Alternative: $r_{itk} = \delta_{it} + \lambda_{it} \sqrt{|\text{OI}_{itk}^{\$}|} \text{sign}(\text{OI}_{itk}^{\$}) + e_{it}$
(Hasbrouck (2009))

► Depth

- Time-weighted share depth at the best bid and best ask (as a fraction of shares outstanding)

Price Impact (Amihud)

Year	β_{τ}	β_{RVol}	$\beta_{\sigma(\text{OI})}$
2002	-1.10*** (-54.89)	0.90*** (40.95)	0.24*** (18.72)
2003	-1.21*** (-56.32)	0.88*** (81.51)	0.29*** (27.03)
2004	-1.20*** (-100.27)	0.88*** (65.68)	0.27*** (37.15)
2005	-1.17*** (-103.29)	0.90*** (44.62)	0.24*** (39.38)
2006	-1.15*** (-98.54)	0.92*** (87.78)	0.21*** (35.00)
2007	-1.12*** (-101.99)	0.98*** (72.96)	0.16*** (29.75)
2008	-1.10*** (-82.55)	0.96*** (58.25)	0.10*** (18.51)
2009	-1.07*** (-141.59)	0.92*** (41.61)	0.10*** (15.21)
2010	-1.10*** (-72.77)	0.92*** (26.01)	0.11*** (21.17)
2011	-1.12*** (-107.44)	0.96*** (45.96)	0.11*** (23.25)
2012	-1.09*** (-101.16)	0.83*** (72.48)	0.12*** (19.40)
2013	-1.14*** (-67.34)	0.89*** (30.81)	0.14*** (23.18)
2014	-1.14*** (-148.76)	0.88*** (86.04)	0.15*** (36.93)
2015	-1.15*** (-123.23)	0.89*** (66.42)	0.15*** (32.22)
2016	-1.14*** (-108.79)	0.88*** (52.77)	0.14*** (32.52)
2017	-1.11*** (-135.75)	0.79*** (67.02)	0.15*** (43.56)

$\bar{R}^2(\%)$

77.05

Depth

▶ back

Year	β_{τ}	β_{RVol}	$\beta_{\sigma(\text{OI})}$	β_s
2002	0.35*** (20.58)	-0.22*** (-9.94)	-0.00 (-0.32)	-0.19*** (-15.34)
2003	0.43*** (22.47)	-0.31*** (-30.46)	-0.04*** (-5.18)	-0.09*** (-16.94)
2004	0.47*** (31.15)	-0.42*** (-14.13)	-0.04*** (-7.23)	-0.10*** (-15.55)
2005	0.46*** (30.23)	-0.44*** (-15.49)	-0.05*** (-10.80)	-0.07*** (-13.95)
2006	0.44*** (30.65)	-0.51*** (-18.67)	-0.06*** (-11.93)	-0.07*** (-12.71)
2007	0.41*** (25.41)	-0.56*** (-22.82)	-0.02*** (-4.58)	-0.04*** (-6.93)
2008	0.40*** (18.33)	-0.69*** (-17.47)	-0.01*** (-2.70)	0.02*** (2.78)
2009	0.38*** (23.72)	-0.66*** (-22.94)	-0.00 (-0.12)	-0.03*** (-3.54)
2010	0.39*** (16.04)	-0.66*** (-14.65)	-0.01 (-1.07)	-0.02** (-2.39)
2011	0.38*** (19.13)	-0.65*** (-17.34)	-0.02*** (-3.06)	0.03*** (4.03)
2012	0.35*** (29.22)	-0.40*** (-22.19)	-0.03*** (-6.01)	-0.00 (-0.22)
2013	0.40*** (18.79)	-0.48*** (-10.24)	-0.05*** (-9.43)	0.02** (2.47)
2014	0.31*** (34.06)	-0.39*** (-23.40)	-0.01 (-1.56)	-0.01*** (-2.92)
2015	0.30*** (21.97)	-0.34*** (-15.81)	-0.02*** (-4.05)	0.01*** (2.77)
2016	0.30*** (15.37)	-0.37*** (-11.26)	-0.02*** (-4.91)	0.03*** (4.61)
2017	0.28*** (26.71)	-0.27*** (-14.35)	-0.03*** (-10.16)	0.02*** (4.23)

\bar{R}^2 (%)

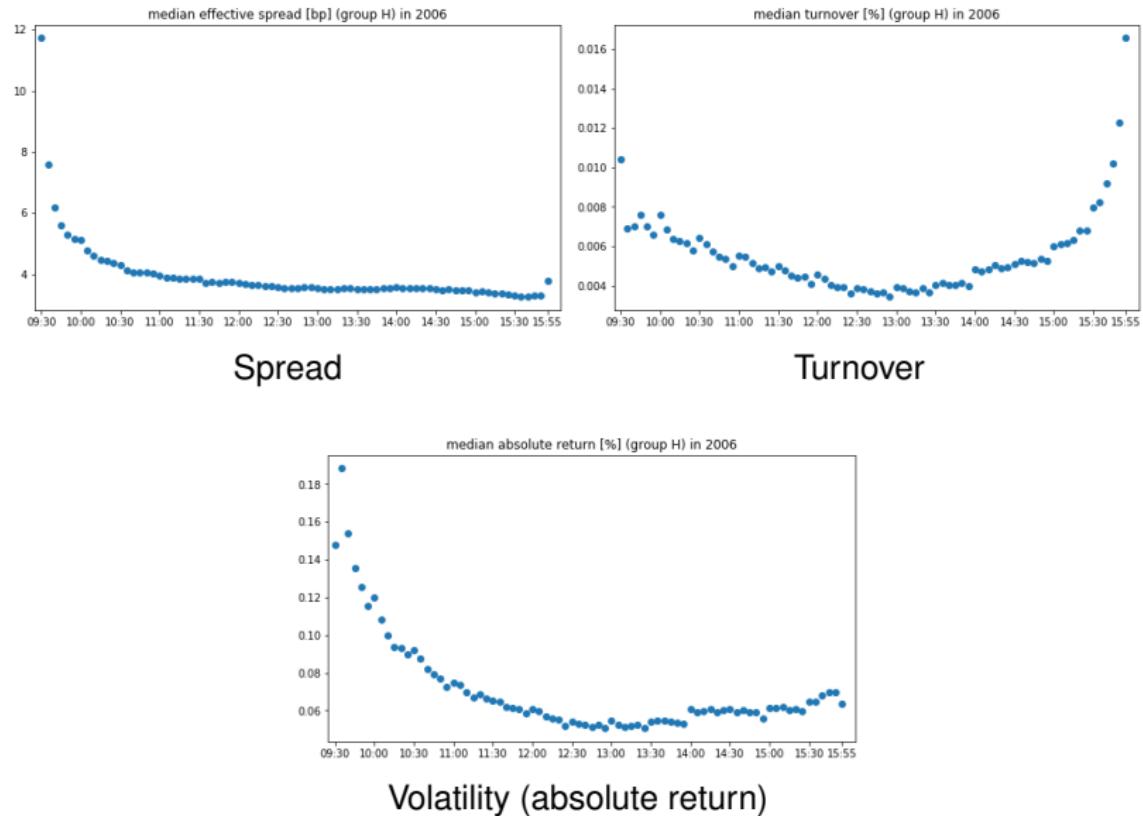
41.70

Evidence from Intraday Patterns

The degree of informed trading and liquidity trading is likely not constant over the day

1. Informational advantage of trading on overnight information is likely short-lived (Foster and Viswanathan (1990))
2. Liquidity traders cluster their trades to reduce adverse selection (Admati-Pfleiderer (1980))

Evidence from Intraday Patterns


The degree of informed trading and liquidity trading is likely not constant over the day

1. Informational advantage of trading on overnight information is likely short-lived (Foster and Viswanathan (1990))
2. Liquidity traders cluster their trades to reduce adverse selection (Admati-Pfleiderer (1980))

Informative to examine intraday patterns of elasticities

- ▶ Split the day into five-minute intervals and focus on large stocks
- ▶ We are *not* looking at levels but at sensitivities
 - ▶ Control for interval-stock fixed effects

Intraday Median Values - 2006

Intraday Evidence

- ▶ Volume elasticity of spread is higher at the end of the day, when inventory risk or market power may be high
 - ▶ Consistent with evidence from intraday order imbalances
 - ▶ Appendix
- ▶ The intraday elasticity pattern does not 'mechanically' reflect intraday variations in spread, volume, and volatility
 - ▶ Spreads may be lower around the close but are more sensitive to trading volume

This evidence supports adverse selection effects and competition/inventory effects

- ▶ More competitive liquidity provision in recent years?

Volume in the continuous-time Kyle model

- ▶ $VOL = \frac{1}{2}(|dX_t^i| + |dX_t^u| + |dX_t^i + dX_t^u|)$
- ▶ Insider trade in absolutely continuous fashion: $dX_t^i = \mu_i dt$
- ▶ Whereas $dX_t^u = \sigma_u dZ_t$ for some Brownian motion Z_t
- ▶ $E[VOL]^2 = 2/\pi\sigma_u^2 dt$
- ▶ Total cumulative order flow is $Y_t = X_t^u + X_t^i$ and $Var[dY_t] = \sigma_u^2 dt$

Inventory Shocks and Endogenous Entry

Allow for entry of liquidity providers at a fixed cost in the model of [Campbell, Grossman, and Wang \(1993\)](#)

- ▶ Stationary OLG economy with exogenous risk-free rate and a risky asset that pays dividends every date
- ▶ Liquidity providers with exponential utility absorb volatile supply shocks every date
- ▶ In equilibrium, we show that an increase in the volatility of supply shocks *decreases* price impact, in contrast to the original model
- ▶ The inventory explanation requires some barriers to entry

Gallant-Rossi-Tauchen (1992) Methodology ▶ back

For each stock regress the spread and turnover series on a set of control variables x :

$$y = x'\beta + u.$$

The residuals are used to construct the following variance equation:

$$\log(u^2) = x'\gamma + v.$$

The adjusted y series is then given by:

$$y_{\text{adj}} = a + b(\hat{u}/\exp(x'\gamma/2)),$$

where the parameters a and b are chosen such that the mean and standard deviation of y_{adj} are the same as that of y .

Control variables x : day-of-the-week dummies; month-of-the-year dummies; a dummy for trading days around holidays when the stock market is closed; a dummy for trading days on federal holidays when the stock market is open; linear and quadratic trend variables. For the turnover series, we also include a cubic trend variable.

Measure of Volatility: Realized Volatility

What about a more sophisticated measure of volatility?

- ▶ *Realized variance*: $\text{RVol}(K)_t^2 = \sqrt{\sum_{k=1}^K r_{t,k}^2}$, where $r_{t,k}$ is the intraday return over interval k
- ▶ But what should we expect?

Using log returns, it can be shown that:

$$\text{RVol}(k)_t^2 = r_t^2 + \Pi_t,$$

where $\Pi_t = \sum_{k=2}^K (-2 \sum_{j=1}^{k-1} r_{t,j}) r_{t,k} \Rightarrow$ intraday reversal strategy
 $\text{corr}(s_t, \Pi_t) > 0$?

Large Stocks' Elasticities with Realized Volatility

$$\log s_{i,t} = \alpha_i + \beta_{\tau,C} \tau_{i,t}^C + \beta_{\tau,I} \tau_{i,t}^I + \beta_{\text{RVol}} \text{RVol}_{i,t} + \text{controls} + \epsilon_{i,t}$$

Year	$\beta_{\tau,C}$	$\beta_{\tau,I}$	β_{RVol}
2002	0.12** (2.46)	0.02** (2.47)	0.42*** (13.22)
2003	-0.05 (-1.05)	0.08*** (11.45)	0.45*** (42.76)
2004	0.01 (0.29)	0.07*** (11.23)	0.38*** (39.58)
2005	0.16*** (3.18)	0.07*** (11.79)	0.34*** (28.41)
2006	0.11*** (2.77)	0.08*** (11.05)	0.30*** (29.47)
2007	0.25*** (5.45)	0.09*** (8.98)	0.33*** (16.58)
2008	0.12*** (2.64)	0.00 (0.18)	0.42*** (17.93)
2009	0.09** (1.99)	0.03*** (3.28)	0.24*** (11.07)
2010	0.10*** (2.70)	0.03*** (3.40)	0.27*** (11.77)
2011	0.06** (1.96)	0.02* (1.73)	0.30*** (17.04)
2012	0.27*** (3.12)	0.03*** (3.23)	0.27*** (16.69)
2013	0.13*** (2.68)	0.02 (1.52)	0.31*** (16.16)
2014	0.08 (1.19)	-0.06*** (-4.30)	0.34*** (17.54)
2015	-0.00 (-0.01)	-0.11*** (-9.76)	0.41*** (19.61)
2016	-0.07* (-1.96)	-0.11*** (-8.53)	0.39*** (18.30)
2017	0.11 (1.52)	-0.10*** (-7.36)	0.40*** (20.47)

\bar{R}^2 (%)

20.59

Large Stocks' Elasticities with Realized Volatility

▶ back

$$\Delta s_{i,t} = \alpha_i + \beta_{\tau,C} \Delta \tau_{i,t}^C + \beta_{\tau,I} \Delta \tau_{i,t}^I + \beta_{\text{RVol}} \Delta \text{RVol}_{i,t} + \text{controls} + \epsilon_{i,t}$$

Year	$\beta_{\tau,C}$	$\beta_{\tau,I}$	β_{RVol}
2002	0.18*** (2.68)	0.06*** (6.10)	0.35*** (10.06)
2003	0.00 (0.02)	0.14*** (16.32)	0.41*** (35.94)
2004	0.15*** (3.10)	0.13*** (18.16)	0.36*** (39.17)
2005	0.29*** (4.30)	0.16*** (19.68)	0.31*** (27.00)
2006	0.23*** (4.96)	0.16*** (18.66)	0.26*** (25.61)
2007	0.52*** (6.81)	0.22*** (14.90)	0.25*** (13.52)
2008	0.37*** (4.75)	0.10*** (9.23)	0.31*** (15.01)
2009	0.28*** (3.64)	0.12*** (9.35)	0.19*** (9.09)
2010	0.29*** (5.14)	0.13*** (10.37)	0.21*** (9.33)
2011	0.19*** (4.51)	0.10*** (9.62)	0.23*** (16.73)
2012	0.43*** (3.28)	0.13*** (9.07)	0.19*** (10.59)
2013	0.24*** (3.94)	0.11*** (8.10)	0.25*** (16.15)
2014	0.32*** (3.30)	0.03* (1.79)	0.28*** (15.30)
2015	0.20*** (3.22)	-0.02 (-1.24)	0.32*** (14.16)
2016	0.16** (2.39)	-0.03*** (-2.64)	0.34*** (20.53)
2017	0.39*** (3.58)	-0.01 (-0.44)	0.32*** (18.53)

\bar{R}^2 (%)

8.84