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One might have expected that as markets became faster, market data
became more copious, and technology superseded human participants, the
microstructure of markets would play an ever-decreasing role in explaining
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Microstructure in the Machine Age

market behavior. The opposite is true. When time scales shrink to nanoseconds,
how the market is structured turns out to be critical in predicting where the
market is going. And when data explode to mammoth dimensions, being
able to characterize what variables related to market frictions can and should
matter for market behavior, a particular focus of microstructure research,
takes on even more significance. Yet, despite this continued importance,
microstructure research faces some daunting challenges in this new era.!
The ubiquity of computerized trading, abetted by the rise of big data, has
increased the complexity of trading strategies far beyond what is envisioned
in simple microstructure models. Similarly, the empirical measures that fill
the microstructure “toolbox” were constructed based on simple within-asset
relationships that may no longer hold in the high-frequency world of cross-
asset trading. The problem, simply put, is that microstructure research needs to
evolve.

In this paper, we demonstrate how machine learning techniques can play
an important role in that evolution. Much as microstructure research is often
used to predict how trading will affect price and liquidity dynamics, machine
learning can potentially improve those predictions given complex data and
computational constraints. It is not a given that machine learning techniques
will lead to improvements in our ability to predict these variables. The nature
of financial market data, for example, is often fairly well ordered, meaning
that simpler approaches such as logistic methods may do reasonably well in
some settings. But the ability of machine learning to process complex data using
nonparametric algorithms designed to be adaptive facilitates extracting patterns
in data that parametric models may not recognize, setting the stage for higher
predictive power. And in financial market settings, even a small advantage
executed over a large number of trades can result in significant effects for
market participants.

Using a random forest machine learning algorithm, we investigate how
well some standard empirical microstructure measures (termed “features” in
machine learning parlance) predict variables of interest to market participants.
Our focus is on a set of variables typically used in electronic market making,
dynamic market hedging strategies, and volatility estimation. Our purpose here
is not to provide an exhaustive examination of market data predictability,
but rather to illustrate how machine learning can bring new insights to
microstructure research by showing what features actually work for out-of-
sample predictability. In doing so, we also provide clear evidence of the value
of some extant microstructure variables for understanding the new dynamics
of market behavior.

Our analysis draws on three generations of market microstructure models
to provide specific measures as inputs to our machine learning investigation.

L' For more discussion, see O’Hara (2015).
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These variables include the Roll measure, the Roll impact, a volatility measure,
Kyle’s A, the Amihud measure, and the volume-synchronized probability of
informed trading (VPIN). We focus on predicting six important outcomes of
market price dynamics using a variety of lookback windows (to compute the
market microstructure measures) and forecast horizons: sign of change of the
bid-ask spread; sign of change in realized volatility; sign of change in Jacques-
Bera statistic; sign of change in sequential correlation of realized returns; sign
of change in absolute skewness of returns; and sign of change in kurtosis
of realized returns. We evaluate the importance of each feature using mean-
decreased impurity (an in-sample measure) and mean-decreased accuracy (an
out-of-sample measure) methods. We use five years of tick data from the 87
most liquid futures traded globally (including indices, currencies, commodities,
short rates, and fixed-income instruments). This extensive sample, one of the
largest ever used in a microstructure analysis, epitomizes the big data that can be
brought to bear in machine learning analyses. This scale allows us to establish
the validity and accuracy of our findings generally, and not merely for a specific
contract or asset class.

Market microstructure models typically analyze markets asset by asset,
so we begin by restricting our attention to the use of within-asset market
microstructure measures for prediction. However, the evolution of markets,
particularly the rise of high-frequency and machine-based trading, has made
cross-asset trading more the norm. Consequently, we next ask about cross-
asset effects: are market microstructure measures in one asset useful for
prediction of price and liquidity dynamics in another asset? Here extant market
microstructure models provide no guidance, so a machine learning approach is
a natural way to ask model-free questions.

Our within-asset research provides a number of results. As expected, we
find that the various microstructure measures show different importance for
in-sample and out-of-sample estimation, illustrating how variables that may
have explanatory power in-sample need not have predictive power out-of-
sample. Consistent with previous studies, all of the measures appear to have
in-sample explanatory power. Across the six predicted variables, the Amihud
measure, the Chicago Board Options Exchange volatility index (VIX), and
VPIN have the best performance in-sample, while VPIN has the best out-
of-sample performance. For example, predicting the sign of change in the
bid-ask spread, in-sample results show that Amihud and VPIN consistently
have the largest importance across all window sizes, whereas out-of-sample
results show that VPIN predominates. Indeed, out-of-sample prediction results
show that VPIN is the most important predictor for five variables, with the Roll
measure dominating for the sixth (predicting the sign of change in sequential
correlation). The variables we predict should be affected by trade imbalances
related to information-based trading, and this is what VPIN was designed to
measure, so VPIN’s predictive power is not surprising. We interpret these
results as showing that simple measures designed to reflect market frictions still
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work in modern, complex markets dominated by machine-based trading. These
results demonstrate not only the importance of particular microstructure-related
variables, but also the possibility of successful prediction of future market
dynamics. As we discuss, such predictions have wide applicability for areas
such as risk management, dynamic trading strategies, and electronic market
making.

Our analysis of cross-asset effects provides another set of interesting results.
Perhaps most important is that including cross-asset market microstructure
measures in the set of features considered by our random forests improves
out-of-sample predictability. The particular cross-asset measures that are most
useful in prediction differ asset by asset, but there is some regularity in
which types of measures are important. The relative importance of own-
asset Amihud, Roll, and VPIN measures varies across the variables we
are interested in predicting, but for every prediction, all of these own-asset
measures remain important. However, with cross-asset measures included,
the importance of predictors changes, and own-asset VPIN is no longer the
most important predictor. These cross-asset measures are correlated with
each other and with own-asset measures, so the change in importances
is not surprising. Equally important, we identify several microstructure
measures of trade in specific financial futures as being important to prediction
across assets. Perhaps surprisingly, we find that measures based on trade
in the E-mini are not particularly important. These cross-asset results raise
interesting questions about the systemic influences of information in the
market.

For many readers and market participants, it may be the predictive power of
our machine learning approach, rather than an exploration of what features
create it, that is of primary interest. Here we ask a simple question: does
the predictive power achieved using a random forest approach exceed that
obtained from using a logistic regression? As might be expected when
the number of features is small, as is the case when we restrict attention
to own-asset measures, logistic regression and random forest have similar
predictive power, with the logistic generally being slightly more accurate. When
we include numerous cross-asset features, however, predictability using the
random forest is generally greater than that obtained from logistic regression.
The random forest seems to do a better job of isolating important features and
basing prediction on them when many noisy features are being considered.
We use a Sharpe ratio analysis to suggest the scale of these accuracy
gains, finding that even relatively small accuracy gains matter for investment
efficiency.

Our paper joins a growing literature examining the implications of machine
learning and big data for economic research. Varian (2014), Abadie and
Kasy (forthcoming), and Mullainathan and Spiess (2017) provide excellent
discussions of how machine learning can be applied to analyze economic
problems involving big data, while recent applications of such techniques can
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be found in Bajari et al. (2015) and Cavallo and Rigobon (2016). In the finance
area, Chinco, Clark-Joseph, and Ye (2018) apply LASSO techniques to make
one-minute-ahead equity return forecasts; Rossi (2018) uses boosted regression
trees to forecast stock returns and volatility; Krauss, Do, and Huck (2017) use
machine learning for statistical arbitrage on the S&P 500; and Lopez de Prado
(2018) provides extensive analyses of financial machine learning techniques
and applications. Philip (2020) uses reinforcement learning to estimate the
permanent price impact of a trade and shows that the nonlinear nature of the
price impact results in the reinforcement learning approach preforming better
than a traditional VAR approach. In Philip’s analysis, as in ours, a simple
linear specification does well when the number of variables is small, but the
machine learning approach dominates when more variables and a more complex
environment are considered. Gu, Kelly, and Xiu (2018) apply multiple machine
learning regression algorithms in asset pricing and find that these methods can
give rise to better R? values than standard econometric models. Our work
contributes to this literature by showing how supervised machine learning
techniques combined with metrics suggested by microstructure theories can
help identify important market variables irrespective of functional form. We
believe that machine learning’s decoupling of the search for variables from the
search for specification will be important for the development of microstructure
research.

This paper is organized as follows. In the next section, we set out the variables
we are interested in predicting and the microstructure variables we use as
inputs in our analysis. Section 2 introduces the random forest classification
method and feature importance measures. We discuss two such measures:
mean decreased impurity (MDI) and mean decreased accuracy (MDA). We
also explain how we categorize realized outcomes in terms of binary labels.
In Section 3, we discuss the data, how we transform the data into units
of analysis called bars, and the microstructure variable definitions we use
in the analysis. Section 4 presents our within-asset empirical results and
investigates their robustness with respect to various lookback and forecast
window sizes, alternative hyperparameter configurations, time periods, and
different bar types. We also compare our random forest results with results
obtained from logistic regression. In Section 5, we include cross-asset features
and again ask about out-of-sample predictive power and the importance of
both within-asset and cross-asset features for those predictions. In Section 6,
we discuss prediction accuracy and its uses. We also consider its sensitivity to
various specifications including using a random forest or logistic regression for
prediction, inclusion of lagged returns and volatility, inclusion of cross-asset
features, and use of alternative accuracy measures. Section 7 concludes by
discussing the implications of our results for trading strategies, considers what
we have learned about the explanatory and predictive roles of microstructure
variables, and suggests an agenda for future microstructure research in the
machine age.
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1. Microstructure Variables and Market Movements

Microstructure models provide variables that indirectly measure the implica-
tions of market frictions. To the extent that these measures are successful,
they should predict the future values or movements in market metrics such
as bid-ask spreads, volatility, and other variables related to the shape of the
distribution of returns. Some models (which we will term “first generation”)
use price data for this task. Examples here are the Roll (1984) measure, which
uses price sequences to predict effective bid-ask spreads, and the Corwin and
Schultz (2012) bid-ask spread estimator. Second-generation models focus on
price and volume data, generating metrics such as the Kyle (1985) lambda, the
Amihud (2002) measure, and Hasbrouck’s (2009) lambda. Third-generation
models use trade data, inspiring metrics such PIN, the probability of informed
trading (Easley et al. 1996), and VPIN, the volume-synchronized probability
of informed trading (Easley et al. 2012b). In our analysis, we evaluate the
predictive power of measures representative of these three generations of
microstructural models.

The specific variables we select are the Amihud measure, the Roll measure,
the Roll impact measure, the Kyle lambda, VPIN, and volatility (precise
definitions are given in Section 3). The Amihud measure is a general metric
of illiquidity that can arise from factors such as market maker inventory
pressures, information, or limited risk bearing in markets. The Roll measures
capture features of the order flow reflecting sequences of trades, which in turn
can influence overall liquidity. The Kyle lambda and VPIN are measures of
asymmetric information in markets. Because illiquidity and information effects
would be expected to lead to price volatility, we also include a measure of
volatility (VIX) in in our analysis.”

Being able to forecast future developments in the price process and liquidity
has obvious importance for traders, regulators, and researchers, but less
apparent is how well these standard microstructure measures work in current
markets. The models that produce these measures are relatively simple and
were designed at a time when markets were less complex. Those models do
not provide much guidance about functional forms describing the relationship
between any of these measures for an asset and the price or liquidity dynamics
of that asset. They provide no guidance at all for any cross-asset effects. So
imposing a particular functional form for these relationships, even a flexible one,
and applying standard econometric techniques to estimate it could potentially
obscure any relationship.?

Some researchers have argued that microstructure metrics work because they capture volatility. For example,
Andersen and Bondarenko (2015) claim that VPIN is simply a volatility effect. Including volatility allows us to
evaluate these claims. We show that, in our data set, VPIN and VIX are virtually uncorrelated and perform very
differently particularly out of sample.

2 As Mullainathan and Spiess (2017) explain, standard econometric techniques are well suited for variance

adjudication; however, they often provide suboptimal forecasts. The reason is that the best forecast estimators
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Our interest is in evaluating predictability using various microstructure
variables. We begin with data about microstructure variables (such as illiquidity,
Kyle’s lambda, or VPIN) and data about the market measures (such as bid-
ask spreads, volatility, and the like) we are interested in predicting. However,
unlike the standard approach in econometrics, we do not attempt to prespecify
an underlying data-generating process, and so we do not attempt to estimate
parameters of a model relating our microstructure measures to market measures.
Our primary interest is in understanding which microstructure variables are
useful for prediction and which ones are not useful. We are agnostic about the
mechanism relating the variables in our data set to each other, as attempting
to specify a mechanism, no matter how complex its structure or underlying
probability space, is unnecessarily limiting for our data-exploratory purposes.
We believe that this machine learning point of view is more powerful for the
questions we want to ask, although we do recognize that for other interesting
questions more closely related to developing an understanding of why one
measure is a better predictor than another is, specifying a data-generating
process and applying standard econometric tools may be more productive.

Thus, we use machine learning to investigate the efficacy of a set of
microstructure measures for forecasting a set of variables of wide interest in
the market. We discuss in detail in Section 2 how the random forest algorithm
we use works, but it is important to stress that we use the algorithm to predict
the sign of changes in variables, rather than to provide actual point predictions.
While this might seem of limited importance, we explain below why this is
not the case and discuss how for our candidate variables such forecasts can be
used in practice. The variables we attempt to predict are relevant to all forms
of electronic market making and order execution.*

1.1 Sign of change of the bid-ask spread

Both market makers and execution traders have an interest in predicting whether
the bid-ask spread will widen or narrow over the time frame of their order’s
implementation. When we expect the bid-ask spread to widen, an execution
algorithm could use that expectation to increase volume participation, thereby
increasing the portion of the executed order before an increase in transaction
costs materializes. Conversely, when we expect the bid-ask spread to narrow, an
execution algorithm could use that expectation to decrease volume participation
and thereby execute a larger portion of the order after the fall in transaction costs.
The magnitude of the change in volume participation would be a function of the

may not be BLUE (best linear unbiased estimator). Unbiasedness is undoubtedly a useful property when the
model is properly specified; however, it may be a hindrance when important explanatory variables are missing
or when the interaction between variables is not correctly modeled.

We consider only positive and negative changes. One could, and for an investment or trading strategy probably
would want to, consider a finer partition of the set of changes at least taking into account a third category in
which the change, either positive or negative, is small. One could also focus on predicting only positive or only
negative changes.
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trader’s confidence in the forecast’s accuracy. For regulators and researchers,
understanding the determinants of bid-ask spread is a long-standing topic of
interest.

1.2 Sign of change in realized volatility

When we expect realized volatility to increase, an execution algorithm could
use that expectation to increase the volume participation in order to reduce the
uncertainty of the average fill price (market risk). It is not necessarily true that
we would like to decrease the volume participation if we expect a decrease in
realized volatility, because by the time the volatility has decreased, prices may
have drifted away from our target. In general, we would like to increase the
volume participation rate if we forecast an increase in realized volatility, and
reduce the volume participation rate after a decrease in realized volatility has
already materialized.

1.3 Sign of change in Jarque-Bera statistic

The Jarque-Bera statistic tests for the null hypothesis that observations are
drawn from a normal distribution. This is relevant for risk management
purposes, as many risk models assume normality of returns. A higher
probability of non-normal returns reduces our confidence in those models.
For example, a risk manager may want to reduce the significance level (false-
positive rate, type I error probability) of his Gaussian models when returns
are expected to be non-normal. In addition, when returns are non-normal, or
serially correlated, implementation shortfall estimates may be too small.

1.4 Sign of change in kurtosis/sign of change in absolute skewness of
returns

The Jarque-Bera statistic uses skewness and kurtosis to test for normality of
observations. This test implies a trade-off between skewness and kurtosis, in
the sense that the test may not reject the null hypothesis of normality when an
increase in skewness is offset with a decrease in kurtosis. However, offsetting
skewness with kurtosis is not without economic meaning. Because skewness
is an odd moment, it deforms the normal distribution by shifting its probability
toward one side. One possible reason for this deformation is the presence of
informed traders, who push prices in an attempt to fill orders before a piece
of news is widely known. In contrast, because kurtosis is an even moment, it
deforms the normal distribution by shifting its probability symmetrically toward
extreme events. One possible explanation for this deformation is a reduction
of liquidity, as market makers reduce the size of their quotes in anticipation of
a news release, hence increasing the likelihood of extreme outcomes on either
side. From an execution and portfolio management perspective, it is important
to differentiate between these two causes of non-normality and to forecast them
separately.
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1.5 Sign of change in sequential correlation of realized returns

Another common assumption of risk models (e.g., in value-at-risk approaches)
is that returns are serially uncorrelated. Being able to predict serial correlation
offers an insight into how unrealistic this assumption is. When returns are
serially correlated, trends occur with a higher frequency than would be
otherwise expected. This leads to greater potential drawdowns and time
underwater. As in the non-normal case, a higher probability of serially
correlated returns reduces our confidence in models that assume an uncorrelated
structure. It would therefore be rational to reduce the significance level of this
kind of risk model when returns are expected to be serially correlated.

2. The Random Forest Classification Algorithm and Feature Importance

Measures

In this section, we introduce the random forest classification algorithm and
explain how we use it to evaluate the predictive power of a set of explanatory
variables. In machine learning, classification is the practice of using explanatory
variables to predict a categorical/discrete target variable. It is analogous to
regression in that both are fitted by minimizing an error function built on
the explanatory and target variables in the training data set. However, in our
machine learning problem, the target variable is discrete (e.g., “yes” or “no”),
and so the error functions popular for regression (e.g., mean-squared-error)
are not viable. Instead, useful error functions include measures such as cross-
entropy and information gain. We refer to the explanatory variables as features
and the endogenous variables as labels.

Among machine learning classification methods, random forest is one of
the most robust and widely used algorithms. As Varian (2014) notes, “This
method produces surprisingly good out-of-sample fits, particularly with highly
nonlinear data.”” It consists of a number of individual classifiers, called decision
tree algorithms, and uses the mean of these trees’ classifications as its prediction.
As the number of low-correlated trees increases, the variance of the forest’s
forecasting error becomes smaller, hence reducing the chance of the algorithm
overfitting the data.

We initially apply our machine learning algorithm one futures contract at
a time.® So it operates on a data set, or sample, {(x,,y,)},Tzl, consisting of
observations of features (x) and a label (y) for the selected contract, with t
indexing T observations.” The first step in creating a random forest is to build
a decision tree by splitting the sample into two subsamples, and then splitting
each of these subsamples into two subsamples, and so on. Graphically, the

2 See Varian (2014, p. 14). This article provides a description of the random forest technique, as does Low et al.

(2018, ch.6).
In Section 4, we extend our analysis to consider the effect of cross-asset features on the variables we predict.

We discuss creation of the sample in subsequent sections and the creation of a forest of trees later in this section.
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decision tree consists of numerous sequential splits, each of which takes the
following form:

Sample

Subsample Left Subsample Right

To create the split, we first compute for each feature the information gain
that would be created by splitting the sample using that feature. For any split of
a sample S at node n in the tree into two subsamples, L and R, this information
gain is

IG(S,n):I(S)—x—il(L)—]I\\Z—il(R), (1)

where we use the Gini Index I(S) =), p;(1 — p;) as our purity measure for any
data set S; p; is the fraction of labels of the ith class in data set S; and Ng, Ny,
and Ny are the number of data points in the sample, the left subsample, and
the right subsample. The information gain from using a particular feature to
split the sample is then defined to be the maximal gain that can be obtained by
choosing a value of the feature and splitting the sample such that all data points
with smaller values of that feature are in the left subsample and those with larger
values of that feature are in the right subsample. Intuitively, the information
gain is maximal when a feature is able to split the data into two pure subsets
(subsets with a single label). If the data could be split using the selected feature
so that each subsample was pure (contained only increases or only decreases
in the label), then the information gain would take on its maximum possible
value I(S), while a less pure split would produce a smaller gain.

The actual split of sample S at node n is the one that maximizes the
information gain over the choice of features used to create the split. This
procedure is repeated for each subsample and for each of the new subsamples
created by any split until either a predetermined stopping criterion is reached
or until no additional splits yield any information gain. We allow our trees to
grow without bound; we consider the effect of bounds in Section 4.4. Although
the information gain from alternative splits has to be computed many times,
this approach is computationally tractable because each split is done using a
greedy algorithm—there is no attempt to choose the split by looking ahead to
implications of the current split for possible future information gains.

3325

€20z Joqueda( z| uo Jasn (eAioeu|) suuesne 443 Aq yZy898G/91EE/./PE/I0IHE/SH/WO00"dNO DIWapEDE//:SA]Y WO PaPEojuMOq



The Review of Financial Studies /v 34 n 7 2021

For each contract, and any sample for that contract, we create a random forest
by modifying the simple procedure above in two ways. First, we create multiple
decision trees and assign each tree a bootstrapped sample from our underlying
sample. The averaging produced by bootstrapping reduces variance that could
otherwise result from fitting a single tree to noise in the data set. Second, at
each node in each tree, we consider only two randomly selected features as
candidates to determine the optimal split.® This second modification is done
to take into account the possibility that one feature dominates splits even if
a second highly correlated feature would produce similar but slightly smaller
information gains. Without restricting attention to randomly selected sets of
features, we would attribute too much importance to the first feature relative
to the second one. For any contract, and data set for that contract, we create
100 trees in our random forest. Finally, given any feature vector, the prediction
made by our random forest for the sign of the label is determined by majority
vote across the trees in the forest.”

For decades, researchers have recognized the prevalence of hierarchical
relationships in economic and financial systems. As Nobel laureate Simon
(1962) put it, “The central theme that runs through my remarks is that
complexity frequently takes the form of hierarchy, and that hierarchic systems
have some common properties that are independent of their specific content.”
How exactly to measure the contribution of features to the hierarchal structure
of the random forest is a critical issue. In our analysis, we use two standard
measures of feature importance—mean decreased impurity and mean decreased
accuracy.'?

2.1 Mean decreased impurity—based feature importance

MDI feature importance evaluates the information gain of each feature in all
trees, weights them with the number of samples of each split, and sums and
then normalizes the score to be one in total. The importance of a feature is its
contribution to the building of trees as quantified by the information gain on
the splits. Given some data set, the MDI for feature i in that data set is

MDI@H)=(1/100)> " Y ptIG(sy.n), ()

N neN:v(sp)=i

where v(s,) is the feature used in the split of s,, with sy being the initial data
set.

The number of features to consider is a parameter that can be adjusted. We use the standard rule of selecting
int(v/6)=2 features, where six is the total number of features we consider.

For more detail on the creation of a random forest for financial data, see Lopez de Prado (2018).

The interested reader can find a detailed explanation of these techniques in Lopez de Prado (2018, ch. 8).
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2.2 Mean decreased accuracy-based feature importance
It is worth pointing out that MDI is an in-sample method, as it is derived
from the same information used to fit the trees. This makes it similar to a p-
value in regression analysis. In contrast, MDA evaluates feature importance
out of sample, and, unlike MDI, it can be used with any classifier. The MDA
procedure computes feature importance as follows: (a) the data set is split into
nonoverlapping training and testing sets; (b) a classifier is trained on the training
set using all features; (c) predictions are made on the test set, and a performance
measure (e.g., accuracy) is recorded as pg; (d) values of one of the features, i,
in the test set are randomly shuffled, and predictions are remade on the test set;
(e) the performance associated with the shuffling of feature i is recorded as p;.
The MDA feature importance of i in the given data set is then
0— Pi

MDAG)="L 3)

Po
Thus, MDA’s feature importance is determined by how the out-of-sample
prediction worsens because of shuffling the values of a particular feature. The
more deterioration there is in performance, the more important this feature is.

Finally, we turn to the issue of prediction accuracy. We define accuracy to
be the number of correct predictions divided by the total number of predictions
generated from a given data set split into a training set and a test set.'! If we
applied this idea once to our data set for a futures contract, we would not use
the information in the data set efficiently as we would lose the opportunity to
train the random forest on all of the data. In particular, the data held out as a test
set is not used in training. To use all of the data while still computing out-of-
sample predictions, we apply a 10-fold purged cross-validation method to train
the forest and compute accuracy Specific details of this approach can be found
in Lopez de Prado (2018), but summarily, we (i) partition the entire data set
into 10 intervals, (ii) take one as a test set, (iii) purge approximately one week
of data from the training set to remove observations that could contain leaked
information from the test set (see the figure below), (iv) train the algorithm on
the remaining data, and (v) make a prediction on the test set. This procedure is
repeated 10 times (once for each test set) so the entire period is tested. Accuracy
is computed using all the predictions from the 10 test sets.

Note that the test set may precede some of the trading set in calendar time (as
in the figure below). Our data are a time series, so it is important to not include
data in the training set that may be influenced by data in the test set. We do this
by removing approximately one week of data (equivalent to 250 dollar-volume
bars) before and after the test set before we form the training set. This method

One concern with this accuracy measure is that if the data are heavily skewed toward either positive or negative
values, then simply predicting the overall more likely outcome can be misleading. For that reason, an alternative
accuracy measure (receiver operating characteristics area under the curve [ROC-AUC]) that is not biased by class
skewness is often used. We report ROC-AUC results in Section 6.
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of purging potentially contaminated data is standard in the machine learning
literature; see chapters 11-14 of Lopez de Prado (2018).

Purged from training set Purged from training set

Training Test Training
A A A

Time >

3. Data

In this section, we turn to the data and the definitions of the labels and features
we use in our analysis. We also address a variety of implementation issues.
Our analysis uses both time bars and dollar-volume bars, so we set out how we
use tick data to form bars across the various contracts in our sample. In this
section, we focus on dollar-volume bars; time bars are discussed in Section 4.
Because we use futures data, our data have to “roll” across contract expirations
to create a continuous price sequence. We describe how we effectuate that
transition using a process akin to creating an exchange-traded fund (ETF) on
the contract. Finally, we discuss measurement issues connected with viewing
microstructure variables in volume bars as opposed to time-based units.

Our analysis is done on the 87 most liquid futures contracts traded globally,
with details of each contract given in Table A1 in Internet Appendix A. We use
these futures contracts rather than equities for two reasons. First, we are able to
examine the universe of active futures, so there is no issue of selecting a sample
out of some larger collection of financial assets. Second, we have complete trade
data about the trade of these assets. Futures contracts trade almost continuously
(23.75 hours per day), and we have tick data for the entire period. Our sample
period begins on July 2, 2012, and ends on October 2, 2017. Tick-level data are
available for most of these contracts over a longer period, but we are interested
in VIX as a feature and the futures contract on VIX (ticker UX1) only began
trading in July 2012. We note that two commodity contracts in our sample (IK1
and BTS1) have shorter sample periods beginning in October 2015.

3.1 Creating dollar-volume bars

We obtain tick-level trade data for each futures contract and aggregate the
data into intervals, or bars, based on dollar volume. Aggregating data into
bars variously defined over time or volume increments is standard practice in
industry and in academic research (see, e.g., Engle and Lange 2001; Easley
et al. 2012a; Chakrabarty et al. 2012; Easley et al. 2016; Low et al. 2018).
Barardehi, Bernhardt, and Davies (2019) also propose a trade time approach
in their measurement of liquidity and show that it works better than a clock
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Microstructure in the Machine Age

time approach. Easley and O’Hara (1992) demonstrated that the time between
trades should be correlated with the existence of new information, providing
our basis for looking at trade time (volume) instead of clock time. Information
arrival results in patterns in volume, essentially akin to intraday seasonalities.'?
By drawing a sample whenever the market exchanges a constant volume, we
attempt to mimic the arrival to the market of news of comparable relevance. We
use dollar volume to allow comparability across the 87 contracts in our sample.
Also, Lopez de Prado (2018) presents evidence that the sampling frequency of
dollar-volume bars is more stable than the sampling frequency of time bars or
volume bars. One reason for this stability is that dollar-volume bars take into
account price fluctuations, hence normalizing the dollar value transacted across
different time periods.
The t-th bar is formed at tick  when

t
> piVi=L, )

T
J=ly

where #; is the index of the first tick in the tth bar, p; is the trade price at tick
J» V;j is the trade volume at tick j, and L is a predetermined threshold that
gives roughly 50 bars per day for the year 2016.'3 Note that because average
daily trading volume differs across contracts, the dollar volume in each bar will
differ across specific futures contracts, but the average daily number of bars
will not (in 2016) For each individual contract, on an active day bars will fill
faster and there can be more than 50 bars in a day; on an inactive day, bars will
fill more slowly and there can be fewer than 50 bars in a day.

We compute each microstructure variable in our analysis at each bar t by
applying a rolling “lookback window” of size W. For example, at bar T we use
bars within the set {t-W+1, t-W+2,..., 7-1, t} to compute the microstructure
variables and labels. In our analysis, we consider lookback windows ranging
from 25 bars to 2,000 bars.

3.2 Rolling contracts
As futures contracts expire, we need to “roll” the contracts (i.e., sell the expiring
one and enter the new one) to form a price series as if it were a continuous
instrument. To do so, we transform the price of a futures contract to the value
of an ETF that perfectly tracks the futures with $1 initial capital.'* To understand
this process, consider the following example.

Assume we would like to take a long position in the front contract of the E-
mini S&P 500 futures (Bloomberg code: ES1 <Index>) from January 2, 2015

12 As futures often trade over a 23.75-hour day, volume patterns are very pronounced.
13 We chose 2016 because it is the last full year before the end of our sample.

14 For a detailed discussion of this technique, see Lopez de Prado (2018).

3329

€20z Joqueda( z| uo Jasn (eAioeu|) suuesne 443 Aq yZy898G/91EE/./PE/I0IHE/SH/WO00"dNO DIWapEDE//:SA]Y WO PaPEojuMOq



The Review of Financial Studies /v 34 n 7 2021

s0dl— Cumulative Return

’ —— ETF Price

2.5 1

2.0 A

1.5 1

1.0 4

8 [
2 P e et o 0 e®
Time

Figure 1

ES1 Index’s cumulative return and ETF price
Figure 1 provides a time series graph of the cumulative return on the ES1 Index and the price of the ETF we
create to track it. Abbreviation: ETF, exchange-traded fund.

onwards. On March 20, 2015, the front month futures contract is soon to expire
and we have to sell it and buy the then second month futures contract, hence
“rolling to the next contract.” In this rolling process, there is no change in the
value of our investment except for the tiny transaction cost. However, there is
usually a difference in raw price between the front and second month contracts.
If the front month contract was trading at $2,000 while the second month
contract was at $2020, then if we simply switched the price time series from
front month to second month, there would be a 1% difference. The machine
learning algorithm would incorrectly think that there was a sudden jump in
price and consider it some sort of a signal.

To avoid this problem, we produce a new time series we call the ETF price
of the futures series, which reflects the value of $1 invested in the futures
contract assuming one can hold fractional shares. This series starts with 1,
and its current value equals the investment’s cumulative return (see Internet
Appendix, Table A2 for an example). When the futures contract rolls, one sells
the old contract and invests all the money in the new contract. During this event,
there is no change to the investment assuming zero transaction cost, so the ETF
price is unaffected by the artificial change in raw price. Figure 1 provides a plot
for ES1 Index’s cumulative return and ETF price series.

In Internet Appendix B, we provide the calculation details for this process.
In the following analyses, for each futures contract, we use the ETF-based price
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Microstructure in the Machine Age

and the corresponding volume instead of the raw price and volume unless noted
otherwise.

3.3 Features and labels

As discussed in the previous section, we focus on a few well-known market
microstructure variables. These features are all constructed from the bar
data described above. One issue that arises in our construction of these
microstructure measures is that they initially were not defined using the same
concepts of time periods or bars or using lookback windows. Therefore, for
each measure we have to adapt the original definition to our setting. We call
these measures by their original names, but we note that they are actually our
translation of the measure to our setting.

More specifically, we have:

* Roll measure, given by

R,=2/|cov(AP,,AP,_y)],
APT:[APT.'*W!Apffwflv"wApI]v (5)

AP1—1=[APr—W—1»API—Ws---’API—I]v

where Ap, is the change in close price between bars T — 1 and T and W
is the lookback window size.

* Roll impact, which is the Roll measure divided by the dollar value traded
over a certain period, is

P 2/ |cov(AP,,AP;_y)]|
" p:Ve '

(6)

We evaluate the denominator at each bar and note that for dollar-volume
bars, the denominator varies very little between consecutive bars.
* Kyle’s lambda is given by

Pr—Pr—w

A=—i—,
! Zirzrbivi

(7
where b; =sign[ p; — p;—1], which is computed at the bar level, and W is
the lookback window size.

e Amihud’s measure is given by

1 & Il
MEw X v ®)
i=r7W+1p' !

where r;, p;,V; are the return, price and volume at bar i and W is
the lookback window size. Our version of Amihud’s measure using
dollarvolume bars is closely related to the Barardehi, Bernhardt, and
Davies (2019) trade time analogue of the Amihud measure.
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Table 1
Correlation matrix of microstructure variables
Roll Roll_impact Kyle lambda Amihud VPIN UXI1 (VIX)

Roll 1.0000 0.9275 0.0001 0.3441 0.0190 0.1574
Roll_impact 0.9275 1.0000 0.0001 0.3255 0.0141 0.1506
Kyle lambda 0.0001 0.0001 1.0000 0.0002 —0.0001 0.0008
Amihud 0.3441 0.3255 0.0002 1.0000 0.0776 0.2971
VPIN 0.0190 0.0141 —0.0001 0.0776 1.0000 0.0320
UX (VIX) 0.1574 0.1506 0.0008 0.2971 0.0320 1.0000

Table 1 reports the correlations of the six measures used as features in our machine learning analysis. These
five microstructure measures and VIX are created from dollar volume bars for the futures contracts specified
in the Internet Appendix, Table Al. The sample period is July 2, 2012, to October 2, 2017. Abbreviations:
UX1, VIX front month futures contract; VIX, Chicago Board Options Exchange volatility index; VPIN, volume-
synchronized probability of informed trading.

* Volume-synchronized probability of informed trading is estimated as
1 < |VS-VE
VPIN.=— > Wi vil, 9)
W Vi
i=t—W+l
where volume is signed using the BVC method, V2=V, Z [UAAi] , V,.S =
Pi
Vi— ViB , and W is the lookback window size. See Easley et al. (2016)
for additional details.
¢ Weuse VIX’s front month futures (Bloomberg code: UX1 <Index>) tick-
level trade data to represent VIX. For each bar, we take the price of the
closest tick from the UX1 Index before that bar’s timestamp as VIX’s
value.

Table 1 provides a correlation matrix of these six variables over our sample
period, taking the vector of the values of the six variables for each asset, for each
bar as an observation.!> As is apparent, while the Roll and Roll impact measures
are highly correlated, the other microstructures are not highly correlated with
each other or with the Roll measures, suggesting that they may have very
different properties for forecasting purposes. Although the Roll measures and
the Amihud measures are positively correlated with VIX, the two microstructure
measures most directly designed to measure the presence of informed trading,
Kyle lambda and VPIN, are not correlated with VIX. Note that these correlations
are all calculated based on dollar-volume bars. For VPIN, calculation in dollar-
volume bars is a natural milieu, but the other variables were traditionally derived
based on fixed time intervals, such as daily bars. A natural concern is that this
specification may bias our results against finding significance for these types of
variables. As part of our robustness testing, we also calculated all variables using
hourly time bars and reran our analysis using this alternative data specification.

These variables are also correlated across assets. In particular, the Roll and Amihud measures tend to be positively
correlated, VPIN is correlated with both of them and all three of these measures tend to be positively correlated
with VIX. These cross-asset correlations are not important in our initial analysis as it is done on a asset-by-asset
basis.
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Microstructure in the Machine Age

We discuss these results in Section 4.5 but note upfront that we find slightly
greater prediction accuracy using dollar-volume bars instead of time bars and
that measures of feature importance are largely unchanged.

For the classification, we are interested in predicting the sign of the change
in several important variables. Note that these labels are binary, as their value is
either positive +1 or negative —1, reflecting that we are forecasting the sign of
changes in the relevant variable. In particular, we label observations according
to:

* the sign of change in bid-ask spread. The spread is computed via the
Corwin-Schultz estimator:
(e 1)
T e

" =\/2,3r_\/ﬂ_r_ )43
32,2 3-22°

1 2
B.=E Z[log[%ﬂ : (10)

j=0 -/

ol
i Lr—l,t ’

where H;_; and L._; are the high and low prices at T — j, and H;_; ;
and L,_; . are the high and low prices over the 2 bars (t — 1, 7). For a
given forecasting horizon £, the label is then

sign[ Sy — St 1, (11)

and effectively we are predicting whether the estimated spread will widen
or narrow. Note that there is a window size variable in computing S,
* the sign of change in realized volatility, or simply

9

sign[ory, — o], (12)

where o; is the realized volatility of onebar returns over a lookback
window of size W. In this case we are predicting whether the realized
volatility will go up or down.

« the sign of change in Jarque-Bera statistics of realized returns:

signlJ Blre+n]—J Blr:]] (13)
w 1
JB[r.]=— ( skew?+~(Kurt, —3)* ),
6 4
where Skew; is the skewness and K urt; is the kurtosis of realized returns

over the lookback window of size W. This label can be viewed as a higher
moment generalization of the realized return volatility above.
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* the sign of change in the firstorder autocorrelation of realized returns:
sign[ARrp —AR:] (14
AR, =cort[re,r; 1],

where the correlation is evaluated over the returns of the past W bars.
* the sign of change in absolute skewness of realized returns:

sign[Skew,4;, —Skew.]. (15)
* the sign of change in kurtosis of realized returns:
sign[Kurt, ., — Kurt,]. (16)

In the current analysis, we fix the forecast horizon / to be 250 bars ahead,
which roughly corresponds to a week of trading. It is natural to question
whether this week-long forecast window obscures market microstructure so we
also considered a shorter forecast window. In section 6.1 we analyze forecast
horizons of 25 and 50 bars and find similar results with slightly lower overall
accuracy.

4. WithinAsset Results and Analysis

In this section, we restrict attention for each asset to its own features. In
Section 5, we consider for each asset both its own features and features of a
collection of other potentially important assets. We first set out the parameters
of our random forest classification methodology. We then present the main
results of this analysis, namely the feature importance of the microstructure
variables and the prediction accuracy we obtain with them. This is followed by
a sensitivity analysis in which we tune the parameters of the random forest and
by various robustness checks, including a comparison between dollar-volume
bar and time bar results and a comparison of our machine learning results with
the results of logistic regression.

Our analysis uses a standard open-source machine learning software
package, Scikit-learn (Pedregosa et al. 2011). We begin by specifying the
configuration (hyperparameters, in machine learning parlance) of the random
forest machine learning algorithm. For our analysis, we choose the default
values for the random forest’s hyperparameters'®:

e number of trees (n_estimators) =100;

» maximal features per split (max_features) = int(v/6)=2;

» sample weight (class_weight) = inverse of total number of samples in
the sample’s class (‘balanced’)

16 Scikit-learn’s corresponding notations are in parentheses.
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The number of trees is a parameter that controls how many decision trees the
random forest contains. The maximal number of features here is the square root
of the total number of features, a common choice for random forest. Sample
weight is the weight one assigns to each sample in the training class, and we
use a balanced approach to reduce the bias that can come from label imbalance.
We report results from an unregularized random forest (i.e., one in which the
decision trees are allowed to grow without limit). In Section 4.4, we report
the results from using a regularized random forest to check that our results are
stable and robust and to allay fears that the original random forest is overfit.

4.1 MDI results

We first examine feature importance using MDI. As a reminder, MDI is an in-
sample method that is based on the explanatory power of each feature and gives
rise to normalized values for feature importance (all positive and sum to one).
Table 2, panels A through F, reports the MDI feature importance for each of
the six predicted variables we consider in our analysis. Each row corresponds
to a specific lookback window size, as indicated by the first column. Each
entry is formulated as “mean MDI feature importance score” &+ “MDI feature
importance score standard deviation,” where the mean and standard deviation
are evaluated across all 87 instruments.!” The highest importance is bolded for
each window size.

To provide some intuition for how features contribute to in-sample
explanation of labels, we provide in Figure 2 a scatter plot of predicted changes
in spread for the ES1 index as a function of the VPIN and Roll measures. The
random forest assigns a predicted increase or decrease in spread given any list
of all the features. Plotting this assignment against feature vectors produces a
plot in R® which we project to R?in Figure 2. The right angle shape in that
figure indicates a cut for spread predictions at just below 0.002 for the Roll
measure and just above 0.05 for VPIN. The random forest predicts decreases
in spread in the northwest quadrant and increases elsewhere.'®

For bid-ask spread estimation, panel A of Table 2 shows that the Amihud
measure has the highest feature importance, followed by the VPIN metric.
Feature importance increases with the window size for Amihud, Kyle, and
VPIN, but not for the Roll measures or for VIX. The Amihud measure is also
the most important for absolute skewness prediction (panel E).

Panel B provides feature importance results for volatility prediction. Here
we find mixed results depending on the window size. For both the shortest (25)
and longest (>1,000) bars, VPIN dominates. Amihud is the most important
if measured over a 250-500-bar window, while VIX prevails for the 50-bar

These standard deviations are the empirical standard deviation of the MDI feature importance scores across the
87 instruments.

This appears noisy in the figure because we are conditioning on only two of the six features. Otherwise, there
would be sharper regions.
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Table 2
MDI feature importance

Panel A: MDI feature importance for bid-ask spread prediction

Window size Amihud Kyle lambda  Roll impact ~ Roll measure VIX VPIN

25 bars 0.181+0.001  0.174£0.001  0.1554+0.002  0.15+£0.002 0.165+0.002  0.1794+0.001
50 bars 0.184+0.001  0.17£0.001  0.153+0.002  0.15+£0.002 0.167£0.001  0.177+0.0
250 bars 0.194+0.001  0.171£0.001 0.1540.002  0.148+0.002  0.15740.001 0.1840.001
500 bars 0.197+0.001  0.171£0.001  0.1494+0.002  0.148+0.002 0.151£0.001  0.18440.001

1,000 bars 0.198+0.001  0.172+0.001  0.148+0.003  0.148+0.002  0.1464+0.001  0.18740.001
1,500 bars 0.197+0.001  0.173+£0.001  0.148+0.003  0.148+0.002  0.14540.001 0.19+£0.001
2,000 bars 0.197+0.001  0.172+0.001  0.147+0.003  0.147£0.002  0.1454+0.001  0.19240.002

Panel B: MDI feature importance for realized volatility prediction

25 bars 0.1694+0.003  0.157£0.002  0.149£0.003  0.15740.003  0.178+0.003  0.178+0.004
50 bars 0.1854+0.001  0.155+0.001  0.1354+0.002  0.1444+0.002  0.205+0.001  0.17540.003
250 bars 0.223+0.002  0.148+0.001  0.098+0.002 0.119£0.002  0.2240.002  0.19240.002
500 bars 0.234+0.001  0.146+0.001  0.089+0.002 0.114£0.002 0.2064+0.001  0.21140.002

1,000 bars 0.2344£0.002  0.143+0.002  0.085+0.002 0.117+0.003  0.18+£0.002  0.241+0.004
1,500 bars 0.23£0.002  0.143£0.002  0.0834+0.002 0.119£0.003  0.168+0.002  0.25740.004
2,000 bars 0.2264+0.002  0.142+0.002  0.082+0.002  0.1194+0.003  0.165+0.002  0.267+0.004

Panel C: MDI feature importance for Jarque-Bera test prediction

25 bars 0.184+0.002 0.167£0.002  0.144+0.001  0.143+0.002 0.183+0.002  0.183+0.004
50 bars 0.1940.001  0.161+0.001 0.13£0.001  0.1354+0.001  0.203+0.001  0.18140.003
250 bars 0.224+0.001  0.1494+0.001  0.098+0.001 0.118+0.002  0.22+0.002  0.19540.002
500 bars 0.233+£0.002  0.147£0.001  0.0914+0.002  0.117£0.002  0.206%0.001  0.20640.002

1,000 bars 0.24+0.001  0.147£0.001  0.0894+0.002  0.121£0.003  0.18140.001  0.22140.002
1,500 bars 0.241+0.002  0.147+£0.001  0.088+£0.002  0.124£0.003  0.1684+0.001  0.23240.002
2,000 bars 0.2440.002  0.1444+0.001 0.088+0.002 0.125+0.003 0.161+£0.001  0.241+0.002

(Continued)

window (although VIX and VPIN are very similar for the 25-bar window as
well). Feature importance for predicting the Jacques-Bera test in panel C also
shows mixed results. Overall, Amihud is most important, but for some windows
VIX and VPIN predominate. The Amihud measure also does well when using
longer window sizes for sequential correlation prediction (panel D), while VIX
dominates for shorter windows. Interestingly, the Roll measures, which might
have been expected to do well with correlation change predictions, do not fare
well. The results for kurtosis prediction again favor Amihud for long windows,
but VIX and VPIN for shorter widows.

Overall, the data suggest that measured by in-sample performance the
Amihud measure does best, with VPIN and VIX also having strong feature
importance. The Kyle lambda and Roll measures are never the most important
measure for predicting any of the six variables. However, all of the measures
have similar MDI results for most of the variables. Perhaps most importantly,
these measures all provide significant in-sample explanatory power even though
they are simple measures designed for a simpler world."”

It should be noted, however, that at each split in the trees we consider only two features. A feature that was never
useful would have an MDI of zero, but one that sometimes is better than the single alternative it is compared
with will have a nonzero MDIL.
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Table 2
(Continued)

Panel D: MDI feature importance for sequential correlation prediction

Window size Amihud Kyle lambda  Roll impact  Roll measure VIX VPIN

25 bars 0.183+0.002  0.163+£0.002  0.1424+0.002  0.15+0.002 0.191+0.003  0.17140.002
50 bars 0.188+0.002  0.15940.002 0.1324+0.002  0.141£0.002 0.206£0.002  0.17440.002
250 bars 0.2154+0.002  0.1464+0.001  0.1094+0.002  0.131£0.003  0.216£0.002  0.184+0.001
500 bars 0.228+0.001  0.146+0.001 0.1£0.002  0.12540.003 0.2+0.001  0.20140.001

1,000 bars 0.233+0.002  0.146£0.001  0.099+£0.002  0.133£0.003  0.1764+0.001  0.21340.002
1,500 bars 0.2341+0.002  0.143+0.001 0.1£0.002  0.139+£0.003  0.163£0.001  0.221£0.002
2,000 bars 0.2324+0.002  0.143+0.001 0.1£0.003  0.143£0.003  0.156£0.001  0.224+0.002

Panel E: MDI feature importance for absolute skewness prediction

25 bars 0.181+0.002 0.172+0.002 0.141£0.001  0.14440.001 0.184£0.002  0.18140.003
50 bars 0.189£0.001  0.1694+0.001  0.1324+0.001  0.136+0.001 0.2+£0.001  0.17440.002
250 bars 0.219+0.001  0.15540.001  0.10140.001 0.124£0.002  0.2184+0.001  0.18740.001
500 bars 0.23+0.001 0.1524+0.001  0.096+0.002  0.12£0.002  0.201£0.001  0.20140.001

1,000 bars 0.237+0.001  0.152+0.001  0.092+0.002 0.12440.003 ~ 0.184+0.001  0.21640.001
1,500 bars 0.236+£0.001  0.1534£0.001  0.09140.002  0.127£0.003  0.168+0.001  0.22540.002
2,000 bars 0.238+£0.001  0.151£0.001 0.09£0.002  0.12740.002  0.161£0.001  0.23240.002

Panel F: MDI feature importance for kurtosis prediction

25 bars 0.1814+0.002  0.159+0.002  0.1354+0.002  0.1394+0.002  0.182+0.001  0.205+0.003
50 bars 0.188+0.001  0.15740.001  0.12740.001  0.133+£0.001  0.202+£0.001  0.193+0.002
250 bars 0.2194£0.001  0.1494+0.001  0.0974+0.001  0.117+0.002 0.221+£0.001  0.19740.001
500 bars 0.233+0.001  0.147+0.001  0.091+£0.002 0.117£0.002  0.2064+0.001  0.20740.002

1,000 bars 0.24+0.001  0.146£0.001  0.08940.002 0.121£0.003  0.18240.001  0.22140.002
1,500 bars 0.241+0.002  0.146+0.001  0.088+0.002  0.124+0.003  0.168+0.001  0.23240.002
2,000 bars 0.244+0.002  0.1454+0.001  0.088+0.002 0.125+0.003  0.161£0.001  0.241+0.002

Panels A through F of Table 2 provide average MDI measures for each of the six labels we predict. For each label
and each lookback window (given by rows of the panels), we provide the mean and empirical standard deviation
of the MDI measure for each feature (given by the columns of the panels). For each window size, the largest
importance is in bold. Abbreviations: MDI, mean decreased impurity; VIX, Chicago Board Options Exchange
volatility index; VPIN, volume-synchronized probability of informed trading.

4.2 MDA results

We next turn to evaluating MDA feature importance. Table 3 summarizes the
results of MDA feature importance for each predicted variable. In contrast with
MDI, MDA is an out-of-sample method that captures the predictive power of
each feature. Accordingly, MDA’s outputs are not guaranteed to be positive
(some features may actually be detrimental for forecasting purposes), nor
are they normalized. As can be seen in the table, there are several entries
with negative yet close to zero scores, and the interpretation is that they
contribute little to the out-of-sample prediction despite the explanatory power
they might have in sample. Every row corresponds to a specific lookback
window, as indicated by the first column. Each cell is formulated as “mean
MDA feature importance score” £ “MDA feature importance score standard
deviation,” where the mean and standard deviation are evaluated across all 87
instruments.?® The highest importance is bolded for each window size. The last

These standard deviations are the empirical standard deviation of the MDA feature importance scores across the
87 instruments.
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Figure 2

Scatter plot of predicted changes in spread as a function of the VPIN and Roll measures; the plot is for
the ES1 Index with a lookback window of 25 bars

Figure 2 provides a scatter plot of predictions made by our random forest for the ES1 Index as a function of the
values of the VPIN and Roll measures. The analysis was done using a lookback window of 25 bars and forecast
horizon of 250 bars. Predicted increases are indicated in orange, and predicted decreases are indicated in blue.
Abbreviation: VPIN, volume-synchronized probability of informed trading.

column summarizes the out-of-sample prediction accuracy averaged across all
contracts.

To illustrate how the random forest works, we provide in Figure 3 a final
decision tree that would be reached for Kurtosis using a 25-bar lookback
window and a limit of three levels on the depth of the tree.’! In a random
forest, multiple decision trees are trained and aggregated. In this decision tree,
each node is labeled with the variable used to split the node’s sample, the Gini
coefficient for the node’s sample, the weighted-by-population proportion size
of the sample, the number of weighted positive and negative values of the label
in the node’s sample, and finally an indicator of up or down that is determined
by whether there are more weighted positive labels or more weighted negative
labels in the node’s sample. The directed edge coming out of each node is
labeled true for the subsample sent to the left node and false for the subsample
sent to the right node. So, for example, the entire sample is included at the first
node, and it is split according to whether VPIN is below or above 0.518. The
subsample with VPIN <0.518, which is of size 32,578, is assigned to the left
node at level two of the tree, and in this subsample there are more negative than
positive values for the sign of the change in kurtosis, so this node is labeled
down. The rest of the sample (in which VPIN >0.518) is assigned to the right

‘We limit our attention to three levels just for illustration as the size of the tree grows exponentially with depth
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node at level two of the tree, and this node is labeled up as there are more
positive values than negative values of the sign of the change in kurtosis.

Table 3, panel F shows that for kurtosis prediction VPIN is the most important
feature (measured by MDA), the Roll measure is the second most important
feature, and all of the other features are at least an order of magnitude less
important. So it is not surprising that the first cut in the data is based on VPIN.
Note that the decision tree associates high VPIN observations with increasing
kurtosis. This is consistent with the intuition that high VPIN is a reflection
of unbalanced trade indicating the possible presence of information and thus
leading to fat tails in the distribution of returns. The next cuts, those made at
level two to generate level three, are again made on VPIN. Now as the left
and right nodes at level two are so unbalanced in their numbers of positive and
negative values of the label, the left cuts yield subsamples both labeled down
and the right cuts yield subsamples both labeled up. Finally, the cuts made at
level three of the tree are made based on the Roll measure; no other feature is
important enough to enter the decision tree by level three. By this point in the
tree, it is difficult to interpret the splits as the samples have been split based on
VPIN values, leading to unbalanced samples correlated with VPIN values, and
so correlation between VPIN and the Roll measure also matters in the splitting.

For bid-ask spread prediction, VPIN has the highest feature importance
for every widow size, and it has the highest importance for 5 or 6 window
sizes for kurtosis prediction and Jarque-Bera test prediction. The Roll
measure dominates for sequential correlation prediction. For realized volatility
prediction, the Roll measure is better for shorter windows, with VPIN being a
close second. Over longer lookback windows, however, VPIN again provides
greater feature importance for realized volatility prediction, while the Roll
measure generally contributed little to out-of-sample prediction. Interestingly,
VIX has little out-of-sample prediction power regardless of the window size.
The differential (and lower) performance of VIX relative to VPIN refutes the
notion that VPIN is simply picking up volatility effects. Finally, for absolute
skewness prediction, the feature importance results are mixed, with Kyle
lambda, VPIN, Roll impact, and Roll measure each having greater importance
for specific window sizes.

We interpret these results as providing support for the predictive power of
microstructure measures that reflect frictions in the market. VPIN is generally
the most important among these features at predicting variables that should be
influenced by the presence of information-based trade: spread and measures
of fat tails in the distribution of returns. The Roll measure is created from
correlation in price changes, so it is not surprising that this measure has some
explanatory power for serial correlation in returns. Finally, although we include
VIX in our set of features, it is not intended to reflect microstructure frictions,
so it is not surprising that it has little explanatory power for the variables we
attempt to predict.
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4.3 Why are the MDI and MDA results so different?

Our finding that microstructural features with good explanatory power can have
poor predictive power, and vice versa, may be surprising at first. The reason is,
in the MDI feature importance analysis, each tree is fit on the entire sample,
and the inference is conducted on the output of that fit. In the MDI approach,
the trees are not exposed to out-of-sample, never-seen-before data points. As
a result, MDI explains the past, even if each label was determined after the
associated feature was observed. This is not dissimilar to the way inference is
conducted in standard econometric approaches: A particular functional form is
fit on an entire sample, and the estimated coefficients are subjected to a number
of hypothesis tests. In a sense, MDI is an econometric-like feature important
analysis, analogous to p—values of estimated betas. In an MDA analysis, the
trees are not fit on the entirety of the data. Instead, each tree is fit on a fraction
of the data, and after the fit has taken place, the tree is exposed to a never-
before-seen sample. This type of K-fold cross-validation analysis, although
commonplace in the machine learning literature, is less common in the market
microstructure literature.

That MDI and MDA have such different results on microstructural features
should give researchers pause. Most of the empirical research on market
microstructure has been built on in-sample, MDI-like methods, absent of
systematic cross-validation. When in-sample analyses are overfit to the entire
sample, some features appear to be more important than they truly are for out-
of-sample prediction. It is essential to recognize that an econometric forecasting
specification, when fitted on the entire sample, leads to in-sample (MDI-like)
results that may be overfit.

4.4 Sensitivity to hyperparameters, time periods, forecast windows, and
additional features

As the random forest algorithm is highly nonparametric and can be tuned
easily, one should ask about the stability of the results above with respect
to tuning of the model parameters. After all, if the feature importance changes
drastically when a random forest is constructed differently, then the results are
not consistent. For this reason, we conduct multiple sensitivity tests for the
feature’s importance. All of our tests confirm that the feature importance score
is consistent across different parameters, models, and time.

First, we tune two different model parameters intrinsic to all tree-based
machine learning algorithms: maximal depth and minimal weight fraction per
leaf. Changing these parameters transforms our unregularized random forest
into a regularized random forest. The first parameter sets a depth threshold
(the maximal number of sequential splits) for all decision trees that compose
a random forest. For instance, if we set the maximal depth to be 5, then
each tree cannot go beyond 5 sequential splits.”> After adding this parameter

22 1n the scikit-learn library, this parameter is controlled by the argument “max_depth,” and we set max_depth =5.
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Table 4

MDA feature importance correlation between original random forest and adding max_depth =5
Variable 25 bars 250 bars 50 bars 500 bars 1,000 bars 1,500 bars 2,000 bars
Kurtosis 0.998353  0.998687 0.997921 0.999611  0.999924  0.999904 0.999857
Bid-ask spread 0.994484  0.99634  0.997186 0.993873  0.996883  0.997981 0.997974
Return variance 0.999724  0.99978  0.999759 0.999471  0.99923 0.999054 0.999315
Sequential correlation  0.999838  0.999787 0.999747  0.999869  0.999924  0.999784 0.999847
Skewness 0.999728  0.999669 0.999655 0.999896  0.99991 0.999963 0.999893
Jarque-Bera test 0.999695 0.999104 0.999393  0.999652  0.999931  0.999869 0.999815

Table 4 provides correlation coefficients between the average MDA measures generated from a random forest
with unbounded trees and those generated from a random forest with trees of maximal depth 5. These coefficients
are provided for each variable we predict (the rows) and for each lookback window we consider (the columns).
Abbreviation: MDA, mean decreased accuracy.

Table 5
MDA feature importance correlation between original random forest and adding
min_weight_fraction_leaf =0.01

25 250 50 500 1,000 1,500 2,000
Variable bars bars bars bars bars bars bars
Kurtosis 0.99845 0.999174  0.998438  0.99976 0.999984  0.999891  0.999861
Bid-ask spread 0.996369  0.998045  0.998327  0.99646 0.998141  0.99838 0.998313
Return variance 0.999759  0.999895  0.999845  0.999754  0.999666  0.999218  0.999587
Sequential correlation  0.999918  0.999892  0.999823  0.999928  0.999867  0.999945  0.999906
Skewness 0.999677  0.999788  0.999632  0.999895  0.99996 0.999955  0.999968
Jarque-Bera test 0.999644  0.999318  0.999532  0.999794  0.999982  0.999899  0.999812

Table 5 provides correlation coefficients between the average MDA measures generated from a random forest
with no restriction on minimal leaf size and those generated form a random forest with leafs restricted to have at
least a sample fraction of 0.01. These coefficients are provided for each variable we predict (the rows) and for
each lookback window we consider (the columns). Abbreviation: MDA, mean decreased accuracy.

to the random forest, we compute the MDA feature importance correlation
between the original random forest and the regularized random forest across
all 87 instruments. As shown in Table 4, correlation coefficients for every
predicted variable and window size are virtually one. This indicates that the
feature importance results are consistent and robust to changes in the tree depth
hyperparameter.

The second parameter, which controls the least sample fraction on a leaf
required to stop splitting, has a similar functionality.” A leaf is the name given
to the node at the end of each branch or split. Restricting the minimal weight
fraction per leaf essentially limits how big the tree can grow and thus limits
the chances of overfitting. Again, we compute the MDA feature importance
correlation between the unregularized and regularized random forest. These
results are given in Table 5. Just like the case in Table 4, correlation coefficients
for every predicted variable and window size are close to one, which further
confirms the robustness of our feature importance analysis.

As our data are time series, a natural question is whether feature importance is
stationary across time. For instance, is it possible that the Roll measure is good at

In the scikit-learn library, this parameter is controlled by the argument “min_weight_fraction_leaf.”

3344

€20z Joqueda( z| uo Jasn (eAioeu|) suuesne 443 Aq yZy898G/91EE/./PE/I0IHE/SH/WO00"dNO DIWapEDE//:SA]Y WO PaPEojuMOq



Microstructure in the Machine Age

predicting realized kurtosis when the market is less volatile, and not otherwise?
To answer this, we run the MDA test presented in Section 4.2 on a yearly basis.
More specifically, we split the data set into 5 parts in chronological order. As the
total length of data in time is 5 years, each part covers a year-long period. For
simplicity, we only show the results for the 250-bar lookback window in Table 6.
It is evident that the feature importance, and especially the ranking, does not
vary much across time, indicating that the feature importance is stationary. A
related question is whether the feature importance is stationary across different
instruments. This is partially proven by the small empirical standard deviations
in the feature importance shown in Tables 2 and 3. In addition, we include a list
of feature importance for kurtosis prediction per instrument with a lookback
window fixed at 250 bars in Table A3 in the Internet Appendix.

Next, we ask about stability of our results with respect to the forecast window.
All of our results are for a 250-bar forecast window, and it is worth asking
how feature importance changes as the window size varies. Table 7 provides
the correlation in MDA feature importance results between a 250-bar forecast
window and a 50-bar forecast window. As the table shows, most entries are
high (particularly for short lookback windows), which indicates that the results
are reasonably stable across different forecast scales.

4.5 Dollar-volume bar versus time bar accuracy

The analysis above is based on a dollar-volume bar formulation. These bars
have the desirable feature of aligning the sampling of data with the arrival
of information, which seems an appropriate property for the high-frequency
world characterizing futures trading. There are other bar types that could be
used, and in this subsection we compare the accuracy using dollar-volume bars
with the accuracy that results from using another popular bar method, the time
bar method. A time bar is formed when the difference between the close tick and
open tick’s timestamps exceeds a predefined value. We formulate hourly time
bars for all the futures instruments and apply the same cross-validation with
the same random forest configuration. The results of out-of-sample prediction
accuracy averaged over all lookback windows are given in Table 8.

Table 8 shows that accuracy results are very close for the two metrics. For
four of the metrics, dollar-volume bars have higher accuracy, while for the
Jarque-Bera test and bid-ask spread, time bars are slightly more accurate. This
similarity is important for allaying fears that variables originally calculated
over fixed time intervals may be distorted when cast in a volume-based metric.
Additionally, we find that even though overall the time bar formulation has
slightly lower accuracy, in many cases it gives rise to similar feature importance
ranking as dollar-volume bars. For example, in Figure 4 we present the MDA
feature importance for both bar methods for kurtosis prediction using a window
size of 50 bars. The similarity in feature importance ranking is evident. Finally,
Table 8 shows that regardless of how we measure bars, the accuracy of out-
of-sample bid-ask spread prediction is low. Thus, prediction difficulties here
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Table 6
Yearly feature importance with lookback window fixed at 250 bars

Panel A: MDA feature importance for bid-ask spread prediction

Kyle Roll Roll
Period Amihud lambda impact measure VIX VPIN Accuracy
2012-2013 0.0013 0.0002 —0.0051 0.0014 0.0033 0.0142 0.4555
2013-2014 0.0034 —0.0012 —0.0067 —0.0008 0.0020 0.0174 0.4578
2014-2015 0.0035 —0.0003 —0.0040 0.0020 0.0009 0.0142 0.4480
2015-2016 0.0023 —0.0013 —0.0094 —0.0044 0.0038 0.0128 0.4549
2016-2017 0.0006 0.0008 —0.0038 —0.0005 0.0032 0.0083 0.4516

Panel B: MDA feature importance for realized volatility prediction

2012-2013 0.0079 0.0001 0.0034 0.0170 —0.0015 0.0128 0.5479
2013-2014 0.0117 —0.0027 0.0048 0.0141 —0.0046 0.0198 0.5507
2014-2015 0.0001 —0.0003 0.0105 0.0215 —0.0139 —0.0003 0.5337
2015-2016 0.0098 0.0012 0.0088 0.0174 —0.0092 0.0058 0.5431
2016-2017 —0.0032 0.0023 0.0040 0.0143 —0.0105 0.0171 0.5526

Panel C: MDA feature importance for Jarque-Bera test prediction

2012-2013 —0.0056 —0.0024 —0.0045 —0.0010 —0.0042 0.0186 0.5333
2013-2014 0.0040 0.0018 0.0025 0.0080 0.0038 0.0372 0.5556
2014-2015 —0.0130 —0.0031 0.0000 0.0033 —0.0111 0.0131 0.5319
2015-2016 —0.0049 —0.0039 —0.0045 —0.0008 —0.0162 0.0269 0.5382
2016-2017 —0.0155 0.0032 —0.0027 0.0006 —0.0125 0.0057 0.5326

Panel D: MDA feature importance for sequential correlation prediction

2012-2013 —0.0039 —0.0012 0.0057 0.0313 —0.0114 —0.0047 0.5435
2013-2014 —0.0069 —0.0018 0.0005 0.0245 —0.0091 —0.0056 0.5370
2014-2015 —0.0023 —0.0035 —0.0086 0.0092 —0.0077 —0.0158 0.5332
2015-2016 0.0003 —0.0033 0.0054 0.0200 —0.0067 —0.0144 0.5332
2016-2017 —0.0033 —0.0055 —0.0054 0.0194 —0.0112 —0.0144 0.5322

Panel E: MDA feature importance for absolute skewness prediction

2012-2013 —0.0015 —0.0035 —0.0030 —0.0021 0.0013 0.0033 0.5215
2013-2014 0.0052 0.0033 —0.0012 0.0008 —0.0043 0.0090 0.5309
2014-2015 —0.0049 0.0033 0.0013 0.0000 —0.0122 —0.0041 0.5137
2015-2016 —0.0028 0.0033 0.0000 —0.0017 —0.0066 0.0105 0.5208
2016-2017 —0.0083 0.0027 —0.0028 —0.0075 —0.0100 —0.0081 0.5165

Panel F: MDA feature importance for kurtosis prediction

2012-2013 —0.0032 —0.0012 —0.0023 0.0004 —0.0019 0.0215 0.5355
2013-2014 0.0028 —0.0022 —0.0016 0.0031 0.0030 0.0358 0.5568
2014-2015 —0.0066 —0.0007 0.0021 0.0055 —0.0070 0.0269 0.5378
2015-2016 —0.0062 —0.0012 0.0001 0.0027 —0.0138 0.0325 0.5423
2016-2017 —0.0144 0.0004 —0.0010 0.0005 —0.0177 0.0070 0.5343

Table 6 provides five panels, one for each variable we predict, showing yearly average MDAs for each of the
five years in our sample period. This analysis uses a 250-bar lookback window. In each row, the variable with
the largest average MDA for that year is shown in bold type. Abbreviations: MDA, mean decreased accuracy;
VIX, Chicago Board Options Exchange volatility index; VPIN, volume-synchronized probability of informed
trading.

are not due to bar measurement issues. As noted earlier, we believe a more
compelling explanation lies in the construction of this variable.

4.6 Logistic regression

Next, we consider a different classification model, namely, logistic regression
for a model-based sensitivity test. Logistic regression models the logarithm of
the odds of our two labels with a linear functional form. When the classification
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Table 7
MDA feature importance correlation between a 50-bar forward window and a 250-bar forward window
25 250 50 500 1,000 1,500 2,000
Variable bars bars bars bars bars bars bars
Kurtosis 0.9984 0.9987 0.9685 0.5405 0.3060 0.8690 0.5939
Bid-ask spread 0.9951 0.9828 0.8229 0.9810 0.9612 0.8946 0.9459
Return variance 0.9911 0.9584 0.4131 0.9197 0.9801 0.9956 0.9864
Sequential correlation 0.9973 0.9979 0.8768 0.9415 0.9032 0.8292 0.9677
Skewness 0.9984 0.9947 0.6333 0.9140  —0.0871 0.3896 0.1941
Jarque-Bera test 0.9946 0.9945 0.8864 0.6871 0.2597 0.8482 0.7291

Table 7 provides the correlations in average MDA feature importance between a 50-bar forecast window and a
250-bar forecast window for each of our six features. Abbreviation: MDA, mean decreased accuracy.

Table 8
Performance comparison between dollar-volume bars and time bars
Variable Average accuracy

DV bar Time bar
Bid-ask spread 0.4539 0.4699
Jarque-Bera test 0.5237 0.5269
Kurtosis 0.5309 0.5304
Return variance 0.5663 0.5609
Sequential correlation 0.5259 0.5252
Skewness 0.5187 0.5142

Table 8 provides average prediction accuracy using dollar-volume bars and time bars for each of the six variables
we predict. The average is taken over all lookback windows (25 bars to 2,000 bars) and all futures contracts. For
each variable, the accuracy for the bar type that is greatest is given in bold type. Abbreviation: DV, dollar-volume.

window=50 bars | kt | average accuracy-0.56 window=50 bars | kt | average accuracy:0.564
008 : : daks : ;
oo7 008
006
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o002
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000 1 i el ] 000 ___n_——-
WX roll_impacemihud kyle_lamb ol wpin ux EMI;'!uchII_ir;-\paqle_llamb il vp'in
Figure 4

MDA feature importance for kurtosis prediction with window size =50 bars: left: time bar; right: dollar-
volume bar

Figure 4 provides bar charts of average MDA feature importance for time bars on the left and dollar-volume bars
on the right. The analysis was done with a lookback window of 50 bars. Abbreviations: MDI, mean decreased
impurity; UX, VIX front month futures contract; VPIN, volume-synchronized probability of informed trading.

label is binary, denoted as {0, 1}, the prediction probability for the two classes
is given by

- 1 . -
p(0|x)=ﬁ,p(l|x)=l—p(0|x), a7
+e

—w-
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Table 9
MDA feature importance correlation between logistic regression and random forest

25 250 50 500 1,000 1,500 2,000
Variable bars bars bars bars bars bars bars
Kurtosis 0.9818 0.9779 0.9602 0.9489 —0.1058 0.5929 0.6807
Bid-ask spread 0.6478 0.5756 0.0999 0.1582 —0.0639 0.0177 0.1712
Return variance 0.9312 0.9223 0.8830 0.8264 0.9366  —0.3209 0.9492
Sequential correlation 0.9808 0.9929 0.9719 0.9268 0.9561 0.6887 0.9506
Skewness 0.9983 0.9809 0.8963 0.8058 0.6231 0.2737 0.7509
Jarque-Bera test 0.8611 0.9375 0.9589 0.9377 —0.0275 0.5359 0.7963

Table 9 provides correlations between MDA feature importance computed using the random forest and using
logistic regression for each of our six features for each lookback window size ranging from 25 bars to 2,000 bars.
Abbreviation: MDA, mean decreased accuracy.

where X is the feature vector and the coefficient vector w is obtained through a
regularized maximum likelihood fit. For each sample, the prediction (+ or —)
is the class label with the highest prediction probability. Logistic regression is
another commonly used approach because of its simplicity and parametricity. It
does not have an in-sample feature importance analysis, like MDI. Nonetheless,
we can apply MDA feature importance and compare it to the random forest
result. In Table 9, we present the MDA feature importance correlation between
logistic regression and random forest.”* In general, the correlation between two
algorithms is high (>0.6), although when the lookback window size is large the
correlation declines. Prediction accuracy with logistic regression is also similar
to what we obtain with machine learning, with the logistic approach typically
being slightly more accurate (Internet Appendix, Table A4).

To shed more light on the difference between the logistic regression and
random forest approaches, we provide a scatter plot in Figure 5 for logistic
regression’s predicted bid-ask spread as a function of the two most important
out-of-sample features, VPIN and the Roll measure. Figure 2 provided a scatter
plot of predictions for the random forest approach as a function of these two
variables. The two plots are similar, with the main difference being the shape
of the decision boundary. Both plots illustrate predictions that are in line with
our intuition; for example, higher VPIN leads to spread increasing.

We view the similarity of the results obtained with these two quite different
approaches as further evidence that the microstructure frictions our features
attempt to measure are real and have implications for the process of price
adjustment. There is no apparent reason for why the logistic model with log
odds given by a linear function of our microstructure features should fit the
data reasonably well, but it does, as overall the prediction results are at least
as strong as those we obtain with the hierarchical random forest approach. Of
course, without having first done the random forest analysis, we would not have
known that the logistic model offers a good specification. In other words, the
random forest sets a nonparametric benchmark that a classical model can beat by

Detailed results from the logistic approach are provided in Internet Appendix A (Table A4).

3348

€20z Joqueda( z| uo Jasn (eAioeu|) suuesne 443 Aq yZy898G/91EE/./PE/I0IHE/SH/WO00"dNO DIWapEDE//:SA]Y WO PaPEojuMOq


https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa078#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa078#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa078#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa078#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa078#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa078#supplementary-data

Microstructure in the Machine Age

0.014
Predicted Decreases
0.012 4 Predicted Increases
0.010 - e
0.008 -

0.006 -

Rall

0.004 -

0.002

0.000 -

-0.002

T T T T T T

0.2 0.3 04 0.5 0.6 0.7
VPIN

Figure 5

Scatter plot of predicted changes in spread as a function of the VPIN and Roll measures for logistic
regression; the plot is for the ES1 Index with a lookback window of 25 bars

Figure 5 provides a scatter plot of predicted changes in the bid-ask spread as a function of the VPIN and Roll
measures. The analysis was done using a lookback window of 25 bars. Predicted increases are indicated in
blue, and predicted decreases are indicated in orange. Abbreviation: VPIN, volume-synchronized probability of
informed trading.

injecting structural information into the forecasting problem. This exemplifies
our view that machine learning algorithms do not replace classical methods,
but rather complement the use of those classical methods by de-coupling the
search for specification from the search for important variables.

It is not surprising that logistic regression predicts approximately as well
as random forest when attention is restricted to a small collection of own-
asset features (five own-asset market microstructure measures and VIX). The
power of the random forest approach is most apparent when many features are
considered. This is the case in the next section, where we expand the set of
features to include cross-asset features.

5. Cross-Futures Effects

The market microstructure literature typically considers each asset in
isolation. Thus far, we followed this approach by examining how the various
microstructure measures perform on each individual futures contract and then
aggregating across all 87 contracts to present our results. Yet, as noted in the
introduction, cross-asset activity (and particularly cross-asset market making)
is now the norm, suggesting that there could be important cross effects of
microstructure measures such as Amihud or VPIN in one asset on other assets.
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There is no market microstructure theory of how these cross-asset effects
should, or even could, occur, and there are many plausible alternatives. For
example, perhaps microstructure measures in the massive E-mini are predictive
of future conditions in assets other than the E-mini, as there could be a spillover
of trade or information from the E-mini. Or perhaps there are correlations
between futures based on similar assets (metals, for example), but not between
these futures and futures on financial assets. Or perhaps trade or information
from financial futures spills over to other nonfinancials. As theory provides no
guidance for which variables should matter, or how they should matter, modern
machine learning techniques seem ideally suited to an initial exploration of
these questions. That is the challenge we take up in this section.

We repeat the random forest approach outlined in Sections 3 and 4, but now
include cross-asset features. This analysis is done using time bars, as discussed
in Section 4.5, in order to synchronize observations across markets.”> For each
of our 87 futures contracts, we include its own microstructure features and the
microstructure features of a shared subset of 15 futures chosen to represent
actively traded commodity, equity, currency, and fixed-income futures.?® The
list of cross-asset futures used is given in Table 10. With cross-asset features
included, there are now 81 features for each contract. Given the challenges
revealed by our earlier analysis of the constructed bid-ask spread variable, we
omit this variable and concentrate on predicting the five other labels. We present
results using a 250-bar forecast window.?’

Figures 6-10 present average (over the 87 futures contracts) MDA results
for each of the variables we want to predict: realized volatility, Jarque-Berra
statistic, serial correlation of returns, skewness, and kurtosis. In these figures,
we show the MDA values only for features with positive values; ones not shown
are negative. Table 11 encapsulates these results, showing for each label the
top 10 features in terms of predictive power and whether they are own-asset
or cross-asset features. We emphasize three general findings: (1) own-asset
features continue to play an important, but not always the most important, role
in out-of-sample prediction; (2) cross-market features are useful in prediction,
with a small number of features exerting an influence across multiple predicted
variables; and (3) many of the 81 features have zero or negative MDAs.

Turning to the first result, we find that own-asset Amihud, VPIN, and Roll
have the greatest influence, with each of these in the top three features for

We synchronize time bars across all our futures contracts so that there is no potential issue of using measures
based on trading in the future in one contract to predict price and liquidity dynamics for another contract.

For each asset class, we selected the most liquid futures within the class to serve as proxies for the class. In the
currency class, we selected the dollar, yen, and euro contracts. In the equity class, we selected futures on the
S&P, NASDAQ, Euro Stoxx, and Nikkei.

As we did in the analysis using only own microstructure features, we computed results using various window
sizes and have reported results for the 250-bar window we focused on previously. Shorter lookback windows
yield generally greater prediction accuracy, perhaps because with longer windows there is more noise in the
system.
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Table 10
Cross-asset futures

e Commodity

o BOI1_Comdty, soybean oil
CL1_Comdty, crude oil
GC1_Comdty, gold
LC1_Comdty, live cattle
QS1_Comdty, gasoil
SM1_Comdty, soybean meal
e Equity index

o FAIl_Index, S&P

o NKI_Index, Nikkei

o NQI_Index, NASDAQ

o VGI_Index, Euro Stoxx
e Currency

o DXI1_Curncy, Dollar

o ECI1_Curncy, Euro

o JY1_Curncy, Japanese Yen
e Fixed income

o OEIl_Comdty, Euro-Bobl 5-Year

o TYI1_Comdty, US Treasury 10-Year

o
o
[}
o

Table 10 provides a list of the 15 cross-asset features used in the cross-asset analysis of Section 5. Each of these
features is included as a feature, along with its own-asset features, in the random forest analysis.

four of five predicted variables. Unlike most cross-asset features, own-asset
Amihud, Roll, and VPIN always have positive MDAs. However, the exact
influence of each feature differs from what we found when creating random
forests using only own-asset features. For example, own-asset VPIN is no longer
the dominant feature for prediction; VPIN is the top feature for one label,
while Roll is the top feature for three labels. Thus, adding cross-asset features
influences the role played by own-asset features. We conjecture that this effect
may be due, in part, to market microstructure measures in related assets also
picking up some of the signal created by information-based trade.?®

Second, our analysis of the cross-asset features shows the differential
importance played by particular contracts. For example, microstructure
measures based on trade in financial futures typically have high MDAs; that
is, they are valuable in out-of-sample prediction of other futures contracts.
Microstructure features based on trade in the 10-Year U.S. Treasury (TY1),
either the own VPIN measure or the own Roll measure features, have positive,
highly ranked MDAs in predicting other price processes. Similarly, the Euro-
bobl future (OE1) consistently ranks as an important feature across assets, and
the OE1-VPIN is actually the most important feature for the MDA results related
to changes in the Jarque-Bera statistic.?’ In addition, either the own Amihud
or own Roll measure features based on trade in the U.S. Dollar Index (DX1)
also have high MDAs. Perhaps less expected is that features derived from trade

In Internet Appendix C, we provide histograms of the correlation distributions for (Roll, Amihud), (Roll, VPIN),
and (Amihud, VPIN).

The Euro-bobl contract is an interest rate future on a notional medium-term German government bond
(Bundesobligation) with a remaining term to maturity of between 4.5 and 5.5 years.
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Figure 6
MDA results for predicting the sign of realized volatility using a 250-time bar lookback window

in the E-mini are not particularly important. MDA measures for these features
are typically positive, but they are not among the most important features in
predicting any of our variables. Features based on trade in the NASDAQ futures
contract are typically more important than those based on trade in the E-mini.

Finally, our third result, that many cross effects have zero or negative
MDAs, should not be unexpected. The information gleaned from microstructure
features of relatively unconnected or uncorrelated assets should have negligible
impacts on the price processes of other such assets. What is useful to recognize
is that the random forest machine learning approach is capable of discerning
which features matter and which do not. Such discernment may be helpful for
researchers hoping to build better models of market behavior.
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Figure 7
MDA results for predicting signs of change in the J-B test using a 250-time bar lookback window

Feature importances250jb

i

6. Prediction Accuracy

Our analysis is focused primarily on evaluating the usefulness of standard
microstructure measures in modern financial markets. The primary criterion
we use for this purpose is MDA, which is based on the effect of including or
excluding a particular feature (for us, a microstructure measure) on prediction
accuracy. In this section, we discuss these accuracy results, their usefulness,
and their sensitivity to various specifications.

The overall accuracy levels in Table 3 (last column of each panel) suggest
that our machine learning algorithm is capturing something of value. For binary
financial time series classification, a classifier often gives accuracy around 0.5.
This standard inability to do better than random guessing is consistent with the
efficient market hypothesis: for liquid markets, the market is efficient most of
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Feature importances250sc
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Figure 8
MDA results for predicting signs of change in serial correlation of returns using a 250-time bar lookback
window

the time and acts like a random walk. Thus, anything above 0.5 can be viewed as
capturing a potential inefficiency of the market and so is a positive result. With
the exception of the bid-ask spread estimation, our out-of-sample accuracy
levels reach highs ranging from 0.54 to 0.61 (depending on the lookback
windows), which by financial machine learning standards is very high.>* The
bid-ask spread accuracy is not as good. We conjecture that this is due to the lack
of an observable bid-ask spread in futures; we impute one using the Corwin-
Schultz estimator. It may be that the errors in the estimation as applied to futures
make prediction via the random forest methodology ineffective.

For example, see Krauss, Do, and Huck (2017), who in a similar binary classification problem obtain accuracy
levels between 0.50 and 0.55.
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Feature importances250sk

Figure 9
MDA results for predicting signs of change in skewness of returns using a 250-time bar lookback window

These predictions are made once for every bar for every day, and as a
result, even a small improvement in predictive power can lead to a substantial
improvement in returns to a strategy employing these predictions. For example,
consider a strategy that produces n IID bets per year, where the outcome X; of a
beti €[1,n] is a profit & > 0 with probability P[X; =7 ]=p and a loss —z with
probability P[X;=—m]=1— p. Here p represents the precision of our binary
classifier, where a positive value results from a correctly predicted outcome
(predictive accuracy) and a negative value comes from an incorrectly predicted
outcome. As the outcomes {X;}; ., are independent, the relevant statistics to
use in evaluating these bets are the expected moments per bet. The expected
profit from one bet is E[X;]=m(2p — 1), and its variance is V[ X;]=477(1 — p).

To provide some intuition about how valuable this strategy can be, we
compute the Sharpe ratio for n IID bets per year employing this strategy. The
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Feature importances25okt

Figure 10
MDA results for predicting signs of change in kurtosis of returns using a 250-time bar lookback window

annualized Sharpe ratio (6) of these bets in a zero risk-free-rate environment
- 31
is
_ nE[X;] _ 2p—1
VaVIXil 2/p(1—p)
——

0lp.n] (18)

On average, we have 50 bars per day, so the number of bets per year, n, is
approximately 13,000. At ~.5 we obtain 8[p,n]~0. At p~.52, we obtain
0[p,n]~2.04, which is not only statistically significant at a 5% significance
level, but is also considered a sizeable Sharpe ratio among practitioners. So the

Note that profit per trade 7 cancels out of the above equation, because the payouts are symmetric. Just as in the
Gaussian case, [ p,n] can be understood as a rescaled t-value.
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Table 11

Most important features in cross-asset features analysis

Factors by A Sign A Sign A Sign

MDA Realized Jarque-Bera Serial A Sign A Sign
Importance Volatility Test Correlation Skewness Kurtosis
1 Own Cross Own Own Own

2 Own Own Own Own Own

3 Own Cross Cross Own Own

4 Own Own Cross Cross Cross
5 Cross Cross Cross Cross Cross
6 Cross Cross Cross Cross Cross
7 Cross Cross Cross Cross Cross
8 Cross Cross Cross Cross Cross
9 Cross Cross Cross Cross Cross
10 Cross Cross Cross Cross Cross

Table 11 provides a classification of the most important features, ranked by average MDA importance, for each
of the five variables we predict in our cross-asset analysis. Features are characterized as own asset if the feature is
one of the six own-asset features we consider or cross-asset if it is one of the 15 cross-asset features we consider.
Abbreviation: MDA, mean decreased accuracy.

prediction accuracies presented in Table 3 and the apparently small differences
between prediction accuracies of the random forest and logistic regression
approaches using cross-asset features in Table 14 matter for investment
efficiency.??

6.1 Alternative specifications and accuracy measures

Prediction accuracy depends on both the variables we want to predict and the
features used to predict these variables. The six variables we are interested in
predicting are fixed, but the horizon at which we predict them is not fixed.
Table 3 provides accuracy results for a forecast horizon of 250 bars. Table 12
provides average accuracy results for both the random forest and the logistic
regression for shorter forecast horizons of 25 and 50 bars. Generally, for these
shorter horizons, we have similar but slightly lower accuracy results. Note,
however, that even for these short horizons our prediction accuracy results are
above 0.5 for all labels other than bid-ask spread.

Second, because our data are time series, it is possible that additional features
involving lagged values of returns or return volatility could change the accuracy
results. To address this issue, we included these variables and reran our random
forest algorithm. The variables we included at each bar t are the returns from bar
t-h to t for each of h =25, 50, 250, and 1,000; that is, returns over the last 25, 50,
250, and 1,000 bars and lagged realized bar volatility with 250-bar and 1,000-
bar horizons. The results are presented in Table 13. Comparing these results with
column 1 of Table 8 shows that inclusion of these lagged return and volatility
features improves prediction accuracy, indicating that even with our purging of
databetween the training and test sets there is some residual time series structure

A trader who wanted to use this approach might want to consider a different classification of the variables we
predict and consider only large positive and large negative changes, consider individual futures rather the average
we focus on, and tune the random forest to generate the sharpest possible predictions for those assets.
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Table 12
Comparison of average accuracy for logistic regression and random forest for shorter forecast horizons

Panel A: 50-bar forecast horizon

Variable Average accuracy
Logistic regression Random forest

Bid-ask spread 0.4508 0.4425
Jarque-Bera test 0.5416 0.5366
Kurtosis 0.5549 0.5477
Return variance 0.5915 0.5821
Sequential correlation 0.5287 0.5255
Skewness 0.5236 0.5192

Panel B: 25-bar forecast horizon

Bid-ask spread 0.4495 0.4435
Jarque-Bera test 0.5383 0.5350
Kurtosis 0.5486 0.5432
Return variance 0.5737 0.5667
Sequential correlation 0.5202 0.5170
Skewness 0.5194 0.5173

Table 12 provides average accuracy results for each of the six variables we predict for both the random forest
approach and logistic regression using shorter forecast horizons of 50 bars in panel A and 25 bars in panel B.

Table 13
Average prediction accuracy for random forest and logistic regression with lagged returns and return
volatility included as features

Variable Average accuracy
Logistic regression Random forest

Bid-ask spread 0.4685 0.4629
Jarque-Bera test 0.5534 0.5440
Kurtosis 0.5685 0.5563
Return variance 0.6341 0.6152
Sequential correlation 0.5447 0.5387
Skewness 0.5315 0.5261

Table 13 provides average prediction accuracy results with four lagged returns (with lags of 25, 50, 250 and
1,000 bars) and two lagged realized bar volatilities (with lags of 250 and 1,000 bars) for each of the six variables
we predict for each of the random forest approach and logistic regression.

in the data.® However, inclusion of lagged returns and volatility does not
change our results about own and cross-asset feature importance significantly.

Third, inclusion of cross-asset features not only affects which microstructure
features are important (as discussed in Section 6) but also affects overall
accuracy. Summary accuracy results are presented in Table 14. The average
accuracy results for this more complex random forest estimation range
from 0.5169 to 0.5743, demonstrating as before that successful prediction is
attainable with machine learning. What is more intriguing to consider is how
these results compare to within-asset prediction accuracy levels. Comparison of

This analysis of the effect of lagged returns is based on dollar-volume bars, and the results in Table 13 are averaged
over all lookback windows and futures contracts, making the appropriate comparison column 1 of Table 8, which
also presents average results using dollar-volume bars.
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Table 14
Average prediction accuracy for random forest and logistic regression with cross-asset features included
Variable Average accuracy

Logistic regression Random forest
Jarque-Bera test 0.5328 0.5353
Kurtosis 0.5388 0.5400
Return variance 0.5581 0.5743
Sequential correlation 0.5180 0.5201
Skewness 0.5165 0.5169

Table 14 provides average prediction accuracy using the random forest approach and logistic regression for each
of the five variables we predict. These accuracy measures are averaged over all lookback windows (25 bars to
2,000 bars) and all futures contracts.

the accuracy results in column 2 of Table 8 and those in column 2 of Table 14
shows an improvement in accuracy for all but one variable, resulting from
inclusion of the cross-asset features.>* Table 14 also provides a comparison
of the accuracy of logistic regression prediction and random forest predictions
when including the cross-asset features. Unlike the results obtained with a
smaller number of own-asset features (Internet Appendix Table A4), we see
that now the random forest approach consistently yields better predictions. We
conjecture that this results from the flexibility of the random forest, particularly
its nonlinear capabilities, in dealing with a large number of noisy explanatory
variables.

Finally, we consider the robustness of our results with respect to an
alternative accuracy measure: ROC-AUC. This overall accuracy measure can
be interpreted as the probability that the procedure (random forest or logistic
regression) will rank higher a randomly drawn positive than a randomly drawn
negative. ROC-AUC has the advantage that it is not biased by class skewness.
The accuracy results with this measure are reported in Table 15. They are similar
to those we report with our prediction accuracy measure (the fraction of correct
predictions).?

7. Conclusion and Future Directions

34

35

In this study, we attempted to shed light on the importance of various
microstructure features for explanatory and forecasting purposes. The six
variables we wish to explain and predict are highly relevant to market makers,
portfolio managers, regulators, and researchers: bid-ask spread, realized
volatility, normality, skewness, kurtosis and serial correlation. We apply

This analysis of the effect of including cross-asset features is based on time bars, and the results in Table 14
are averaged over all lookback windows and futures contracts, making the appropriate comparison column 2 of
Table 8, which also presents average results using time bars.

There are also other measures of accuracy, in particular, ones that treat true and false positives or negatives
asymmetrically. Making use of our approach in an investment strategy such alternative measures (such as
precision, recall, or F1 score) may be more useful than the simple accuracy measure we use here. Our goal
is more generic and not tied to a particular investment strategy, so we treat errors symmetrically.
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Table 15
Results for ROC-AUC accuracy measure

e 250-bar forecast horizon, idiosyncratic microstructure features

Variable Average accuracy
Logistic regression Random forest

Bid-ask spread 0.5583 0.5471
Jarque-Bera test 0.5592 0.5484
Kurtosis 0.5830 0.5710
Return variance 0.6506 0.6215
Sequential correlation 0.5714 0.5531
Skewness 0.5447 0.5352

e 250-time bar forecast horizon, cross-asset microstructure features

Variable Average accuracy

Jarque-Bera test 0.5491 0.5486
Kurtosis 0.5664 0.5510
Return variance 0.6025 0.6305
Sequential correlation 0.5284 0.5406
Skewness 0.5289 0.5337

Table 15 provides average prediction accuracy results using the AUC measure of accuracy. Results are averages
over all lookback windows (25 bars to 2,000 bars) and all futures contracts. Results are provided for both the
random forest approach and logistic regression. Abbreviation: AUC, area under the curve.

machine learning methods in order to capture the complexity inherent to high-
frequency data, without concerning ourselves at this point with determining a
parametric structure to characterize the complex relationship between variables.
We provide clear evidence that some extant microstructure variables have
value for predicting the new dynamics of market behavior. At the same
time, however, we find that other popular microstructure variables can have
high explanatory power (in-sample) and yet fail to provide forecasting power
(out-of-sample).

We believe these findings have important implications for future microstruc-
ture research. Foremost among these implications is good news: our results
clearly show that market frictions continue to play an important role in affecting
market dynamics and that extant microstructure measures capture (to varying
extents) these dynamic effects. Thus, despite the complexity of current markets,
frictions such as asymmetric information, illiquidity arising from constraints
on market maker risk-bearing, or endogenous patterns arising from algorithms
programmed to hide in particular market structures all continue to affect price
dynamics as predicted by microstructure research. More good news is that the
efficacy of these microstructure variables in capturing these effects appears
to be remarkably robust. Our out-of-sample forecasting results are virtually
the same whether we use time clocks or volume clocks, shorter samples or
longer, regularized or unregularized forests, even simple logistic models versus
hierarchal machine learning—the rankings of which variables matter most
generally stay the same. These findings should be helpful in thinking about
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the type of models (and measures) we need to work on to capture better market
dynamics.

There are other implications to consider as well. As most empirical research
in the market microstructure literature follows an in-sample procedure, without
out-of-sample cross-validation, it is possible that some established empirical
results are artificial. To determine this, however, requires more extensive study
and new empirical analytics. The machine learning approach taken here is one
such direction, but there are many new approaches that seem well suited to
analyses of complex market structures.

At a more fundamental level, the high out-of-sample accuracy we have
achieved appears to indicate that markets are less efficient than is generally
believed. For microstructure researchers, efficiency has long been a problematic
concept; over short intervals, prices are not random walks, and even the
concept of a price is tricky given that it may differ depending on whether
you want large or small amounts, are a buyer or a seller, etc. Our findings
here, however, are more concrete and troubling. Using machine learning
techniques, successful forecasting of price process dynamics using simply past
data on market microstructure features is both feasible and accurate. From a
practical perspective, this suggests increased research on ways to exploit this
information in profitable trading strategies. From a broader perspective, these
results highlight the changing role played by trading and trading strategies in
affecting asset price dynamics. Recognizing these trading dynamics may be
particularly useful for asset pricing research.’®

Recognizing these dynamics may also be a fruitful path for future
microstructure research. Traditional microstructure research has focused on
the idiosyncratic; that is, market makers cared about their own inventory in
a particular stock, and information was asset-specific. But cross-asset trading
activity (and, particularly, cross-asset market making) is now the norm, and
electronic market making algorithms exhibit a complexity not captured by
simple single-asset models. Our machine learning analysis of cross-asset effects
shows the importance of these broader effects. While we continue to find
predictive power from own-asset microstructure measures, we find strong
evidence of cross-asset effects.

What is particularly intriguing is the broad influence that a small set of
such cross-asset microstructure metrics has in predicting market variables—
suggesting that these metrics may be capturing systemic effects. Microstructure
research (Chordia et al. 2000; Hasbrouck and Seppi 2001; Malceniece et al.
2019) has investigated commonality in spread movements across markets,
finding evidence of at least some co-movement in spreads. Our findings

The information arrivals perspective has proven useful in explaining the time series of return premiums. For
example, Savor and Wilson (2014, 2016) show that the bulk of the equity return premium is earned on a handful
of days that are systematically important in terms of information arrivals, such as macroeconomic news days and
earnings announcements. See also Easley et al. (2019).
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here may explain why such co-movement can occur by identifying measures
capturing such potential underlying microstructure systemic effects. However,
before we can reach such a conclusion, we need more research, both empirical
to specifically address this systemic issue and theoretical to develop models
capable of capturing and explaining these broader influences. We think machine
learning will play a role in helping both research agendas.
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