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INSIDER TRADING, STOCHASTIC LIQUIDITY,
AND EQUILIBRIUM PRICES

BY PIERRE COLLIN-DUFRESNE AND VYACHESLAV FOs!

We extend Kyle’s (1985) model of insider trading to the case where noise trading
volatility follows a general stochastic process. We determine conditions under which,
in equilibrium, price impact and price volatility are both stochastic, driven by shocks
to uninformed volume even though the fundamental value is constant. The volatility of
price volatility appears ‘excessive’ because insiders choose to trade more aggressively
(and thus more information is revealed) when uninformed volume is higher and price
impact is lower. This generates a positive relation between price volatility and trading
volume, giving rise to an endogenous subordinate stochastic process for prices.

KEYWORDS: Kyle model, insider trading, asymmetric information, liquidity, price
impact, market depth, stochastic volatility, volume, subordinate process, execution
costs, continuous time.

1. INTRODUCTION

IN HIS SEMINAL CONTRIBUTION, Kyle (1985) derived the equilibrium price dy-
namics in a model where a large trader possesses long-lived private informa-
tion about the value of a stock that will be revealed at some known date, and
optimally trades continuously into the stock to maximize his expected profits.
Risk-neutral market makers try to infer from aggregate order flow the informa-
tion possessed by the insider. Because order flow is also driven by uninformed
‘noise traders,” who trade solely for liquidity purposes, prices are not fully re-
vealing. Instead, prices respond linearly to order flow. Kyle’s lambda, which
measures the equilibrium price impact of order flow, is constant in the model.
Price volatility is also constant and independent of noise trading volatility. It
depends only on the prior uncertainty about fundamentals.

In this paper, we generalize Kyle’s (1985) model to allow the volatility of
noise trading to change stochastically over time. Empirically, it is clear that
trading volume and its volatility fluctuate widely over time. Given the amount
of resources spent by market participants (witness, in particular, the growth of
the high-frequency industry) to separate the component of order flow that is
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informed from that which is uninformed, it seems useful to understand how
stochastic noise trading volatility impacts equilibrium price dynamics and lig-
uidity. We ask the following questions. How does the informed investor adapt
his optimal trading strategy to account for stochastic volatility of uninformed
trading volume? How are the equilibrium price and volatility dynamics affected
by shocks to the volatility of uninformed trading volume? How are adverse se-
lection costs paid by uninformed traders affected?

Below, we characterize the equilibrium for general noise trading volatility
dynamics.

First, we find that the equilibrium price follows a new class of bridge process
that converges almost surely at maturity to the value known ex ante only to the
insider. This guarantees that all private information will have been incorpo-
rated into the equilibrium price at maturity and generalizes the result proved
in Back (1992) that the equilibrium price in the continuous-time Kyle model
follows a standard (i.e., constant volatility) Brownian Bridge. Under plausi-
ble conditions which we derive in the paper, the equilibrium price volatility is
stochastic. In that case, our model generates ‘excess stochastic volatility,” since
non-payoff-relevant shocks that affect noise trading volatility may affect the
stock price volatility because the market maker rationally anticipates that in
periods where noise traders are more active, the informed trader is more ag-
gressive. This generates a positive volume-volatility relation, consistent with
the empirical evidence reported in Gallant, Rossi, and Tauchen (1992) and
different from the standard Kyle model, where price volatility is constant and
independent of the level of noise trading volatility. The equilibrium price is a
subordinate process with an endogenous time-change process driven by unin-
formed volume volatility as proposed by Clark (1973) and consistent with the
results in Lamoureux and Lastrapes (1990) that ARCH effects tend to disap-
pear when volume is included in the variance dynamics.

Second, we find that the optimal trading strategy for the insider is to trade
proportionally to the undervaluation of the asset at a rate that is inversely re-
lated to price impact but increasing in a measure of the current ‘state of lig-
uidity’ that we identify below. We thus show that it is optimal for the insider
to ‘time liquidity.” This is consistent with the empirical evidence in Collin-
Dufresne and Fos (2015), who documented, using data from SEC filings, that
informed activist-shareholder investors trade more aggressively when abnor-
mal volume is higher and measured price impact is lower.

Third, we find that price impact is stochastic and negatively correlated with
uninformed volume volatility. In fact, we find that price impact is a submartin-
gale, expected to increase over time. This contrasts our model from much
of the previous literature. In the original Kyle model, price impact is con-
stant. In extensions of that model (Back (1992), Back and Pedersen (1998),
Baruch (2002), Back and Baruch (2004)), price impact is either a martingale
or a supermartingale. The intuition why price impact is a submartingale in our
model is that, with stochastic noise trading volatility, the insider has a ‘liquidity
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timing’ option to wait for higher noise trading volatility to trade. In equilib-
rium, price impact must increase on average to entice the insider to trade early
and give up his option to wait for better liquidity states.

The prediction that price impact is expected to rise on average seems con-
sistent with the empirical evidence in Madhavan, Richardson, and Roomans
(1997) who found that estimated execution costs rise significantly on average
over the day.

Last, in our model the rate of price discovery increases when noise trad-
ing volatility increases and price impact decreases, which is different from the
standard Kyle model, where private information is revealed at a constant rate
that is independent of the level of noise trading volatility. This also implies
that aggregate execution (or slippage) costs incurred by uninformed liquidity
traders are stochastic and path-dependent in our model, unlike in Kyle (1985)
or Back and Pedersen (1998), where unconditional expected execution costs
always equal realized costs path-wise. As we show below, when price impact
is stochastic, then aggregate execution costs are poorly proxied by the time-
average of price impact, which is often used in practice to measure such costs.

Related Literature

This paper is related to a long list of papers that study the impact of asym-
metric information on asset prices, volatility, volume, and market liquidity.
Admati and Pfleiderer (1988), Foster and Viswanathan (1990, 1993) first pro-
posed extensions of the Kyle model to dynamic economies with myopic agents
(essentially a sequence of one-period Kyle models where agents only trade on
short-lived information), where they generated time variation in price volatil-
ity and trading volume. In their models, price volatility changes because new
(short-lived) private information is produced every period in response to de-
terministic changes in noise trading volatility.

Foster and Viswanathan (1995) developed and empirically tested a model
with stochastic variation in noise trading volume to study the joint behavior
of price volatility, volume, and price impact.” However, as they pointed out
(p- 380), “an important limitation of [their] analysis is that they assume that
information is short-lived,” as in Admati and Pfleiderer (1988) and Foster and
Viswanathan (1990). Our model provides the more general characterization
with long-lived information.

Back and Pedersen (1998) (BP) extended Kyle’s original model to allow for
deterministically changing noise trading volatility to capture intra-day patterns
(clustering) of liquidity trading, effectively analyzing a non-myopic version of
Admati and Pfleiderer (1988). They obtained that price volatility follows the
same deterministic pattern as noise trading. However, because they assumed

ZWatanabe (2008) also captured GARCH features in equilibrium prices, by directly incorpo-
rating stochastic volatility in the (short-lived) private information process.
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noise trading is deterministic, their model cannot generate any systematic pat-
terns in price impact (e.g., it is a constant in the Gaussian model). This implies
that in their model, ‘expected execution costs of liquidity traders do not depend
on the timing of their trades’ (BP, p. 387). As we show below, only if noise trad-
ing volatility is stochastic can the insider’s ‘liquidity timing’ option generate
stochastic price volatility and a nonzero correlation between price volatility,
market depth, and (uninformed) trading volume.

Our model is also related to a large literature in financial econometrics ini-
tiated by Clark (1973), which models the price change process as subordinated
to the normal distribution, with a directing process related to ‘informed vol-
ume’ usually modeled via some latent ‘information variable’ extracted from
volume and price volatility (see Andersen (1996), Tauchen and Pitts (1983),
Richardson and Smith (1993) for discussions of the so-called MDM ‘mixture
of distributions model’).

In our model, price follows such a subordinate process (in fact, a time-
changed Brownian motion). Interestingly, the model provides the endogenous
directing (or time-change) process as a function of the uninformed trading
volume process. In the classic MDM model, it is typically assumed that the
subordinating process is driven by an information flow variable that represents
new information arrival and that is orthogonal to uninformed volume (e.g.,
Andersen (1996)). As such, this information flow variable is latent and has to
be estimated from volume and volatility. Our model shows that even if there is
no exogenous information flow, but informed investors can strategically time
their trades, then stochastic uninformed volume will drive the directing pro-
cess and thus price volatility, albeit in a nonlinear fashion which reflects the
informed trader’s option to time his trades as a function of the “liquidity state.”

Section 2 introduces the general model and solves for an equilibrium. Sec-
tion 3 investigates two specific cases to emphasize key features of the equilib-
rium. Section 4 discusses extensions such as more general correlation struc-
tures and the link to the MDM literature. Section 5 concludes. All proofs are
in the Appendix.

2. INFORMED TRADING WITH STOCHASTIC LIQUIDITY SHOCKS

We extend Kyle’s (1985) model (in the continuous-time formulation given
by Back (1992)) to allow for time-varying volatility of noise trading. As in Kyle,
we assume there is an insider trading in the stock with perfect knowledge of
the terminal value v. The insider is risk-neutral and maximizes the expectation
of his terminal profit:

T
(1) maxE[/ (v—Pt)G,dt‘ftY’v:|,
0

e A

where we denote by F the information filtration generated by observing the
entire past history of aggregate order flow Y (which we denote by Y* = {Y;},,).
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In addition, the insider knows the actual value v of the stock, and, of course,
his own trading. Following Back (1992), we assume that the insider chooses
an absolutely continuous trading rule 6 that belongs to an admissible set A =
{0s.t. E[J, 62ds] < o0}.?

The market maker is also risk-neutral, but does not observe the terminal
value. Instead, he has a prior that the value v is normally distributed N (P, 3).
The market maker observes the aggregate order flow arrival, which is the sum
of the insider’s demand and the ‘noise-trader’ demand:

) dY,=0,dt + 0,dZ,,

where Z, is a standard Brownian motion independent of v. The market maker
absorbs the total order flow by trading against it at a price set so as to break
even on average. Since we assume the market maker is risk-neutral, equilib-
rium break-even requires that the market clearing price is

3)  P=E[F].

If noise trading volatility were constant, then this setup would be the Kyle—
Back model. Instead, we assume that the noise trading volatility, o;, follows a
general stochastic process. Specifically, we assume there is a (possibly discon-
tinuous) martingale W such that

(4) do =m(t, o')dt +v(t, ') dW,,

gy

where the growth rate (m) and volatility (») of ¢ can depend on its past his-
tory, which we denote by ¢/, but not on the history of Y (or Z). Further, we
assume they satisfy standard integrability requirements for the SDE to admit
a unique strong solution (e.g., Liptser and Shiryaev (2001, Theorem 4.6)). For
simplicity, we assume for now that W, and Z, are independent, but we relax this
assumption in Section 4. The main (economic) restriction we require through-
out is that the noise trading volatility process is independent of the insider’s
private information and that it may not be Granger-caused by order flow (i.e.,
m and v cannot depend on v or on Y*).

We assume that both the market maker and the insider observe the history of
o perfectly. Since, in continuous time, observing aggregate order flow allows to

3As in Kyle’s model, we assume the insider submits market orders d.X, that will be filled by
the market maker at price P4 = P, + dP,. Thus, his profits are, assuming a zero risk-free rate,
[y v=Pira)dX, = [} (v—P)dX,— [} dP,dX,.Back (1992) showed that it is optimal to choose
an absolutely continuous d.X; = 6, dt so that the second term is zero (otherwise, that term is al-
ways negative due to price impact). Note that this requires that volatility be common knowledge.
Else there could be multiple equilibria where the strategy of the insider is not absolutely contin-
uous.
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measure its quadratic variation perfectly, the filtration 7, contains both histo-
ries of order flow (Y*) and of volatility (¢*). The assumption that market par-
ticipants observe order flow may be partially justified by the fact that volume
and order-book information are available in many markets. In the standard
Kyle model, assuming that the informed investor observes total order flow is
innocuous, since if the insider only observes equilibrium prices, he can typi-
cally recover the total order flow (and, given his own trading, the noise trading
order flow). However, when uninformed order flow has stochastic volatility,
observing only prices may not be sufficient to recover noise trading volatility,
as we give some examples below, where the equilibrium price is independent
of noise trading volatility, even though the insider’s trades depend on it.

An equilibrium is a price process and an admissible trading strategy, (P, 6,),
that satisfy the market maker’s rationality condition (3) while solving the in-
sider’s optimality condition (1).

To solve for an equilibrium, we proceed in a few steps. First, we derive the
dynamics of the stock price consistent with the market maker’s risk-neutral fil-
tering, conditional on a conjectured strategy rule followed by the insider. Then,
we solve the insider’s optimal portfolio choice problem, given the assumed dy-
namics of the equilibrium price. Finally, we show that the conjectured rule by
the market maker is indeed consistent with the insider’s optimal choice. Be-
fore stating the full theorem (proved in the Appendix), we provide a sketch of
proof to give some intuition and highlight the main differences with respect to
previous literature.

In a linear equilibrium where the insider chooses a trading strategy of the
form 0, = B,(v — P,) for some FY adapted process B;, market makers will

t
move prices linearly with order flow:

(5) dP,= A, dY,,

where A, = ﬁ(’r—f‘. This follows from the usual Kalman-filter equations, which
also imply that the posterior variance for the market maker 3, = E[(v —
P,)?|FY] satisfies

(6) d3, = —\aldt.

We conjecture that the value function of the insider is quadratic of the form
Ji = m . Then, applying Itd’s rule and using (5) and (6) above, we find

dl,+ (w—P)o,dt

Wd——( —P)dP, d——(v—P)ale
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It follows that if we can find a market depth process (Ait) that is (i) a martin-
gale (E[Ait] =0), and (ii) independent of price changes (dP, d )‘% = (), then our
conjectured value function satisfies

T
JO:E|:_/ (U—Pg)ode—F]T].
0

Since J7 > 0, this implies that J, will be the optimal value function if there
exists a trading strategy 67 such that Py = v a.s. (which implies J; = 0).* Theo-
rem 1 below establishes that such a strategy exists. Note that it implies a third
restriction on the market depth process, namely that (iii) the equilibrium is
fully revealing at T (37 = 0). The new feature of our equilibrium relative to
previous literature is the characterization of the market depth process consis-
tent with conditions (i), (ii), (iii) above and given the stochastic noise trading
volatility process (4). Specifically, this requires solving a ‘forward-backward’
system:

1
7 Eld—|=0
m  Ear]-o
(8) d3, =—\o’dt,
given initial condition 3, and terminal condition 3; = 0. The nice feature of
this system is that if we define G, by setting A, = g—i, then the system ‘decou-
ples’

2
g,
9 Eldy/G.]= —— 241,
®) [ ] 2/G,

dt,

s, o}
Et B Gt
subject to terminal condition G = 0 and initial condition 3. Thus, the central

new feature of our equilibrium construction is this quantity G, which solves the
‘backward’ recursive equation

1) G, = E[/[T 2\‘;%5 ds‘}‘;’].

Using the classic interpretation of price impact as a signal to noise ratio where
signal is measured by 3,, the market’s posterior variance of v, we see that G,

(10)

4Since J; > 0, we have J, > E[fOT(v — P;)0,ds] for all 6 and the inequality holds with equality
for any 6 such that Jr = 0, which is thus optimal. The potential non-uniqueness of the optimal
strategy is pointed out in Back (1992).
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measures the equilibrium noise component. It is a sufficient statistic for the
expected amount of future noise trading relevant for the insider to determine
how aggressively to trade based on his private information.

We first establish that, under some technical conditions, there exists a unique
solution to this recursive equation.

LEMMA 1: (i) If W, is a Brownian motion and o, is uniformly bounded above
by o and below by o > 0, then there exists a bounded solution G, to the recursive
equation (11). Further, that solution satisfies

(12)  H(T-0=<G, < (T—1).
(ii) If a bounded solution to equation (11) exists, then it is unique.

With these results established, we can now proceed to characterize the equi-
librium trading strategy and price process in our economy. The equilibrium we
obtain, which constitutes the main result of our paper, is summarized in the
following theorem.

THEOREM 1: If there exists a bounded solution to equation (11) and if o, is
uniformly bounded above by o and below by o > 0, then there exists an equilib-
rium where the price process has dynamics

(13) dP, = k,(v— P, dt + v/ Sge V254 [ d7,.
The mean-reversion rate is the stochastic process

0,2

(14) K, = E’t,

where G, is the unique solution to equation (11). Note that G, satisfies

o ame[ ol [ s}l ]

The optimal strategy of the insider is
(16) 6= L(w—P).
Ay

The conditional posterior variance of v in the market maker’s filtration, 3., is given
by

(17) 3, =Se Jirudn,
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In equilibrium, price change is linear in order flow (i.e., dP, = A, dY,) with a price
impact process given by

%,

The maximized expected profit of the insider is

_ (U—Pl)2+2t

The unconditional expected profit of the insider (from the point of view of the
market maker) is v/ 2,Gj.

Further, P, is a martingale with respect to the market maker’s filtration. With
respect to the insider’s filtration, P, is a bridge process that converges in L* and
almost surely to v at the final date T.

Last, market depth Ait is a martingale and thus A, is a submartingale with respect
to both the market maker’s and the insider’s filtrations.

We now comment on several implications of the theorem. First, the equilib-
rium price follows a new class of bridge process that converges (almost surely
and in L?) to the value v, known ex ante only to the insider, at maturity 7. This
guarantees that all private information will have been incorporated into equi-
librium prices at maturity and generalizes the result proved in Back (1992) that
the equilibrium price in the continuous-time Kyle model follows a standard
(i-e., constant volatility) Brownian Bridge. Indeed, in our model, the equilib-
rium price volatility will be stochastic if the mean-reversion rate «, is stochas-
tic. We show below that a necessary condition for this is that the growth rate
(m,) of noise trading volatility is stochastic. In that case, our model generates
a volatility of price volatility that appears ‘excessive’ since shocks to noise trad-
ing volatility affect price volatility even if they are unrelated to the fundamental
value, because the market maker rationally anticipates that, in periods where
noise traders are more active, the insider trades more aggressively.’

Second, we find that the optimal trading strategy for the insider is to trade
proportionally to the undervaluation of the asset (v — P,) at a rate that is in-
versely related to her price impact (A,) but increasing in the current ‘state of
liquidity’ as measured by how large the current noise trading variance is rel-

. . . . 0-2 .
ative to the expected noise trading variance (x, = & ). The latter quantity re-
duces to the inverse of the remaining time horizon (%) in the original Kyle

SOf course, since market makers are risk-neutral, total integrated price volatility is always tied
to fundamentals in our model as }[;JT(dP,)2 =3 as.
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model when o, is constant and, more generally, when o, is a martingale. How-
ever, the idea that the insider trades at a deterministic rate inversely related to
the remaining time horizon 7' — ¢ does not hold outside these specific cases.

Third, our expression for the price impact generalizes both Kyle’s and BP’s
result that price impact (the inverse of market depth) is a signal to noise ra-
tio. The signal is measured as in the previous papers by the posterior variance
of the liquidation value. But interestingly, the relevant measure of noise now
solves the recursive equation (11), the solution of which is strictly smaller than
the expected remaining variance of noise trading when price impact is stochas-
tic.

Fourth, in our model, market depth is a martingale and thus price impact is
a submartingale, expected to increase over time. This contrasts our framework
from much of the previous literature. In the original Kyle model, price impact is
constant. In extensions of that model Back (1992), Back and Pedersen (1998),
Baruch (2002), Back and Baruch (2004), Caldentey and Stacchetti (2010), price
impact is either a martingale or a supermartingale. The intuition why price
impact is a submartingale in our model is that, with stochastic noise trading
volatility, the insider has an option to wait for better liquidity (i.e., higher noise
trading volatility) to trade. In equilibrium, price impact must increase on aver-
age to entice the insider to trade early and give up his option to wait for better
liquidity states.’

Fifth, since in equilibrium d¥, = —dP?, a high rate of information arrival im-
plies high stock price volatility. When stock price volatility is stochastic in our
model, it is positively correlated (in changes) with noise trading volatility. That
is, the rate of price discovery increases when noise trading volatility increases.
This is very different from the standard Kyle model, where price volatility is
constant and independent of noise trading volatility, and where private infor-
mation is revealed at a constant rate that is independent of the level of noise
trading volatility.’

Sixth, in our model, unconditional profits of the informed investor depend
on how much private information remains to be released to the market and
on the total expected amount of noise trading as measured by the solution

In Kyle (1985), Back (1992), and Back and Pedersen (1998), price impact is constant or a
martingale, for else the insider would concentrate all his trading in the period where trading costs
are expected to be lowest. In contrast, in Baruch (2002) and Back and Baruch (2004), Kyle’s
lambda is a supermartingale because the insider has an incentive to trade earlier (because the
horizon is random or because he is risk-averse). Foster and Viswanathan (1996) and Back, Cao,
and Willard (2000) may also generate an increase in the deterministic price impact, at least near
the end of the trading horizon, because of competition among multiple informed traders (we
thank a referee for pointing this out).

"Note that in Admati and Pfleiderer (1988) or in Back and Pedersen (1998), price volatility
is also positively related to the deterministic path of noise trading volatility. We discuss the dif-
ference due to the presence of unexpected shocks in noise trading volatility in detail in the next
section.
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to the recursive equation for Gy, which is strictly less than the total expected
noise trader variance if price impact is stochastic (i.e., whenever noise trading
volatility is stochastic). It follows that stochastic noise trading volatility reduces
the unconditional expected profits of the informed trader relative to an econ-
omy with the same total average but constant noise trading variance.

Seventh, aggregate execution or slippage costs incurred by uninformed lig-
uidity traders, which can be defined (see Appendix A.4) by:

T T
0 0

are stochastic and path-dependent in our model, unlike in Kyle and BP, for
example, where unconditional expected execution costs always equal realized
costs path-wise.

As we show below, when price impact is stochastic, then aggregate execution
costs are poorly proxied by the time-average of price impact, which is often
used in practice to measure such costs.

We now consider two specific noise trading volatility processes to further
emphasize important features of the equilibrium.

3. TRADING VOLUME, PRICE VOLATILITY, AND PRICE IMPACT

As is clear from Theorem 1, much of the characterization of the equilib-
rium depends on G,, which affects equilibrium price volatility and price im-
pact. As we show below, a crucial distinction is whether the growth rate (m;,) of
noise trading volatility is stochastic. Only in that case can the model generate
stochastic price volatility (in addition to stochastic price impact).

3.1. Deterministic Growth Rate of Noise Trading Volatility

Suppose that the growth rate (m,) of the noise trading volatility process in
equation (4) is a deterministic process, but that its volatility may be stochas-
tic with general form v(z, o'). Then we can derive an explicit solution for the
solution G, (which does not require o, to be uniformly bounded or W, to be a
Brownian motion). With this solution in hand, we can derive all the equilibrium
quantities as in Theorem 1 (even though we do not require a uniform upper or
lower bound on o;). We summarize the results in the following theorem.

THEOREM 2: If the expected growth rate of noise trading volatility (m,) is de-
terministic such that

T
21)  Bi= / el du
t
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is bounded for all t € [0, T, then the solution to equation (11) is
(22) G,=0!B..

Note that

T ) T
Gl:/ E[O’S|a't] ds§E|:/ des‘at]
t t

In that case, the mean-reversion rate from equation (14) becomes deterministic
(k; = Bil) and thus from equation (17), private information flows into prices deter-

ministically irrespective of the magnitude of shocks to noise trading volatility (v,).
Stock price dynamics are given by

1 :
(23) dP,=—(v—P)dt+eh™%0,dZ,
Bt ——

op(t)

where we define o* = 123_2' In particular, stock price volatility is a deterministic

function which depends only on the unconditional expected path of noise trad-
ing volatility:

(24) op(1) = ME[ 0| FY ]
In equilibrium, price impact is given by

25) A =ehma

T
From equation (16), the optimal trading strategy of the insider is

1

26 0, = .
@) =35

The unconditional expected trading rate of the insider is

@(U—Po)

(27)  Elbfv, Fy] = i
gy B()

The unconditional expected profit at time zero of the insider is o,0¢B,.

As expected, the model reduces to the continuous-time Kyle model also de-
rived in Back (1992) when o, = o is constant, in which case m, = v, = 0 and
thus B, = T — t. In that case, price volatility is constant equal to o, and price
impact is constant equal to A = %, where o, = % is the annualized variance of
the market maker’s prior. Note, in particular, that price volatility is indepen-
dent of the level of noise trading volatility in the Kyle benchmark.
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This theorem informs us about two important special cases: when noise trad-
ing volatility is stochastic but unpredictable (i.e., when m, =0 and v, # 0) and
when it is deterministic but not constant (i.e., m, # 0 and v, = 0) where we
recover the model of Back and Pedersen (BP 1998). We discuss both in turn.

General Unpredictable Martingale Dynamics (m; =0, v, #0)

Comparing the results in Theorem 2 when m, =0 and thus B, =7 — ¢ to
the Kyle benchmark, we see that the equilibrium looks formally identical to
the original Kyle model where one substitutes the stochastic process o, for
the constant noise trading volatility in the original model. This implies that,
as in the original Kyle model, price volatility (and the rate at which private
information is revealed) is constant and equal to o,.

However, both the trading strategy of the insider and the price impact are af-
fected by stochastic noise trading volatility. Price impact is inversely related to
noise trading volatility. The insider trades more aggressively when noise trad-
ing volatility increases and price impact decreases. Both effects exactly offset
to leave equilibrium prices unchanged. In fact, unconditionally, the insider ex-
pects to trade continuously a constant number of shares ((”;#, see equation
(27)) per unit time as in the Kyle model even though noise trading is stochastic.
In equilibrium, then, information flows into prices at the same constant rate as
in the Kyle model. The expected profit level of the insider equals what it would
be in the Kyle model with noise trading volatility set to the constant initial noise
trading volatility oy.

While it may seem intuitive that, when noise trading volatility is stochastic
but unpredictable, the equilibrium is similar to the original Kyle/Back model
in some unconditional expected sense, it is interesting to note that it is market
depth (and not price impact) that is, on average, constant in that case. That
market depth is a martingale follows directly from the fact that it is propor-
tional to noise trading volatility, which is itself a martingale in this case.

Predictable but Deterministic Dynamics (m, #0, v, =0)

When volatility is deterministic but not constant, then price impact is con-

stant and equal to 2. Price volatility is deterministic and reflects the future

realized path of noise trading volatility, which is known as of time zero in this
case without uncertainty about future noise trading volatility.

General Case (m, #0, v, #£0)

In general, when noise trading volatility is stochastic (v # 0) and the growth
rate deterministic (m, # 0), then the solution combines features from both
previous cases. In particular, price impact is stochastic and negatively corre-
lated (in changes) with noise trading volatility. However, price volatility and
the posterior variance of the fundamental value (2,) are both deterministic.
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This is because the trading strategy of the insider has two components: one
due to market depth (Ait), which is unpredictable, and one due to the current
‘liquidity state’ (k, = Bi’), which is deterministic. Price volatility only reflects
that second part.?

Notice that price volatility is not affected by the realized shocks in noise trad-
ing volatility when m, is deterministic. Only the unconditional ex ante expected
path of noise trading volatility matters for the rate at which information flows
into prices ex post and consequently for future price volatility. Even though
price impact is stochastic, price volatility is deterministic, and the model can-
not generate any contemporaneous relation between changes in volume and
price volatility or between price impact and price volatility. To generate such
relations, we need a stochastic growth rate of noise trading volatility. The next
section presents a framework which generates both ‘true’ stochastic volatility
in prices and a meaningful correlation between price volatility and volume.

3.2. Stochastic Expected Growth Rate of Noise Trading Volatility

Here we consider a case where noise trading volatility follows a two-state
continuous Markov chain. This case is interesting because it introduces state-
dependent predictability and thus captures the case of a stochastic expected
growth rate in noise trading volatility, which we have shown to be crucial to
generate stochastic price volatility.” We assume there are two fixed values o% <
o' with o, starting at oy € {0, o'} and with dynamics

(28) do, = (O'H - a’,) dN(t) — (0', — O'L) ANy (1),

where N;(#) is a standard Poisson counting process with jump intensity »; for
i=H,L.

Since the volatility process is Markov, we expect that the solution to the
recursive equation (11) will be of the form G(t, a;). Indeed, we find the fol-
lowing:

THEOREM 3: The unique bounded solution to the recursive equation (11) is
given by G(t, 01) = 1,4,o1G*(T — t) + 1,4,,11,G" (T — t), where the determin-
istic functions G*, G" satisfy the system of ODE given in equations (29)-(30)

8In the Supplemental Material (Collin-Dufresne and Fos (2016b, Appendix S1)), we discuss
the optimal strategy of the insider in further detail.

°In the Supplemental Material, Appendix S2, we also analyze a diffusion case with stochastic
growth rate, where specifically we assume that noise trading volatility follows a mean-reverting
diffusion process. Using an expansion approximation to the solution for G, we show how uncer-
tainty about future noise trading volatility interacts with mean-reversion to generate stochastic
price volatility.
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FIGURE 1.—Markov switching model for noise trading volatility. Parameter values are: 3 =
0.04, T=1,1, =ny=2,0"=0.2,and o =0.4.

below, with boundary conditions G*(0) = G (0) = 0:

(29 G =(0") +2m(VGT (MG (1) - GH(7),
30)  G"(r)= (") +2nmu(/GT(MGH(r) - G"(7)).

When there are no transitions between states n; = 0, then the solution is
G(1) = (6")X (T —t) for i = L, H. When 7, # 0, the system of coupled dif-
ferential equations for G'(7) for i = L, H is easily solved numerically. For
illustration, we choose a period length T =1, n, = ny = 2, o~ = 0.2, and
o' = 0.4. For these parameter values, we report in Figure 1 the pair of func-
tions (G, G"). As expected, G¥ (t) > G*(t), and as maturity approaches, the
two functions converge smoothly to the lines (o/)*(T — t) for i = L, H that
would prevail if there were no transitions between states (i.e., the state was
absorbing) and which also correspond to the original Kyle model with noise
trading volatility fixed at either the high or low level.

From Theorem 1, we can then write price dynamics as

(31) dP, = «k(t,0)(v—P)dt+ \/foe_fé(l/z)'((s’aj)ds\/ k(t, o) dZ,,

op(t)

where, from its definition in equation (14), we obtain the mean-reversion rate
process

(32) k(t, ;) = Vg ry k(T — 1) + 1o, k" (T — 1).

Price follows a mean-reverting process with stochastic volatility, where both
the strength of mean-reversion and the volatility are modulated by the volatility

state. Figure 1 shows the values of /(T — ) = sz’;)_z 5 fori =L, H. We see that
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mean-reversion is always higher in the high noise trading volatility state, where
we expect the insider to trade more aggressively and thus to contribute more to
price discovery. Further, both mean-reversion coefficients increase to infinity
as we approach maturity. Since maturity is fixed and finite, agents trade more
and more aggressively as it approaches because they do not want to leave any
money on the table. Price volatility dynamics can be calculated explictly from
its definition in equation (31):

dop(t)
33
(33) op(t)
1 (dlogk(t, oy) k(T —1)
= E(T — K(t, 0',)) dt+ < m - 1) dNL(t)
KE(T —t)
( a0 1) ANy (1).

Clearly, price volatility always jumps up (down) when noise trading volatility
jumps up (down), which generates a positive relation between changes in vol-
ume and volatility. However, conditional on being in a noise trading regime,
there are two counterbalancing effects driving the change in volatility. First,
informed trading reveals information and decreases the amount of remaining
uncertainty, which reduces price volatility. This is the negative term (—« (¢, 0;))
in the drift of op, which is always more negative in the high volatility state
(where more information is revealed) than in the low state. Second, due to the
finite maturity effect discussed above, the insider trades more aggressively irre-
spective of the state as maturity approaches, which tends to increase volatility.
This is the time derivative (26540} in the drift of o, which is always positive.
Which effect dominates quantitatively depends on the parameters.

For illustration, we plot in Figure 2(a) four paths of the stock price volatility
op(t) for the case where noise trading volatility switches to the high regime at
date zero and stays there until maturity (high/high), when it starts in the low
regime and stays there until maturity (low/low), and when there is a jump at t =
0.5 from high to low (high/low) and from low to high (low/high), respectively.
We also plot the stock price volatility in the Kyle benchmarks with constant
high or low noise trading volatility.

Consistent with our previous discussion, price volatility starts out higher in
the high noise trading volatility state than in the low state. Subsequently, how-
ever, volatility decreases in the high regime, but increases in the low volatility
regime, which shows that the finite maturity effect discussed above dominates
in the low regime. When noise trading volatility jumps up (down), price volatil-
ity also jumps up (down), generating the positive volume volatility correlation
in changes. However, volume and volatility need not be positively correlated
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FIGURE 2.—We graph price volatility, posterior variance, price impact, and execution costs
in the Markov chain model for noise trading volatility for four separate paths of noise trading
volatility corresponding to (1) start and stay in the high noise volatility regime until 7, (2) start
and stay in the low volatility regime until 7', (3) start in the high volatility regime and switch to
low volatility at ¢t = 0.5, and (4) start in the low volatility regime and switch to high volatility at
t =0.5. We also plot these for the Kyle-benchmark models with high or low (but constant) noise
trading volatility. Parameter values are: 3y =0.22, T =1, n;, = ny =2, o- = 0.2, and o’ =0.4.

in levels due to the finite horizon effect discussed above. For example, Fig-
ure 2(a) shows that price volatility becomes highest if the economy reaches
maturity having remained all the time in the low state (low/low path). Intu-
itively, this is a path where the insider has to trade on most of his information
just prior to market close in a thin market, after having waited unsuccessfully
for better liquidity states. So the market closes with low volume and high price
volatility.

The figure clearly illustrates that price volatility can exceed very significantly
the price volatility of the Kyle model, which is always identical to o, indepen-
dent of the level of noise trader volatility. Instead, in our model, price volatility
is stochastic and ‘excessive,” in that it is driven by stochastic switches in noise
trading volatility regimes, which are by assumption unrelated to the (constant)
fundamental.

In this model, price impact is also stochastic and negatively related (in

changes) to noise trading volatility. Indeed, recall that A, =,/ é—’t and thus, since

3, = 3pe - Jixwowdu js absolutely continuous, the immediate effect of an up-
ward jump from G* to G is to lower price impact. Subsequently, however,
the path of price impact depends on the relative speed at which the posterior
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variance 3, and the G, function decrease, which depends on the path of noise
trading volatility.

Figure 2(b) plots the path of the posterior variance 3, for the four paths of
noise trading volatility considered previously and against the Kyle benchmark.
Note that, in Kyle’s model, % = I, that is, information always decays linearly

in time, irrespective of the level of noise trading volatility. Instead, with stochas-
tic noise trading volatility, posterior variance typically drops faster when noise
trading volatility is higher. In fact, the figure shows the posterior variance is a
decreasing convex function of time in the high volatility regime, but becomes
decreasing concave when there is a switch to the low noise trading regime. The
intuition is that, in the low noise trading regime, the insider is playing a wait-
ing game, in that he trades much less aggressively than he would in the Kyle
economy with the same level of volatility. He does so hoping for the high noise
trading regime to arrive, when he trades more aggressively, leading to faster
information revelation. Of course, if the regime switch does not arrive, then
ultimately, he will have to become more aggressive so that all his information
eventually makes it into prices (see the path marked as ‘low/low’ on the graph).
The switch from convex to concave is due to the finite horizon effect discussed
above.!

In Figure 2(c), we plot the path of the price impact (A(z)) process for the
same four noise trading volatility scenarios. We see that if the economy starts
in the high noise trading regime and stays there until maturity, then measured
price impact is relatively low and decays steadily. Instead, if the economy starts
in the low noise trading regime, then price impact is at first only slightly higher
than in the high noise trading regime, but it increases exponentially as the econ-
omy approaches maturity without switching. Similarly, if the regime switches
at some point from high to low volatility, then price impact immediately jumps
up and then starts to increase along a very convex path as markets become
more illiquid. Interestingly, note that if the economy is in the high noise trad-
ing regime, then measured price impact starts low and decreases steadily at the
beginning, even though there is a lot of ‘adverse selection’ in the sense that a
lot of information is getting into prices as shown in Figure 2(b).

Last, in Figure 2(d), we plot the path of realized execution costs (A,o?) for
the same four scenarios. The total execution costs paid by noise traders at time
T are captured by the area below each curve plotted. From the graph, it is clear
that execution costs are lowest in the low volatility regime scenario, and much
higher in the high noise trading volatility regime. We give the corresponding
numbers in Table 1. This may seem paradoxical, since, as is clear from the table,
the high noise trading volatility regime is also the one where the average price
impact (A) is lower. However, the comparison is not appropriate since there is

Tn a model where T is modeled as an unpredictable stopping time with constant arrival inten-
sity, 3, always follows a decreasing convex path, with a faster decay rate in the high volatility state
(see Collin-Dufresne and Fos (2016a) for further discussion and extension to random intensity).
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TABLE 1
PATH-DEPENDENCE IN EXECUTION COSTS: AN ILLUSTRATION®

Noise Trading Volatility Paths

High/High Low/Low High/Low Low/High
(O] (@) 3 Q)

Panel A: Aggregate execution costs
Total 0.078 0.017 0.054 0.057
Path Dependent 0.047/0.031 0.005/0.012 0.047/0.007 0.005/0.052
Panel B: ‘Number’ of noise traders
Total 0.16 0.01 0.085 0.085
Path Dependent 0.08/0.08 0.005/0.005 0.08/0.005 0.005/0.08
Panel C: Normalized aggregate execution costs
Total 0.487 1.740 0.636 0.671
Path Dependent 0.587/0.387 1/2.4 0.587/1.4 1/0.65
Panel D: Average price impact
Total 0.487 1.740 1.023 0.853
Path Dependent 0.584/0.39 1.06/2.42 0.584/1.462 1.06/0.646
Panel E: Average stock price volatility
Total 0.195 0.174 0.190 0.182
Path Dependent 0.234/0.156 0.106/0.242 0.234/0.146 0.106/0.258

4This table presents several equilibrium quantities depending on various scenarios of realized paths of noise trad-
ing volatility. Each path of realized noise trading volatility corresponds to a certain ‘number’ of uniformed traders
arriving to the market. This ‘number’ is measured by the quadratic variation of the order flow. In column (1), the
realized noise trading volatility is always in the high regime. In column (2), the realized noise trading volatility is al-
ways in the low regime. In column (3), the realized noise trading volatility changes from high to low regime in the
middle of the trading period. In column (4), the realized noise trading volatility changes from low to high regime in

the middle of the trading period. Panel A reports the realized aggregate execution costs for noise traders, fOT )\to-tz dt.
Panel B reports the ‘number’ of noise traders, fOT 0,2 dt. Panel C reports the normalized realized execution costs for
noise traders, jOT /\f(th dt/ fOT rrtz dt. Panel D reports the average price impact, % [UT At dt. Panel E reports the av-

erage stock price volatility, % fOT Aroyr dt. The corresponding Kyle/Back stock volatility is constant and equal to 0.2
independent of the level of noise trading volatility.

more noise trading (as measured by the quadratic variation of the order flow)
in a high volatility scenario than in the low volatility scenario and, therefore,
it is natural that the aggregate execution costs paid by noise traders are higher
in the high volatility scenario. However, if we compare the two other scenar-
ios (high/low to low/high), where there are the same ‘number’ of noise traders
along each path (in the sense that the cumulative quadratic variation of noise
trader order flow is the same as is confirmed in the third row of Table I), then
we see that this is not the whole story. Indeed, aggregate execution costs paid
by noise traders are higher even though average price impact is lower in the
low/high scenario relative to the high/low scenario. This shows that a simple
average of price impact does not capture the actual level of execution costs.
Instead, let us define the volume weighted average (i.e., ‘normalized’) execu-
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T
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0 000

T
o dt

tion costs to noise traders:

(34) Normalized Execution Costs =

0

The normalized execution costs reduce to the simple time average of A, if ei-
ther A, or oy is constant. This is the case when noise trading volatility is de-
terministic Kyle (1985), Back and Pedersen (1998), in which case normalized
execution costs are constant. Instead, with stochastic noise trading volatility,
they depend on the path followed by noise trading volatility. Panel C shows
that normalized execution costs better capture the actual execution costs paid
by the average noise trader.

4. EXTENSIONS AND FURTHER DISCUSSION
4.1. The Dynamics of Aggregate Order Flow

For simplicity, we have assumed that aggregate order flow and noise trad-
ing volatility are conditionally uncorrelated. This assumption can be relaxed.

Consider, for example, the more general model for total order flow Y, given by
(35)  dY.=0,dt+o,dZ +n(t, 0", V") dW,,

where we leave the dynamics of ¢, unchanged, that is, as in equation (4). In
that case, to solve the equilibrium it is useful to define the process Y, by

n(t, o', lA/')

Y, =dY, —
(36) dY, =dY, (0o

(do,—m(t,o')dt)=6,dt+ o,dZ,.

Note that the dynamics of Y; in equation (36) are identical to those in equa-

tion (2). Further, since observing (IA/,, o,) is equivalent to observing (Y}, a;) for
all market participants, it can be shown that all our results above (and in par-
ticular Theorem 1) are unchanged with this more general model of order flow.
In particular, the price process is given by dP, = A, dY, as in Theorem 1, even
though total order flow is given by Y,. This shows that our previous assumption
that total order flow and o, be conditionally uncorrelated is not crucial for our
results. Instead, our equilibrium proof does rely on the assumption that order

flow does not Granger-cause o, in the sense that the history of f’, does not

affect the future dynamics of o, (i.e., m and v cannot depend on Y! for the
solution to the equation for G, to be independent of total order flow and of
the strategy of the insider).
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Economically, this extension is also interesting, as it shows that price change
need not be linear in total order flow, but only in the component of the or-
der flow that is informative about the insider’s actions. So, for example, in
this more general model, a regression of price changes on total order flow

(which is typically used to estimate Kyle’s lambda in empirical papers) deliv-

d?;ZYt =M
which equals A, only if n(¢) = 0. Using this estimate will not provide an accu-
rate estimate of actual trading costs paid by individual uninformed investors
if n(¢) # 0. This is because uninformed investors’ trades come in two groups
in this extended model: the group who can be used by the informed investor
to hide his trades (o, dZ,) and who therefore generate a per-trade slippage
cost of A,, and the group (7 (¢) dW,) who is known to be pure noise and whose
demand does not generate any slippage. Indeed, if the market maker could
distinguish between the two types of uninformed order flow, then they would
each pay different trading costs.

f’t

ers an estimate of price impact ‘regression coefficient’: A, =

4.2. Informed Trading and Adverse Selection Measures

Empirical measures of adverse selection typically rely on an estimate of the
persistent component of the price impact of trades to measure the amount of
private information in trades. In their well-known survey of the micro-structure
literature, Biais, Glosten, and Spatt (2005) described the empirical relation
between adverse selection and the price impact (A) as follows: “As the infor-
mational motivation of trades becomes relatively more important, A goes up.”
(page 232). Consistent with this intuition, many empirical studies rely on sim-
ple averages of price impact to sort firms into groups with different levels of
adverse selection.

One implication of our model is that, while at an individual trade level price
impact does represent the transaction cost paid by a noise trader, over any
finite period average price impact may not be a valid measure of aggregate
(or average) adverse selection costs when both o, and A, change over time.
This is most evident in the Markov chain example. In columns (1) and (2)
of Table I, the noise trading volatility is constant and therefore the average
price impact is equal to the normalized aggregate execution cost paid by noise
traders. In contrast, in columns (3) and (4), the noise trading volatility and
price impact change over time, resulting in a significant difference between the
average price impact and the normalized execution cost paid by the average
noise traders. When o, and thus A, change over time, it is better to use ‘volume’
weighted price impact as a measure of aggregate adverse selection costs, as it
takes into account the variation in the trading by uninformed investors and the
endogenous response of the informed investor’s trading.
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In a recent empirical study, Collin-Dufresne and Fos (2015) investigated a
large sample of trades by informed investors'! and found that these trade much
more aggressively, when measured adverse selection is low. Their study uncov-
ers a strong negative relation between traditional measures of adverse selec-
tion (such as estimates of Kyle’s lambda obtained from high-frequency data)
and trading by informed investors. They also showed that these informed in-
vestors are more likely to trade when abnormal volume on the stock itself as
well as other measures of market-wide liquidity, such as the abnormal vol-
ume on the S&P 500 stock index, are high, which is consistent with the eco-
nomic mechanism of this paper where informed investors wait for better lig-

o qe (;—2 . . .
uidity (as measured by k, = ¢-) to trade more. This also calls into question
the widespread use of (high- or low-frequency) price-impact measures as mea-
sures of adverse selection, for example, in cross-sectional empirical asset pric-
ing tests.

4.3. Dynamics of Price Volatility, Bid-Ask Spreads, and Returns

The model makes interesting predictions about the joint dynamics of price
volatility, price impact, and stock returns. For example, the model predicts that
typically price volatility tends to be high when volume is high and price impact
is low. This goes in an opposite direction to the relation predicted, for example,
by inventory models of trading costs, where higher volatility would typically be
positively related to trading costs (Stoll (1978)). Further, our model predicts
that the joint dynamics are path-dependent and will depend significantly on
the realized path of uninformed trading. So, for example, after a long period
of low noise trading, price volatility and price impact can actually both rise
together. This occurs in the model if the insider approaches maturity without
having been able to trade much (see Figures 2(c) and 2(a)). Eventually, he is
not willing to wait anymore and trades aggressively in a low noise trading en-
vironment, leading to high price impact and high volatility. These predictions
could be tested and used to improve estimates of the adverse selection com-
ponent of trading costs. They could help better understand the complex joint
dynamics of volatility, return, and volume often observed around daily market
closes.

4.4. Subordinated Processes and Time Changes

There is a long tradition in financial econometrics to model the time series
of price changes as subordinated to the normal distribution. Clark (1973) ini-
tiated this literature and proposed that the directing process 7, be a form of

UExploiting an SEC disclosure requirement that requires activist shareholders to file a 13D
schedule in which they report past trades in target stocks when they hit the 5% ownership thresh-
old, CF built a sample of trades by activist investors. They documented that these trades are
informed, based on their abnormal realized profits, and analyzed the price impact of these trades.
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‘business time’ measure related to the volume of trading. This idea led to sev-
eral reduced-form models trying to capture the volatility-volume relationship
(see Tauchen and Pitts (1983), Epps and Epps (1976), Richardson and Smith
(1993), Andersen (1996), Gallant, Rossi, and Tauchen (1992)), in particular to
capture the heteroscedasticity in returns. Our model provides microeconomic
foundations for such a subordinate process for stock return. Indeed, the direct-
ing process is endogenous in our model and related to trading volume, as we
point out in the following corollary:

COROLLARY 1: Define the positive increasing stochastic (directing) process:
(37) 7 =T(1—e Jivi/Gudny,
Then, setting o> = % and since T = T, we have
(38)  Zi=oy(rr—7)

and

- P
39  dp,="") s 4o aB,

TT — Tt

for some Brownian motion B independent of W defined by o,dB,, = A\,0,dZ,. It

follows that the time-changed price process P() defined by P(7,) =P, is a Brow-
nian Bridge on the time-changed insider’s F, -filtration and a Brownian motion
on the market maker’s F -filtration.

The corollary shows that the equilibrium price is a time-changed Brownian
Bridge, which is reminiscent of the Kyle-Back model where the price process
is a standard (constant volatility) Brownian Bridge. However, our equilibrium
cannot simply be obtained as a time-change of that model, since price impact
is constant in the Kyle-Back model and a stochastic process in ours. In the
market maker’s filtration, price is a time-changed Brownian motion, which
belongs to the class of subordinate processes proposed in Clark (1973). In-
terestingly, our model gives an endogenous expression for the directing pro-
cess (7,) that depends on the (uninformed) volume dynamics and does not
require the specification of a latent ‘information process’ to generate stochas-
tic volatility (see the discussion in Andersen (1996), e.g.). The model is general
in that we can solve for the directing process for any dynamics of volume (the
literature has considered various distributions such as Normal, Poisson, and
Log-normal; e.g., Andersen (1996) and Richardson and Smith (1993)). Thus,
our theoretical model has the potential to “jointly account for major stylized
facts—serially correlated volatility, contemporaneous volume-volatility corre-
lation and excess kurtosis of price changes” as emphasized by Gallant, Rossi,
and Tauchen (1992).
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5. CONCLUSION

In this paper, we have extended Kyle’s (1985) model of dynamic insider trad-
ing to the case where noise trading volatility can change stochastically over
time. Under certain conditions which we identify, the equilibrium price pro-
cess exhibits stochastic ‘excess volatility’ in the sense that non-payoff-relevant
shocks that change noise trading in equilibrium also drive the price volatility.
This is because rational market makers anticipate that more informed trading
occurs, and thus more information is revealed, when noise trading volatility is
high. As a result, price impact is stochastic and negatively correlated with noise
trading volatility. Further, in equilibrium, price impact is a submartingale, in-
dicating that, on average, execution costs are expected to increase over time,
reflecting the ‘liquidity timing option’ held by the insider.

The model makes interesting predictions about the joint dynamics of price
volatility, price impact, and volume, which could be taken into account to em-
pirically measure the adverse selection component of trading costs.

The model makes many simplifying assumptions that could be relaxed to
further our understanding of how information flows into prices and how price
volatility, price impact, and trading volume comove. First, we assume that
the amount of private information is fixed and only noise trading volatility is
time varying. Second, we assume that the horizon is fixed. Third, we assume
throughout that the noise trading volatility process is observable to all. Fourth,
we assume that the presence of the insider is common knowledge. And last,
we assume that the insider and market makers are risk-neutral. We leave these
extensions for future research.

APPENDIX
A.1. Proof of Lemma 1: Existence
We note that y, = /G, solves the backward stochastic differential equation

dYt = _f(t, y:)dt — A, dM,,

with f(1,y) = & and with terminal condition y; = 0. Now f(z, ) < £(3)

V(t, w) where we define the function £(y) = % We note that £(y) is con-

tinuous and strictly positive and that [~ ;& = fio i = 0o. Thus £(x) is
super-linear as shown in Lemma 1 of Lepeltier and San Martin (1997). Their
Theorem 1 then applies, which gives us the existence of a maximal bounded
solution for y, (and therefore for G,). In addition their Theorem 1 implies
that there exist two solutions L(t), U(t) that solve L, = — ftTE(Ls)ds and
U, = ftTﬁ(Us) ds such that we have L, < G, < U,. It is easy to calculate that

U?=—L?=70"(T — t). This gives us the upper bound.
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For the lower bound, we use a comparison theorem. Consider the solution
to the following backward equation:

2

dx, = —£ dt - /LdI/Vz:
2x;

with terminal condition x; = 0. It can be computed straightforwardly as x, =
a~/T —t (note A, =0). Since V(¢t, w) f(¢,y) > %—;, we can use the comparison
result Corollary 2 of Lepeltier and San Martin (1997) to obtain

(40) i = Xt V(t, w)7

which gives the lower bound on the maximal solution for G,.

A.2. Proof of Lemma 1: Uniqueness

Define g, = +/G,. To prove uniqueness of the solution, assume that there are
two (uniformly bounded) solutions g; and g* to the recursive equation. Then
consider the difference A, = g! — g7. It satisfies

T 0_2
A= EU AT ds)f;’].
t 2g5 gs
o
2/ 8387
uous martingale (note that A, is clearly bounded since it is the difference of two

uniformly bounded positive processes) equal to zero at T (since g = g2 =0).
It thus follows that A, =0 Vt.

Thus, if we define a, = > (), we have that e~ /%A, is a bounded contin-

A.3. Proof of Main Theorem 1

The proof is in several steps.

A3.1. Step 1: Market Maker’s Updating

First, we establish that if the market maker conjectures that the insider’s
trading strategy is linear in his per-period profit, that is, that

(41) 0,=pB.(v—Py),

where B, is an F-adapted process that measures the speed at which the in-
sider decides to close the gap between the fundamental value v (known only
to him) and the market price P,, and where we define 3, as the conditional
variance of the terminal payoff:

42) 3 =E[w-P)|F],
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then the equilibrium price process which results from the market maker’s
break-even pricing rule given in equation (3) is such that price changes are
conditionally linear in order flow.

LEMMA 2: If the insider adopts a trading strategy of the form given in (41), then
the stock price given by equation (3) starts at Py and has dynamics

(43) dP,= A, dY,,
where the price impact is a function of the conjectured trading rule:

ﬁtzt

7 -
g,

44 A=

Further, the dynamics of the posterior variance are given by
(45) d3, =—M\oldt.

PROOF: This follows directly from an application of Theorems 12.6, 12.7
in LS (2001). We provide a simple ‘heuristic’ motivation of the result using
standard Gaussian projection theorem below:

(46) Pr+dt = E[U|Y[, YH—dt, (Tt, 0't+dt]

COV(U7 Yt+dt - )]tlyt7 O-l)
V(Year— YIY' o)

X (Yt+dt -Y - E[Yt+dt -Y|Y, 0'[])

(47) =E[v|Y', o] +

3. dt
(48) =P + m(xﬂn -Y)
(49) ~ P, + B‘ff dy,.

t

The second equality uses the fact that the dynamics of o, is independent of the
asset value distribution and of the innovation in order flow. The third equal-
ity uses the fact that the expected change in order flow is zero for the conjec-
tured policy. The last line follows from going to the continuous-time limit (with
dt* ~ 0). Similarly, by the projection theorem, we have

(50) Var[v|Y", Yiiar, 0, Oriar]
Blzl

gy

2
= Var[v|Y', ¢'] — ( ) Var[ Y4 — YY", o],



INSIDER TRADING, STOCHASTIC LIQUIDITY, EQUILIBRIUM PRICES 1467
which gives
(51) Sia=23—Aoldt O.E.D.
A.3.2. Insider’s Optimal Strategy

Second, we establish that if price changes are linear in order flow with a
specific choice of price impact process, namely:

(52)  dP,=\dY,,

| 2
(53) /\, == a,

with G,, 3, as defined in (11) and (45), then the optimal trading strategy of the
insider is indeed of the form given in equation (41).

To establish this, we first need a preliminary result which establishes that the
conjectured equilibrium price process converges at maturity to the liquidation
value v.

LEMMA 3: Suppose price dynamics are given by equations (52), (45), (53), and
(11); then the price process P, converges almost surely to v at time T.

PROOF: The conjectured equilibrium price process is

v— P, >
54  ap,=" - ) o2 di + | Zradz,

)y
Etta'tz dt.

It is straightforward to solve the ODE for 3, and obtain equation (17). Con-
sider the process X (t) = P, — v:

t
(56) X (t) = e~ htoi/Guduy, +/ e J3 @it/ G du /%m dz,
0 s

(57) =1() + 1I,(1),

(55)  dS,=-

where the second line defines the integrals /;, I,. Equation (12) implies that

Ezlo ! >/t03d >g210 T
— —_— —du>= —_— ).
22 & Tr—t)~ OGu _52 & T—t

It follows immediately from this inequality that

(58) }in%ll(t) =0 as.
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Further, note that I,(7) = e~ f(@i/Gwdupf where we define the Brownian mar-
tingale:

t
(59) M= / et/ G du éasdzs.
0

N

Note that the quadratic variation of M, is equal to

(60) (M),:/ eflls(z"'%/G”)d”%aSzds
0

(61) = 2() (ef()[(Ug/Gu)du _ 1)’

where we substituted 3 from equation (17) to obtain the second line.

Now, from Karatzas and Shreve (1991, Theorem 4.6, p. 174), we know there
exists a standard Brownian motion B, such that the continuous martingale
can be seen as a time-changed Brownian motion, specifically M, = By,,. Us-
ing the strong law of large numbers for Brownian motion, which states that
lim, ., B,/ =0 a.s. (see Karatzas and Shreve (1991, p. 104)), we obtain

t B B,
(62)  lime fiti/Gdupy, — Jim ——Me_ — Jim BT o s
t—>T t—>T (M), P |
1+ - +1/7
3 0

This establishes that lim,_ 7 I,(¢) = 0 a.s. and completes the proof. O.E.D.

We now establish another useful result about the limiting distribution of the
standardized price process.

Pi—v

2t
process with the property that hr has a normal distribution with E[hr] = 0 and
E[h2]= 1. It follows that P, converges to v in L.

LEMMA 4: The process h, =

follows a time-changed Ornstein—Uhlenbeck

PROOF: Simple calculations show that

1 o?

gy
63 dh,=—=—h,dt+ —dZ,.
(63) == dr+ 5 4%
This is a time-changed Ornstein—Uhlenbeck process with stochastic time-

change process 7, = fot g—fz ds, which is independent of the filtration generated

by Z,. Straightforward calculations show that E[h7] =0 and E[h%] =1 and
that the limiting distribution of %7 is a standard normal. QO.E.D.

Next, we establish that market depth is a martingale.
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LEMMA 5: Market depth (which is the inverse of the price impact, i.e., Kyle’s

lambda) is a martingale that is orthogonal to the aggregate order flow. It follows
that price impact (Kyle’s lambda) is a submartingale.

PROOF: Note that from its definition, the G, process satisfies

(64)  dVG, =dM,,

a;
2V G,
where M, = EJ f g ”’2 dtla-’] is a bounded martingale (adapted to the filtra-

tion generated by the noise trader volatility process) by the law of iterated
expectation and since from equation (12) it is straightforward to show that

M, = ZJT V.
It follows, by definition of the process oy, that dM,dZ, = 0.
From its definition in (53) and the definition for 3, and G, above, we obtain

VG,
2(2[ 3/2

©5) d— = 4/G,

0 f

(66) =——dM..

\/Z

It also follows that d Ait dy,=0.

To prove that A is a submartingale, we apply Jensen’s inequality. We have
== Et[ ] > —— It follows that A, < E,[A,]. Q.E.D.

_E[)L]

We can also prove a useful inequality for the G, function:

LEMMA 6: If a bounded solution G, exists, then it satisfies

T T 1
6=t [ as [[sa1]]
, , Al
T
§E|:/ ofdsi|.

PROOF: Apply It6’s formula to +/ Gtz:

4G, =2JG,dJ/G, +dIVG),
=—07dt +2{G,dM, +d[VG]..
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Thus, integrating and taking expectation, we get the desired result where we

use the fact that /G, = */_ is an absolutely continuous process,

to write d[/G], = 3, d[4 ]t. QE.D.

We now can prove the main result for this step, namely a verification proof
of optimality of the insider’s trading strategy (16). Recall that the insider is
optimizing the following value process:

(67) J, = max E[/ (v—Py)6, ds‘ , ]

{Os}s>r€A

where the set of admissible strategies A is defined as the set of processes 6,
such that E[ [, 6,]?ds] < co.

LEMMA 7: Suppose price dynamics are given by equations (52), (45), (53), and
(11), and that volatility is uniformly bounded (o < o, < ©); then the optimal value
process is given by

(v—P) + 3,
68 J=——F—,
(68) ‘ 2\,
and the optimal strategy is given by
2

1 o
69 = —_L(v—P).
©9) =1 Fw=P)

t
t
PROOF: Apply Itd’s rule to the conjectured value function to get

Py +3 1 1
(70)  dJ,= %d}\ﬁ)\t( (v—Pt)dPt+§de>

(- ity
(v—P,)dP, —I—2/\[ 3.

The insider takes the price impact process as given and assumes the price pro-
cess follows:

dP, = \(0,dt + 0,dZ,),
with the A process as in equation (53) above. Using Lemma 5 and the 3, dy-
namics, and integrating the above, we obtain

T
(71) JT—JO+/ (v—P,)0,dt

/ (U—P) + 3,

/ (P —v)o,dZ, + dM,.
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Now, since Jr > 0, it follows by taking expectation (and using the fact that the
stochastic integrals are martingales, as established in Lemma 8 below), that

T
(72) E[/ (v—Pt)tht]sJo
0

for any admissible policy {6,}. Further, if there exists a trading strategy 6, con-
sistent with the updating equations (44), such that E[J7] = 0 then, the inequal-
ity holds with equality.

The candidate policy in equation (16) satisfies this.

Indeed, note that

7 _(U_PT)2+2T_(U_PT)z_I_VZTGT_(U_PT)2
T 2A1 T2 2 2ar

o 50 -] (2] o

where the right-hand-side equality follows from Lemma 3 and Lemma 4.
We have therefore proved the optimality of the value function and of the
proposed policy. Q.E.D.

In turn,

LEMMA 8: Since o, is uniformly bounded above and below, the stochastic inte-

grals J,(t) = fot(v —P)o,dZ, and J,(t) = fot % d M are martingales for

any admissible strategy.

PrROOF: To prove that Ji(¢) is a martingale, it is sufficient to show that
E[ fOT(v — P)%*0?dt] < oco. In turn, because o, is uniformly bounded, it is
sufficient to show that P, has finite variance for all ¢. Note that P, = P, +
fot A0, ds + f(,t oA,dZ,. Thus, for P, to have finite variance, it is sufficient
that E[(fol A0, ds)?] < oo and E[fot o?Ards] < oo. Clearly, E[jol o\t ds] =
3y — 3, < oo. Further, using the Cauchy-Schwarz inequality, we have

([ s o s 0]

The right-hand side is finite for any admissible trading strategy since [ A>ds <

1003 20 %03 _ %
EOGscrsals_ —t <=,

Next, to show that J,(¢) is a martingale, since M, is a uniformly bounded
martingale (from Lemma 5) and 3, is a decreasing process, it is sufficient to
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show that fOT % dM, is a martingale. For this stochastic integral to have
t

finite variance, it is sufficient that E[%] < oo Vt given that M, < Ezf Vt as

a

shown in Lemma 5, and thus its quadratic variation is bounded.
Note that E[%] < 3,E[A?], with & defined in Lemma 4. It follows from
the properties of /, obtained in Lemma 4 that E[A]] < oo V. Q.E.D.

A.4. Derivation of the Expression (20) for Slippage Costs

Intuitively, the total losses incurred between 0 and 7" by noise traders can be
computed path-wise as

T T
(73) / (Prar —v)o,dZ, = f (P, +dP, —v)o,dZ,
0 0

T T
=/ /\,afdt+/ (P, —v)o,dZ,.
0 0

The first component is the pure execution or slippage cost due to the fact that,
in Kyle’s model, agents submit market orders at time ¢ that get executed at date
t + dt at a price set by competitive market makers. The second component is
a fundamental loss due to the fact that, based on the price they observe at ¢,
noise traders purchase a security with fundamental value v that is unknown to
them. Note that since prices are set efficiently by market makers, on average
this second component is zero. Therefore, we obtain the result that the uncon-
ditional expected total losses incurred by noise traders are entirely driven by
expected execution costs. Further, these are also equal to the total uncondi-
tional expected profits of the insider. However, note that, path-wise, neither
quantity need be equal. To show that unconditional expected execution costs
paid by noise traders are equal to the unconditional expected profits of the
insider, note that the insider’s unconditional expected profits are

(74) E[/TO( P)d} E[/T "2( P)zd]
v (v—P)dt|=FE" L_(v—P)*dt
0 0 v3,G,

T 0_2 T
:E[/ : Ezdt:|:E”[/ 0,2/\,dt:|,
0 3.G 0

t

where the first equality follows from the definition of 6* and the second from
the law of iterated expectations. This is the same expression obtained for the
unconditional expected execution costs paid by noise traders. By definition,
this is also equal to E’[J(0)] = /3Gy, where the expectation superscript em-
phasizes that it is taken over the unconditional distribution of v.
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A.5. Proof of Theorem 2: Deterministic Growth Rate of Noise Trading Volatility

Suppose the drift m, is deterministic. Guess that the solution is of the form
G, = o’B,, where B, is the solution given in the lemma. Plugging into equation
(11), we see that our guess is correct if B, solves

mgds

ol

du,

\/E’:/,T 2/B.

where we have used the fact that, for any martingale W,, we have (for u > ¢)
(75)  EJo.]=ael e,

The solution for B, given in the lemma indeed satisfies this integral equa-
tion. Since uniqueness was established before, we have found the solution of
equation (22).

All results in the theorem follow directly from Theorem 1 and the expression
for G,.

The only new result is the calculation of the expected trading rate of the
insider:

_ 2
(76) E[et|v,fo]=E[(” F) o ]

NS
ds

_ Ji ms
©=F) PO)e*fé(l/(ZBs»dsUOeo '

V3 VB,

where we used the dynamics of /, from Lemma 5 and the expression for G,
from equation (22). The result in the theorem then follows from standard ma-

nipulations (in particular, note that e/ ~1/2B)ds — %M msdsy, Q.E.D.

(77) =

A.6. Proof of Theorem 3

Consider a pair of functions G*(-), G¥(-) that solve the ODE system
(29)-(30) subject to the boundary condition G*(0) = G¥(0) = 0; then it
is straightforward to show that if we define G(¢, o) = 1,5,—,0,G*(T — 1) +

14—, G"(T — t), then J (¢) = /G(t, 0,) + fot Wf—m du is a pure jump mar-
tingale (i.e., E,[dJ(#)] = 0). It follows that J(¢) = E,[J(T)] and, using the def-
inition of J(#) and the boundary conditions from the ODEs, that /G (¢, ;) =

2

T 2
E[/, 2/G(u,00) dul. QED.
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A.7. Proof for the Time Change

This result follows from the definition of the time-change which implies

1
dT, = __2 dzt
(o

v
2
_ 30

=3
0,G,

_ (17 — 'Tt)U'tz
= 7(;[ .

Substituting in the definition of the equilibrium price process in Theorem 1
establishes the result. Note that the properties of the equilibrium imply that
7r = T a.s. and thus the time-change is indeed adapted. Of course, 7, = 0.
Importantly, we cannot obtain our equilibrium simply as a time-change of the
standard Kyle-Back models when » # 0 since, in that case, price impact is a
stochastic process in our equilibrium (i.e., is not constant), whereas price im-
pact is constant in the Kyle-Back model.
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