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Abstract

Following the much publicized “flash crash” in the U.S. financial markets on May 6, 2010,
much work has been done in terms of developing reliable warning signals for impending market
stress. However, this has met with limited success, except for one measure. The VPIN, or
Volume-synchronized Probability of INformed trading, metric is introduced by Easley, López de
Prado and O’Hara (ELO) as a real-time indicator of order flow toxicity. They find the measure
useful in predicting return volatility and conclude it, indeed, may help signal impending market
turmoil. The VPIN metric involves decomposing volume into active buys and sells. We use the
best-bid-offer (BBO) files from the CME Group to construct highly accurate trade classification
measures for the E-mini S&P 500 futures contract. Against this benchmark, the ELO Bulk
Volume Classification (BVC) scheme is inferior to a standard tick rule based on individual
transactions. Moreover, when VPIN is constructed from an accurate classification, it behaves
in a diametrically opposite way to BVC-VPIN. We also find the latter to have forecast power
for volatility solely because it generates systematic classification errors that are correlated with
trading volume and return volatility. Controlling for trading intensity and volatility, the BVC-
VPIN measure has no incremental predictive power for future volatility. We conclude that VPIN
is not suitable for capturing order flow toxicity or signaling ensuing market turbulence.
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1 Introduction

The trading environment for securities listed on financial exchanges worldwide have undergone dra-
matic changes over the last decade. Assets are now traded almost exclusively on electronic platforms
and high-frequency trading firms have largely taken over the basic market making function. These
developments have brought impressive gains in market quality, as measured in terms of the average
bid-ask spread or trading costs associated with small transactions. On the other hand, concerns
have arisen regarding market fragility. One example is the occurrence of “flash crashes,” where
market prices move extremely rapidly – typically downward – for a short period of time, only to
then reverse trend and almost as quickly return to a level near the original price point. While most
of these incidents are self-contained and have a limited impact on other securities or markets, they
can spill over into related venues and ultimately disrupt the broader financial market infrastruc-
ture. This occurred, e.g., during the flash crash on May 6, 2010, which widely is believed to have
originated in the E-mini S&P 500 futures contract at the Chicago Mercantile Exchange (CME), cf.
the CFTC-SEC Report (2010). Such incidents may call into question the role of financial markets
in providing credible signals for capital allocation and raise issues about the fairness and efficacy of
the trading process itself. In particular, the events of May 6, 2010, spurred a major debate about
the origin of these idiosyncratic and highly erratic market dynamics and alternative measures which
may prevent them from propagating into systemic disruptions to the financial system.

Against this backdrop, the VPIN metric, developed by Easley, Lopez de Prado and O’Hara,
henceforth ELO, (2011a, 2011b, 2011c, 2012a), has generated widespread attention among aca-
demics, practitioners, regulators and exchanges. It is designed to provide a real-time estimate of
the toxic order flow in a financial market, i.e., the extent to which market makers (high-frequency
traders) are being adversely selected by agents with private information. When toxicity is high,
liquidity is likely provided at a loss and may be withdrawn in short order. Thus, a high VPIN read-
ing should signal an elevated probability that liquidity may vanish, causing a market disturbance.
Clearly, such a “warning system” would be valuable for traders, exchanges, and regulators alike. In
the words of Marcos López de Prado:

The measure would have been able to anticipate two hours in advance there was a high
probability of a liquidity-induced event on May 6.

This would be much more effective than a circuit breaker [which] stops the infection
after the infection is already widespread. (Bloomberg, October, 29, 2010).1

In addition, ELO (2012b, 2012c, 2012d, 2013) relate to VPIN in important ways. Meanwhile,
different implementations are explored in a variety of studies, e.g., Abad and Yague (2012), Bethel
et al. (2012), Chakrabarty, Pascual and Shkilko (2012), Menkveld and Yueshen (2013), Yildiz, Van
Ness and Van Ness (2013), Wei, Gerace and Frino (2013), Wu et al. (2013), and Moos, Pöppe
and Schiereck (2014).2 On the regulatory side, the CFTC(2013) release – seeking comments on
risk controls and system safeguards for automated trading environments – cites ELO (2012a) as
motivation for exploring trading intensity and volume imbalance as market quality indicators.

Nonetheless, VPIN is not without controversy. One, the metric cannot be replicated with pre-
cision without matching the entire transaction record. One must start with the identical trade and
any subsequent discrepancy in the recording of a trade will imply that all following VPIN measures
differ, even if the transaction record is otherwise identical. Thus, at each point in time, the VPIN

1VPIN has been featured in many other prominent news outlets, including the Wall Street Journal, it has been
the topic of many key-note presentations at leading academic conferences, it is featured on a variety of web videos
displaying real-time events where VPIN is interpreted as signaling extreme toxicity. Moreover, three separate VPIN
related patent applications have been filed.

2Likewise, commentators on the general debate surrounding high-frequency trading routinely reference the ELO
findings; see, e.g., Corcoran (2013) and MacIntosh (2013).
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metric hinges on the full preceding history of the tick data.3 Two, even more critically, the appro-
priate metric for gauging performance is not evident and, at least for some important predictive
comparisons, it fares poorly relative to traditional forecast variables, as detailed in Andersen and
Bondarenko, henceforth AB, (2014). Three, VPIN is a fairly simple metric, constructed from the
real-time transaction record. If it embodies important information regarding the future return dis-
tribution, it is surprising that high-frequency traders fail to respond more actively to such signals.
After all, they are known to rely heavily on real-time analysis of transaction and order book data.

AB (2014) address some of these issues, but emphasize the original VPIN metric developed in
ELO (2011a, 2011b, 2011c). ELO (2012a) advocate a different implementation, arguing that the
Bulk Volume Classification (BVC) procedure, outlined in ELO (2012b), improves the accuracy of
trade classification relative to the approach in ELO (2011a) which applies a tick rule to volume
aggregated over fixed calendar intervals. ELO motivate the focus on “bulk volume” classification
with the observation that they seek to measure the systematic impact of informed trading. This
is, of course, a recurrent theme in market microstructure theory, and the early literature typically
relies on imbalances in the active buy and sell volume to identify informed trading. However, this
is arguably problematic in the current high-frequency trading regime. In particular, as discussed
in ELO (2012b), large orders are now routinely split into smaller ones, so that it is the aggregate
order flow rather than the individual orders that relate to trade motivation. In addition, large
orders are often executed strategically by placing multiple limit orders in the book, and then
canceling and replacing them depending on the evolving market dynamics. As such, buying pressure
manifests itself not only through active buying, but also by persistent submission of limit buys and
cancelations of limit sells. With informed traders relying partially on limit orders, the link between
the “active” side of the trade and participants with underlying information is tenuous.4

The existence of alternative trade classification schemes raises the question of how to assess
performance, as informed trading is not directly observable. ELO address the issue in a couple of
different ways. First, they refer to the evidence in ELO (2012b), who gauge the accuracy of a given
scheme relative to the underlying (active) trade imbalance, determined by the trade aggressor flag
for each individual trade provided by the exchange, at different levels of order flow aggregation.
This presumes that the active trade imbalance lines up with the intensity of informed trading for
suitably aggregated order flow. Second, ELO (2012a) emphasize the predictive power of a given
VPIN metric for forecasting future short term volatility and market turbulence, i.e., the usefulness
in generating a leading indicator for escalating market tensions.

In this article, we provide a detailed analysis of the factors governing the properties of the
VPIN metric. We pay particular attention to the criteria advocated by ELO (2012a). First, there
is only scant evidence regarding the precision of alternative trade classification schemes vis-a-vis
the underlying active buy-sell imbalances for different degrees of order flow aggregation. Moreover,
there is no consensus across the few existing studies.5 We confront the issue head on by exploiting
best-bid-offer (BBO) data for the E-mini S&P 500 futures to construct order imbalance measures
which are almost flawless in classifying the active buy and sell volume. This enables us to monitor
the precision of alternative classification techniques over time, so we can relate the performance
of a specific VPIN implementation to its accuracy in this regard. Second, we recognize it may be
advantageous for the order imbalance measure to deviate from the underlying imbalance between
active buys and sells if the latter is not a reliable indicator of the intensity of informed trading. It
then becomes important to understand when and why certain classification schemes deviate system-

3We reproduce the algorithms for generating alternative VPIN measures, as stated by ELO (2011c), ELO (2012a),
and ELO (2012b), in our Web Appendix.

4This type of reasoning motivates a broader definition of order flow which includes the activity on the limit order
book, see, e.g., Cont, Kukanov and Stoikov (2014) for a recent analysis along these lines.

5For example, it is not clear that the ELO BVC approach dominates the traditional tick rule procedure, as
Chakrabarty, Pascual and Shkilko (2012) reach the reverse conclusion based on data for individual stock trades.
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atically from the underlying (active) trade imbalances. Hence, we explore how trade classification
interacts with other features of the market environment to generate a specific behavior of the met-
ric. In particular, we investigate the mechanism through which alternative VPIN measures end up
displaying radically different degrees of correlation with trading volume and return volatility. In
short, we get “under the hood” of the VPIN algorithm and explore why different implementations
produce diverging measures and support diametrically opposite conclusions.

The results are striking. We find the ELO (2012a) BVC-VPIN metric to forecast return volatility
only because it generates classification errors that are strongly correlated with innovations to trading
volume and volatility. In contrast, the VPIN metric based on the actual order imbalance is negatively
correlated with future volatility. A related result was reported by AB (2014) and it is also consistent
with observations in ELO (2011a). The latter interpret this finding as indicating that classification
based on individual transactions is particularly error prone. However, this is counter-factual. We
document that order imbalance measures derived from tick data classify active buys and sells
better than those obtained via time or volume bar aggregation. We further establish that the
VPIN metric, once we control for volume and volatility, has no residual correlation with future
volatility. In particular, the ELO (2012a) VPIN measure provides no incremental explanatory
power beyond what is captured by traditional volatility predictors. Consequently, the metric is not
based on superior (active) trade classification and does not help in forecasting market turmoil. As
such, there is no evidence that VPIN is a useful measure of order imbalances or flow toxicity.

Our analysis goes well beyond existing studies exploring the properties of VPIN. First, our
accurate classification of active buys and sells removes ambiguity surrounding one important expla-
nation for the discrepancy between alternative VPIN metrics. Moreover, it helps us establish that
the classification errors are highly correlated with the variables that VPIN portends to predict and,
in particular, that BVC-VPIN, by construction, will be highly correlated with concurrent realized
volatility. Second, it enables us to directly assess the accuracy of the “bulk volume” classification
strategy introduced in ELO (2012b). Third, we can compare the traditional cumulative signed
order imbalance measure constructed via the tick rule to the imbalances obtained from accurate
classification. This is helpful in assessing whether the former provides economically meaningful
incremental information during stressful market conditions such as the flash crash. Fourth, we
can gauge the accuracy of alternative classification schemes by exploiting the diurnal patterns in
volatility and volume. These features should induce systematic, and artificial, patterns in the cor-
responding order imbalance measures, if the latter, indeed, are mechanically correlated with market
activity variables. Fifth, we exploit a longer sample for the E-mini S&P 500 futures than used in the
ELO studies of VPIN, facilitating the identification of extreme events. However, the long sample
period also forces us to invoke new normalization techniques to ensure that the VPIN metric is not
distorted by non-stationarity in the volume series. Taken together, our findings speak generally to
the potential of any VPIN metric to enhance the information content of traditional order imbalance
measures, because we provide an observable and transparent benchmark for the analysis.

The remainder of the article is organized as follows. Section 2 describes how we obtain accurate
trade classification by combining real-time trade and order book information. Section 3 introduces
the VPIN metric. Section 4 develops notation to distinguish the many variants of VPIN we explore.
Section 5 shows how the trend in trading volume distorts the VPIN metric, and motivates our
data-dependent detrending procedure. Section 6 analyzes classification accuracy, both in terms of
average (unconditional) performance and the correlation of errors with the activity variables, while
Section 7 explores how these features induce distinct properties in the associated VPIN measures.
Section 8 provides predictive regressions for return volatility. We find that the VPIN metrics have
no incremental forecast power for volatility, as they are wholly subsumed by standard realized
volatility and volume measures. Section 9 explores the factors behind the surprising finding that
VPIN, based on the actual trade imbalances, is strongly negatively correlated with future volatility,
while Section 10 concludes.
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2 Data

We exploit best bid-offer (BBO) files for the E-mini S&P 500 futures contract from the CME Group.
Among other variables, these “top-of-the-book” files provide a complete record for the best bid,
bid depth, best ask, ask depth, trade prices, and trade sizes. Quotes and trades are time stamped
to the second. Moreover, the files contain a sequence indicator that identifies the order in which
quotes and trades arrive to the exchange. Thus, we know the actual sequence of order arrivals
within each second. The files are obtained directly from CME DataMine.

Our sample covers the period from February 10, 2006, to March 22, 2011. Hence, our analysis
is based on more than five years of tick-by-tick data. The E-mini S&P 500 futures contract trades
exclusively on the CME GLOBEX electronic platform. The contract expires quarterly, on the
March expiration cycle. The notional value of one contract is $50 times the value of the S&P 500
stock index and has a tick size of 0.25 index points, or $12.50. The contract trades essentially 24
hours a day, five days a week. Specifically, from Monday to Thursday, the trading is from 15:30
to 15:15 (Chicago Time) of the following day, with a half-hour maintenance shutdown from 16:30
to 17:00. On Sunday, the trading is from 17:00 to 15:15 of the following day. We exploit the front
month futures contract until it reaches eight days to expiry, when market participants roll over
their positions to the next maturity contract. This ensures that we use the most actively traded
futures contract throughout our analysis.

2.1 Summary Statistics

The E-mini S&P 500 futures market is among the most liquid worldwide. Table 1 provides sum-
mary statistics. Within regular trading hours, there were around 4.8 trades per second and, though
the numbers are much lower, they remain impressive outside the regular hours with a trade con-
summated about every three seconds.6

The average number of trades exceeded 136,000 per day and involved 1,782,000 contracts, im-
plying a mean transaction size of about 13 contracts. Proper interpretation of this figure requires
knowledge of how the trade size is recorded in the BBO files. A trade is consummated whenever
an incoming order hits a resting limit order. For example, a market buy order for five contracts
will be executed at the (best) ask price if the ask depth at the top of the book is at least five
contracts. On the other hand, if the current ask depth is only four contracts, the last contract of
the market buy order is filled by matching it with an ask quote at a higher price, and the total trade
is recorded as two successive trades in the quantities of four and one. Notice that the first four
contracts always are recorded as a single trade, even if the corresponding limit orders are executed
against two separate entities, each offering, say, two contracts at the best ask. That is, the BBO
files report the individual trades by price from the perspective of the (active) party who demands
liquidity.7 Finally, from the bottom panel of Table 1, we see that the order size distribution is
severely right-skewed. The median transaction involves only two contracts, but the typical trading
day contains several individual trades involving hundreds of contracts as well.

The activity in the limit order book is of separate interest. Table 1 reveals that the number
of additions or cancelations of limit orders at the top of the book is sixfold the number of trades.
Meanwhile, the best bid or ask price changes once for every eleven trades, on average. This implies
an extremely active order book dynamic, but nonetheless allows for a sequence of trades to execute
against a given set of (best) bid-ask quotes before they shift to a new tick.

6We remove two trading days from our sample. May 9, 2008, has missing quote data, while January 13, 2010,
has a highly unusual trading pattern where, within one second, almost 200,000 contracts were traded – representing
about 17% of the typical daily volume for the preceding month. Seemingly, two parties coordinated to execute a
block trade through the electronic platform. The event did not occur during a stressful trading period. All qualitative
conclusions are robust to the inclusion of the latter day.

7Alternatively, the transaction could be recorded as two trades of two contracts at identical prices.
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Table 1: Descriptive Trading Statistics for the E-mini S&P 500 Futures Contract

Regular Overnight Holiday

# Days 1285 1285 30
Volume (1 min) 3973 208 69

# Trades (1 min) 285 23 9
# BBO Depth Changes (1 min) 1730 175 60
# BBO Quote Changes (1 min) 26 8 4

Notional Value, $Mln (1 min) 235 12 4

Trade Size 13.9 8.9 7.3
BBO Depth Changes per Trade 6.1 7.5 6.4
Trades per BBO Quote Change 10.9 3.0 2.4

Order Size: Average Daily Percentiles

Min 10% 50% 75% 90% 99% 99.9% Max

All 1.0 1.0 2.1 7.5 30.5 233.4 643.5 1683.5

Notes: This table reports summary statistics for the trading in the E-mini S&P 500 futures contract over

the period February 10, 2006 - March 22, 2011. The data are reported separately for Regular Trading

Hours (Regular, 8:30-15:15), Overnight Trading Hours (Overnight, 15:30-8:30), and Holiday Trading Hours

(Holiday, exchange holidays). “BBO Quote Changes” refer to changes in the best bid/ask price, while “BBO

Depth Changes” refer to changes in the bid/ask price and/or bid/ask size. Both measures only include

changes to the top level of the limit order book.

2.2 Trade Classification from the Quote and Transaction Record

The BBO files record the changes in the best bid or offer. Importantly, the quote updates arrive
in pairs, one for the bid and one for the ask, synchronized by the sequence variable. The following
table illustrates the information content of the BBO files.

Time Sequence BidPrice BidSize AskPrice AskSize TradePrice TradeSize

17:02:58 5770 1289.50 125 1289.75 98
17:02:58 5780 1289.50 125 1289.75 99
17:02:59 5790 1289.75 5
17:02:59 5800 1289.50 125 1289.75 94

At 17:02:58, the limit order book features a bid of 1289.50 and an ask of 1289.75 with depth of,
respectively, 125 and 98 contracts. Within the same second, a limit sell order of a single contract
arrives, raising the ask depth to 99. Note that, although the bid price and depth are unchanged,
they are repeated if the other side of the book changes. At 17:02:59, five contracts are traded at
1289.75. As a result, ask depth drops by 5 contracts (sequence number 5800). Hence, we may
unambiguously classify the trade of the five contracts as buyer initiated.

Effectively, the BBO files provide a snapshot of the top of the book whenever there is a change
in either the quote or depth for the best bid or ask. By comparing the trade price with the
preceding bid and ask, we can almost always identify the trade aggressor. The main exception
occurs when trading starts up after a market closure. At these times, an initial (large) trade clears
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all crossing orders in the book. These orders accumulate during a pre-opening window and execute
simultaneously at the open. We assign half of this volume to the buy side and half to the sell side.
These opening trades make up about 0.024% of the overall volume. In addition, during the regular
course of trading, there are a small set of trades (about 0.048% of volume) consummated strictly
between the last observed bid and ask quote.8 Again, we split these equally between buys and
sells. In total, we positively identify the direction for over 99.95% of the trades within the usual
electronic trading environment. Our results are robust to any buy-sell assignment one may apply
to the remaining trades.

The setting is exemplary for testing trade classification procedures. All trades and quotes are
recorded in a single electronic system and trades can only be executed at prevailing bid or ask
quotes. Finally, the sequence indicator provides a comprehensive recording of market events in real
time. This eliminates problems stemming from the merger of separate files with quote and trade
information, from dealing with reporting delays, and from integrating the activities across multiple
venues. In practice, accurate sequencing of events is infeasible without this type of integrated
system from a single electronic platform.

The only prior study exploring the accuracy of the trade classification associated with the VPIN
metrics in ELO (2011a, 2012a) for the E-mini futures contract is ELO (2012b). They exploit the
DataMine Market Depth files for a single year. This database contains raw message flow and
can be used to construct a proxy for the order book. However, the data structure is complex and
extensive data handling capabilities are required to separate the messages, disentangle the contracts
for separate expiry times, sequence the transactions (stamped up to the millisecond), and separate
fictitious trades (arising from the exchange algorithmic testing procedures) from actual ones. In
contrast, the BBO data are cleaned and sequenced by the exchange itself, using in-house expertise
and knowledge of the trading system. Hence, we analyze a significantly longer five year sample
without encountering pitfalls associated with inadequate data cleaning or flaws in constructing the
order book, and we can readily obtain the trade direction indicator for all transactions throughout
the sample.9

2.3 Cumulative Order Flow Imbalance during the Flash Crash

In Figure 1, we depict the cumulative signed order imbalance and the S&P 500 futures price for the
regular trading hours on May 6, 2010; the day of the “flash crash.” The signed order imbalance is
initiated at zero at the start of regular trading on the prior day.

The change in the cumulative signed order imbalance is clearly correlated with the price move-
ment. Every distinct spike in the price path in Figure 1 may be linked to an innovation in the
signed order imbalance. In particular, there is increasing selling pressure prior to and during the
flash crash and sustained buying pressure during the recovery. For the full sample, the correlation
between the S&P 500 log returns and the signed order imbalance is 0.53.10 Evidently, the standard
cumulative order imbalance measure is economically meaningful. At the same time, broader market
conditions affect the sensitivity of transaction prices to shifts in the order imbalance. Some times,
selling pressure causes only a minor price drop while at others prices react vigorously to negative
innovations in order flow.

8These observations are likely generated when order book updates occur almost instantaneously and cannot be
separated at the granularity of the mechanism recording the events in the BBO files.

9It should be noted that our database also is very large and necessitated the development of specialized storage
and retrieval procedures along with the acquisition of a great deal of working memory.

10This correlation is measured across predetermined quantities of trading volume, corresponding to volume buckets
of around (1/50)th of the trading day, as defined in the following section.

6

Electronic copy available at: https://ssrn.com/abstract=2292602



9 10 11 12 13 14 15
1050

1100

1150

1200
Price

9 10 11 12 13 14 15
−4

−3

−2

−1

0

1
Signed Order Imbalance

Figure 1: This figure plots the price and cumulative signed order imbalance for May 6, 2010. The solid
vertical lines indicate the CTFC report timing of the “flash crash.” The units for the vertical axis of the
right panel are volume buckets, each representing about 2% of the expected daily trading volume.

3 The VPIN Metric

VPIN is simply defined as a rolling average of absolute order imbalance measures. As such, a key
ingredient is the procedure for estimating the order imbalance. In addition, the moving average
computation itself depends on the choice of measurement units and lag length. We review the
procedure in detail to establish notation and identify the critical features.

3.1 Calibrating the Rolling Average of Order Imbalances.

This section reviews the construction of the VPIN metric for a fixed interval of calendar time,
[0, T ], given a specific order imbalance measure. We represent the ith traded contract by the time
and price of the transaction, (ti, pi), i = 1, . . . , I, where I is the total number of contracts traded.
Of course, many transactions involve multiple contracts, but these may equivalently be viewed as
simultaneous trades of a single contract. Hence, a trade involving v > 1 contracts will generate
v replications of the pair (ti, pi) in the (unit) trade sequence. Transaction times are measured in
seconds and form a non-decreasing sequence 0 ≤ t1 ≤ t2 . . . tI ≤ T . While many trades occur
within the same second, we know the execution order from the event indicator. As such, we have
a complete transactions history over the sample period.

We now define the volume bucket, V , as a fixed increment to the cumulative trading volume.
We set V equal to (1/50)th of the volume on a regular trading day. Specifically, let T` indicate
the time at which bucket number ` has just been filled, ` = 1, . . . ,L, where L denotes the total
number of buckets in [0, T ]. The VPIN measure is updated whenever we reach a new bucket, at
times T1, . . . , TL, so it evolves in event time, governed by the (random) intensity of trading. Thus,
by definition, each bucket encompasses V traded contracts.

VPIN is constructed from the order imbalances defined over the volume buckets. Denoting the
imbalance measure for bucket ` by OI`, VPIN is obtained as the trailing moving average,

V PIN` =
1

L

L−1∑
j=0

OI`−j , (1)

where L indicates the length of the moving average. In accordance with ELO, we fix L = 50,
so VPIN reflects the order imbalances across an average trading day. However, when the trading
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volume is elevated (subdued), the buckets will fill quickly (slowly) so the value of VPIN at a specific
point in time may reflect OI measures covering substantially less (more) than one day.

The order imbalances are derived from a given classification scheme, determining the number
of contracts designated as (active) buys and sells, V B

` and V S
` , so V = V B

` + V S
` . It is convenient

to define the proportional buy volume, b` = V B
` /V , where 0 ≤ b` ≤ 1, and the signed order

imbalance, γ` =
(
V B
` − V S

`

)
/V = 2 b` − 1, so −1 ≤ γ` ≤ 1. The OI measure is then given as the

proportional absolute imbalance over the bucket,

OI` =

∣∣V B
` − V S

`

∣∣
V

= | γ` | = | 2 b` − 1 | , (2)

Once we obtain a measure for V B
` , or equivalently b` , then γ` and OI` are also uniquely determined.

Clearly, 0 ≤ OI` ≤ 1, with zero reflecting a perfectly balanced market and unity indicating maximal
imbalance, i.e., the bucket is populated wholly by buys or wholly by sells.

3.2 Estimating the Order Imbalance.

We review alternative classification schemes which possess a few common features. First, every
bucket ` is divided into Q` smaller units, or (time or volume) “bars.” The actual classification is
performed for the bars and then aggregated to the bucket level. Let the trading volume in bar (q, `)
be Vq,`, q = 1, . . . , Q` , so V = V1,` + . . . + VQ`,` , and the volume in each bar is further split into
buys and sells, Vq,` = V B

q,` + V S
q,`. We also define the proportional buying volume, the signed order

imbalance, and the volume weight for bar (q, `) as,

bq,` =
V B
q,`

Vq,`
, γq,` =

V B
q,` − V S

q,`

Vq,`
= 2 bq,` − 1, νq,` =

Vq,`
V
.

OI is then given as the (absolute) volume-weighted average of the signed OI measure for the bars
across the bucket,

OI` =

∣∣∣∑Q`
q=1

(
V B
q,` − V S

q,`

) ∣∣∣
V

=

∣∣∣∣∣∣
Q∑̀
q=1

γq,` · νq,`

∣∣∣∣∣∣ . (3)

Second, trade classification is performed over bars of either fixed calendar time, known as time
bars, or fixed trading volume, denoted volume bars. For the former, δ indicates the length of the
time interval in seconds. For the latter, ν denotes the size of the bar relative to the volume bucket,
so a volume bar contains ν · V traded contracts, 0 < ν ≤ 1. The finest level of granularity is
achieved via individual transactions, ν = 1/ V , so that each bar consists of a single traded contract.
Here, the key is to ascertain whether the buyer or seller triggered the trade, i.e., whether the trade
took place at the prevailing ask or bid. This approach seems natural, but ELO (2012a) argue that
classification of individual transactions in a high-frequency environment is fraught with difficulties
and, inevitably, induces significant errors. Instead, they favor using larger bars that cumulate trades
into “bulks” of aggregate order flow.

Third, the bar size determines the degree of aggregation applied to trades prior to classification.
For volume bars, we pick ν so the bar size, ν · V , and number of bars, Q` = Q = 1/ ν, are
integers. Choosing ν = 1/ V (and Q = V ), we obtain a bar size of unity – or contract-by-contract
classification. At the other extreme, for ν = 1, we have only one bar with V traded contracts,
representing bucket-level classification. An intermediate choice, 1 < Q < V , implies multiple bars
per bucket, each representing aggregated order flow. However, for volume bars, OI` always equals
the simple average of the signed order imbalances, |γ1,` + . . .+ γQ,`| /Q. Below, we consider ν =
0.02 and 0.10, producing fifty and ten bars per bucket. In contrast, for time bars, Q` varies inversely
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with trading intensity. We explore bar sizes from one second to several minutes, including δ = 60
seconds, which is the leading case for ELO (2011a, 2012a). In the latter scenario, there are periods
in which a bucket is filled in less than one minute, so Q` = 1, while at other times it takes hours
to fill the bucket, so Q` is hundred-fold larger.

Fourth, alternative trade classification schemes may be applied to the bars. The initial VPIN
metric, developed in ELO (2011a, 2011b, 2011c), exploits a tick rule. To formalize this procedure,
let ∆Pq,` = Pq,` − Pq−1,` be the price change over the bar.11

The Tick Rule: Let bar (q, `) be designated a buy, i.e., bq,` = 1, if:

∆Pq,` > 0 (the price change is positive), or

∆Pq,` = 0 and bq−1,` = 1 (no price change, but the previous bar is a buy).

Otherwise, bar (q, `) is a sell, i.e., bq,` = 0.

ELO (2012a) instead invoke a Bulk Volume Classification (BVC) strategy applied to aggregated
order flow. It assigns the proportional buy volume as a function of the price change.

The BVC Rule: Let Z(·) denote the cumulative distribution function of a standard normal
variate. The rule assigns the proportional buy volume in bar (q, `) as:

bq,` = Z

(
∆Pq,`

σ∆P

)
and γq,` = 2 · Z

(
∆Pq,`

σ∆P

)
− 1 , (4)

where σ∆P is the sample standard deviation of the price change between adjacent bars.

Thus, the BVC approach interprets no price change as balanced trading, while a large positive
(negative) price change is translated into a proportionally large (small) buy volume.

A qualitatively different approach, hitherto not explored for VPIN, is to classify buys and
sells using the prevailing bid and ask quotes. This procedure is reliable only if timely order book
information is available. This condition is satisfied for the E-mini S&P 500 futures contract, and
we exemplified the approach in Section 2.2.

Order Book Matching: Let Pq be the transaction price for contract q. It is designated a buy
(bq = 1) or a sell (bq = 0) according the rule:

bq = 1 if Pq = P a
q (the trade is consummated at the ask).

bq = 0 if Pq = P b
q (the trade is consummated at the bid).

bq = 1
2 if Pq < P a

q and Pq > P b
q (no unique assignment).

where P b
q and P a

q indicate the last bid and ask quotes observed prior to transaction q.

As discussed in Section 2.2, order book matching allows us to, unambiguously, classify over
99.95% of the trades during the regular trading regime for the E-mini S&P 500 futures. Since we
obtain the actual consummated buy and sell transactions, it provides a benchmark for alterna-
tive classification schemes, and we refer to the discrepancy between buys and sells as the “actual”
(signed) order imbalance. Nonetheless, we are mindful that trade execution arises from an in-
teraction of incoming and resting orders that is resolved through the real-time sequencing of the
matching engine. The speed of the market and the differential degree of latency across market
participants renders it infeasible to condition on the current state of the market. In spite of this
caveat, the actual order flow provides a natural benchmark by capturing the flow of orders that
end up executing against resting limit orders.

11Consistent with prior notation, Pq,` is the last transaction price of bar (q, `). For q = 1, i.e., the first bar in
bucket `, Pq−1,` = PQ`−1,`−1 is the transaction price of the last traded contract in the preceding volume bucket.
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The objective, or verifiable, nature of the actual trade classification does not imply that the cor-
responding VPIN measures, based on this classification, are superior. It is possible that alternative
schemes are preferable for capturing the private information embodied in the order flow. Later on,
we test predictions in this regard put forth by ELO (2011a, 2012a).

4 Notation

We need to distinguish between several variations of VPIN and adopt the following naming con-
vention. The first three letters of the index denote a trade classification rule:

ACT – “ACTual” trade classification via order book matching (price happens at bid or ask);

TIC – TICk rule classification, as used in ELO (2011a, 2011b, 2011c);

BKU – BulK volume classification, as used in ELO (2012a), where the proportion of buys is deter-
mined by the size of the price change relative to the average volatility over the sample (an
Unconditional estimate of σ∆P );

BKC – same as BKU, but now volatility is time-varying and estimated using a rolling window of
about one week (a Conditional estimate of σ∆P );

RND – uninformative or “RaNDom” trade classification, based on the L2 norm, as developed in
AB (2014) (labeled U2-VPIN in their exposition).

The superscript letter refers to the type of data aggregation:

R – individual trades based on tRansaction level data;

T – “Time bars” based on fixed increments to calendar time;

V – “Volume bars” based on fixed increments to trading volume.

Note that not all trade classification rules apply to all types of aggregation. In particular, Rule
ACT can be used on transaction level data only. Also, even though Rule RND could be applied to
volume bars, the resulting index is constant and thus uninteresting.

Finally, we use a subscript to indicate the degree of aggregation.12 For time bar aggregation,
we consider four separate frequencies, δ = 1, 10, 60, and 300, indexed by subscript 1 through 4.
Similarly, for volume bar aggregation, we consider ν = 0.02 and 0.10, i.e., 50 and 10 volume bars
per bucket, and index those by subscript 1 and 2. For example, we calculate the time bar VPIN
measures TICT

1 , TICT
2 , TICT

3 , and TICT
4 , as well as the volume bar VPIN metrics BKUV

1 and
BKUV

2 .13 Table 2 summarizes our notation for the various VPIN metrics.

5 Regularizing the VPIN Metric

Two features of the volume bucketing procedure render the regular VPIN implementation unsuitable
for our lengthy sample. First, it is awkward that every VPIN observation depends on the complete
tick record preceding it. Second, the volume trend distorts the time-bar based metrics used by, e.g.,
ELO (2011a, 2012a). Hence, we modify the VPIN computation to alleviate these features, while
retaining the essential character of the metric.

12Of course, this is not applicable for transactions data, i.e., the ACTR and TICR schemes, so they have no
subscripts.

13In this terminology, the empirical work in ELO (2011a,b,c) focuses primarily on TICT3 , while ELO (2012a) relies
on BKUT

3 . Moreover, the study of AB (2014), focusing on a shorter sample than here, analyzes the following VPIN
series: TICR, TICTk , BKUT

k , RNDT
k , TICVm, for k = 2, 3, 4 and m = 1, 2.
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Table 2: Notation for VPIN Measures

Trade Classification

Actual Tick-rule Bulk Bulk Random
Data Aggregation unconditional σ∆P conditional σ∆P

Transactions, R ACTR TICR – – –

Time Bars, T – TICT1 –TICT4 BKUT
1 –BKUT

4 BKCT1 –BKCT4 RNDT
1 –RNDT

4

Volume Bars, V – TICV1 –TICV2 BKUV
1 –BKUV

2 BKCV1 –BKCV2 –

5.1 Enhancing the Ability to Replicate the VPIN Metric

AB (2014) establish that the VPIN metric is sensitive to initial conditions. The starting point
determines the location of the buckets throughout the sample. If it changes, the bars are split
differently across the buckets. This feature hampers replication, verification, and comparison across
studies. Any deviations in the reported transactions, discrepancies in the filtering of erroneous
entries, or differences in the handling of transactions consummated at the daily resumption of
electronic trading at any point throughout the sample, imply that the VPIN metrics will deviate to
varying degrees.

To mitigate such effects and facilitate replication, we instead restart the bucketing process at
the beginning of each trading day (normally, at 15:30 of the previous calendar day). At the end of
a given day, the last bucket will usually contain less than V contracts and we simply discard it.14

As a result, one may verify the VPIN computations for a given trading day by having access to the
identical transactions record for that specific day (and the fifty preceding volume buckets necessary
for the initial VPIN computation) as well as knowledge of the size of the volume bucket only.

5.2 Inducing Stationarity in the Volume Series

ELO (2011a, 2012a) fix the volume bucket, V , at (1/50)th of the average daily trading volume in
the sample. In our case, this would imply setting V to about 36,500 contracts.15 We refer to this
approach as “constant V ”. This may be sensible for short samples bereft of persistent variation in
daily volume, but it is problematic if there is a pronounced trend in volume. Since its introduction
in 1997, the volume in the E-mini contract has risen steadily. The average daily volume was about
17 thousand contracts in 1998, about 970,000 in 2006, and more than 2 million in 2010. We also
note that the theory motivating the VPIN construction in ELO (2012a) is cast within a stationary
market environment.

Figure 2 shows that the volume displays high-frequency spikes that are strongly correlated with
the VIX index during turbulent market conditions. When trading intensifies, there are less time
bars per bucket and, as documented in AB (2014), this tends to inflate the time-bar based VPIN
metric. In our sample, the bucket of 36,500 contracts is filled, on average, within 22 minutes of
regular trading in the lowest volume month, but in just 4.5 minutes during the highest volume
month. ELO (2012a) scale the bucket size to the trading intensity to ensure compatibility of the
corresponding VPIN series, when comparing different futures markets. The argument for a similar
adjustment for a pronounced volume trend within each series is even more compelling. Only if the
metric exploits a similar number of bars across the sample can we meaningfully interpret VPIN

14Alternatively, we could add the volume of the last incomplete bucket to the previous one and weigh the contri-
bution of this bucket accordingly in the VPIN computation. We have confirmed that the discrepancy between these
two approaches is negligible.

15This compares to V = 39,351 contracts in ELO or V = 40,000 in AB (2014) for more recent and shorter samples.
The average volume in the early part of our sample is considerably lower than in later years.
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Figure 2: This figure depicts daily values of the S&P 500 index, VIX, trading volume, and a 21-day moving
average of the daily volume over the entire sample, February 10, 2006 - March 22, 2011. The dashed line in
the bottom panel indicates the average daily volume over the full sample.

values at different times. In particular, if a secular increase in trading doubles the average daily
volume, the bucket size should also be doubled to render the early and late stages of the sample
comparable.

Hence, we set V equal to (1/50)th of the daily volume over the preceding month.16 The choice of
a one-month moving average helps smooth out seasonal volume fluctuations associated with, e.g.,
declines around major holidays, which are evident from the third panel of Figure 2. We refer to
this as the “detrended V ” approach below. The bottom panel of Figure 2 contrasts the one-month
moving average of the daily volume used in this study with the dashed line, representing the daily
sample mean, used in the constant V approach.

To illustrate the effect of our volume regularization, we contrast the daily maxima of the BKUT
3 -

VPIN series obtained from the constant and detrended V approach in panel one and three of Figure

16On any given day, we round V to the closest multiple of 100. This ensures that when the volume bar aggregation
is used, the bars we consider always contain a whole number of contracts.
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Figure 3: The two top panels concern the VPIN measure under the constant V approach. Panel one depicts
the daily maximum value of BKUT

3 -VPIN. Panel two depicts the CDF (left scale) and corresponding number
of days per year with a (maximum) VPIN level below that for the given day (right scale). The horizontal
dashed lines indicate the level of VPIN on the Flash Crash day at 12:30 (the lower one) and 13:30 (the
upper one). The two bottom panels provide the identical series for BKUT

3 -VPIN, but under the detrended
V approach.

3.17 For the first year, the level and variation in the BKUT
3 series in the top panel is noticeably

17We use BKUT
3 for the illustration as it is most closely aligned with the VPIN metric adopted in ELO (2012a),
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lower than for the remainder of the sample. In addition, BKUT
3 only attains extreme values when

volume and volatility are elevated, (refer back to Figure 2). While toxicity may tend to be high
during turbulent market conditions, the pronounced pattern is troublesome. The theory underlying
VPIN is developed for a stationary setting, but it seems that even exceptional days in the early part
of the sample fail to stand out due to the apparent dampening of the metric when (trend) volume is
low. In contrast, the detrended V series for BKUT

3 in panel three appears stationary. The financial
crisis no longer stands out as one prolonged period of elevated toxicity. This is consistent with the
market fluctuations at that time being driven primarily by observable shocks to economic policy
and fundamentals rather than by private information filtering into the market through trading.
The extreme VPIN value during the flash crash is evident from both BKUT

3 series. However, for
the detrended series, February 27, 2007, represents an even larger outlier. On this date, the S&P
500 index tumbled 50 points in its largest drop in about four years. Moreover, two days later, on
March 1, 2007, the VPIN value almost matches that of May 6, 2010, as well. In short, the VPIN
series is drastically transformed by the standardization of the volume series.

ELO (2012a) argue that extreme VPIN values should be gauged from the CDF. The empirical
CDF for the daily maximal BKUT

3 -VPIN readings are reported on the left vertical axis of panel two
and four. On the right, we provide the number of days per year that realizes a maximum below the
current value. For example, the second panel shows that the BKUT

3 -VPIN metric one hour prior
to the flash crash (lower dashed line) was exceeded on about 20% of the days, or about 50 times
a year. Likewise, the BKUT

3 -VPIN value at the onset of the crash (upper dashed line) was topped
13 times a year, or about once a month. Moreover, these events were all observed post 2006, with
massive clustering during the financial crisis. In contrast, the extreme VPIN events are almost
uniformly distributed once we control for the volume trend. This is consistent with a stationary
environment where toxicity rears its head randomly. Thus, the following results are based on the
detrended volume series.18

6 Misclassification Measures for Order Flow Imbalance

We now explore the properties of alternative trade classification procedures, using the accurate
active buy-sell classification based on the ACTR scheme from Section 2.2 as benchmark.

6.1 Order Flow Aggregation and Trade Classification

The determination of whether a given trade in an electronic limit order book system is an active
sell or buy is clearly contingent upon the circumstances surrounding the individual transaction:
was the trade consummated at the existing bid or ask quote. Since the ACTR scheme establishes
the latter with extremely high accuracy, it is in principle straightforward to evaluate the precision
of alternative trade classification procedures.

Nonetheless, there are complications. Most importantly, for the construction of the VPIN
metric, we rely on the relative amount of active buying over volume buckets, i.e., for quite highly
aggregated order flow. It is possible that some schemes are superior for transaction-by-transaction
classification while others dominate for estimating the proportion of active buying for the cumulative
volume across a large set of separate transactions.19

Consider the following illustrative example. The bucket covers 2 minutes and there are 4 trades
of one contract within each minute. The actual trade sequence is BBBSSSSB, which we represent
via a buy indicator sequence and compare to a candidate classification rule C:

but similar results are obtained for alternative VPIN measures based on time bars.
18Qualitatively similar, but less transparent, findings obtain if we rely on the raw volume figures.
19In fact, ELO (2012a, 2012b) argue forcefully that the “bulk” volume approach is superior to tick-by-tick identi-

fication due to the noise associated with classification of individual trades in a high-frequency environment.
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Misclassification Rate

Rule Trade Sequence Individual 1 minute 2 minute

Actual (A) (1, 1, 1, 0, 0, 0, 0, 1) – – –

Candidate (C) (1, 0, 1, 0, 1, 0, 1, 0) 0.50 0.25 0.00

In terms of individual contracts, or volume bars for ν = 1/8, rule C misclassifies four out of
eight, or 50%. However, if we focus on one-minute bars (or ν = 1/2), then rule C misclassifies
only two contracts (|2 − 3| + |2 − 1|), so the inaccuracy rate drops to 25%. Finally, at the bucket
(two-minute bar) level, the classification is perfect (|4− 4| = 0).

The example highlights the point that order flow aggregation improves accuracy. This happens
because of error diversification. Formally, for Vq indicating the trade volume in bar q within a given
bucket, q = 1, . . . , Q, it follows directly from the triangle inequality that,∣∣∣∣∣∣

Q∑
q=1

(
V̂ B
q − V B

q

) ∣∣∣∣∣∣ ≤
Q∑

q=1

∣∣∣V̂ B
q − V B

q

∣∣∣ . (5)

Hence, the overall classification accuracy for aggregated order flow, obtained by cumulating over
individual transactions or bars, is inevitably better than if precision is measured for the smaller
units. Consequently, active trade classification schemes must be compared at the same aggregation
level to avoid unduly favoring the procedure using the more aggregate order flow.

Apart from TICR (and ACTR), all our classification rules exploit bar-level aggregation. This
involves a loss of granularity but, as noted above, it does not necessarily imply that bar-level
classification is inferior. Ultimately, the relative usefulness of alternative schemes is an empirical
question which we begin to address in Section 6.3.

6.2 Defining Misclassification Measures

This section formalizes the “misclassification” measure adopted in Section 6.1. We develop the
measure for volume buckets and then extend it to the individual contract level as well.

6.2.1 The Misclassification Measure for Volume Buckets

We initially focus on a given bucket, `, comprising V traded contracts, allocated to Q separate bars.
The volume in bar q is Vq,` and the (true) proportion of buys is bq,`. The corresponding estimates

of active buys and proportion of buys are, respectively, V̂q,` and b̂q,`.
Upon defining νq,` = Vq,`/ V and aggregating by suitable volume-weighting, we arrive at a

bucket-wide misclassification measure, MB`, for a given classification scheme,

MB` =

∑Q
q=1 |V̂ B

q,` − V B
q,`|

V
=

Q∑
q=1

|b̂q,` − bq,`| · νq,` .

The measure simplifies further for volume bars, where νq,` = 1/Q,

MB` =
1

Q

Q∑
q=1

|b̂q,` − bq,`| .

Finally, we note that MB` equals (1−Ar`), where Ar` is the accuracy measure of ELO (2012b)
for bucket `. Thus, the two concepts are formally equivalent.
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The MB` measure references a single volume bucket. Our sample contains thousands of buckets
and we construct the overall measure by averaging across all buckets,

MB =
1

L

L∑
`=1

MB` .

6.2.2 Misclassification at the Individual Contract Level

Trade-by-trade classification is critical for a host of microstructure applications, but the bar-based
rules are not designed for this purpose. Nonetheless, if one decides to assign a trade classification to
individual contracts on the basis of the bar-based measures, the natural procedure is self-evident.
We simply assign a probability of an active buy to each contract that equals the overall estimated
proportion of buys for the bar.

We exemplify the approach for the tick-rule and BVC strategies applied to one minute bars.
Consider the actual trade sequence (A) from above, spanning two one-minute bars with four trades
within each bar, (1, 1, 1, 0, 0, 0, 0, 1). If the price rises over the first and drops over the second bar,
the (one minute) tick rule classifies all contracts in the first bar as buys and those in the second as
sells. If the price increase over the first bar exceeds the drop over the second, BVC may assign a
buy ratio of 0.90 to the first bar and 0.20 to the second.

Misclassification Rate

Rule Trade Sequence Individual 1 minute 2 minute

Actual (1, 1, 1, 0, 0, 0, 0, 1) – – –

Tick (1, 1, 1, 1, 0, 0, 0, 0) 0.250 0.250 0.000

BVC (0.9, 0.9, 0.9, 0.9, 0.2, 0.2, 0.2, 0.2) 0.325 0.100 0.050

The (one-minute bar) tick rule produces a misclassification rate of 25% (2/ 8) for individual
trades. Note, however, that the overall inferred relative buy volume perfectly matches the actual
proportion of buys, so for two-minute bars the misclassification rate is 0%. In the case of BVC
and one-minute bars, the misclassification rate for individual contracts is 32.5%.20 In contrast, the
BVC rate is only 10% when assessed on the basis of the aggregated buy volume within the one-
minute bars.21 Both scenarios illustrate the effect of interpolating proportional order flow measures
from bars to individual contracts – it induces reverse error diversification. Most importantly, we
must avoid comparing, say, the tick rule misclassification rate for individual contracts (25%) to the
aggregate one-minute bar BVC rate (10%), and instead compare it to the BVC rate for contract-
to-contract classification (32.5%).22

Formally, for I total trades, the misclassification measure at the contract level is,

MC =
1

I

I∑
i=1

|b̂i − bi|, (6)

where b̂i and bi denote the estimated and true buy indicator for contract i.

20The rate is computed as ( 3 |1− 0.9|+ |0− 0.9|+ 3 |0− 0.2|+ |1− 0.2| ) / 8.
21This rate is computed as ( |0.90− 0.75|+ |0.20− 0.25| ) / 2.
22Alternatively, perform the comparison explicitly at the one-minute or two-minute bar level for all schemes.
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6.3 Empirical Inaccuracy Measures for Alternative Classification Schemes

This section compiles inaccuracy measures for the various classification techniques across our full
sample for the E-mini S&P 500 futures. We contrast our results to the only existing evidence
concerning this contract, namely ELO (2012b, 2012c), but the findings also complement a large
literature on empirical trade classification, originating with Lee and Ready (1991).23

6.3.1 Misclassification at the Transaction Level

The top panel of Table 3 shows that the tick rule applied at the contract level misclassifies 11.6%
of the transactions over our five year sample (entry TICR). This is roughly consistent with ELO
(2012b), where a failure rate of 13.6% (1-0.864) is reported. Our interpretation is entirely different,
however. We stress the striking improvement relative to the tick rule applied to aggregated order
flow. Already at the one-second level, the error rate reaches 24.8% (entry TICT

1 ), and the trend
continues with failure rates of 38.7% and 43.1% at the 60- and 300-second levels (entries TICT

3 and
TICT

4 ). Finally, the best time-bar bulk volume procedure is BKUT
3 with an error rate of 23.2%

at the transaction level. In terms of classifying individual trades, the approaches in ELO (2011a)
and ELO (2012a) are an order of magnitude worse than the traditional tick rule applied at the
transaction level.

Table 3: Error Rates for Alternative Trade Classification Rules

Panel A: MC

Rule 2R 2T
1 2T

2 2T
3 2T

4 2V
1 2V

2

ACT 0.000
TIC 0.116 0.248 0.330 0.387 0.431 0.339 0.388

BKU 0.283 0.242 0.232 0.245 0.233 0.170
BKC 0.282 0.242 0.240 0.259 0.229 0.170

Panel B: MB

Rule 2R 2T
1 2T

2 2T
3 2T

4 2V
1 2V

2

ACT 0.000
TIC 0.023 0.038 0.072 0.141 0.264 0.065 0.121

BKU 0.040 0.045 0.083 0.161 0.043 0.047
BKC 0.040 0.045 0.086 0.171 0.041 0.043

Notes: This table reports misclassification rates at the contract level (MC) and for volume buckets (MB).

Rows represent alternative trade classifications: ACT (actual), TIC (tick rule), BKU (BVC with uncondi-

tional σ∆P ), and BKC (BVC with conditional σ∆P ). Columns represent the type of data aggregation: R

(transactions), T (time bars, with δ = 1, 10, 60, and 300), and V (volume bars with ν = 0.02 and 0.10). For

example, the procedure in ELO (2012a), BKUT
3 (BVC with unconditional σ∆P for one-minute bars) appears

in the third row, fourth column (BKU and 2T3 ).

23The two ELO citations refer to sequential versions of the same working paper. We reference both, because the
first deals with the BVC approach as implemented in ELO (2012a), while the second explores additional features
that are critical for our discussion, but relies on a different BVC procedure. The voluminous literature on trade
classification includes, e.g., Aitken and Prino (1996), Asquith, Oman and Safaya (2010), Boehmer, Grammig and
Thiessen (2007), Chakrabarty, Li, Nguyen and Van Ness (2007), Chakrabarty, Moulton and Shkilko (2012), Ellis,
Michaely and O’Hara (2000), Finucane (2000) and Odders-White (2000).
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6.3.2 Misclassification at the Bucket Level

The bottom panel of Table 3 reveals that the bucket level error rates are sharply lower than at
the contract level, indicating the strength of the error diversification effect. For instance, the tick
rule now misclassifies only 2.3% versus the 11.6% at the individual contract level. Nonetheless,
the relative rankings remain largely intact. As before, the tick rule based on individual trades
outperforms both the tick rule or BVC approach applied to aggregated order flows, and the error
rates increase monotonically with aggregation. Hence, it is always better to use tick data relative
to one-second data as well as ten-second data rather than one-minute data. The adverse impact
of applying the tick rule to aggregated order flow is not surprising: within a bar the transactions
are classified as either all buys or all sells. Since active buys and sells alternate quite rapidly, this
is increasingly counter-factual as the bar size grows. BVC provides a more balanced assignment
of buys and sells which, almost tautologically, is better for larger bars. This explain why BVC
underperforms the tick rule for small bars, e.g., TICR and TICT

1 versus BKUT
1 , while the result

reverses for TICT
2 and TICT

3 versus BKUT
2 and BKUT

3 .
Notably, our findings are at odds with the only prior study of this type for the E-mini futures:

“ . . . using either time bars or volume bars is more accurate than standard tick-rule classification
schemes based on individual trade data” (ELO (2012b), page 3).24 They reach this conclusion by
comparing the contract level tick rule to the BVC approach, assessed at the bar level. ELO report a
12.4% failure rate for time bars of 120 seconds and 10.0% for volume bars of 8,000 contracts (relative
to 13.6% for the transaction tick rule). For us, the corresponding “improvement” is reflected in an
error rate at the bucket level of 8.3% for 60-second time bars and 4.7% for ν = 0.1 volume bars
(BKUT

3 and BKUV
2 under the MB panel).

The problem is that bar and transaction level error rates are incompatible. As documented
above, precision is enhanced, realization-by-realization, as we aggregate the order flow.25 In fact,
for identical levels of order flow aggregation, the transaction level tick rule performs, by far, the
best. In short, the conclusions of ELO are turned upside down.

6.4 Systematic Time-Variation in Misclassification Rates

We now explore whether the accuracy of the classification varies systematically over time. This is
important. If precision deteriorates when return volatility rises, say, then the VPIN metric may be
distorted exactly when it is of most interest.

The two top panels of Figure 4 provide error rates for the BKUT
1 and BKUT

3 schemes. The upper
panel refers to individual transactions and the second to volume buckets. Aggregation clearly
enhances the performance of BKUT

1 greatly, while the improvement for BKUT
3 is more modest.

At the bucket level, BKUT
1 dominates uniformly although the discrepancies are most pronounced

during high volatility periods (compare with Figure 2).
The TICR series is included in each panel to facilitate comparisons to the traditional tick rule. In

either scenario, the tick rule uniformly dominates. At the contract level, the precision of the TICR

approach is near constant. At the bucket level, BKUT
1 starts mimicking the properties of TICR

and the accuracy appears to improve as volatility increases, inducing a distinct negative correlation
with BKUT

3 . It is evident that the active trade classification of BKUT
3 is poor throughout and

particularly error prone during volatile market conditions.
The bottom two panels portray misclassification rates for the volume bar BVC procedures.

Clearly, the use of volume bars improves accuracy. Moreover, in analogy to our prior findings,
BKUV

1 – based on the smaller bar size – inherits some features of the TICR series at the bucket

24ELO (2012a) cites this piece for details on BVC and its accuracy. This working paper was subsequently replaced
by ELO (2012c) which analyzes a different implementation of the BVC procedure.

25This point is also documented carefully by Chakrabarty, Pascual and Shkilko (2012).
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Figure 4: This figure depicts 21-day moving averages of the misclassification rates for different trade classi-
fication procedures. The top two panels depict MC and MB for TICR, BKUT

1 , and BKUT
3 , while the bottom

two panels show MC and MB for TICR, BKUV
1 , and BKUV

2 . MC stands for misclassification at the contract
level and MB denotes misclassification at the volume bucket level. In each panel, the order of the plots is
black (first), gray (second), and light gray (third).

level. Furthermore, BKUV
2 retains the qualitative features observed in BKUT

3 , but the fluctuations
are dampened. Overall, the main conclusion stands: the standard tick rule uniformly dominates
the BVC procedures at the bucket level. Moreover, the most unstable approach, in terms of the
accuracy being compromised during volatile market episodes, is BKUT

3 . This is also the series most
closely aligned with the procedure of ELO (2012a).

7 The Empirical Behavior of Alternative VPIN Metrics

The different trade classification schemes generate distinct VPIN metrics, as the associated order
imbalances differ. This section explores the properties of alternative VPIN metrics.
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7.1 The Evolution of Alternative VPIN Series over a Five-Year Span

Figure 5 depicts a set of different VPIN series across our sample. ACTR-VPIN in the top panel
serves as our benchmark, as it reflects the actual active order flow. We note that TICR-VPIN
evolves very similarly to ACTR, although TICR almost invariably is at a higher value. Evidently,
TICR generates order imbalances that are slightly more volatile than they should be. However,
the errors are small and homogeneous so the two VPIN series display near identical variation over
time, and both reach their minimum during the onset of the financial crisis.

Inspecting the lower three panels, we find, quite naturally, that VPIN constructed from BKUT
1

and BKCT
1 resembles ACTR the most. However, the low frequency variation in BKUT

1 and BKCT
1

is notably smaller than for the transaction-based measures. In comparison, the BKUT
3 and BKCT

3

series display much more short-term variation, and the former is prone to erratic movements in
either direction. Overall, there is little coherence between the BKUT

3 or BKCT
3 series and the VPIN

measures derived from contract level classification. Finally, the bottom panel shows that there are
dramatic differences in the volume-bar BVC-VPIN series, depending on whether the price changes
are normalized by an unconditional or conditional volatility factor. BKCV

2 is basically flat, apart
from high-frequency oscillations, while BKUV

2 is erratic, attaining extremely highs during the 2008
crisis, and hitting extreme lows in 2006 and 2010. Visually, BKUV

2 , appears inversely related to our
benchmark ACTR series. These observations are confirmed by Table 4, which shows that the ACTR

series is mildly positive correlated with BKCV
2 , but strongly negatively correlated with BKUV

2 .

7.2 The Association of VPIN with Trading Volume and Return Volatility

Section 7.1 shows that the VPIN metric is sensitive to the choice of design variables, such as whether
time or volume bars are used, the length of the bars, and whether the price changes are normalized
by an unconditional or conditional volatility factor. Section 6 documents that there are substantial
discrepancies in the accuracy and stability of the different trade classification schemes. We now
explore how the alternative VPIN measures are associated with key market activity variables,
namely trading volume and return volatility. We use the “model-free” implied volatility index,
VIX, and a realized volatility measure, RV, as proxies for the latter.

7.2.1 Actual VPIN versus Return Volatility and Trading Volume

We start with a key finding. Table 4 reveals a remarkably strong negative association of the
ACTR- and TICR-VPIN measures with both trading volume and return volatility. This is eye-
opening. It implies that VPIN computed from the underlying active (ACTR) order flow, henceforth
labeled actual VPIN, has a fundamentally different relation to volatility and volume than the BVC-
VPIN of ELO (2012a). Moreover, TICR-VPIN mimics the main features of ACTR-VPIN very
well, suggesting that we may use the former as a proxy for the latter and obtain results that are
consistent with those derived from actual VPIN.26

This striking finding raises two separate questions. First, why do the VPIN measures based
on trade classification using aggregate order flow produce diametrically opposite results to the
ones exploiting the actual order flow imbalance? Second, why is there such a pronounced negative

26VPIN measures are defined over volume buckets, which are not aligned with regular calendar time. In contrast,
variables such as VIX, RV, returns, and volume are usually measured in calendar time units. To compute correlations
and run predictive regressions, we convert VPIN and other bucket based measures from the volume to the one-minute
calendar grid. This can be done in two ways: (1) use the last available reading prior to given calendar time t, or
(2) linearly interpolate between two closest readings straddling time t. The first approach uses slightly “stale” VPIN
measures, while the second involves a minor “look-ahead” bias but ,empirically, the difference are negligible. We
raise the odds of VPIN providing incremental predictive power by adopting the second approach. Moreover, given
the break in the activity measures between regular and overnight trading hours, we confine our analysis to data from
regular the trading hours.
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Figure 5: This figure plots the daily maximum values of various VPIN measures, February 10, 2006 - March
22, 2011. In each panel, the order of the plots is black (first) and gray (second).

association between (actual) VPIN and market activity variables? The remainder of this section
explores the first issue. A full answer to the second question will take us beyond the current work,
but we identify some of the factors behind this phenomenon in Section 9.

7.2.2 Time-Bar VPIN versus Return Volatility and Trading Volume

Table 4 reports correlations of activity variables and VPIN measures based on time bars. TICT is
much less correlated with volatility than established in AB (2014). This stems from the elimination
of the volume trend. Once we control for persistent shifts in volume, TICT -VPIN is negatively
related to volatility, as is the case for the transaction based measures. Second, the correlation of
these indices with ACTR-VPIN declines with the aggregation level, suggesting they deviate more
strongly from the actual VPIN metric when classification accuracy deteriorates, as documented
in Section 6. Third, this effect is also evident in increasing correlations between TICT -VPIN and
the activity variables (volume, VIX and RV) as a function of bar size. This is consistent with the
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assertion in AB (2014) that persistent yet mean-reverting fluctuations in volume severely distorts
time-bar VPIN measures. This stems from the induced variation in the number of bars in the
volume buckets. Less bars lead to lower error diversification within the bucket and larger inferred
order imbalances.

For additional evidence, we turn to RNDT -VPIN, constructed as in AB (2014). RNDT uses
the same bars as the other time-bar VPIN measures, but the trade classification is randomized to
generate an i.i.d. series with an equal chance that any bar is a buy or sell. Hence, ceteris paribus,
it serves as a control for the impact of the trade classification on VPIN. If the dramatic shift in
the properties of TICT -VPIN across time bars is due primarily to the time variation in trading
intensity, and not trade classification per se, the RNDT -VPIN series should display features akin
to TICT -VPIN. In fact, RNDT -VPIN has nearly the same correlation with ACTR and TICR, and
displays the identical correlation patterns with volume, volatility, BKUT - and BKCT -VPIN across
bar sizes, as TICT -VPIN, corroborating our hypothesis.

Moving on to BKUT - and BKCT -VPIN, we should encounter the same type of volume effect
although the dependence on the price change adds a new feature. Table 4 confirms that the 60-
and 300-second bar BKUT measures are even more positively correlated with volume than TICT .
Moreover, BKCT is much less correlated with volume due to the normalization of the price change
by a realized volatility measure which dampens the inferred order imbalances during periods of
(expected) high market activity. Hence, controlling for predictable variation in volatility alters
the BKUT -VPIN series substantially. Moreover, remarkably, RNDT is more highly correlated with
ACTR than BKUT and BKCT at every aggregation level. Thus, constructing order imbalances
from the size of price changes, as for BKUT and BKCT , leads to a weaker association with actual
VPIN than what is obtained via random trade assignment.

In summary, our controls for the volume trend and the impact of trade classification, via RNDT -
VPIN, enables us to validate the close association between TICT -VPIN for small time bars and
actual VPIN. Hence, the divergent properties of TICT -VPIN for large time bars are consistent with
the hypothesis that time-variation in market activity is increasingly more distorted as the order
flow is more highly aggregated. We observe similar forces impacting the BKUT - and BKCT -VPIN
metrics, but the use of absolute price changes in classifying order imbalances introduces a new
element which we explore below.

7.2.3 Volume-Bar VPIN versus Return Volatility and Trading Volume

We now focus on VPIN metrics constructed from volume bars. The bottom panel of Figure 7.1
suggests that the BKUV measure is highly correlated with volatility, while BKCV is more stable.
The correlations assembled in Table 4 corroborate the point. The BKUV metrics have correlations
with VIX and RV exceeding 0.74, while BKCV is decidedly less correlated with volatility and the
correlation with volume shrinks rapidly with bar size. The stronger alignment of BKCV with RV
relative to VIX and the stronger correlations for smaller bars suggest that BKCV has some com-
monality with the high-frequency variation in volatility, even if the measures are largely unrelated
over longer horizons. Finally, the TICV measures display the same negative association to volatility
and positive relation with ACTR-VPIN as documented for small bar TICT -VPIN. As a result, their
overall properties and correlation with volatility and volume can hardly be more disparate relative
to BKUV - and BKCV -VPIN.

How do we rationalize the striking disparity in the behavior of TICV -VPIN relative to BKUV -
and BKCV -VPIN? By construction, the TICV series annihilates the effect of time-variation in
trading volume. Thus, the dominant source of distortion has been removed, and for small bar sizes
it should be reasonably compatible with actual VPIN. In fact, for ν = 0.02 the correlation of TICV -
VPIN with ACTR- and TICR-VPIN is high, and the correlations with BKUV - and BKCV -VPIN as
well as volume and volatility are remarkably similar to those for ACTR-VPIN. This reaffirms the

22

Electronic copy available at: https://ssrn.com/abstract=2292602



Table 4: Correlations for VPIN Measures

Data Aggregation Rule ACTR TICR Volume VIX RV

Transactions ACTR 1.00 0.96 -0.53 -0.72 -0.62

TICR 0.96 1.00 -0.53 -0.73 -0.64

Time Bars TICT1 0.90 0.92 -0.42 -0.66 -0.55

δ = 1 sec BKUT
1 0.63 0.62 -0.08 -0.39 -0.24

BKUT
1 0.65 0.65 -0.12 -0.44 -0.29

RNDT
1 0.83 0.87 -0.48 -0.72 -0.64

Time Bars TICT2 0.76 0.75 -0.16 -0.49 -0.34

δ = 10 sec BKUT
2 0.35 0.30 0.30 -0.04 0.15

BKUT
2 0.58 0.54 0.08 -0.29 -0.08

RNDT
2 0.76 0.76 -0.16 -0.53 -0.38

Time Bars TICT3 0.61 0.60 0.04 -0.34 -0.19

δ = 60 sec BKUT
3 0.06 0.01 0.55 0.21 0.38

BKUT
3 0.44 0.40 0.27 -0.15 0.05

RNDT
3 0.55 0.52 0.16 -0.28 -0.10

Time Bars TICT4 0.46 0.44 0.21 -0.20 -0.04

δ = 300 sec BKUT
4 -0.20 -0.26 0.71 0.42 0.55

BKUT
4 0.34 0.30 0.38 -0.07 0.14

RNDT
4 0.40 0.37 0.31 -0.14 0.05

Volume Bars TICV1 0.84 0.86 -0.45 -0.63 -0.53

ν = 0.02 BKUV
1 -0.66 -0.71 0.69 0.76 0.80

BKUV
1 -0.19 -0.24 0.55 0.28 0.46

Volume Bars TICV2 0.65 0.66 -0.28 -0.44 -0.35

ν = 0.1 BKUV
2 -0.65 -0.69 0.68 0.74 0.78

BKUV
2 0.12 0.07 0.37 0.04 0.26

Notes: This table reports correlation coefficients computed at the one-minute frequency over regular trading

hours. “Volume” is the one-day backward trading volume, “RV” is the realized volatility over the previous

day. The VPIN measures are converted to the calendar grid as explained in footnote 26.

critical impact of time-variation in volume on TICT -VPIN.
In contrast, for BKUV - and BKCV -VPIN, the size of the short-term price changes is a driving

force. As such, they may share features with regular realized volatility measures. For concreteness,
our discussion focuses on BKUV -VPIN which is most closely aligned with RV.

In general, equations (1) and (3), plus the fact that νq,` = 1/Q for volume bars, imply,

BKUV -VPIN` =
1

L

L∑
`=1

∣∣∣∣∣∣ 1

Q

Q∑
q=1

γq,`

∣∣∣∣∣∣ . (7)

Suppose now that the signed order imbalance measure, γq,`, is a monotone increasing function
f(r) of the return over the bar and f(0) = 0, i.e., γq,` = f(rq,`), where

rq,` =
Pq,` − Pq−1,`

Pq−1,`
=

∆Pq,`

Pq−1,`

is the simple return over bar q. We note that the signed order imbalance for BKUV is an example
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of a measure that satisfies the above characterization,

γq,` = 2 · Z
(
Pq−1,`

σ∆P
· rq,`

)
− 1 = f

(
Pq−1,`

σ∆P
· rq,`

)
.

Of course, a similar characterization applies for realized volatility measures. Specifically, if
f(r) = r or f(r) = ln(1 + r), then γq,` equals the simple or log returns, respectively.27

Since γq,` always has the same sign as the return rq,`, the VPIN metric,

BKUV -VPIN` =
1

L

L∑
`=1

| γ` | =
1

L

L∑
`=1

∣∣∣∣∣∣ 1

Q

Q∑
q=1

f(rq,`)

∣∣∣∣∣∣ (8)

will be closely related to realized volatility. To quantify this relation, we measure the coherence
between the log-return and the bucket-wide signed order imbalance.28 For BKUV

1 and BKUV
2 , the

correlations of γ` with ln(1 + r`) are 0.86 and 0.84, respectively. In contrast, for the actual trade
classification ACTR, the correlation is substantially lower at 0.53. Hence, the design of the BVC
measures almost mechanically boosts the correlation with return volatility, while it weakens the
association with the underlying order imbalances, cf. Section 6.

Lastly, we recall that BKCV normalizes the price changes with a factor reflecting recent realized
volatility. Hence, BKCV controls for expected volatility and is largely immune to persistent shifts in
volatility, but remains sensitive to volatility innovations. Therefore, we expect a weaker association
with volatility for BKCV than BKUV . Moreover, BKCV should be more strongly correlated with
RV than VIX, as the former captures volatility realizations more directly. These predictions are
consistent with the correlations reported in Table 4.

In short, the BKUV - and BKCV -VPIN series inherit many properties from realized volatility.
Moreover, since the BKUT - and BKCT -VPIN measures share the dependence on price changes,
they naturally display similar features, albeit in a weaker form, as, in addition, they are subject to
direct volume distortions arising from the time bars. Hence, arguably, the BVC-VPIN metrics are
more closely related to RV measures than actual order flow imbalances. Whether these nonlinear
filtering procedures and toxicity measures, based on the evolving volume and price change series, are
warranted cannot be answered a priori. It is possible they extract valuable information regarding
the intensity of informed trading from the real-time transaction record. Ultimately, it hinges on
their incremental predictive power for episodic market turbulence beyond what is embedded in
standard volatility or volume measures.

7.2.4 Intraday Order Flow Imbalances

Trading volume and return volatility display pronounced intraday patterns. In addition, we have
argued that a number of VPIN measures obtained from aggregated order flow, almost mechanically,
will be correlated with volume and volatility. It follows that the order flow imbalance measures
underlying these VPIN metrics should inherit the same type of intraday activity pattern. Below, we
document that this is, indeed, the case. Moreover, we find that the identical qualitative intraday
pattern is operative for order imbalances generated by a benchmark classification scheme which
exploits the same aggregated order flow but assigns trade direction randomly. The latter is, by
construction, driven exclusively by the prevailing trading pattern and cannot, by design, contain
information regarding informed trading beyond the trading pattern itself. This implies that the
order imbalances are governed by the trading pattern and not the trade classification. Hence, for the

27The scaling factor
Pq−1,`

σ∆P
inside the transformation function for BKUV reflects the use of price changes, and not

returns, and the normalization by the standard deviation of the price change in the BVC scheme.
28Note, γ` equals the log return over the entire bucket, i.e., ln(1 + r`) = ln

PQ,`
P0,`

.
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associated VPIN measures, it is the market activity that matters, while actual order imbalances are
secondary. Nonetheless, this is still potentially consistent with these VPIN metrics capturing the
intensity of informed trading, as long as the latter also covaries strongly with volume and volatility.

Lastly, we find the actual order flow imbalance to follow a distinctly different intraday pattern.
Thus, the order imbalance measures discussed above deviate systematically from the actual imbal-
ance in a manner that is linked to the trading patterns, but not the trade classification rule. There
are two possible explanations. Either the order imbalance measures, exploiting highly aggregated
order flow, deviate from the overall order flow imbalance due to systematic misclassification which is
correlated with market activity, but has no direct association with informed trading. Alternatively,
the BVC style order imbalance measures do, indeed, reflect the intensity of informed trading, and
the latter is inherently correlated with market activity, while trade classification – surprisingly – is
irrelevant in this respect.

We now turn to the evidence regarding the intraday activity patterns. The alternative hypothe-
ses concerning the VPIN measures are explored in the following section.
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Figure 6: This figure depicts various intraday statistics from 0:00 to 15:15, averaged across all trading days
from February 10, 2006 to March 22, 2011. The vertical dashed line represents the start of regular trading
hours. Left panels: Order Imbalance (OI) for the classification schemes BKUT

3 , BKCT3 , TICT3 , RNDT
3 , ACTR,

and TICR, where the order of the plots is black (first) and gray (second). Right panels: trading volume,
trade size, and volatility (square root of average return squared), where the statistics are computed at the
one-minute frequency and then smoothed over a 10-minute window.
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Figure 6 depicts the average intraday evolution of a set of activity measures, including alter-
native order imbalance measures as well as trading volume, trade size and return volatility. All
measures based on one-minute time bars in the two top panels of the left column display a pro-
nounced U-shaped pattern across regular trading hours. These curves resemble a mixture of the
corresponding intraday variations in trading volume and trade size in the top panels of the right
column. The close association between TICT and RNDT corroborates the findings of AB (2014) –
the random classification underlying RNDT -OI induces the same intraday behavior as observed for
TICT -OI. More strikingly, we observe the same pattern for BKUT and BKCT as well. That is, the
accuracy of the order imbalance measure is immaterial. Purely randomized classification generates
the identical pattern, corroborating the hypothesis that variation in overall market activity is the
primary determinant of these VPIN measures.

Moving to the ACTR-OI series in the bottom panel on the left, we find the intraday evolution
of the actual order imbalance to be radically different from the depiction above. It is low and stable
prior to the regular trading day. Then there is an initial jump at the open, followed by a stable level
throughout regular trading hours. Just prior to the equity market closure at 15:00, the ACTR-OI
spikes, presumably due to pressure on traders to reach their desired positions. Subsequently, during
the 15:00-15:15 post-trading in the futures market, the OI measure falls back to the prevailing level
for the regular trading session. Finally, we note that TICR-OI again provides a reliable proxy for
the corresponding ACTR series.

In summary, using the actual underlying order flow, we find no association between the intraday
patterns of order imbalances and trading intensity. In contrast, the order imbalances constructed
from time bars display a pronounced pattern that mimics the diurnal features in the trading volume
and trade size series. This “cross-sectional” finding complements the time series evidence in identi-
fying the variation in trading intensity and volatility as major factors in driving – and potentially
distorting – the evolution of time bar VPIN.

8 The Incremental Predictive Power of VPIN

We have demonstrated that VPIN, constructed from actual order imbalances, is strongly negatively
correlated with return volatility. At the same time, the VPIN metrics proposed by ELO (2011a,
2012a) display a pronounced positive correlation with volatility. Our analysis suggests that the
discrepancy arises from systematic misclassification of the actual order imbalance by the VPIN
implementations relying on aggregate order flow for trade classification. These errors are correlated
with market activity, e.g., trading volume and return volatility, thus inducing the positive correlation
between VPIN and volatility for large time or volume bars.

These observations render the interpretation of existing empirical evidence ambiguous. The
ability of VPIN to predict future return volatility and serve as a crash indicator – if indeed factual
– is clearly not linked to the actual underlying order imbalances. Instead, a potential explanation
is that the nonlinear VPIN filtering procedure extracts useful information regarding toxic order
flow – not regular (non-toxic) order flow – from the observed trade and price patterns. Thus, the
true test regarding the usefulness of VPIN, as developed in ELO (2011a, 2012a), is the extent to
which the measure provides auxiliary information beyond realized volatility and volume measures
in forecasting future volatility and market disruptions.

In this section, we pursue a few different strategies. We test whether the VPIN, in general, has
incremental predictive content. We also employ a dummy variable to isolate the predictive power
during periods when the VPIN metric is extremely elevated. This amounts to a test of whether
extreme VPIN values serve as useful signals regarding future market turmoil. Finally, in the spirit
of an event study, we revisit the flash crash and investigate whether the VPIN measure potentially
could have helped predict the impending market breakdown.
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8.1 Predictive Regressions

This section explores volatility forecast regressions to further assess the properties of the alterna-
tive VPIN measures. ELO (2012a) use the positive association between BKUT

3 -VPIN and future
volatility to argue that VPIN may serve as a proxy for order flow toxicity.

Table 5 provides predictive regression results for five minutes and one day ahead volatility.
The first couple of univariate regressions involve ACTR and TICR. The transactions-based VPIN
metrics are robustly and negatively related to future volatility, consistent with our prior evidence.
AB (2014) reach the same conclusion and conjecture it arises from a thinning of the order book
during volatile periods. We explore this feature further in Section 9.

The next forecast variable, TICT
3 , is closely related to the VPIN measure studied by ELO

(2011a, 2011b, 2011c). AB (2014) document that this metric is correlated with volatility, but the
information content regarding future return variation is fully subsumed by the (observable) VIX
measure. Moreover, AB found a simple “uninformative” metric to dominate TICT in forecasting
future volatility although it, by construction, has no relation to order imbalance. Instead, this
association arises from the largely mechanical correlation of the measure with trading volume
induced by the time bars. Here, we annihilate most of this correlation by volume detrending.
The impact is evident in Table 5. Neither TICT nor RNDT are positively associated with future
absolute returns and their explanatory power is essentially nill. The last VPIN metrics investigated
are BKUT

3 and BKCT
3 . Not surprisingly, BKUT

3 has significant predictive power for future volatility
– it inherits some of the realized volatility features associated with the BKUV series. Nonetheless,
the explanatory power is limited with R2 values of about 10% and 12% for the two horizons.29

Moreover, normalizing the price changes by a measure of recent volatility annihilates the predictive
power, as evidenced by the regressions for BKCT

3 . This suggests that BKUT
3 has predictive power

due to its correlation with realized volatility which arises from the use of price changes to infer order
imbalance. This is consistent with the vastly superior performance of either trading volume, VIX,
or RV. For example, volume provides a three-fold and RV a six-fold improvement in explanatory
power relative to BKUT

3 at the five-minute horizon, and the discrepancy is even larger at the daily
level.

Finally, we include an encompassing regression where BKUT
3 and RV are joint explanatory

variables for future volatility. The coefficient on BKUT
3 is now insignificant. It adds nothing to the

predictive power of RV. Thus, in general, BKUT
3 -VPIN is irrelevant for predicting future volatility:

traditional real-time indicators like realized volatility and trading volume are vastly superior and
subsume the information content of VPIN.

8.2 Reverse Causality: Realized Volatility as a Predictor of Future VPIN

The prior section documents that the information content of time bar VPIN is subsumed by realized
volatility in terms of predicting future volatility. Since VPIN is a sluggishly moving variable,
constructed as a rolling moving average over 50 volume buckets, this result has even stronger
implications. It suggests that realized volatility can predict the future VPIN and, furthermore, the
predicted component, VPINP , is the one with forecast power for future volatility, while the residual
component, VPINR, possesses little, if any, predictive power.

To test this conjecture, we first construct a predictive regression for VPIN, based solely on RV
observations obtained ∆ = 5 minutes earlier,

VPINP
t = a0 + a1 · RVt−∆ + VPINR

t . (9)

Next, we generalize the predictive regression from Table 5 involving BKUT
3 -VPIN by jointly includ-

ing the predictive and residual component of BKUT
3 -VPIN as regressors. The findings are reported

29Ironically, the forecast power associated with the negative relation between TICR and future volatility is sub-
stantially higher that implied by the positive correlation between BKUT

3 and future volatility.
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Table 5: Forecast Regressions for Average Absolute Return

Panel A: 5-Minute Forecast

Reg Const ACTR TICR TICT3 BKUT3 BKCT3 RNDT3 Vol VIX RV R̄2

(1) 0.10 -0.50 19.71
( 25.50) (-17.90)

(2) 0.11 -0.52 22.35
( 25.43) (-18.47)

(3) 0.06 -0.07 1.32
( 14.90) ( -6.25)

(4) -0.02 0.22 9.91
( -4.03) ( 13.04)

(5) 0.03 0.05 0.49
( 8.12) ( 3.50)

(6) 0.05 -0.04 0.27
( 9.66) ( -2.71)

(7) -0.01 0.26 33.42
( -4.27) ( 19.66)

(8) -0.01 0.22 48.42
( -8.31) ( 30.66)

(9) 0.00 0.13 61.35
( 3.17) ( 98.96)

(10) 0.00 0.00 0.13 61.35
( 1.81) ( 0.54) ( 92.26)

Panel B: 1-Day Forecast

Reg Const ACTR TICR TICT3 BKUT3 BKCT3 RNDT3 Vol VIX RV R̄2

(1) 0.10 -0.50 33.30
( 26.14) (-18.34)

(2) 0.11 -0.52 37.40
( 25.98) (-18.84)

(3) 0.07 -0.08 3.36
( 16.27) ( -7.82)

(4) -0.01 0.18 11.87
( -1.94) ( 12.14)

(5) 0.04 0.02 0.09
( 11.04) ( 1.28)

(6) 0.06 -0.06 1.15
( 11.48) ( -4.49)

(7) -0.01 0.24 48.02
( -2.66) ( 18.97)

(8) -0.01 0.21 77.85
( -8.33) ( 32.87)

(9) 0.00 0.18 82.30
( 0.56) ( 26.33)

(10) 0.00 0.00 0.18 82.30
( 0.06) ( 0.46) ( 24.60)

Notes: This table reports OLS forecast regressions for the average absolute one-minute return (AAR),

defined as AAR(t, t + T ) = 1/T
∑T
i=1 |rt+i| and rt = 100 ln(Pt/Pt−1) is the one-minute return. Forecasts

are formed every 5 minutes during regular trading hours. The forecast horizon T = 5 minutes or 1 day

(defined as 405 one-minute intervals during regular trading). “Vol” is the one-day backward trading volume,

“RV” is the realized volatility over the preceding one hour (Panel A) or one day (Panel B). The VPIN

measures are converted to the calendar grid as explained in footnote 26. The t-statistics in parentheses

reflect HAC-standard errors with 81 lags.
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in the first row of Table 6. The anticipated component is highly significant and the residual com-
ponent is insignificant. That is, the only relevant information in BKUT

3 -VPIN is what, a priori,
may be distilled from past realized volatility. Furthermore, RV explains only a small part of the
overall variation in VPIN, with an R2 of about 14%, while the explanatory power of equation (9)
is almost identical to that of RV itself (R2 of 82%) in Table 5. Hence, the variation in RV gets
encoded almost one-for-one in BKUT

3 -VPIN, but the measure is primarily driven by separate forces
unrelated to future RV. In sum, the variation in VPIN not directly associated with past RV only
serves to obfuscate the relevant information, i.e., the source of predictive power in VPIN is the
variation stemming from lagged realized volatility.

Table 6: Two-Stage Predictive Regressions for one-day-ahead Realized Volatility

Reg Const VPINP VPINR VPINP ·D VPINR·D R̄2

(1) -1.41 6.55 -0.04 81.97
(-25.94) ( 29.38) ( -1.33)

(2) -1.41 6.57 -0.04 -0.21 0.30 82.00
(-25.68) ( 29.07) ( -1.30) ( -1.62) ( 1.77)

Notes: The table reports the results of a two-stage predictive regression for one-day-ahead realized volatility

(RV). In the first stage, VPIN is projected onto 5-minute lagged RV to obtain the “projected” and “residual”

components of VPIN, i.e., VPIN = VPINP + VPINR. Specifically, we obtain VPINP = 0.22 + 0.14 RV, with

R̄2 = 14.02%. In the second stage, VPINP and VPINR are used to forecast future RV. The forecast horizon

is T = 1 day (defined as 405 minutes of regular trading hours). Forecast are formed every 5 minutes during

regular trading hours. For VPIN, we use the BKUT
3 metric, which is converted to the calendar grid as

explained in footnote 26. In specification (2), we also introduce the dummy variable D, which equals one

when VPIN exceeds the 99th percentile, and zero otherwise. Shown in parentheses are t-statistics based on

HAC-standard errors with 81 lags.

These findings suggest reverse causality: it is the increase in market activity that drives up
the VPIN metrics generated from highly aggregated order flow. Simultaneously, the persistence in
volatility and volume implies that high market activity in the recent past predicts elevated future
volatility. Hence, there must also be a significant correlation between current VPIN and future
volatility, but this predictable component is entirely accounted for by past realized volatility. As
such, realized volatility drives VPIN and not the other way around.

8.3 Extreme Realizations of VPIN

So far, we have studied general properties of VPIN. One specific goal of ELO (2011a, 2012a) is to
develop a warning signal for impending market turmoil. As such, the association between extreme
readings of VPIN and subsequent market conditions is of particular interest.

8.3.1 General Statistical Evidence

To explore whether extreme VPIN readings are particularly useful as signals for future market
turmoil, we include a dummy variable in the two-stage predictive regression, indicating times at
which VPIN takes values in the top 99% percentile of the distribution. The second row of Table
6 shows that these observations carry no additional predictive power for future return volatility
over-and-above what is already encoded in the “predictive” component associated with the past
variation in RV. Likewise, the increase in R2 is negligible. Hence, in general, we find no incremental
information associated with truly extreme VPIN realizations.
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8.3.2 An Event Study: The Flash Crash

ELO (2011a) find that VPIN attains a historical high during the day of the flash crash. Figure 3
reveals that, for our BKUT

3 -VPIN series, this distinction instead belongs to February 27, 2007.
Furthermore, two days later, on March 1, 2007, we encounter another extreme VPIN value.30

Nonetheless, to facilitate comparison with ELO, we focus on the flash crash. Qualitatively similar
results are obtained for the other dates with extreme VPIN realizations.

The panels in the top rows of Figure 7 depict alternative VPIN series, while the panels in the
bottom rows refer to activity variables during the regular trading hours on May 6, 2010. The figure
exploits the same timing convention for VPIN as in Figure 1. The price series, replicated from
Figure 1, serves as a reference for the other measures.

Initially, we note that the VIX and price series are near mirror images up through the crash.
Thus, VIX responds instantaneously to the price development, but does not provide auxiliary
information beyond the price path.31 The normalized volatility depicts the standard deviation
of one-minute price changes obtained over a (centered) 10-minute window divided by σ̄∆P , the
unconditional volatility used to construct the BVC based VPIN measures. The normalized volume
series refers to trading volume per one-minute bar divided by the size of the volume bucket. When
this value exceeds unity, trading is so vigorous that buckets are filled in less than one minute, and
there is only one or two (broken) time bars in each bucket.

We first focus on ACTR-VPIN. This metric is basically flat during the crash. Thus, the VPIN
metric based on the actual order imbalances does not signal rising order flow toxicity – even if
the signed order imbalance (SOI) in Figure 1, generated from the identical classification, indicates
active selling pressure from around 12:00. Moreover, we observe the same qualitatively development
for TICR-VPIN, which is constructed from trade data alone. In short, the VPIN transformation of
the underlying SOI destroys whatever order flow information is conveyed by SOI. As such, the time
bar VPIN metrics can only generate a positive association with market turbulence by misclassifying
order flow in a manner that is correlated with volatility and volume. Of course, this is consistent
with our general findings in Section 6 regarding trade classification based on larger sized time bars.

Inspecting the evolution of the remaining VPIN measures in Figure 7, we corroborate these
predictions. As the time bars grow larger, the TICT , RNDT and BKUT metrics mimic the volatility
and volume patterns more closely. In addition, there is little sign of any predictive content regarding
an upcoming crash. The dramatic increases in VPIN occur strictly after the initiation of the crash
at 13:32, when both volume and realized volatility also spike. This is almost a tautology, as VPIN
is generated by a moving average of past order imbalance measures. When large volume and
volatility innovations occur, they receive only (1/50)th of the weight in the VPIN computation.
Large increases in VPIN are only feasible if there is a persistent upward shift in the level of OI,
and when this occurs, the effect is long-lived due to the (moving average) smoothing. If (time bar)
VPIN is to predict a crash, the order imbalance measures must rise well in advance of the event.
Consequently, sustained bursts in market activity precede sharp increases in (time bar) VPIN.
As such, these activity variables should be superior predictors of impending volatility which is, of
course, what the predictive regressions in Section 8.1 and 8.2 show. Specifically, our BKUT

3 metric
is approximately 0.292 at 12:30, about an hour prior to the crash, and 0.365 at 13:30. These values
fall in the percentiles 62 and 91 of the empirical distribution of daily maximum values of BKUT

3 , as
displayed in Figure 3, so we would tend to observe such values eight and two times every month,
respectively. Only the post-crash realizations are exceptional, but these values reflect, rather than
predict, the crash. At the same time, ACTR-VPIN computed from the actual order imbalance

30This “dethroning” of the flash crash is contingent on our “detrended V ” approach. Under the ELO (2012a)
“constant V ” procedure, Figure 3 shows that the maximal VPIN value is attained during the flash crash.

31The subsequent extreme oscillations in the VIX measure arise from rapid fluctuations in the liquidity of the S&P
500 option market in the aftermath of the crash; see Andersen, Bondarenko and Gonzalez-Perez (2011).
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Figure 7: May 6, 2010. The solid vertical lines indicate the timing of the flash crash. In panels with
multiple plots, the order of the plots is blue (first), green (second), and red (third). The normalized volatility
is the ratio of the standard deviation of one-minute price changes for a (centered) 10-minute window over
unconditional volatility σ̄∆P . The normalized volume is the trading volume per one-minute bar divided by
the size of the volume bucket.
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Figure 8: May 6, 2010. MC is computed as the moving average over 10 volume buckets. The solid vertical
lines indicate the timing of the flash crash. MC stands for misclassification at the contract-by-contract level.
In the first panel, the order of the plots is black (first) and gray (second).

measure drops to values well below the sample average. The extreme movement in BKUT
3 -VPIN is

a testament to the volume- and volatility-induced distortions in the time-bar based order imbalance
measures.

To further illustrate this effect, Figure 8 depicts the contract level misclassification rates for
TICR and TICT

3 in the left and BKUT
3 in the right panel. While the TICT

3 classification is poor
throughout, there is a sharp deterioration in precision for BKUT

3 just prior to the crash. This
coincides with the explosive growth in the normalized volatility and volume in Figure 7. As before,
the time bar BVC order imbalance measure responds primarily to concurrent volatility and volume
innovations and becomes increasingly distorted as the market activity rises. As documented previ-
ously, this inflation in the VPIN metric possesses no incremental power for future volatility and is,
in this respect, fully subsumed by the activity variables.

9 Why Are Actual VPIN and Volatility Inversely Correlated?

Our empirical analysis has documented a surprising fact: VPIN computed from actual order im-
balance is significantly negatively correlated with return volatility. This must stem from systematic
features that are unaccounted for by the theory behind the VPIN metric in ELO (2011a, 2012a).
Combined with the lack of incremental predictive power for future volatility, this finding effectively
invalidates VPIN as a useful indicator of impending market stress.

This still leaves the fundamental question of why the VPIN metric based on the actual order im-
balance is inversely related to return volatility unanswered. A thorough analysis of this phenomenon
will take us beyond the scope of this study. Nonetheless, we identify the empirical regularities in
the tick-by-tick data that induce the negative association, thus motivating and facilitating future
work on rationalizing these robust features of the data.

9.1 Trade Size and Clustering in the Trade Direction

The primary determinant behind our ACTR-VPIN metric is, tautologically, the actual order imbal-
ance across the volume buckets. Thus, we need to understand the clustering of active buy and sell
transactions. At the micro level, a basic driver of clustering is the number of contracts exchanged
per transaction.32 When more than one contract is bought or sold, it constitutes a sequence of

32Recall from Section 2.1 that our trade size figures reflect the size of the transactions consummated by the active
trader who effectively demands liquidity. Thus, each transaction may involve multiple counter-parties who provide
liquidity by posting quotes on the limit order book.
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unidirectional trades of individual contracts. Likewise, it matters whether there is a tendency to-
wards continuation rather than reversal of the trade direction, i.e., whether a buy transaction is
more likely to be followed by another buy rather than a sell. These two features, the (average) size
of transactions and the probability of a continuation are, jointly, key determinants of the buy-sell
error diversification. The larger the transactions and the more clustered the trade direction, the
fewer effective buy and sell sequences we have over the bucket, and the larger the imputed order
flow imbalances tend to be.

We explore the trade sequence dynamics empirically, using our actual order imbalance measure.
For each volume bucket, we define the Average Trade Size (ATS), the Average Trade Run (ATR),
i.e., the average number of consecutive trades in the same direction, and the Average Volume Run
(AVR), defined as the average number of consecutive contracts traded in the same direction. These
measures are closely related, as AVR = ATR · ATS. A large value for AVR is tantamount to fewer,
but longer, buy and sell sequences in a bucket. This may occur due to a high trade size, ATS, or
elevated trade continuation, ATR.33

Table 7: Correlations for ATS and ATR

ATS ATR Volume VIX RV

Whole sample ATS 1.00 -0.36 -0.51 -0.79 -0.66
ATR -0.36 1.00 0.17 0.16 -0.01

Second half ATS 1.00 0.48 -0.28 -0.84 -0.72
ATR 0.48 1.00 -0.45 -0.61 -0.66

Notes: This table reports various correlation coefficients computed at one-minute frequency. “Volume” is

the one-day backward trading volume, “RV” is the realized volatility over the preceding day. The correlations

are computed over regular trading hours only.

Table 7 documents a pronounced negative association between the average trade size and return
volatility. In contrast, the trade runs are only mildly correlated with volatility, so the net effect is a
strong negative correlation between volatility and AVR, and thus also ACTR-VPIN and volatility.
These findings are driven by the fact that, as volatility rises the trade size tends to drop, and the
buy and sell sequences alternate more quickly within each bucket.

The mild negative correlation between ATS and ATR tends to stabilize AVR and the order
imbalance measure. However, Panel B documents that, in the second part of our sample, ATR is
positively correlated with ATS, so they reinforce each other in generating variation in AVR and
VPIN. Moreover, since both are now inversely related to volatility, the negative association between
volatility and ACTR-VPIN strengthens. The pronounced negative correlation between trade size
and volatility is also evident from the top panel of Figure 9.

From a purely mechanical perspective, the negative correlation between volatility and average
trade size may reflect either a drop in the proportion of very large trades or a reduction in the
trade size across the full range of the distribution, as volatility rises. To shed light on the issue, we
introduce DTS, the dispersion in the trade size, defined as the standard deviation of the trade size
across a given volume bucket. The bottom panel of Figure 9 shows that DTS is almost perfectly
synchronized with ATS. Hence, when volatility rises, the trade size dispersion declines along with
the trade size itself, indicating that the transactions involve fewer contracts across the board.

Consequently, beyond rationalizing and quantifying the inverse relation between volatility and
trade size, a challenge for future research is to identify the forces behind fluctuations in ATR. One
potential explanation for the large change in the correlation between the first and second half of
the sample is the growth of high-frequency trading (HFT). HFT firms are known to trade very

33The probability of a trade continuation (PC) is directly related to ATR as PC = 1 - 1/ATR.
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Figure 9: The top panel depicts VIX (left scale, blue) and ATS (right scale, green) and the bottom panel
VIX (left scale, blue) and DTS (right scale, green). ATS is the average trade size and DTS is the trade size
dispersion. ATS and DTS are obtained as five-day moving averages.

frequently while operating under strict risk limits on their net positions. If such exposure limits,
more generally, are designed to reflect current risks, they should also be responsive to volatility,
i.e., the position limits should tighten as volatility increases. This may involve less risk taking by
lowering the size of active trades as well as more aggressive trading back towards a net balanced
position in response to “passive” trades that execute against their limit orders. In this manner, an
increasingly volatile setting can induce a drop in the average trade size, a drop in the dispersion of
the trade size, and an elevation of the trading intensity. While this squares well with our empirical
observations, we cannot verify the basic mechanism without access to individual trading accounts.
Hence, it remains largely speculative to associate these developments with the presence of HFT.

9.2 Evidence from the Flash Crash

ELO (2011a) stress that historically high VPIN readings could have served as a warning signal for
the flash crash. As such, our finding of a negative association between actual VPIN and return
volatility in Section 8.3.2 is particularly striking. To understand whether the preceding analysis
also applies to the market dynamics during this uniquely stressful episode, we depict the evolution
of the relevant measures for the day of the flash crash in Figure 10.

The figure reveals that the factors identified above are out in full force. Prior to the crash, from
11:00-13:00, the average trade size is above 15 contracts and the average trade run just below four,
generating alternating sequence of buys and sells of about 60 contracts on average. In the run-up,
during, and in the aftermath of the crash, this number drops precipitously and ends up below
30, inducing a lower order imbalance measure. In reality, of course, the crash is characterized by
selling pressure, as conveyed by Figure 1. However, this manifests itself through a rapid escalation
in volume and only a small imbalance per bucket. The cumulative effect generated by a small
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Figure 10: This figure depicts ATS, ATR, PC, and AVR on May 6, 2010. The measures are computed as
moving averages over 10 volume buckets. The vertical lines indicate the timing of the flash crash.

persistent imbalance is not reflected in the actual VPIN metric, as the offset due to the drop in the
trade size and trade run dominates.

In summary, the VPIN metrics compiled by ELO (2011a, 2012a) attain inflated values on the
day of the flash crash for the wrong reasons. The VPIN measure constructed from the actual order
imbalances dives rather than soars. The VPIN metrics generated from trade classification based on
large bar sizes display the exact opposite correlation with volatility only because they systematically
misclassify the order flow. Moreover, this does not reflect an ability to detect an increase in the
toxic order flow. In fact, the randomized trade classification measure RNDT

3 is, by construction
bereft of information beyond the trading pattern, yet behaves similarly, as documented in Figure 7.
Thus, even in the extreme case of the flash crash, the general features identified above are operative.
The ELO VPIN contains no incremental information relative to the contemporaneously observed
volume and volatility series prior to the crash, and therefore cannot serve any meaningful role as a
supplementary warning signal.

10 Conclusion

This paper seeks to settle a brewing controversy regarding the usefulness of the VPIN metric as a
real-time indicator of order flow toxicity and, by extension, predictor of impending market stress.
We follow the basic construction of VPIN in ELO (2012a), but provide a few modifications to avoid
excessive distortions in the metric due to the pronounced volume trend over our sample. One main
innovation is to construct VPIN from a highly accurate classification scheme for active buys and
sells. This metric provides a benchmark VPIN which can be used to assess the implications of
alternative trade classification techniques. We document a systematic deterioration in the classi-
fication accuracy, as the order flow aggregation increases. ELO (2012a) argue that classification
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via such highly aggregated order flow is necessary to obtain a useful measure of order imbalances
associated with informed trading. In contrast, we find these classification schemes to be driven,
almost mechanically, by the level of market activity, and not by any meaningful notion of order
flow imbalance.

Our findings suggest that the VPIN metric has no useful role in capturing order flow toxicity
for the S&P 500 futures market. Empirical results reaching the opposite conclusion are based on
distorted metrics that induce correlation with volume and volatility, by construction. The predictive
content of these measures for future volatility are subsumed by traditional real-time indicators, such
as realized volatility. In fact, VPIN constructed from actual order imbalances displays a pronounced
negative association with return volatility. The bottom line is that the signed cumulative order
flow, based on accurate trade classification, has an economically meaningful relation to concurrent
price movements. Prices rise (fall) when there is excess active buying (selling). Unfortunately,
applying the nonlinear VPIN transformation to the actual signed order flow generates a metric
that is negatively correlated with future volatility and has no independent explanatory power for
impending market disruptions.

We briefly explore the forces generating the pronounced negative correlation between transaction-
based VPIN and volatility. We find this feature to stem from a strong inverse relation between
volatility and trade size, induced by a downward shift across the entire transaction size distribution.
This is consistent with a deliberate reduction in net positions during times when volatility rises,
thus potentially reflecting an attempt to avoid heightening the risk exposures as markets grow in-
creasingly turbulent. Of course, such strategies should also manifest themselves in a change in the
submission and cancelation of limit orders. In addition, the signed (actual) cumulative trade imbal-
ance and the short-term price trend should also be indicative of emerging tensions in the market.
Future research may find variables capturing the interaction between the price trend, order book
dynamics and trade size to be useful in constructing real-time warning signals for market stress.
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Web Appendix

A TICT -VPIN Algorithm

This appendix reproduces algorithm for VPIN computation based on the Tick-Rule trade clas-
sification (TICT in our classification) as implemented in ELO (2011c) and used in ELO (2011a,
2011b).

1. ALGORITHM FOR COMPUTING THE-VPIN METRIC
In this appendix, we describe the procedure to calculate Volume-Synchronized Probability of Informed Trad-
ing, a measure we called the VPIN informed trading metric. Similar results can be reached with more efficient
algorithms, such as re-using data from previous iterations, performing fewer steps or in a different order, etc.
But we believe the algorithm described below is illustrative of the general idea.

One feature of this algorithm to note is that we classify all trades within each one minute time bar as either
buys or sells using a tick test. We do not have data which directly identifies trades as buyer-initiated or
seller-initiated so some classification procedure is necessary. One could classify each trade separately or one
could classify trades in groups of an alternative size (based on either time or volume). Different schemes
will lead to different levels of VPIN. We have used a variety of schemes and, as one would expect, cutting
the data more finely leads to reduced levels of VPIN– measured trade becomes more balanced when groups
of trades in say a one-minute time bar may be classified differently. However, our focus is on how rare a
particular VPIN is relative to the distribution of VPINs derived from any classification scheme, and this is
unaffected by the classification schemes we have examined (including trade-by-trade as well as groups based
on one-tenth of a bucket). We focus on one minute time bars as this data is less noisy, more widely available
and easier to work with.

1.1. INPUTS

1. Time series of transactions of a particular instrument (Ti, Pi, Vi) :

a. Ti: Time of the trade.

b. Pi: Price at which securities were exchanged.

c. Vi: Volume exchanged.

2. V : Volume size (determined by the user of the formula).

3. n: Sample of volume buckets used in the estimation.

Pi, Vi, V , n are all integer values. Ti is any time translation, in integer or double format, sequentially
increasing as chronological time passes.

1.2. PREPARE EQUAL VOLUME BUCKETS

1. Sort transactions by time ascending: Ti+1 ≥ Ti, ∀i.

2. Expand the number of observations by repeating each observation Pi as many times as Vi. This
generates a total of I =

∑
i Vi observations Pi.

3. Re-index Pi observations, i = 1, . . . , I.

4. Initiate counter: τ = 0.

5. Add one unit to τ .

6. If I < τV , jump to step 10 (there are insufficient observations).

7. ∀i ∈ [(τ − 1)V + 1, τV ] , classify each transaction as buy or sell initiated:

a. A transaction i is a buy if either:

i. Pi > Pi−1, or
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ii. Pi = Pi−1 and the transaction i− 1 was also a buy.

b. Otherwise, the transaction is a sell.

8. Assign to variable V Bτ the number of observations classified as buy in step 7, and the variable V Sτ the
number of observations classified as sell. Note that V = V Bτ + V Sτ .

9. Loop to step 6.

10. Set L = τ − 1 (last bucket is always incomplete or empty, thus it will not be used).

1.3. APPLY VPINs FORMULA

If L ≥ n, there is enough information to compute V PINL =
∑L
τ=L−n+1 |V

S
τ −V

S
τ |∑L

τ=L−n+1(V Sτ +V Sτ )
=

∑L
τ=L−n+1 |V

S
τ −V

S
τ |

nV .

B BKUT -VPIN Algorithm

This appendix reproduces algorithm for VPIN computation based on the Bulk-Volume Classification
(BVC) (BKUT in our classification) as implemented in ELO (2012c, on-line Appendix) and ELO
(2012b).

1. ALGORITHM FOR COMPUTING THE-VPIN METRIC
In this appendix, we describe the procedure to calculate Volume-Synchronized Probability of Informed Trad-
ing, a measure we called the VPIN flow toxicity metric. Similar results can be reached with more efficient
algorithms, such as re-using data from previous iterations, performing fewer steps or in a different order, etc.
But we believe the algorithm described below is illustrative of the general idea.

One feature of this algorithm is that we apply a probabilistic approach to classify the volume exchanged
within each 1-minute time bars. We cannot expect users to have data which unequivocally identifies trades as
buyer-initiated or seller-initiated so some classification procedure is necessary. One could classify each trade
separately or one could classify trades in aggregates of an alternative size (based on either time, number
of trades or volume bars). Different schemes will lead to different levels of VPIN. We have used a variety
of schemes and conclude that data aggregation leads to better flow toxicity estimates than working on raw
transaction data.34 Data granularity has an impact on the magnitude of VPIN levels, however our focus
is on how rare a particular VPIN is relative to the distribution of VPINs derived from any classification
scheme, and this is unaffected by the classification schemes we have examined (including trade-by-trade as
well as groups based on one-tenth of a bucket). We focus on 1-minute time bars as this data is less noisy,
more widely available and easier to work with.

1.1. INPUTS

1. Time series of transactions of a particular instrument (Ti, Pi, Vi) :

a. Ti: Time of the trade.

b. Pi: Price at which securities were exchanged.

c. Vi: Volume exchanged.

2. V : Volume size (determined by the user of the formula).

3. n: Sample of volume buckets used in the estimation.

Pi, Vi, V , n are all integer values. Ti is any time translation, in integer or double format, sequentially
increasing as chronological time passes.

1.2. PREPARE EQUAL VOLUME BUCKETS

1. Sort transactions by time ascending: Ti+1 ≥ Ti, ∀i.
34For an in-depth analysis, please refer to ELO (2012b).
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2. Compute ∆Pi, ∀i.

3. Expand the number of observations by repeating each observation ∆Pi as many times as Vi. This
generates a total of I =

∑
i Vi observations ∆Pi.

4. Re-index ∆Pi observations, i = 1, . . . , I.

5. Initiate counter: τ = 0.

6. Add one unit to τ .

7. If I < τV , jump to step 11 (there are insufficient observations).

8. ∀i ∈ [(τ − 1)V + 1, τV ] , split volume between buy or sell initiated:

a. V Bτ =
∑τV
i=(τ−1)V+1 Z

(
∆Pi
σ∆P

)
b. V Sτ =

∑τV
i=(τ−1)V+1

[
1− Z

(
∆Pi
σ∆P

)]
= V − V Bτ

9. Assign to variable V Bτ the number of observations classified as buy in step 8, and the variable V Sτ the
number of observations classified as sell. Note that V = V Bτ + V Sτ .

10. Loop to step 6.

11. Set L = τ − 1 (last bucket is always incomplete or empty, thus it will not be used).

1.3. APPLY VPINs FORMULA

If L ≥ n, there is enough information to compute V PINL =
∑L
τ=L−n+1 |V

S
τ −V

S
τ |∑L

τ=L−n+1(V Sτ +V Sτ )
=

∑L
τ=L−n+1 |V

S
τ −V

S
τ |

nV .

C Tick-Rule and Bulk-Volume Classification

This appendix reproduces algorithms for Tick-Rule and Bulk-Volume Classification (BVC) as im-
plemented in ELO (2012b).

1. TICK-RULE IMPLEMENTATION

Here we present a simple implementation of the Tick Rule in Python language. More efficient implementations
exist, but we believe the one outlined below is the clearest.

queryCurs is assumed to contain the output of a SQL query such as

queryCurs.execute(’SELECT Price, Volume, VolBuy FROM ’ + tablename + ’

ORDER BY Instrument, Time’)

VolBuy is the field that stores the Volume from traders initiated by an aggressive buyer, as reported by the
Exchange. The tick list variable will accumulate the amount matched over the entire volume. The rest of
the code is self-explanatory.

a =queryCurs.fetchone()

flag, price, tick=1, a[0], [0,0]

while True:

try:

a=queryCurs.fetchone()

# tick rule

if a[0]>price:

flag=1

elif a[0]<price:

flag=2
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if flag==1:

tick[0]+=a[2] #correctly classified as buy

else:

tick[0]+=a[1]-a[2] #correctly classified as sell

tick[1]+=a[1] #volume to be classified

# reset price

price=a[0]

except:

break

2. BULK VOLUME CLASSIFICATION IMPLEMENTATION

An equivalent codification of the BVC algorithm would be as follows. stDev is a real variable storing the
volume weighted Standard Deviation of price changes across bars. The amount matched over the entire
volume is stored in the list variable bulk.

a =queryCurs.fetchone()

price, bulk=a[0], [0,0]

while True:

try:

a=queryCurs.fetchone()

# bulk classification

z=float(a[0]-price)/stDev

z=scipy.stats.norm.cdf(z)

bulk[0]+=min(a[1]*z,a[2]) #correctly classified as buy

bulk[0]+=min(a[1]*(1-z),a[1]-a[2]) #correctly classified as sell

bulk[1]+=a[1] #volume to be classified

# reset price

price=a[0]

except:

break
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