

Fibre optic gyroscope

Students: Evangelisti Chiara, Maglie Francesco

Course: Sensor orientation

28th March 2025

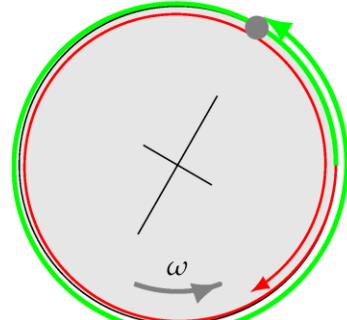
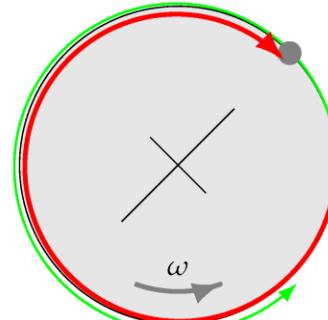
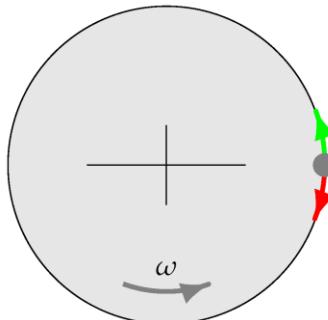
Motivation

Beyond mechanical gyros

- No moving parts → lower maintenance
- High *sensitivity* and *rate capability*
- Wide dynamic range
- Output independent of environmental conditions

Complementing RLG

Lighter, smaller, lower power consumption, longer lifetime, cheaper

Higher sensitivity ($0.1^\circ/h$ vs $0.001^\circ/h$)

Sagnac effect

Core idea

A **phase shift** occurs between two counter-propagating light waves when an optical loop is **rotating**.

Key takeaway:

The phase shift is **directly proportional** to the angular velocity Ω

Emitted **forward** and **backward** beams.
 $t = 0$

Encountered the **backward** beam.
 $t = t_-$

Caught by the **forward** beam.
 $t = t_+$

Clockwise path,

$$t_1 = \frac{2\pi R + \Delta L_+}{c}$$

Anti-clockwise path,

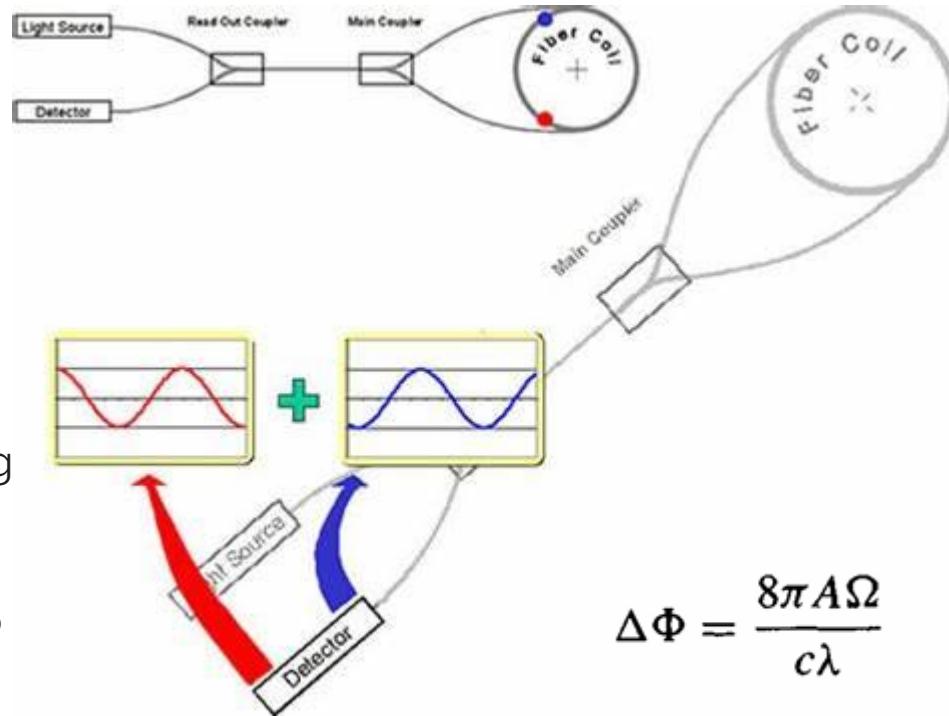
$$t_2 = \frac{2\pi R - \Delta L_-}{c}$$

$$\Delta L_+ = R\Omega t_1$$

$$\Delta L_- = R\Omega t_2$$

$$\Delta L = \frac{4\pi R^2 \Omega}{c}$$

$$\Delta L = \frac{4A\Omega}{c}$$


Elementary components:

- Light source
- Beam splitter
- Fiber coil
- Photo-detector

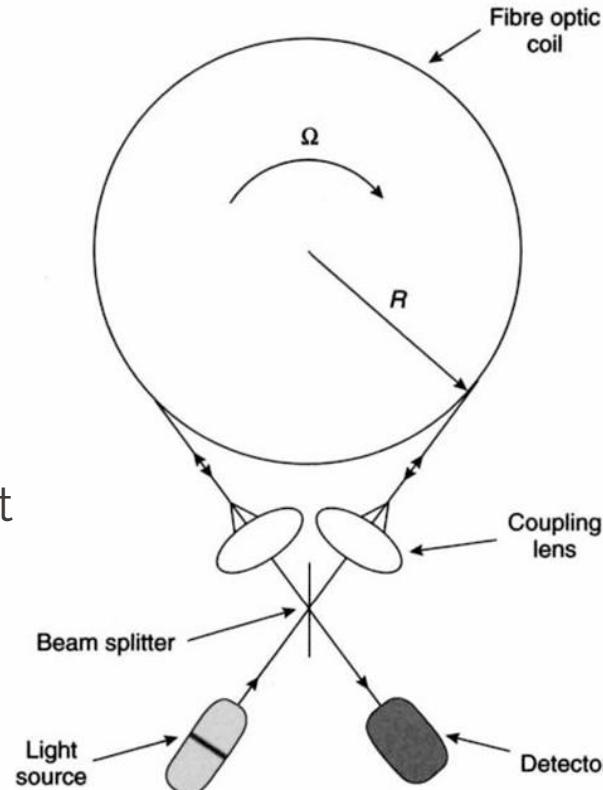
Principle of operation:

1. Light split into two beams, propagating in opposite directions
2. Beam combined to form an interference pattern read by the photo detector

Phase shift → decreased intensity pattern

Open loop operation

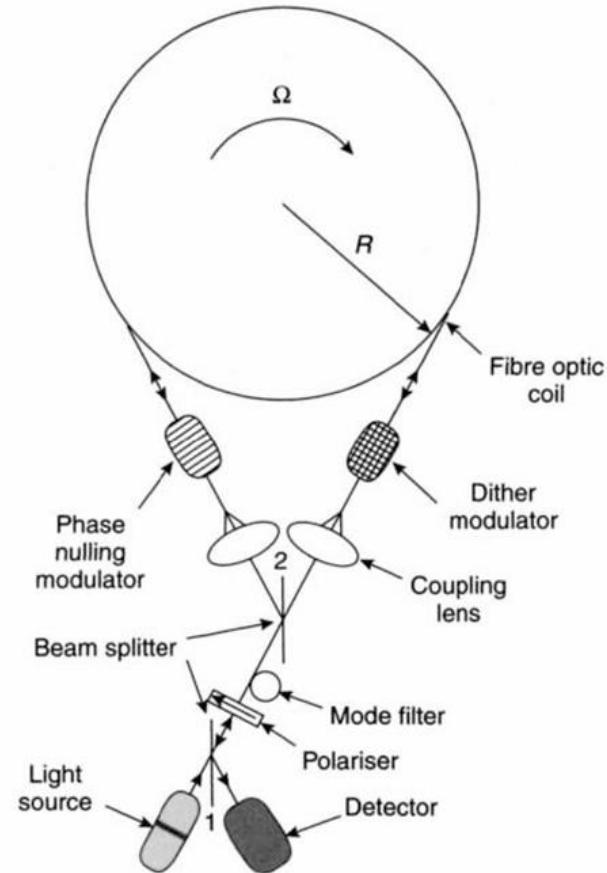
- Measures the phase shift **directly from interference**


$$I = I_0 \cos \left(\frac{8\pi A\Omega}{\lambda c} \right)$$

- Limitations:**

Close to 0, the cosine function is almost flat and non- linear

Difficult to precisely compute Ω



Closed loop operation

- Uses **phase modulation feedback** to nullify the phase shift.
- A phase modulator (PZT-based) introduces a **controlled phase shift** to **counteract** the Sagnac shift.
- The **feedback voltage** required to keep the phase shift at zero is **proportional** to Ω .

Ensures **high sensitivity** at all angular rates

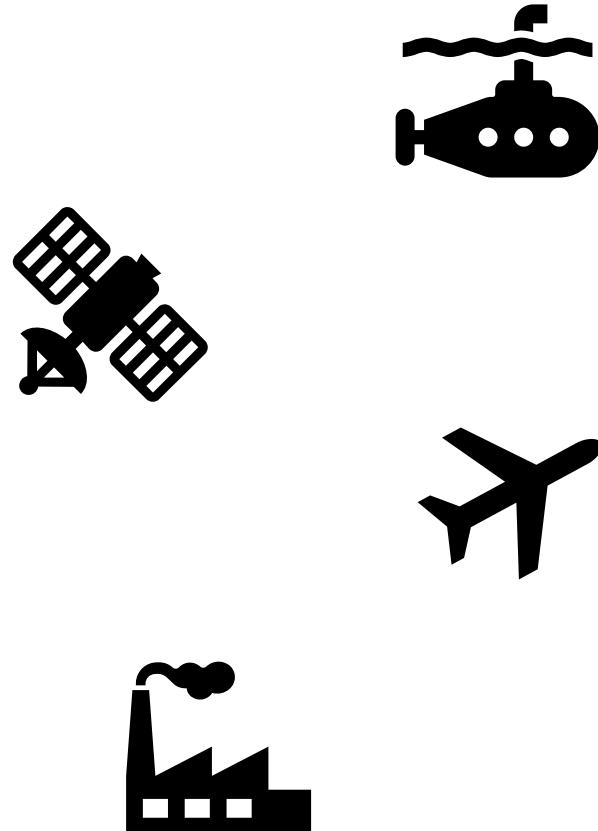
Advantages

- **High accuracy & stability:** minimal drift since no friction due to absence of moving components
- **Long lifespan & higher reliability:** no mechanical degradation, very little maintenance
- **Immunity to electromagnetic interference:** (almost) unaffected by magnetic fields or other environmental interference that can degrade the performance of mechanical or electronic gyroscopes
- **Compact, lightweight, and scalable:** much smaller and lighter than mechanical or ring laser gyroscopes, adapted for different sensitivity levels by adjusting the length and properties of the optical fiber
- **Fast response time & wide dynamic range**

Sources of error

- **Thermal effects**: changes in the refractive index and the physical length of the fibre
- **Strong acceleration and vibration**: can cause a distortion of the coil and the fibre
- **Birefringence**: Optical fibres are not perfectly uniform; variations in stress, temperature, and manufacturing defects
- **Polarization**: If polarization changes unpredictably (due to birefringence or external stress), it distorts the phase shift measurement

but still better performances when compared to mechanical gyros



Performance

Performance characteristics	Values
g-independent bias	0.5-50°/h
g-sensitive	bias $\sim 1 \text{ } ^\circ/\text{h/g}$
Scale-factor errors	0.05-0.5%
Bandwidth	> 100 Hz
Maximum input rate	> 1000°/s

Applications

- Inertial Navigation Systems
- Platform Stabilization
- Space Applications
- Robotics and Autonomous Vehicles
- Industrial Applications

Boreas D70 & D90

Utilizing world-first Digital FOG technology, the Boreas D70 and D90 deliver high-precision GNSS/INS performance with automatic Gyrocompassing, with the D90 offering an ultra-high accuracy INS and a 40% reduction in SWaP-C (Size, Weight, Power, and Cost) compared to standard solutions.

	D70	D90
Roll & Pitch	0.01 °	0.005 °
Heading (Gyrocompass)	0.1 ° seclat	0.01 ° seclat
Bias Instability	0.01 °/hr	0.001 °/hr
Position Accuracy	10 mm	10 mm

From Advanced Navigation

Example of commercial products

Dimensions: 160 x 140 x 115.5 mm
Weight: 2.8 kg

Smaller if less sensitive or mono/double axis

Thank you for listening!

Appendix 1: Additional components in closed loop FOG

POLARIZER	Ensures a single polarization state, eliminating polarization-induced phase errors.
MODE FILTER	Eliminates higher-order modes, reducing phase noise and ensuring stable interference.
DITHER MODULATOR	Prevents lock-in at low angular rates by introducing a small phase oscillation

References

- [1] Titterton, D., & Weston, J. (2005). Strapdown Inertial Navigation Technology (2nd ed.). The Institution of Engineering and Technology
- [2] Merlo, S., Norgia, M., & Donati, S. (2000). Fiber Gyroscope Principles. In Handbook of Fibre Optic Sensing Technology (J. M. López-Higuera, Ed.). John Wiley & Sons.
- [3] Coherent Inc. (n.d.). Fiber Optic Gyroscope. Retrieved from <https://www.coherent.com/news/glossary/fiber-optic-gyroscope>
- [4] Fibercore Ltd. (n.d.). Fiber Optic Gyroscopes. Retrieved from <https://fibercore.humaneticsgroup.com/perspectives/fiber-optic-gyroscopes>
- [5] Electricity & Magnetism. (n.d.). Fiber Optic Gyroscope. Retrieved from <https://www.electricity-magnetism.org/fiber-optic-gyroscope/>