

Accelerometers MEMS: vibrating (Quartz Rate Sensor)

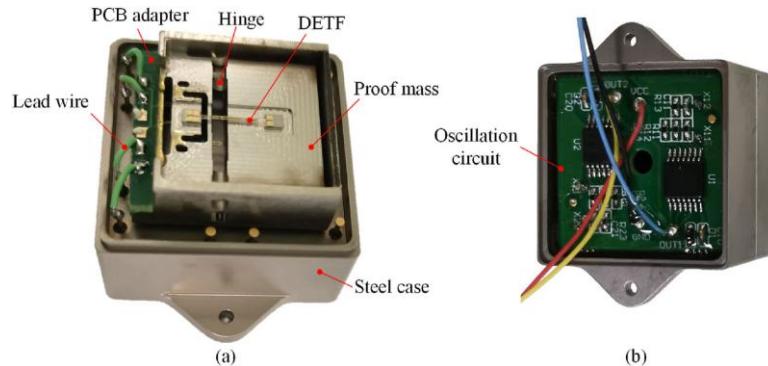
Jeffrey Yu
Rafael Garcia
Bustillos

30 May, 2025

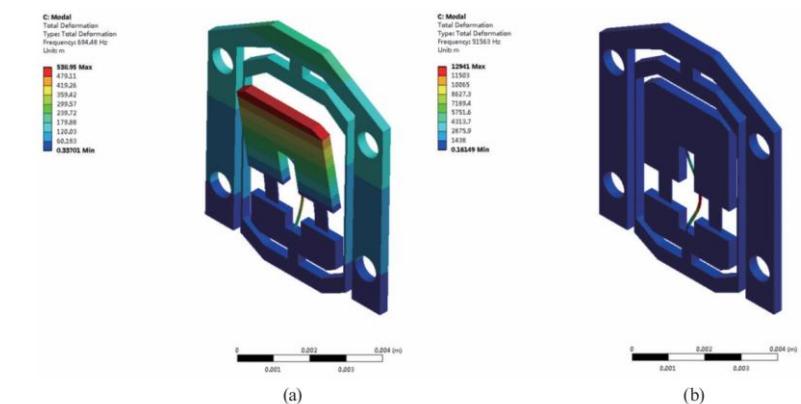
OUTLINE

Introduction

Mechanism


Statistics

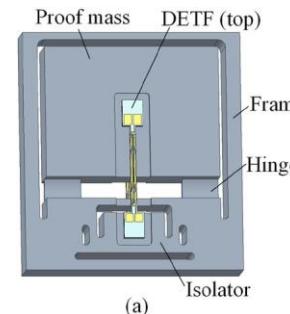
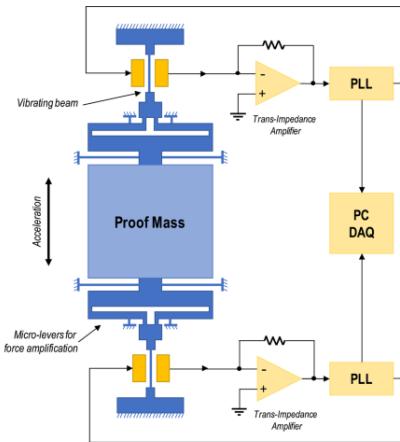
Advantages


Disadvantages

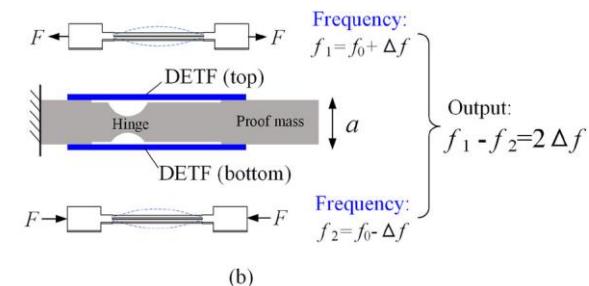
Applications

- The **sensing principle** is based on **monitoring resonant frequency shifts in vibrating beams**
- MEMS (microelectromechanical system) based packaging
 - Silicone and Quartz based systems

~10mm x ~10mm



Sensor under external force

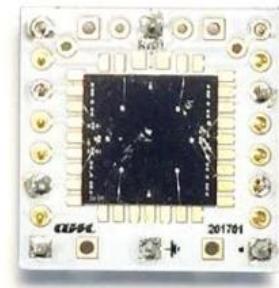
Vibrating Beam Mechanism


- Consists of the basic components:
 - Proof mass
 - Vibrating beam(s)
 - Resonators
 - Lever

$$f = \frac{4.73^2}{2\pi l^2} \sqrt{\frac{EI}{\rho A}} \sqrt{1 + \frac{0.2949l^2}{Etw^2} F}$$

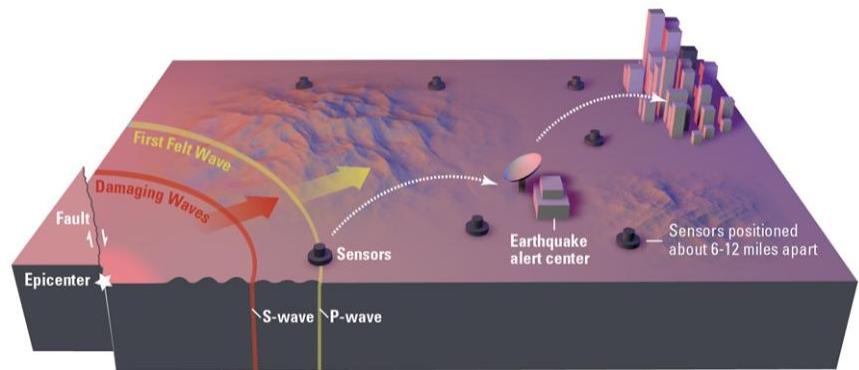
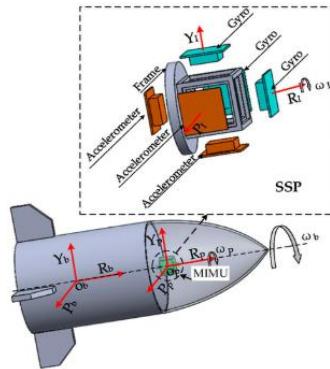
Equation expressing resonant frequency from force.

(a)

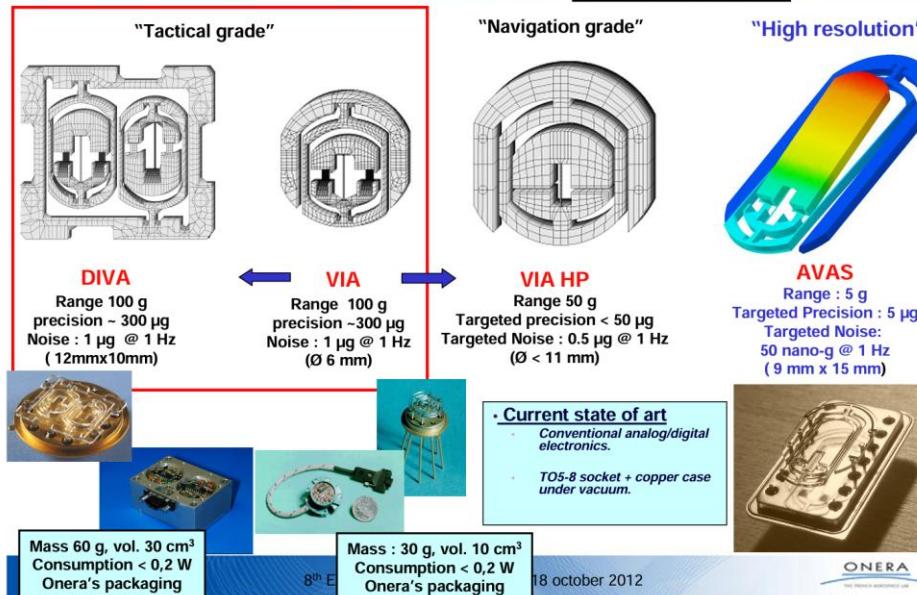

(b)

2 designs of vibrating beam accelerometers

Specifications	
Size	~10mm x ~10mm
Drift	< 0.5 μ g
Sensing range	± 200 g
Bandwidth	~1,000 Hz
Bias stability	~7 ng
Noise floor (Resolution)	~10 ng/ $\sqrt{\text{Hz}}$



Feature	Benefit
Symmetrical Arrangement	<p>Reduces frequency-prone errors caused by:</p> <ol style="list-style-type: none">1. Temperature changes2. Ageing of the quartz3. Anisotropic inertia4. Vibro-pendulous effects5. Bias drift <p>We get long-term precision (Scale factor stability error ~100 ppm) + obtain linear relationship between frequency and acceleration.</p>
High Q-factor resonators	<ul style="list-style-type: none">• Low noise floor• Precise frequency measurement
Large dynamic range	<ul style="list-style-type: none">• Can measure large and subtle vibrations.• Wide dynamic range ensures high resolution for small accelerations
Open Loop	<ul style="list-style-type: none">• Simple control design

- Typically, larger than MEMS accelerometer
 - MEMS accelerometer: μm to mm
 - QVB accelerometer: mm
- Expensive (>\$5,000)
- Not available off the shelf
- Requires careful mechanical construction
 - Small flexible components
 - Chemical etching & wafer bonding can be moderately complex


Applications

- Seismology and gravimetry applications
- Navigation systems for autonomous vehicles
- Aerospace/Space missions
- Military purposes
 - Attitude control of tactile missiles
 - Aircraft inertial navigation

Vibrating beam accelerometers developed at ONERA

Under development

[1] Mustafazade, A., Pandit, M., Zhao, C. *et al.* A vibrating beam MEMS accelerometer for gravity and seismic measurements. *Sci Rep* **10**, 10415(2020). <https://doi.org/10.1038/s41598-020-67046-x>

[2] <https://guidenav.com/quartz-accelerometer-quartz-vibrating-beam-accelerometer/>

[3] Strapdown Inertial navigation technology- D.H Titterton and J.L Weston

[4] T. A. Roessig, R. T. Howe, A. P. Pisano and J. H. Smith, "Surface-micromachined resonant accelerometer," *Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97)*, Chicago, IL, USA, 1997, pp. 859-862 vol.2, doi: 10.1109/SENSOR.1997.635237.

[5] O. Le Traon, D. Janiaud, M. Pernice, S. Masson, S. Muller and J. -Y. Tridera, "A New Quartz Monolithic Differential Vibrating Beam Accelerometer," *2006 IEEE/ION Position, Location, And Navigation Symposium*, Coronado, CA, USA, 2006, pp. 6-15, doi: 10.1109/PLANS.2006.1650581.

[6] T. Yang et al., "A Miniature Quartz Vibrating Beam Accelerometer," *2020 DGON Inertial Sensors and Systems (ISS)*, Braunschweig, Germany, 2020, pp. 1-13, doi: 10.1109/ISS50053.2020.9244880.

[7] Cun Li, Hong Xue, Yulong Zhao; Design, fabrication, and characterization of a high-sensitivity integrated quartz vibrating beam accelerometer. *Rev. Sci. Instrum.* 1 March 2024; 95 (3): 035005. <https://doi.org/10.1063/5.018078>

[8] Jesse Santos, A. N. C. (n.d.). Understanding the fundamentals of Earthquake Signal Sensing Networks. Understanding the Fundamentals of Earthquake Signal Sensing Networks | Analog Devices. <https://www.analog.com/en/resources/analog-dialogue/articles/understanding-the-fundamentals-of-earthquake-signal-sensing-networks.html>