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Random process — an example
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Random processes — general concept

0 Random process:

B Association of random variable(s) with a
deterministic parameter (e.g. time)

B Stochastic collection - values depend on the
outcome of an experiment

B Time is a parameter but the process is ONLY
LOOSELY/stochastic “function” of time

B Discrete or continuous
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Random variable vs. random process

O Probability
B Distribution
B Density

O Characteristics

B Variable

O Moments

O Characteristic function
B Process

O Autocorrelation function (AC)
O Power spectral density (PSD)  TABLE - black board
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Classification of random processes

O By ergodicity

1 T
E(x)=lim— | x(1)dr
(x) 1m2T_J;x()

T

E(*)= lim% [ @ar

—o0

. (1)=tim=L ] (1 )x(s)a
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Classification of random processes

O By stationarity
B Characteristics = const.(t)
B Can be computed from ‘sample’ interval
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Empirical model identification

O Autocorrelation techniques:

B Assumption 1: Underlying process is stationary
Gaussian random process

B Assumption 2: Data (z) sampled at constant At

1 = T
INt)=———)> |z —m)lz_,—m]) ;[=0,1..N=2
q)zz( ) N_l_lg( i )( i+l )
O Time series analysis:
B AR, MA, ARMA, ARIMA, ...
B AV, GMWM, ...
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White noise process

[0 State propagation: _
xk+1 = Wk

O Differential equation: theoretically not differentiable

Autocorrelation
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White noise - example
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Random bias/constant

[0 State propagation:

X =1t
O Differential equation: x(t) =0
@ (T)=m’ O (w)=27m"5(w)

Autocorrelation PSD
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Shaped white noise

O Amplitude:

B Gaussian probability density -> results of number of
independent random variables.

O Correlation in time (frequency)
B White noise: not correlated in time

[ | : white noise put through a small linear
system can duplicate virtually any form of time-
correlated noise.

O Linear transformation of white noise = Shaping
Filter
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Random walk

O State propagation: X =x +w
O Differential equation: x(t) = W(t)

O Not a stationary process!
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1st order Gauss-Markov process

O State propagation: X = e_ﬂAtxk + W,
O Differential equation: X(t):—ﬁx(t)+w(t)
2
s =
wxx (T) = 02e (I)xx (CU) = a)z =S /3)2
——-I———‘cz(noisevar) ______202
B
! .! = t (@)
1/B=correlation time (T) PSD
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1st 0. Gauss-Markov process - example

1st ORDER GAUSS-MARKOV, correl time=200.000000
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Other random processes

0 Random ramp

O Auto-Regressive (AR) process

O Moving-Average (MA) process

O Auto-Regressive Moving Average (ARMA)
=
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Power spectrum (or PSD)

O PSD is the discrete Fourier transform (DFT) of
AC:

D (0)= D ¢ (1)
T=—c0
O If we have a signal of length N:
B Sample AC (AC estimate):
N-1-t

= 1
9.(D=— S x x;t=01,.,N-1

n=0
B Periodogram spectrum (PSD estimate)

& (@)=Y (1)

T=—co
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Note about windowing in DFT

O Time windowing (e.g. rectangular window)

length-L
i ¢/ rectangular
window

012 -
}«— L samples —] fe— L samples —
fe— (L-1)T sec —»| je—— LT sec —|

B Original and time-windowed spectrum:
d(w)= Z x(nT)e ™"

L-1 oo
D (w)= le(nT)e_z”"“’”T = 2 x, (n)e™"
n=0 N=—o0
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Note about windowing in DFT

O Windowing has two (side) effects:
B Reduction of the frequency resolution of the computed

spectrum :

B Frequency leakage
O Introduction of high-frequency components into the
spectrum

O Caused by the sharp clipping of the signal at the left &
right sides of the rectangular window

sinfwL /2
|W(a))‘ - ¥
sin(w / 2)
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Note about windowing in DFT

O Magnitude spectrum of rectangular window:

T relative

R=13 dB = sidelobe

.( Pf l- 9/27/13 Sensor Orientaion 24/12
ECOLE POLYTECHNIQUE
FEDERALE D LAUSANNE

10



Common Random Processes ..o
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EI‘I‘OI‘ MOdElS == Discrete Case (distributed)
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Allan variance (AV) - D. Allan 1966

O Alternative measure of variability

O = “variations of sample averages of different

length 7"
— 1 7—1 _ _ 5
Y@=3%, oim=E[(Xo-F )]

O Greenhall (1991) estimator of AV

1 S 2
AD = _
O = (x T)—Xx T )
=(0) 2(N—27+1),§‘2T () =%.(7)
x k=1, ,N
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Process identification in AV plots

Typical Slopes in Allan Variance Curve
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