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=Pl Welcome to the SO course!

This translates into three rough big areas
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B Sensor orientation

3. Sensor fusion
* How to formulate models for sensor fusion? i
 How to implement it in optimization and use it for mapping? ' -
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=L Sensor orientation — main topics
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This translates into three rough big areas

1. Fundamentals

* How to characterize sensor noise
+ How to transform from the sensed signals to navigation frame? You need the frames

2. Position, velocity, attitude (navigation)

» How to formulate navigation equation in different frames?
» How to resolve them numerically?

_ You need the navigation
3. Sensor fusion quantities and the noise
* How to formulate models for sensor fusion? properties
» How to implement it in optimization and use it for mapping?

B Sensor orientation
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B Sensor orientation

Cockpit view of SO course’s topics

How to reach integrated sensor orientation?

Noise
characterization
Sensors
(inertial + GPS)
Stochastic
Processes
St{ﬁgg%‘f’” o Navigation
Navigation Frames
Extended

Sensor Fusion

Kalman Filter

Estimation
principle - RLS

J. Skaloud, ESO &



=PrL  Similarities RLS vs. Kalman Filter
(2.2.3)

J. Skaloud, ESO o

Recursive Least Square (RLS) Discrete Kalman Filter (KF)
(2.28-_2.30) gain, state, (2.32-_2.34) gain, state,
covariance: covariance:

K; = P] 1 HT (Hj P;_1 HT + R ) ! Ky = PkH (HkﬁkHT + Rk) 1

}A(j = X] 1 —|— K (Z H XJ 1) Xk = Xk + Kk (Zk — Hkxk)

P, = (I- H,))P,_ P, = (I—Kka)Pk

Time update (prediction)

Xpy1 = PrpXp

Pk+1 — @kqu) system / sensor
noise !

rientation
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B Sensor orientation

Cockpit view of SO course’s topics

How to reach integrated sensor orientation?

~
Noise
characterization
Sensors
(mertlal + GPS) > today
Stochastic
Processes
-/
St{ggg%\;\m o Navigation
Navigation Frames
Extended
Kalman Filter
Estimation

principle - RLS

J. Skaloud, ESO  ~
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B Sensor orientation

Stochastic Processes — agenda (Ch 5)

O Introduction
B Model identification
B Concept & classification

O Process characteristics
B Auto-correlation (AC)
B Power Spectral Density (PSD)
B Allan Variance (AV) / Wavelet Variance (WV)

O The very useful processes
B White Noise
B Random bias
B Random walk
|

Auto-regressive white noise (Gauss-Markov)

0

J. Skaloud, ESO
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[0 Stochastic model
B Prerequisite for sensor fusion (e.g. Kalman filtering)

B Two elements needed:
O  structure (type of parameters)
O  Values of parameter

[0 How to identify?

prior knowledge or reference — error signal

empirical

DATA Y:—’

stochastic model

Noise model (process) identification

MODEL (structure + parameters)

identification

\ 4

other input —

(state-space)

estimaton | ESTIMATE

J. Skaloud, ESO ©
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B Sensor orientation

Random process — an example
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EPFL  Random processes — general concept

J. Skaloud, ESO

I 1 1 1 1 1 | )
600 800 1000 1200 1400 1600 1800 2000

Association of random variable(s) with a deterministic parameter (e.g.
time)

Stochastic collection — values depend on the outcome of an experiment

Time is a parameter, but the process is only LOOSELY (stochastic)
function of time

Can be either discrete or continuous

B Sensor orientation
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Stochastic Processes — agenda (Ch 5)

J. Skaloud, ESO

O Introduction
B Model identification
B Concept & classification

[0 Process characteristics
B Auto-correlation (AC)
B Power Spectral Density (PSD)
B Allan Variance (AV) / Wavelet Variance (WV)

O The very useful processes
B White Noise
B Random bias
B Random walk
B Auto-regressive white noise (Gauss-Markov)

B Sensor orientation



=Pl Connections to random variables

Random variable Random process
Probability density Probability density
f(z) f(y) flai i), f(@),t5) — fo(wi,25)
Expectation Expectatigg
E(x)=px = [ xf(z)dx px(t) = | ¢ f(2) doy

E(y) = py = _70 y f(y) dy

-
£

J. Skaloud, ESO
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=Pl Connections to random variables

J. Skaloud, ESO

Random variable Random process
Probability density Probability density
f(z) f(y) flai i), f(@),t5) — fo(wi,25)
Expectation Expectatioog
E(x)=px = [ xf(z)dx px(t) = | @ f(2) dwy
E(y) = py = _f y fy) dy Joint expectation — autocovariance
Covariance acovy (t1,t2) f f T1 — pix, ) (T2 — px,) f(21, 22) doy dog

— o0 —O0

cov(x,y) = E (v — px)(y — py))

rientation
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=Pl Connections to random variables

J. Skaloud, ESO

Random variable Random process
Probability density Probability density
f(z) f(y) flit), fxj,t5) — folws, )
Expectation Expeotatioog
E(x)=px = [ xf(z)dx px(t) = | @ f(2) dwy
E(y) = py = _f y fy) dy Joint expectation — autocovariance
Covariance acovy (t1,t2) f f T1 — pix, ) (T2 — px,) f(21, 22) doy dog
cov(x,y) = E|(z — px)(y — py)] T
Variance Variance

rientation

var(z) = cov(z,z) = E [(x — px)?]  acovx (T =0) = p..(0) = 0%



=PFL Other characteristics

Random variable Random process
Probability density Probability density
f(z) f(@iyti), f(zg,t5) — fa(zi, zy)
Fourier transform of Power spectral density — PSD
probability density (Fourier transform of
(characteristic function) autocovariance function )

gw) =E[e77]

70 om0y Oy (w) = ?gom(r)e_w”wTdT
= e 7T f(x)dx — 00

rientation
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B Sensor orientation

Classification of random processes

>

O By ergodicity* x 4

v
v

T

lT
E(x*)=1lim— | x*(Hdt
(x?) lsz_JT (t)

t—>o0

* Process characteristics computed over one long process are expected to be
same as those computed from many processes sampled at a specific time

18/L2

J. Skaloud, ESO



Classification of random processes

By stationarity
Process characteristics are constant in time (t)
i.e. can be computed from a "sample interval” (rather than absolute time)

rientation
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Autocorrelation function (AC)

J. Skaloud, ESO

Autocorrelation function:

e Assumption 1: Underlying process is stationary
Gaussian random process

e Assumption 2: Data (z) are sampled at constant At
1 N
m=—)> z.
N—-I

0. (1at)= N—11—1;(Zi —m)(z,,—m) ;1=0,1..N -2

Other time series (or frequency) analysis (later):

B Sensor orientation
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Stochastic Processes — agenda (Ch 5)

J. Skaloud, ESO

O Introduction
B Model identification
B Concept & classification

O Process characteristics
B Auto-correlation (AC)
B Power Spectral Density (PSD)
B Allan Variance (AV) / Wavelet Variance (WV)

O The very useful processes
B White Noise
B Random bias
B Random walk
B Auto-regressive white noise (Gauss-Markov)

B Sensor orientation
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White noise - example

J. Skaloud, ESO

process
o
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B Sensor orientation
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Random bias (constant)

J. Skaloud, ESO

[0 State propagation: — v —
Propas Xy =X =M
[0 Differential equation: X(t) =0
o (7)=m’ ®  (0)=27m’5 (o)

I

Autocorrelation PSD



="l Random walk
O Differential equation: X(l‘) — W(t) .

X ., =X, +w

O State propagation: k+1 k k

O NOT a stationary process!

RANDOM WALK
50

A m,/w \(\'\J"M\J
n ’a‘v‘\. ’ ff\\l\_l,/\ ‘ fA ‘K\M‘LW
AT T
W) FAl

hvl

process

\ r‘

0 | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

B Sensor orientation
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=PFL  1st order Gauss-Markov process - example

J. Skaloud, ESO

1st ORDER GAUSS-MARKOV, correl time=200.000000

process

-40 | | | | 1 | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

autocorr

B Sensor orientation



EPFL 1st order Gauss-Markov process

O Differential equation: x(t) = —,Bx(t) T W(t)

X, =e™x, +w
O State propagation: k+1 k k

Ll 280
gpxx (T) = Gze IB| | (I)Xx ((U) - a)zﬁ;‘ ﬁ2
- -L - - 62 (noise var) | 20

B

tat
v
-+

N
)]

J. Skaloud, ESO

1/B=correlation time (T) PSD
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=L Other random processes

J. Skaloud, ESO

Random ramp

Quantization noise

Periodic (sinusoid)

Auto-Regressive (AR) process
Moving-Average (MA) process
Auto-Regressive Moving Average (ARMA)

B Sensor orientation
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Stochastic Processes — agenda (Ch 5)

J. Skaloud, ESO

O Introduction
B Model identification
B Concept & classification

0 Process characteristics — estimation &
B Auto-correlation (AC)
B Power Spectral Density (PSD)
B Allan Variance (AV) / Wavelet Variance (WV)

O The very useful processes
B White Noise
B Random bias
B Random walk
B Auto-regressive white noise (Gauss-Markov)

B Sensor orientation
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B Sensor orientation

Error
Models —
Discrete
Case ...

STATE DIFFERENCE

RELATION of DISCRETE

. EQUATION QLRICK DGR a, to CONTINUOUS q
Xy v
RANDOM "k+1= xk Qk=0
CONSTANT
*k_| TIME
DELAY
3
Vi + Xk e
x R TRR ] %
RANDOM ke1” 7k k Q* q(tkwl -(k)
WALK % | TimE
DELAY
*2, + e
sk teer " Y
“Neor? XN g tidx2 *
RANDOM Pk N T iy q,0
RAMP TIME TIME
X2, =%, DELAY DELAY
k+1 k
g, T,
wk + xk*l‘
EXPONENTIALLY At +
ce-Bltiaty . [ -23‘%..1"&_;'
CORRELATED “kere Yk A28 e
Bt,,, -t Xk | TIME
RANDOM VARIABLE e Pltina ) BL

o

After Gelb, A. (1974)

W
=

J. Skaloud, ESO
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B Sensor orientation

Common
Random
Processes

(distributed)

PROCESS | AUTOCORRELATION FUNCTION POWER SPECTRAL DENSITY
WHITE )
NOISE
k3 w
PyxlT) = P 8IT) Dy = Do
20%/8,
MARKOV
PROCESS /_—X
m=0 - - .
2 'ﬁ 2ﬁ10
#xl) = 0% 1 1 " g2
At
SINUSOID \U U T - wy w; w
.r 2 .
¢xx(7):‘A2_ cos w) T ¢XX’ 2A [S(W-w”oS(w w,)]
RANDOM m2
BIAS

¢xx (t) = m2

Poyx * 2wm? 8 (w)

After Gelb, A. (1974)

[0))
N

J. Skaloud, ESO
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Autocorrelation function (AC) - estimation

J. Skaloud, ESO

Autocorrelation function:

e Assumption 1: Underlying process is stationary
Gaussian random process

e Assumption 2: Data (z) are sampled at constant At
1 N
m=—)> z.
N—-I

o_(IAr)= N_II_IZ(ZZ. —m)(z,,—m) ;1=0,1..N -2

1=

Other time series (or frequency) analysis (later):

B Sensor orientation



" Autocorrelation function (AC) - estimation

rientation

MATLAB
xcorr(...,SCALEOPT)
- normalizes the correlation according to SCALEOPT:

1. 'biased' - scales the raw cross-correlation by 1/M (M=vec length).
2. 'unbiased' - scales the raw correlation by 1/(M-abs(lags)).
3. 'normalized' or 'coeff' - normalizes the sequence so that the

auto-correlations at zero lag are
identically 1.0.
4, 'none’ - no scaling (this is the default).

w
H

J. Skaloud, ESO



B Sensor orientation
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Power spectrum (or PSD)

J. Skaloud, ESO

O PSD is the Discrete Fourier Transform (DFT) of AC:
@ (0)= D 0. ()"

T=—00

O If we have a signal of length N:
B Sample AC (AC estimate):
1 N-l-1

NG — Y x x; t=01,..,N-1
n=0
B Periodogram spectrum (PSD estimate)

b (@)=Y ¢_(1)e

T=—00




B Sensor orientation

General note about windowing in DFT

O Time windowing -rectangular window for finite data

------------------------------------ . length-L
i/ rectangular E
i window

x(nT)=¢, (7)

g19 === Il i g1 =1+ Il "
|«— L samples —| l«— L samples —
le— (L-1)T sec —+ le— LT sec —

B Original and time-windowed spectrum:

O(w) = i x(nT)e ™"

L-1 oo
O (w)= ZxL(nT)e_ja’”T = 2 x, (n)e ™"
n=0 N=—o0

(%)
)]

J. Skaloud, ESO
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B Sensor orientation

General note about
windowing in DFT

O Magnitude spectrum of
rectangular window:

mainlobe
\

sidelobes causing Z»

— >

relative

R=13 dB = sidelobe

frequency leakage N

level

W)=

sin(wL /2)|

sin(@ /2) |

(%))
N

J. Skaloud, ESO
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B Sensor orientation

General note about
windowing in DFT

Reduces sidelobes

Reduces leakage

Narrows the main lobe

Some windowing function:

Welch
Hamming
Hanning
Kaiser

sidelobes causing

frequency leakage N\

Rectangular window

Fourier transform

samples

-2n 0 2n 4n

L

L

L

Hamming window (a = 0.53836)

samples

Fourier transform

(o) T

o) T

-130
-40-30-20-10 0 10 20 30 40
bins

bins

-130
-40-30-20-10 0 10 20 30 40

decibels

relative
R=13 dB = sidelobe

level

Welch window

Fourier transform

samples

T

-130
-40-30-20-10 0 10 20 30 40

bins

W
-]

J. Skaloud, ESO
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Stochastic Processes — agenda (Ch 5)

J. Skaloud, ESO

O Introduction
B Model identification
B Concept & classification

[0 Process characteristics — estimation & advanced material
B Auto-correlation (AC)
B Power Spectral Density (PSD)
B Allan Variance (AV) / Wavelet Variance (WV)

O The very useful processes

White Noise

Random bias

Random walk

Auto-regressive white noise (Gauss-Markov)

B Sensor orientation
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Allan variance (AV) - D. Allan 1966

Alternative measure of variability

= “variations of sample averages of different lengthT”

)_(k(T):%ZXk—j G}(T):%E[()_(k(f)_)_(k—f(f))z}

Greenhall (1991) estimator of AV

6,(1)= 2N - 2’L'+1)lgzr( D% @)
x k=1,...,N

k

H
o

J. Skaloud, ESO
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B Sensor orientation

Allan variance — with sample overlap

Output

Concept of AV with overlapping samples

T, (Stride)

«——T=3T)—>

m=3

» Overlapping Samples

source: Freescale Semiconductor, Application note #AN5087, Rev. 0,2/2015

H
[y

J. Skaloud, ESO



"= Process identification in AV plots
1 Remarks:
0

Forward mapping:
« Easy
« IEEE standard

Quantization Noise Rate Ramp
Slope = -1 Slope =1

variance or deviation
(unit?) or (unit)
o

0 r ] ‘Inverse:
. « not always
White Noise Rate Random Walk y
Slope = -0.5 Slope = 0.5 * nota
Bias Instability standard
Si =0
y ope - Use GMWM ...
10 |_2 I 0 2
10 10 10

Averaging Time (s)

B Sensor orientation



=L Allan deviation — process signature

Complex error structure -> parameter estimation difficult
r 3

o(7)

Correlated
Noise Rate Random
Walk + 1
sinugoidal
- 1/2
— + 1/2

Quantization
Noise

Angle Random Bias

Walk Instability
I | 1 | | 7T

AV of a “static” gyro, source: scientific publication

B Sensor orientation

H
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B Sensor orientation
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Latent time series models estimation methods

J. Skaloud, ESO

Transformation into a “non-latent” model (e.g. ARMA)
®* Does not work in general
* Difficult to “inverse”

“Graphical” / lin. regression method
* Limited to a few possible models
* Not consistent in general and “inefficient”

Maximum Likelihood Estimation (MLE) / EM algorithm
*  Computationally intensive, laborious for new models
* Diverges with “complex” models

General Method of Wavelet Moment (GMWM)
* Rigorous, precise and efficient (from students in this course)
* Released as a freely available package in “R” (v1. 2015)
* Released as a GUI online tool (v1. 2018)
* http://ggmwm.smac-group.com/



https://smac-group.com/software_packages
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Simple example 1

J. Skaloud, ESO

[0 Stochastic process: WN + ramp/drift

0  Simple linear regression
- / model:
:: T T T T T yt : a)t + 8t

e e, ~N(0.0°)
WWMWWW O  MLE is perfectly fine

O What about if we add AR(1)
(e.g. GM) process?

rientation




=PrL

B Sensor orientation

Simple example 2

[0 Stochastic process: WN + ramp/drift + AR1(GM1)

Drift

o

]

o]

]

]

ST T T T T T
0 200 401 00 800 1000

‘White Noise

AR(1)

VLf\ WM MMJ-\M
¥

w A\ / WJ \ [

Drift + White Noise + AR(1)

T
1000

O

Not a linear regression model but
state-space model

Computing the likelihood is not an easy
task (e.g. Kalman filter)

Practice: MLE (in fact EM-KF) fails

H
)]

J. Skaloud, ESO



EPF

B Sensor orientation

L

H
N

GMWM idea

J. Skaloud, ESO

Fact: AV is a special case of the wavelet variance (WV)
e AV=2*"WV (for Haar wavelet)

Match Wavelet Variances
*  Exploit the known relation between a model Band its “WV signature” v(0) R

* Inverse the mapping by minimizing the discrepancy between WV from data: v and v(0)
from model:

Solution:

6= argmin (V- v(0)) Q(v- v(6))

O ®



=PrL
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Example

[0 Composite stochastic process: WN + GM1 + RAMP

Allan Variance representation

z o
se T o WN
B - |-~ GM
—e— RR
1 —=— WN+GM+RR
- S
¢
o I 2
o —_
B )
o o
) o
N s 3 2
T + 4 0
] S N
b > - N\ /
(=] a
3 g N .
o~ Z '\ /
= = $ n—a
Q NS =
o ‘é 7 \!‘-;l \.  }
.><A N, /
A" Ve N, "
© 2
>:,, | A/ \. ®
~ o / A
o
g | > A \\. \A
o - 1 1 — 1 T
| 5 10 50 500 5000 50000
0 2x10 4x10° 6x 10 8x 10 10°
Scale t©

H
®
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EPFL  Empirical Wavelet Variance (= 2 x AV)
of the example

J. Skaloud, ESO

102 -

10t -

100

Wayvelet Variance v

1071

1072

B Sensor orientation
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=Prl - GMWM estimation results i
o)
Ll
C(,;C');'
102 -
A
D)
)
i
ay]
'% 10! -
=
)
<
o 109
3
=
107t
= DU I G R
——  CI(v,0.95)
102 Implied WV v(8)

B Sensor orientation



=PrL - GMWM estimation results

O Estimated parameters

)

Bo V) IC (6, 0.95)
o4n  1.00 1.00 (0.99; 1.01)
0%,  0.60 0.58 (0.55; 0.61)

B 1072 1.07-1072 (0.99-1072;1.12-1072)
w 5-107° 4.87-107° (4.67-107°;5.07-107°)

O Goodness of fit test:
B p-value ~ 1 (i.e. we cannot reject the proposed model)

rientation
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