
Sensor 
Orientation 
– Random 
Processes

Jan SKALOUD

EPFL, spring semester 
2024



Welcome to the SO course!

This translates into three rough big areas

1. Fundamentals 
• How to characterize sensor noise
• How to transform from the sensed signals to navigation frame?

2. Position, velocity, attitude (navigation)
• How to formulate navigation equation in different frames?
• How to resolve them numerically? 

3. Sensor fusion 
• How to formulate models for sensor fusion? 
• How to implement it in optimization and use it for mapping? 
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IMU

Modeling examples 1-D Second order system

1-D Accelerometer on Earth

Relation between the accelerometer (random) error Áa, velocity error ”v and position
error ”p with respect to platform tilt Ï. The accelerometer error is coupled with
platform tilt error Ï via gravity g , while the tilt Ï is related to velocity error via Earth
radius R and possibly gyro error Ág .
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Sensor orientation – main topics

This translates into three rough big areas

1. Fundamentals 
• How to characterize sensor noise
• How to transform from the sensed signals to navigation frame? 

2. Position, velocity, attitude (navigation)
• How to formulate navigation equation in different frames?
• How to resolve them numerically? 

3. Sensor fusion 
• How to formulate models for sensor fusion? 
• How to implement it in optimization and use it for mapping?
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You need the frames

You need the navigation 
quantities and the noise 
properties



Cockpit view of SO course’s topics 
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Sensor Fusion

Sensors
(inertial + GPS)

Noise 
characterization

Stochastic 
Processes

Extended 
Kalman Filter

Strapdown 
Inertial 

Navigation
Navigation 

Frames

Estimation 
principle - RLS

How to reach integrated sensor orientation? 



Similarities RLS vs. Kalman Filter 
(2.2.3) 

Recursive Least Square (RLS)
(2.28-2.30) gain, state, 
covariance:  

Discrete Kalman Filter (KF)
(2.32-2.34) gain, state, 
covariance: 

Time update (prediction) 
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Kj = Pj−1 H
T

j

(

Hj Pj−1 H
T

j +Rj

)

−1

x̂j = x̂j−1 +Kj (zj −Hj x̂j−1)
Pj = (I−Kj Hj)Pj−1

Kk = P̃kH
T

k

(

HkP̃kH
T

k
+Rk

)

−1

x̂k = x̃k +Kk (zk −Hkx̃k)

Pk = (I−KkHk) P̃k

x̃k+1 = Φkx̂k

P̃k+1 = ΦkPkΦ
T
k
+Qk

system / sensor
noise !



Cockpit view of SO course’s topics 
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Sensor Fusion

Sensors
(inertial + GPS)

Noise 
characterization

Stochastic 
Processes

Extended 
Kalman Filter

Strapdown 
Inertial 

Navigation
Navigation 

Frames

Estimation 
principle - RLS

How to reach integrated sensor orientation? 

today



Stochastic Processes – agenda (Ch 5)
o Introduction

n Model identification
n Concept & classification

o Process characteristics
n Auto-correlation (AC)
n Power Spectral Density (PSD)
n Allan Variance (AV) / Wavelet Variance (WV)

o The very useful processes 
n White Noise
n Random bias
n Random walk
n Auto-regressive white noise (Gauss-Markov)
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9Noise model (process) identification

empirical
DATA

prior knowledge or reference → error signal

stochastic model 
identification 

MODEL (structure + parameters)

(state-space)
estimation ESTIMATE

other input

o Stochastic model 
n Prerequisite for sensor fusion (e.g. Kalman filtering) 
n Two elements needed:

o structure (type of parameters) 
o Values of parameter

o How to identify?   
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11Random processes – general concept

Association of random variable(s) with a deterministic parameter (e.g. 
time)

Stochastic collection – values depend on the outcome of an experiment

Time is a parameter, but the process is only LOOSELY (stochastic)  
function of time

Can be either discrete or continuous



Stochastic Processes – agenda (Ch 5)
o Introduction

n Model identification
n Concept & classification

o Process characteristics
n Auto-correlation (AC)
n Power Spectral Density (PSD)
n Allan Variance (AV) / Wavelet Variance (WV)

o The very useful processes 
n White Noise
n Random bias
n Random walk
n Auto-regressive white noise (Gauss-Markov)
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Connections to random variables

Probability density 

Expectation 

Probability density 

Expectation
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f(x) f(xi, ti), f(xj , tj) −→ f2(xi, xj)

µX(t) =
∞∫

−∞

xt f(xt) dxtE(x) = µX =
∞∫

−∞

x f(x) dx

f(y)

E(y) = µY =
∞∫

−∞

y f(y) dy

Random variable Random process



Connections to random variables

Probability density 

Expectation 

Covariance

Probability density 

Expectation

Joint expectation – autocovariance
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f(x)

µX(t) =
∞∫

−∞

xt f(xt) dxtE(x) = µX =
∞∫

−∞

x f(x) dx

f(y)

cov(x, y) = E [(x− µX)(y − µY )]

acovX(t1, t2) =
∞∫

−∞

∞∫

−∞

(x1 − µX1
)(x2 − µX2

)f(x1, x2) dx1 dx2

E(y) = µY =
∞∫

−∞

y f(y) dy

f(xi, ti), f(xj , tj) −→ f2(xi, xj)

Random variable Random process



Connections to random variables

Probability density 

Expectation 

Covariance

Variance

Probability density 

Expectation

Joint expectation – autocovariance

Variance
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f(x)

µX(t) =
∞∫

−∞

xt f(xt) dxtE(x) = µX =
∞∫

−∞

x f(x) dx

f(y)

cov(x, y) = E [(x− µX)(y − µY )]

acovX(t1, t2) =
∞∫

−∞

∞∫

−∞

(x1 − µX1
)(x2 − µX2

)f(x1, x2) dx1 dx2

E(y) = µY =
∞∫

−∞

y f(y) dy

f(xi, ti), f(xj , tj) −→ f2(xi, xj)

var(x) = cov(x, x) = E
[

(x− µX)2
]

acovX(τ = 0) = ϕxx(0) = σ
2

X

Random variable Random process



Other characteristics  

Probability density 

Fourier transform of 
probability density 
(characteristic function)  

Probability density 

Power spectral density – PSD
(Fourier transform of 
autocovariance function ) 
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f(x)

ΦX(ω) =
∞∫

−∞

ϕxx(τ) e
−i 2πω τdτ

g(ω) = E
[

e−iωx
]

=
∞
∫

−∞

e−iωx f(x) dx

f(xi, ti), f(xj , tj) −→ f2(xi, xj)

Random variable Random process
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o By ergodicity*

t

x

=

t

x

  

E(x) = lim 1
2T

t→∞

x(t)dt
−T

T

∫

E(x2 ) = lim 1
2T

t→∞

x2(t)dt
−T

T

∫

ϕxx t1,t2( ) = lim 1
2T

t→∞

x t1( )x t2( )dt
−T

T

∫

* Process characteristics computed over one long process are expected to be 
same as those computed from many processes sampled at a specific time 

18/L2
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By stationarity
• Process characteristics are constant in time (t)
• i.e. can be computed from a ”sample interval” (rather than absolute time)

  

ϕxx τ( ) = E x t( )x t +τ( )( )
ϕxx 0( ) = E(x2 )

ϕxx −τ( ) =ϕxx τ( )

Classification of random processes
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Autocorrelation function:

• Assumption 1: Underlying process is stationary
Gaussian random process

• Assumption 2: Data (z) are sampled at constant Δt

Other time series (or frequency) analysis (later): 
• AR, MA, ARMA, ARIMA, … + estimators

   

m = 1
N

zi
i=1

N

∑

ϕ zz lΔt( ) = 1
N − l −1

zi − m( ) zi+l − m( )T

i=1

N−l

∑ ;l = 0,1…N − 2



Stochastic Processes – agenda (Ch 5)
o Introduction

n Model identification
n Concept & classification

o Process characteristics
n Auto-correlation (AC)
n Power Spectral Density (PSD)
n Allan Variance (AV) / Wavelet Variance (WV)

o The very useful processes 
n White Noise
n Random bias
n Random walk
n Auto-regressive white noise (Gauss-Markov)

S
en

so
r 

or
ie

nt
at

io
n

J.
 S

ka
lo

ud
, E

SO
  

21



S
en

so
r 

or
ie

nt
at

io
n

J.
 S

ka
lo

ud
, E

SO
  

22White noise - example



S
en

so
r 

or
ie

nt
at

io
n

J.
 S

ka
lo

ud
, E

SO
  

23Random bias (constant)

( ) 2
xx mj t =

o State propagation:

o Differential equation:    

xk+1 = xk = m

x t( ) = 0

ωt

PSDAutocorrelation

( ) ( )22xx mw p d wF =
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24Random walk
o Differential equation:

o State propagation:

o NOT a stationary process!

   

x t( ) = w t( )
xk+1 = xk + wk
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261st order Gauss-Markov process
o Differential equation:

o State propagation:  1
t

k k kx e x wb- D
+ = +

t
1/β=correlation time (T) ω

PSD

σ2 (noise var)
22s

b

( ) 2
xx e b tj t s -=

  
Φxx ω( ) = 2βσ 2

ω 2 + β 2

  
x t( ) = −βx t( ) + w t( )



Other random processes

Random ramp
Quantization noise
Periodic (sinusoid)
Auto-Regressive (AR) process
Moving-Average (MA) process
Auto-Regressive Moving Average (ARMA)
…
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Stochastic Processes – agenda (Ch 5)
o Introduction

n Model identification
n Concept & classification

o Process characteristics – estimation & advanced material
n Auto-correlation (AC)
n Power Spectral Density (PSD)
n Allan Variance (AV) / Wavelet Variance (WV)

o The very useful processes 
n White Noise
n Random bias
n Random walk
n Auto-regressive white noise (Gauss-Markov)
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31Error 
Models –
Discrete 
Case (distributed)

After Gelb, A. (1974)
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32Common 
Random 
Processes 
(distributed)

After Gelb, A. (1974)
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Autocorrelation function:

• Assumption 1: Underlying process is stationary
Gaussian random process

• Assumption 2: Data (z) are sampled at constant Δt

Other time series (or frequency) analysis (later): 
• AR, MA, ARMA, ARIMA, … + estimators

   

m = 1
N

zi
i=1

N

∑

ϕ zz lΔt( ) = 1
N − l −1

zi − m( ) zi+l − m( )T

i=1

N−l

∑ ;l = 0,1…N − 2



MATLAB
xcorr(...,SCALEOPT) 
- normalizes the correlation according to SCALEOPT:

1. 'biased' - scales the raw cross-correlation by 1/M (M=vec length).
2. 'unbiased' - scales the raw correlation by 1/(M-abs(lags)).
3. 'normalized' or 'coeff' - normalizes the sequence so that the 

auto-correlations at zero lag are 
identically 1.0.

4. 'none' - no scaling (this is the default).
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34Autocorrelation function (AC) - estimation



Power spectrum (or PSD)

o PSD is the Discrete Fourier Transform (DFT) of AC:

o If we have a signal of length N:
n Sample AC (AC estimate): 

n Periodogram spectrum (PSD estimate)
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Φxx (ω ) = ϕxx (τ )e− jωt

τ=−∞

∞

∑

   
ϕ̂xx (τ ) = 1

N −τ −1
xn+τ xn ; τ = 0,1,…, N −1

n=0

N−1−τ

∑

  
Φ̂xx (ω ) = ϕ̂xx (τ )e− jωτ

τ=−∞

∞

∑



General note about windowing in DFT

o Time windowing -rectangular window for finite data 

n Original and time-windowed spectrum: 
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28/02/2011 Navigation Techniques 22/L2

Note about windowing in DFT

 Time windowing (e.g. rectangular window):

 Original and time-windowed spectrum:

  

Φ̂(ω ) = x(nT )e− jωnT

n=−∞

∞

∑

Φ̂L(ω ) = xL(nT )e− jωnT

n=0

L−1

∑ = xL(n)e− jωn

n=−∞

∞

∑

  x(nT ) =ϕxx (τ )



General note about 
windowing in DFT

o Magnitude spectrum of 
rectangular window:
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W (ω ) = sin(ωL / 2)

sin(ω / 2)
28/02/2011 Navigation Techniques 24/L2

Note about windowing in DFT

 Magnitude spectrum of rectangular window:



General note about 
windowing in DFT

Reduces sidelobes
Reduces leakage
Narrows the main lobe
Some windowing function:
• Welch
• Hamming
• Hanning
• Kaiser
• …
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28/02/2011 Navigation Techniques 24/L2

Note about windowing in DFT

 Magnitude spectrum of rectangular window:



Stochastic Processes – agenda (Ch 5)
o Introduction

n Model identification
n Concept & classification

o Process characteristics – estimation & advanced material
n Auto-correlation (AC)
n Power Spectral Density (PSD)
n Allan Variance (AV) / Wavelet Variance (WV)

o The very useful processes 
n White Noise
n Random bias
n Random walk
n Auto-regressive white noise (Gauss-Markov)
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Allan variance (AV) - D. Allan 1966

Alternative measure of variability

= “variations of sample averages of different length   ”

Greenhall (1991) estimator of AV
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Xk (τ ) = 1

τ
Xk− j

j=0

τ −1

∑

τ

   
σ X

2 (τ ) = 1
2

E Xk (τ )− Xk−τ (τ )( )2⎡
⎣⎢

⎤
⎦⎥

  
σ̂ x

2(τ ) = 1
2(N − 2τ +1)

xk (τ )− xk−τ (τ )( )2

k=2τ

N

∑
  xk : k = 1,…, N



Allan variance – with sample overlap  
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Concept of AV with overlapping samples

source: Freescale Semiconductor, Application note #AN5087, Rev. 0,2/2015



Process identification in AV plots
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10�2 100 102
10�1

100

101
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Quantization Noise 
Slope = �1

White Noise 
Slope = �0.5

Bias Instability 
Slope = 0

Rate Random Walk 
Slope = 0.5

Rate Ramp 
Slope = 1

Averaging Time (s)

V
ar

ia
nc

e 
(u

ni
t2 )

Typical Slopes in Allan Variance Curve

Remarks: 

•Forward mapping:
• Easy
• IEEE standard

•Inverse: 
• not always
• not a 

standard 
• Use GMWM …

Typical  slopes in Allan variance or deviation curve
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Allan deviation – process signature
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AV of a “static” gyro, source: scientific publication

Complex error structure -> parameter estimation difficult



Latent time series models estimation methods

Transformation into a “non-latent” model (e.g. ARMA)
• Does not work in general
• Difficult to “inverse”

“Graphical” / lin. regression method 
• Limited to a few possible models
• Not consistent in general and “inefficient” 

Maximum Likelihood Estimation (MLE) / EM algorithm
• Computationally intensive, laborious for new models
• Diverges with “complex” models

General Method of Wavelet Moment (GMWM) 
• Rigorous, precise and efficient (from students in this course)
• Released as a freely available package in “R” (v1. 2015)
• Released as a GUI online tool (v1. 2018)
• http://ggmwm.smac-group.com/
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https://smac-group.com/software_packages


Simple example 1
o Stochastic process: WN + ramp/drift
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0 200 400 600 800 1000

0
1

2
3

4
5

Drift

Index

0 200 400 600 800 1000

-3
-2

-1
0

1
2

3

White Noise

Index

0 200 400 600 800 1000

-2
0

2
4

6

Drift + White Noise

o Simple linear regression 
model:

o MLE is perfectly fine

o What about if we add AR(1) 
(e.g. GM) process?

yt =ωt + ε t
ε t ∼ N 0,σ 2( )



Simple example 2
o Stochastic process: WN + ramp/drift + AR1(GM1)
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o Not a linear regression model but 
state-space model

o Computing the likelihood is not an easy 
task (e.g. Kalman filter) 

o Practice: MLE (in fact EM-KF) fails
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GMWM idea

Fact: AV is a special case of the wavelet variance (WV) 
• AV = 2 * WV      (for Haar wavelet) 

Match Wavelet Variances
• Exploit the known relation between a model    and its “WV signature”  
• Inverse the mapping by minimizing the discrepancy between WV from data:    and 

from model: 

Solution: 
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θ! = argmin
θ∈ Θ

ν! −  ν(θ )( )T Ω ν! −  ν(θ )( )

θ ν (θ )
ν (θ ) ν



Example
o Composite stochastic process: WN + GM1 + RAMP
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Empirical Wavelet Variance (= 2 x AV) 
of the example
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GMWM estimation results
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GMWM estimation results

o Estimated parameters 

o Goodness of fit test: 
n p-value ~ 1 (i.e. we cannot reject the proposed model)
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