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Sensor orientation – main topics

This translates into three rough big areas

1. Fundamentals 
• How to characterize sensor noise
• How to transform from the sensed signals to navigation frame? 

2. Position, velocity, attitude (navigation)
• How to formulate navigation equation in different frames?
• How to resolve them numerically? 

3. Sensor fusion 
• How to formulate models for sensor fusion? 
• How to implement it in optimization and use it for mapping?
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You need the frames

You need the navigation 
quantities and the noise 
properties



Cockpit view of SO course’s topics 
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Sensor Fusion

Sensors
(inertial + GPS)

Noise 
characterization

Stochastic 
Processes

Extended 
Kalman Filter

Strapdown 
Inertial 

Navigation
Navigation 

Frames

Estimation 
principle - RLS

How to reach integrated sensor orientation? 
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Similarities RLS vs. Kalman Filter 
(2.2.3) 

Recursive Least Square (RLS)
(2.28-2.30) gain, state, 
covariance:  

Discrete Kalman Filter (KF)
(2.32-2.34) gain, state, 
covariance: 

Prediction (for time update) 
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Kj = Pj−1 H
T

j (Hj Pj−1 H
T

j +Rj)
−1

x̂j = x̂j−1 +Kj (zj −Hj x̂j−1)
Pj = (I−Kj Hj)Pj−1

Kk = P̃kH
T

k
(HkP̃kH

T

k
+Rk)

−1

x̂k = x̃k +Kk (zk −Hkx̃k)

Pk = (I−KkHk) P̃k

x̃k+1 = Φkx̂k

P̃k+1 = ΦkPkΦ
T
k
+Qk

system / sensor
noise !
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Stochastic Processes – agenda (Ch 5)
o Introduction

n Model identification
n Concept & classification

o Process characteristics
n Auto-correlation (AC)
n Power Spectral Density (PSD)
n Allan Variance (AV) / Wavelet Variance (WV)

o The very useful processes 
n White Noise
n Random bias
n Random walk
n Auto-regressive white noise (Gauss-Markov)
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8Noise model (process) identification

empirical
DATA

prior knowledge or reference → error signal

stochastic model 
identification 

MODEL (structure + parameters)

(state-space)
estimation SENSOR FUSION

other inputs

o Stochastic model 
n Prerequisite for sensor fusion (e.g. Kalman filtering) 
n Two elements needed:

o Structure of noise (type of parameters) 
o Values of parameter

o How to identify (and later use) the model (in sensor fusion) ?   
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10Random processes – general concept

Association of random variable(s) with a deterministic parameter (e.g.
time)

Stochastic collection – values depend on the outcome of an experiment

Time is a parameter, but the process is only LOOSELY (stochastic)  
function of time

Can be either discrete or continuous



Stochastic Processes – agenda (Ch 5)
o Introduction

n Model identification
n Concept & classification

o Process characteristics
n Auto-correlation (AC)
n Power Spectral Density (PSD)
n Allan Variance (AV) / Wavelet Variance (WV)

o The very useful processes 
n White Noise
n Random bias
n Random walk
n Auto-regressive white noise (Gauss-Markov)
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Connections to random variables

Probability density 

Expectation 

Covariance

Variance

Probability density 

Expectation

Joint expectation – autocovariance

Variance
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f(x)

µX(t) =
∞∫

−∞

xt f(xt) dxtE(x) = µX =
∞∫

−∞

x f(x) dx

f(y)

cov(x, y) = E [(x− µX)(y − µY )]

acovX(t1, t2) =
∞∫

−∞

∞∫

−∞

(x1 − µX1
)(x2 − µX2

)f(x1, x2) dx1 dx2

E(y) = µY =
∞∫

−∞

y f(y) dy

f(xi, ti), f(xj , tj) −→ f2(xi, xj)

var(x) = cov(x, x) = E
[

(x− µX)2
]

acovX(τ = 0) = ϕxx(0) = σ
2

X

Random variable Random process



Other characteristics  

Probability density 

Characteristic function 
(Fourier transform of 
probability density)  

Probability density 

Power spectral density – PSD
(Fourier transform of 
autocovariance function) 
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f(x)

ΦX(ω) =
∞∫

−∞

ϕxx(τ) e
−i 2πω τdτ

g(ω) = E
[

e−iωx
]

=
∞
∫

−∞

e−iωx f(x) dx

f(xi, ti), f(xj , tj) −→ f2(xi, xj)

Random variable Random process
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o By ergodicity*

o Mean

o Variance 

o Autocovariance 

t

x

=

t

x

* Process characteristics computed over one long process are expected to be the same
as those computed from many processes sampled at a specific time 

17

E(x) = lim
t→∞

1

2T

T∫

−T

x(t)dt

E(x2) = lim
t→∞

1

2T

T∫

−T

x2(t)dt

ϕxx(ti, tj) = lim
t→∞

1

2T

T∫

−T

x(ti)x(tj)dt
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By stationarity
• Process characteristics are ”constant” in time (t )
• i.e. can be computed from a ”sample interval” (rather than absolute time)
• in otherwords: what is important the difference of time !

Classification of random processes

ϕxx(τ) = E (x(t)x(t+ τ))

ϕxx(0) = E(x2)

ϕxx(τ) = ϕxx(−τ)
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19Autocorrelation function (AC)

Autocorrelation function:
• Assumption 1: Underlying process is stationary Gaussian random process
• Assumption 2: Data (z ) are sampled at constant Δt, at a time “lag” 

Other time series (or frequency) analysis (later): 
• AR, MA, ARMA, ARIMA, … + estimators

m = 1

N

N∑

i=1

zi

ϕzz(ℓ∆t) = 1

N−ℓ−1

N−ℓ∑

i=1

(zi −m) (zi+ℓ −m)
T

ℓ ∈ [0, 1, . . . , N − 2]

(ℓ = 1) ·∆t
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o State propagation:

o Differential equation:

xk = wk

PSD
t ω

( ) ( ) ( )0xx xxj t j d t=   
Φxx ω( ) =σ 2

theoretically not differentiable

Autocorrelation
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( ) 2
xx mj t =

o State propagation:

o Differential equation:    

xk+1 = xk = m

x t( ) = 0

ωt

PSDAutocorrelation

( ) ( )22xx mw p d wF =
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24Random walk
o Differential equation:

o State propagation:

o NOT a stationary process!

   

x t( ) = w t( )
xk+1 = xk + wk
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o Differential equation:

o State propagation:  1
t

k k kx e x wb- D
+ = +

t
1/β=correlation time (T) ω

PSD

σ2 (noise var)
22s

b

( ) 2
xx e b tj t s -=

  
Φxx ω( ) = 2βσ 2

ω 2 + β 2

  
x t( ) = −βx t( ) + w t( )
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( ) ( )1/ ?xx xxTj j b= =

t
1/β=correlation time (T)

( ) 2
xx e b tj t s -=



Other random processes

Random ramp
Quantization noise
Periodic (sinusoid)
Auto-Regressive (AR) process
Moving-Average (MA) process
Auto-Regressive Moving Average (ARMA)
…

S
en

so
r 

or
ie

nt
at

io
n

J.
 S

ka
lo

ud
, E

SO
  

29



Stochastic Processes – agenda (Ch 5)
o Introduction

n Model identification
n Concept & classification

o Process characteristics – estimation & advanced material
n Auto-correlation (AC)
n Power Spectral Density (PSD)
n Allan Variance (AV) / Wavelet Variance (WV)

o The very useful processes 
n White Noise
n Random bias
n Random walk
n Auto-regressive white noise (Gauss-Markov)
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31Error 
Models –
Discrete 
Case (distributed)

After Gelb, A. (1974)
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Random 
Processes 
(distributed)

After Gelb, A. (1974)
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33Autocorrelation function (AC)

Autocorrelation function:
• Assumption 1: Underlying process is stationary Gaussian random process
• Assumption 2: Data (z ) are sampled at constant Δt, at a time “lag” 

Other time series (or frequency) analysis (later): 
• AR, MA, ARMA, ARIMA, … + estimators

m = 1

N

N∑

i=1

zi

ϕzz(ℓ∆t) = 1

N−ℓ−1

N−ℓ∑

i=1

(zi −m) (zi+ℓ −m)
T

ℓ ∈ [0, 1, . . . , N − 2]

(ℓ = 1) ·∆t



MATLAB  xcorr(..., SCALEOPT)
PYTHON autocorr(numpy/opt.)  acf(statsmodels/opt) 
- normalizes the correlation according to SCALEOPT:

1. 'biased' - scales the raw cross-correlation by 1/M (M=vec length).
2. 'unbiased' - scales the raw correlation by 1/(M-abs(lags)).
3. 'normalized' or 'coeff' - normalizes the sequence so that the 

auto-correlations at zero lag are identically 1.0
(i.e. normalized by the variance of each realization)

4. 'none' - no scaling (this is the default).
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- estimation



Power spectrum density 
(PSD)
o PSD is the Discrete Fourier Transform (DFT) of AC:

o If we have a signal of length N:
n Sample AC (AC estimate): 

n Periodogram spectrum (PSD estimate)
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Φxx (ω ) = ϕxx (τ )e− jωt

τ=−∞

∞

∑

   
ϕ̂xx (τ ) = 1

N −τ −1
xn+τ xn ; τ = 0,1,…, N −1

n=0

N−1−τ

∑

  
Φ̂xx (ω ) = ϕ̂xx (τ )e− jωτ

τ=−∞

∞

∑



General note about windowing in DFT

o Time windowing -rectangular window for finite data 

n Original and time-windowed spectrum: 
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28/02/2011 Navigation Techniques 22/L2

Note about windowing in DFT

 Time windowing (e.g. rectangular window):

 Original and time-windowed spectrum:

  

Φ̂(ω ) = x(nT )e− jωnT

n=−∞

∞

∑

Φ̂L(ω ) = xL(nT )e− jωnT

n=0

L−1

∑ = xL(n)e− jωn

n=−∞

∞

∑

  x(nT ) =ϕxx (τ )



General note about 
windowing in DFT

o Magnitude spectrum of 
rectangular window:
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W (ω ) = sin(ωL / 2)

sin(ω / 2)
28/02/2011 Navigation Techniques 24/L2

Note about windowing in DFT

 Magnitude spectrum of rectangular window:



General goals about using 
windowing in DFT

Reduces sidelobes
Reduces leakage
Narrows the main lobe
Some windowing function:
• Welch
• Hamming
• Hanning
• Kaiser
• …
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28/02/2011 Navigation Techniques 24/L2

Note about windowing in DFT

 Magnitude spectrum of rectangular window:

Multiplying data with some “weights” 
- gradually diminishing the data value

towards the end of interval L



Stochastic Processes – agenda (Ch 5)
o Introduction

n Model identification
n Concept & classification

o Process characteristics – estimation & advanced material
n Auto-correlation (AC)
n Power Spectral Density (PSD)
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n White Noise
n Random bias
n Random walk
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Allan variance (AV) - D. Allan 1966

Alternative measure of variability

= “variations of sample averages of different length   ”

Greenhall (1991) estimator of AV
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Xk (τ ) = 1

τ
Xk− j

j=0

τ −1

∑

τ

   
σ X

2 (τ ) = 1
2

E Xk (τ )− Xk−τ (τ )( )2⎡
⎣⎢

⎤
⎦⎥

  
σ̂ x

2(τ ) = 1
2(N − 2τ +1)

xk (τ )− xk−τ (τ )( )2

k=2τ

N

∑
  xk : k = 1,…, N



Allan variance – with sample overlap  
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Concept of AV with overlapping samples

source: Freescale Semiconductor, Application note #AN5087, Rev. 0,2/2015



Process identification in AV plots
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Typical Slopes in Allan Variance Curve

Remarks: 

•Forward mapping:
• Easy
• IEEE standard

•Inverse: 
• not always
• not a 

standard 
• Use GMWM …

Typical  slopes in Allan variance or deviation curve
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Allan deviation – process signature
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AV of a “static” gyro, source: scientific publication

Complex error structure -> parameter estimation difficult



Latent time series models estimation methods

Transformation into a “non-latent” model (e.g. ARMA)
• Does not work in general
• Difficult to “inverse”

“Graphical” / lin. regression method 
• Limited to a few possible models
• Not consistent in general and “inefficient” 

Maximum Likelihood Estimation (MLE) / EM algorithm
• Computationally intensive, laborious for new models
• Diverges with “complex” models

General Method of Wavelet Moment (GMWM) 
• Rigorous, precise and efficient (from students in this course)
• Released as a freely available package in “R” (v1. 2015)
• Released as a GUI online tool (v1. 2018)
• http://ggmwm.smac-group.com/
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https://smac-group.com/software_packages


Simple example 1
o Stochastic process: WN + ramp/drift
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Drift + White Noise

o Simple linear regression 
model:

o MLE is perfectly fine

o What about if we add AR(1) 
(e.g. GM) process?

yt =ωt + ε t
ε t ∼ N 0,σ 2( )



Simple example 2
o Stochastic process: WN + ramp/drift + AR1(GM1)
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o Not a linear regression model but 
state-space model

o Computing the likelihood is not an easy 
task (e.g. Kalman filter) 

o Practice: MLE (in fact EM-KF) fails

0 200 400 600 800 1000
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Drift + White Noise + AR(1)



GMWM idea

Fact: AV is a special case of the Wavelet Variance (WV) 
• AV = 2 * WV   (for Haar wavelet) 

Match Wavelet Variances
• Exploit the known relation between a model    and its “WV signature”  
• Inverse the mapping by minimizing the discrepancy between WV from data:      and 

from model: 

Solution: 
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θ! = argmin
θ∈ Θ

ν! −  ν(θ )( )T Ω ν! −  ν(θ )( )

θ ν (θ )
ν (θ ) ν



Example
o Composite stochastic process: WN + GM1 + RAMP

S
en

so
r 

or
ie

nt
at

io
n

J.
 S

ka
lo

ud
, E

SO
  

48



Empirical Wavelet Variance (= 2 x AV) 
of the example
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GMWM estimation results
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GMWM estimation results

o Estimated parameters 

o Goodness of fit test: 
n p-value ~ 1 (i.e. we cannot reject the proposed model)
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GMWM

Online GMWM tool
Real sensor
Demo

Recap

S
en

so
r 

or
ie

nt
at

io
n

J.
 S

ka
lo

ud
, E

SO
  

52

https://data-analytics-lab.shinyapps.io/gui4gmwm/

