Stochastic Processes — agenda (Chap5)

|
[0 Introduction

B Concept & classification

B Model identification

[0 Examples
B White Noise
B Random bias
B Autoregressive/shaped white noise (Gauss-Markov)

[0 Characteristics
B Auto-correlation (AC)
B Power Spectral Density (PSD)
m Allan Variance (AV) / Wavelet Variance (WV)
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Random process — an example
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Random processes - general concept

[0 Association of random variable(s) with a
deterministic parameter (e.g. time)

[0 Stochastic collection - values depend on the
outcome of an experiment

O Time is a parameter but the process is ONLY
LOOSELY/stochastic “function” of time

[0 Discrete or continuous
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Random variable vs. random process

[0 Probability
m Distribution
B Density

B Characteristics

[0 Variables [0 Processes
B Moments m Autocorrelation func. (AC)
®m Characteristic function ® Power spectral density (PSD)

TABLE - black b. / Ch.5
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Classification of random processes

O By ergodicity y

E(x)= lim% [ x(t)at

too L

1 T
RT 2
E(x*)=lim—— [ @at

oo T

T

o1
P (tvtz) = hmﬁ J x(tl)x(tz)dt

t—>o0 -T
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Classification of random processes

[0 By stationarity
B Characteristics = const.(t)

B Can be computed from “sample interval”
(rather than absolute time)
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Empirical model identification

[0 Stochastic model
W structure (type) + parameter (values)
B prerequisite for sensor fusion (e.g. Kalman filtering)

prior knowledge/reference

empiical i MODEL (structure + parameters)
DATA » stochastic model

identification

(state-space)
estimation

— ESTIMATE

other input
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Empirical model identification
|
O Autocorrelation techniques:

B Assumption 1: Underlying process is stationary
Gaussian random process

B Assumption 2: Data (z) sampled at constant At
1 N
m=— Z.
N2
/

1
N—l—lz(zi _m)(Zi+l _m)T;l =0,1..N=-2

i=1

¢ (IAt) =

O Time series (or frequency) analysis:
B AR, MA, ARMA, ARIMA, ... + estimators
m AV, WV, ... + estimators
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White noise process

[0 State propagation: _
xk+1 T Wk

O Differential equation: theoretically not differentiable

0. (7)=9..(0)5(c) o, (0)=0’

|

Autocorrelation PSD
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White noise - example
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Random bias/constant

[0 State propagation: — _
Propas X =X, =M
O Differential equation: x(t) =0
0. (7)=m’ O, (0)=27m"6(w)

Autocorrelation PSD
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Shaped white noise

O Amplitude:

B Gaussian probability density -> results of number of
independent random variables.

[0 Correlation in time (frequency)
B White noise: not correlated in time

u : white noise put through a small linear
system can duplicate virtually many forms of time-
correlated noise.

[0 Linear transformation of white noise = Shaping
Filter
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Random walk

O Differential equation: x(t) — W(t)
O State propagation: X, =X Tw

O Not a stationary process!

RANDOM WALK
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1st order Gauss-Markov process

O Differential equation: x(t) = —ﬁx(t)+ w(t)
. - pA
[0 State propagation: X, =€ X, +Ww,
2
_ 2 __2po
(Dxx (T) =0 e (Dxx(a))_ w2 +ﬁ2
------ 02 (noise var) 1 20°
B
L L >t ) .-
1/B=correlation time (T) PSD
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Question:

0. (T)=p,(1/8)="

1/B=correlation time (T)
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1st 0. Gauss-Markov process - example

1st ORDER GAUSS-MARKOV, correl time=200.000000
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Other random processes

Random ramp

Quantization noise

Auto-Regressive (AR) process
Moving-Average (MA) process
Auto-Regressive Moving Average (ARMA)

OOO0O000
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Power spectrum (or PSD)

[0 PSD is the discrete Fourier transform (DFT) of
AC:

o (@)=Y o_(1)e

T=—00

O If we have a signal of length N:
m Sample AC (AC estimate):

A 1 N-1-1
T)=—— x.x; 1=01,.,N-1
q)xx( ) N—T—l ;() n+t’n

B Periodogram spectrum (PSD estimate)

b (@)=Y ¢_(1)e

T=—00
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General note about windowing in DFT

[0 Time windowing -rectangular window, x(nT)=¢_(7)

------------------------------------ . length-L
: / rectangular
i window

012 -+ LIl - 012 - Ll
l«— L samples —| f«— L samples —
fe— (L-1)T sec —»| f«— LT sec —>|

® Original and time-windowed spectrum:

d(w)= i x(nT)e ™"

N=—o0
A L] . i .
D ()= ZxL(nT)e'fw”T = 2 x, (n)e ™"
n=0 N=—o0
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General note about windowing in DFT

[0 Windowing has two (side) effects:
B Reduction of the frequency resolution of the computed
spectrum .
Ao =—
TL
B Frequency leakage

O Introduction of high-frequency components into the
spectrum

[0 Caused by the sharp clipping of the signal at the left &
right sides of the rectangular window

sin(wL/?2)

(@)= sin(w/2)
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General note about windowing in DFT

[0 Magnitude spectrum of rectangular window:

[W(w)!
L
mainlobe
\ T
relative
sidelobes causing 1». R=13 dB = f:iziObe
frequency leakage N
—1# .............. ”_2_,;0 T E— -
L L L
sin(wL /2
sin(w / 2)
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General note about windowing in DFT

Reduces sidelobes

T relative

o
D Red U Ces Iea ka g e sidelobes causing —> R=13 dB = figg{"be
frequency leakage 5
O Narrow main lobe N
AN 45?’
[0 Some windowing function: = - g0y - s
. We | Ch Rectangular window Hamming window (a = 0.53836) Welch window
B Hamming '
B Hanning
m Kaiser
. samples 7 samples samples
Fourier transform Fourier transform Fourier transform

T T T T T T T

T—T l 1T

TT TT
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Common Random Processes it

PROCESS AUTOCORRELATION FUNCTION POWER SPECTRAL DENSITY
WHITE Do
NOISE
T w
¢"(r)=¢05(r) Dy = )
202/01
MARKOV
PROCESS f—\
m=0 T 5 w
2,6, 1l L
Pyx(T) = 0% P1 “-m
/‘K” [ bt
SINUSOID U U T o o
2 2 T p2 .
¢”(‘r)=i2 cos wy T D4y - 7 A [S(“"Wl)‘s(‘“ Wl)]
RANDOM m2
BIAS

w

bxx (7) =m2

®,, = 2rm?3(w)

After Gelb, A. (1974)
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Error Models — Discrete Case e

STATE DIFFERENCE

RELATION of DISCRETE

NANE EQUATION BLOCK DIAGRAM ay to CONTINUOUS q
Xk e
RANDOM Xkar® 5y a,:0
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*k_| TIME
DELAY
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WALK
11 etz
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RAMP
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After Gelb, A. (1974)
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Allan variance (AV) - D. Allan 1966

[0 Alternative measure of variability

[0 = “variations of sample averages of different
length T”

7-1

1 — — 2
X (1)= ;%Xk_j 03(7)= %E[(Xk(f)_Xk—r(T)) }

[0 Greenhall (1991) estimator of AV

| N :
/\2 _ _
0:7)= x(t)-x_(7
O= 3 e 2 WO -T0)
x k=1...,N
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Allan variance - with sample overlap

Concept of AV with overlapping samples
T (Stride)
«—T=3T)——» m=3
= ® °
Q.
=] @ -
@) - » “ !
- > ‘ “ ® .
-~ >
- >
- Overlapping Samples

source: Freescale Semiconductor, Application note #AN5087, Rev. 0,2/2015
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Process identification in AV plots

» Typical slopes in Allan variance or deviation curve
10 -

; Remarks:

o

*Forward mapping:
+ Easy
« IEEE standard

Quantization Noise
Slope = -1

Rate Ramp
Slope =1

variance or deviation
(unit?) or (unit)

10" *Inverse:
o * not always
White Noise Rate Random Walk Y
Slope = -0.5 Slope = 0.5 * not a standard
Bias Instability e Use GMWM ...
Slope =0
10_1 I 2 I 0 2
10 10 10
Averaging Time (s)
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Allan deviation - process signhature

Complex error structure -> parameter estimation difficult

L

o(7)

Correlated
Noise Rate Random
Walk

sSinugoidal

A

Angle Random B‘_a’
Walk Instability T

1 1 | 1 .

Rates Ramp

Quantization
Noise

AV of a “static” gyro, source: scientific publication
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Latent time series models estimation methods

|

O Transformation into a “non-latent” model (e.g. ARMA)
m Does not work in general
m Difficult to “inverse”

O “Graphical” / lin. regression method
B Limited to a few possible models
B Not consistent in general and “inefficient”

O Maximum Likelihood Estimation (MLE) / EM algorithm
B Computationally intensive, laborious for new models
m Diverges with “complex” models

O General Method of Wavelet Moment (GMWM)
B Rigorous, precise and efficient (from students in this course)
B Released as a freely available package in "R” (2015-09)
B Released as a GUI online tool (2017-08)
m http://ggmwm.smac-group.com/
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