
Stochastic Processes – agenda (Chap5)

o Introduction
n Concept & classification
n Model identification

o Examples
n White Noise
n Random bias
n Autoregressive/shaped white noise (Gauss-Markov)

o Characteristics
n Auto-correlation (AC)
n Power Spectral Density (PSD)
n Allan Variance (AV) / Wavelet Variance (WV)
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Random process – an example
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Random processes – general concept

o Association of random variable(s) with a 
deterministic parameter (e.g. time)

o Stochastic collection – values depend on the 
outcome of an experiment

o Time is a parameter, but the process is ONLY 
LOOSELY/stochastic “function” of time

o Discrete or continuous
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Random variable vs. random process

o Probability
n Distribution
n Density

n Characteristics

o Variables
n Moments
n Characteristic function

TABLE – black b. / Ch.5 

o Processes 
n Autocorrelation func. (AC)
n Power spectral density (PSD)
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Classification of random processes

o By ergodicity
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Classification of random processes

o By stationarity
n Characteristics = const.(t)
n Can be computed from ”sample interval” 

(rather than absolute time)

  

ϕxx τ( ) = E x t( )x t +τ( )( )
ϕxx 0( ) = E(x2 )

ϕxx −τ( ) =ϕxx τ( )
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Empirical model identification

prior knowledge/reference

stochastic model 
identification 

empirical
DATA

(state-space)
estimation ESTIMATE

MODEL (structure + parameters)

other input

o Stochastic model
n structure (type) + parameter (values) 
n prerequisite for sensor fusion (e.g. Kalman filtering) 
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Empirical model identification

o Autocorrelation techniques:
n Assumption 1: Underlying process is stationary

Gaussian random process
n Assumption 2: Data (z) sampled at constant Δt

o Time series (or frequency) analysis: 
n AR, MA, ARMA, ARIMA, … + estimators
n AV, WV, … + estimators 
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N
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White noise process

o State propagation:

o Differential equation:

xk = wk

PSD
t ω

( ) ( ) ( )0xx xxj t j d t=   
Φxx ω( ) =σ 2

theoretically not differentiable

Autocorrelation

3/3/23 Sensor Orientaion 12/L2

White noise - example
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Random bias/constant

( ) 2
xx mj t =

o State propagation:

o Differential equation:
   

xk+1 = xk = m

x t( ) = 0

ωt
PSDAutocorrelation

( ) ( )22xx mw p d wF =
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Shaped white noise

o Amplitude: 
n Gaussian probability density -> results of number of 

independent random variables. 

o Correlation in time (frequency)
n White noise: not correlated in time
n Colored noise: white noise put through a small linear 

system can duplicate virtually many forms of time-
correlated noise. 

o Linear transformation of white noise = Shaping 
Filter
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Random walk

o Differential equation:

o State propagation:

o Not a stationary process!

   

x t( ) = w t( )
xk+1 = xk + wk
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1st order Gauss-Markov process

o Differential equation:

o State propagation:  1
t

k k kx e x wb- D
+ = +

t
1/β=correlation time (T) ω

PSD

σ2 (noise var)
22s

b

( ) 2
xx e b tj t s -=

  
Φxx ω( ) = 2βσ 2

ω 2 + β 2

  
x t( ) = −βx t( ) + w t( )
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1st o. Gauss-Markov process - example

Other random processes

o Random ramp
o Quantization noise
o Auto-Regressive (AR) process
o Moving-Average (MA) process
o Auto-Regressive Moving Average (ARMA)
o …
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Power spectrum (or PSD)

o PSD is the discrete Fourier transform (DFT) of 
AC:

o If we have a signal of length N:
n Sample AC (AC estimate): 

n Periodogram spectrum (PSD estimate)
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Φxx (ω ) = ϕxx (τ )e− jωt
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∞

∑

   
ϕ̂xx (τ ) = 1

N −τ −1
xn+τ xn ; τ = 0,1,…, N −1

n=0

N−1−τ

∑

  
Φ̂xx (ω ) = ϕ̂xx (τ )e− jωτ

τ=−∞

∞

∑

General note about windowing in DFT

o Time windowing -rectangular window,

n Original and time-windowed spectrum: 
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Note about windowing in DFT

� Time windowing (e.g. rectangular window):

� Original and time-windowed spectrum:

  

Φ̂(ω ) = x(nT )e− jωnT

n=−∞

∞

∑

Φ̂L(ω ) = xL(nT )e− jωnT

n=0

L−1

∑ = xL(n)e− jωn

n=−∞

∞

∑

  x(nT ) =ϕxx (τ )



General note about windowing in DFT

o Windowing has two (side) effects: 
n Reduction of the frequency resolution of the computed 

spectrum 

n Frequency leakage
o Introduction of high-frequency components into the 

spectrum 
o Caused by the sharp clipping of the signal at the left & 

right sides of the rectangular window 
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Δω = 1

TL

  
W (ω ) = sin(ωL / 2)

sin(ω / 2)

General note about windowing in DFT

o Magnitude spectrum of rectangular window:
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W (ω ) = sin(ωL / 2)

sin(ω / 2)
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Note about windowing in DFT

� Magnitude spectrum of rectangular window:



General note about windowing in DFT

o Reduces sidelobes
o Reduces leakage
o Narrows the main lobe
o Some windowing function:

n Welch
n Hamming
n Hanning
n Kaiser
n …
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Note about windowing in DFT

� Magnitude spectrum of rectangular window:
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Common Random Processes (distributed)

After Gelb, A. (1974)
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Error Models – Discrete Case (distributed)

After Gelb, A. (1974)

Allan variance (AV) - D. Allan 1966

o Alternative measure of variability

o = “variations of sample averages of different 
length   ”

o Greenhall (1991) estimator of AV
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Allan variance – with sample overlap  

3/3/23 Sensor Orientaion 30/L2

Concept of AV with overlapping samples

source: Freescale Semiconductor, Application note #AN5087, Rev. 0,2/2015

Process identification in AV plots
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Typical Slopes in Allan Variance Curve

Remarks: 

•Forward mapping:
• Easy
• IEEE standard

•Inverse: 
• not always
• not a standard 
• Use GMWM …

Typical  slopes in Allan variance or deviation curve
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Allan deviation – process signature
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AV of a “static” gyro, source: scientific publication

Complex error structure -> parameter estimation difficult

Latent time series models estimation methods

o Transformation into a “non-latent” model (e.g. ARMA)
n Does not work in general
n Difficult to “inverse”

o “Graphical” / lin. regression method 
n Limited to a few possible models
n Not consistent in general and “inefficient” 

o Maximum Likelihood Estimation (MLE) / EM algorithm
n Computationally intensive, laborious for new models
n Diverges with “complex” models

o General Method of Wavelet Moment (GMWM) 
n Rigorous, precise and efficient (from students in this course)
n Released as a freely available package in “R” (v1. 2015)
n Released as a GUI online tool (v1. 2018)
n http://ggmwm.smac-group.com/
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