

Stochastic Processes – agenda (Chap5)

□ Introduction

- Concept & classification
- Model identification

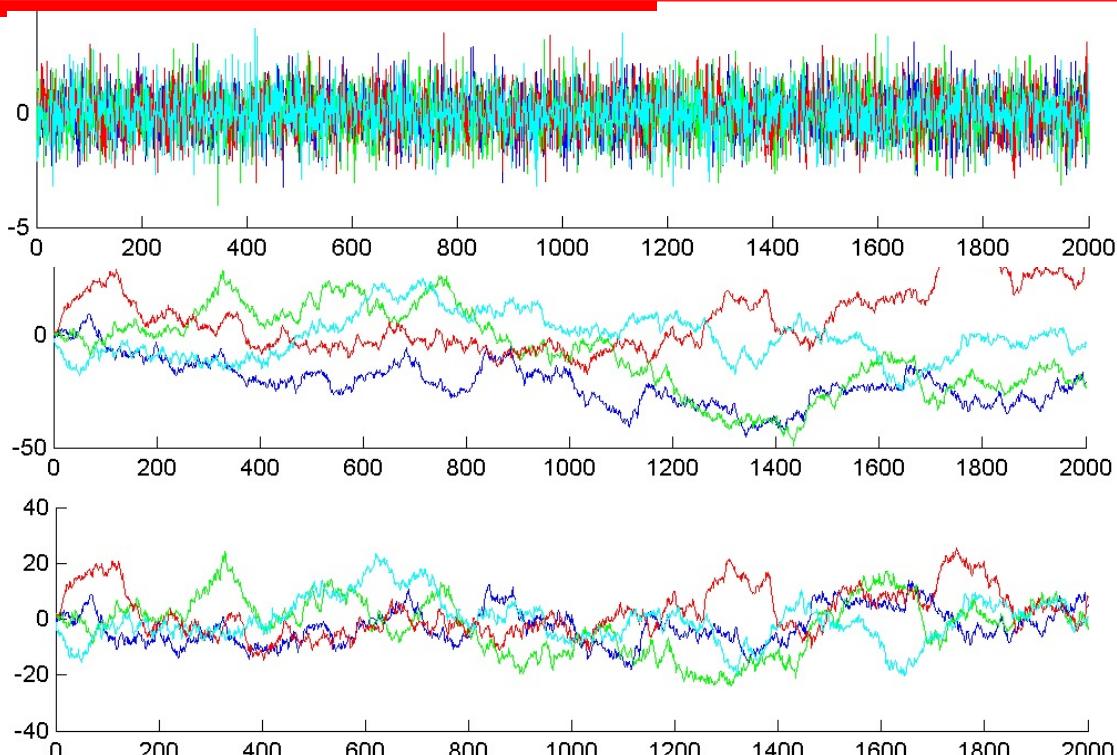
□ Examples

- White Noise
- Random bias
- Autoregressive/shaped white noise (Gauss-Markov)

□ Characteristics

- Auto-correlation (**AC**)
- Power Spectral Density (**PSD**)
- Allan Variance (**AV**) / Wavelet Variance (**WV**)

Random process – an example



Random processes – general concept

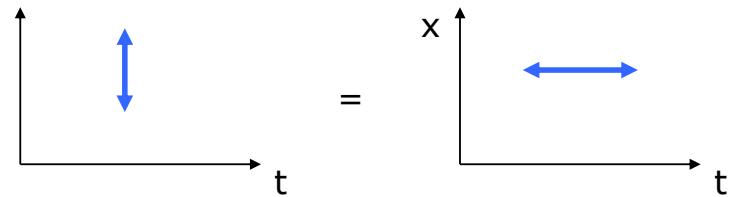
- **Association** of random variable(s) with a deterministic parameter (e.g. time)
- Stochastic **collection** – values depend on the outcome of an experiment
- Time is a **parameter**, but the process is ONLY LOOSELY/stochastic “function” of time
- Discrete or continuous

Random variable vs. random process

- Probability
 - Distribution
 - Density
- Characteristics
 - Variables
 - Moments
 - Characteristic function
 - Processes
 - Autocorrelation func. (AC)
 - Power spectral density (PSD)

Classification of random processes

□ By ergodicity



$$E(x) = \lim_{t \rightarrow \infty} \frac{1}{2T} \int_{-T}^T x(t) dt$$

$$E(x^2) = \lim_{t \rightarrow \infty} \frac{1}{2T} \int_{-T}^T x^2(t) dt$$

$$\varphi_{xx}(t_1, t_2) = \lim_{t \rightarrow \infty} \frac{1}{2T} \int_{-T}^T x(t_1) x(t_2) dt$$

Classification of random processes

□ By stationarity

- Characteristics = const.(t)
- Can be computed from "sample interval" (rather than absolute time)

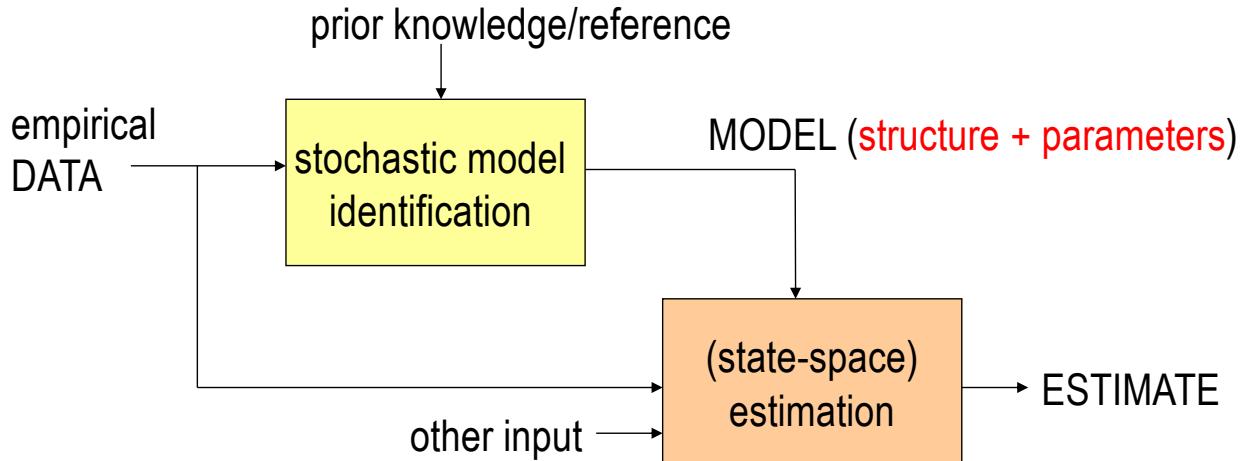
$$\varphi_{xx}(\tau) = E(x(t)x(t+\tau))$$

$$\varphi_{xx}(0) = E(x^2)$$

$$\varphi_{xx}(-\tau) = \varphi_{xx}(\tau)$$

Empirical model identification

- Stochastic model
 - structure (type) + parameter (values)
 - prerequisite for sensor fusion (e.g. Kalman filtering)



Empirical model identification

- Autocorrelation techniques:
 - Assumption 1: Underlying process is **stationary** Gaussian random process
 - Assumption 2: Data (z) sampled at **constant Δt**

$$m = \frac{1}{N} \sum_{i=1}^N z_i$$

$$\varphi_{zz}(l\Delta t) = \frac{1}{N-l-1} \sum_{i=1}^{N-l} (z_i - m)(z_{i+l} - m)^T; l = 0, 1, \dots, N-2$$

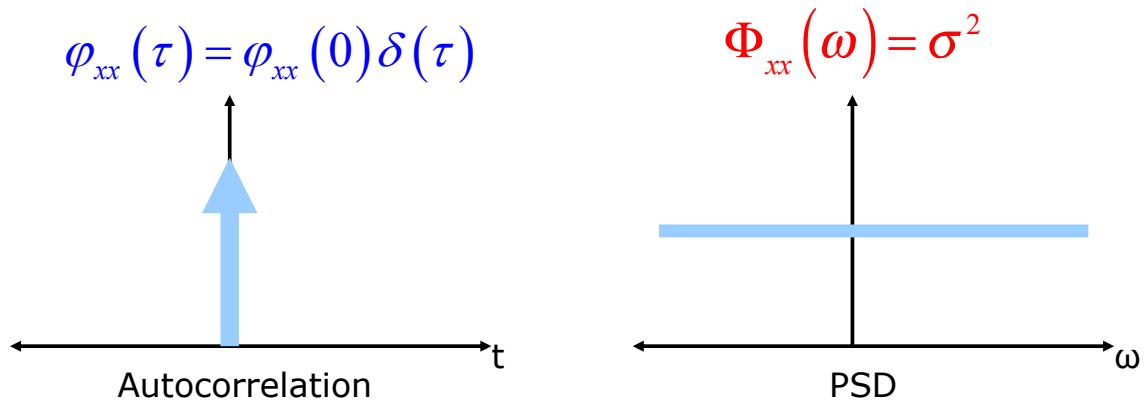
- Time series (or frequency) analysis:
 - AR, MA, ARMA, ARIMA, ... + estimators
 - AV, WV, ... + estimators

White noise process

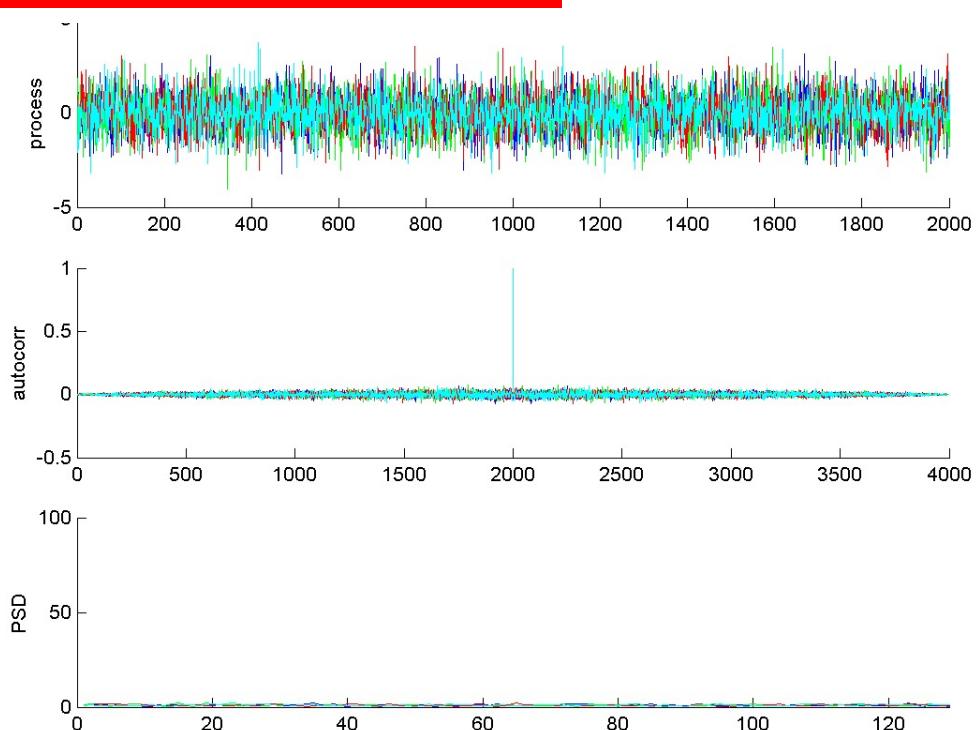
- State propagation:

$$x_k = w_k$$

- Differential equation: theoretically not differentiable



White noise - example



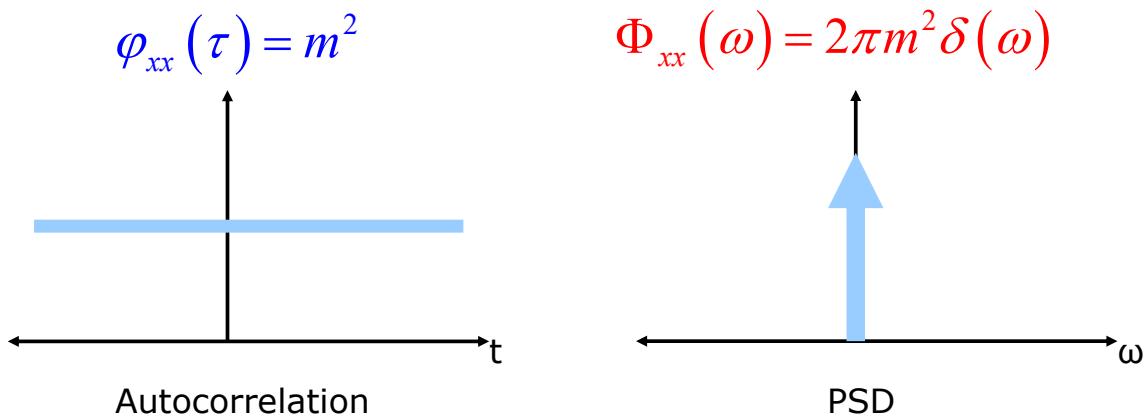
Random bias/constant

- State propagation:

$$x_{k+1} = x_k = m$$

- Differential equation:

$$\dot{x}(t) = 0$$



Shaped white noise

- Amplitude:

- Gaussian probability density -> results of number of independent random variables.

- Correlation in time (frequency)

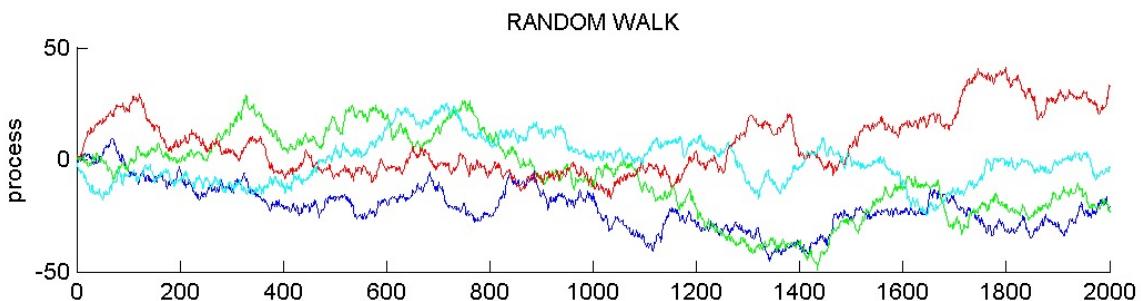
- **White noise**: not correlated in time

- **Colored noise**: white noise put through a small linear system can duplicate virtually many forms of time-correlated noise.

- Linear transformation of white noise = **Shaping Filter**

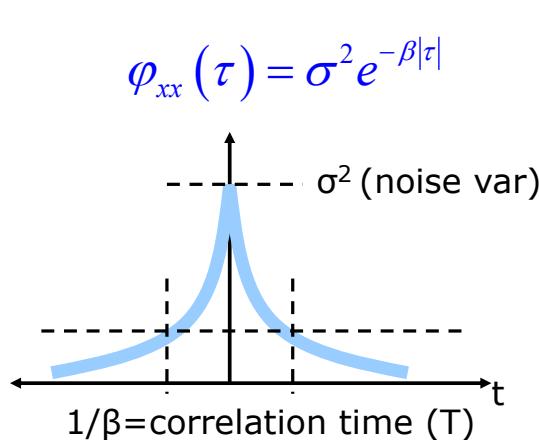
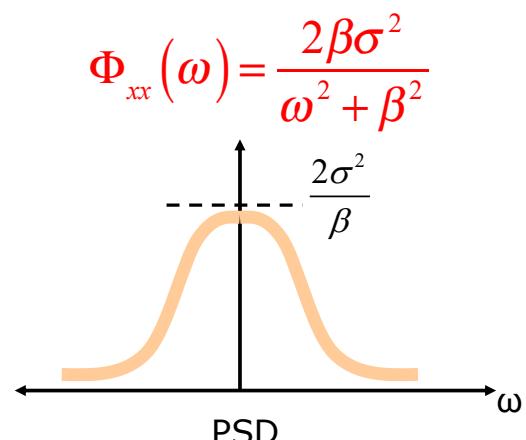
Random walk

- Differential equation: $\dot{x}(t) = w(t)$
- State propagation: $x_{k+1} = x_k + w_k$
- Not a stationary process!

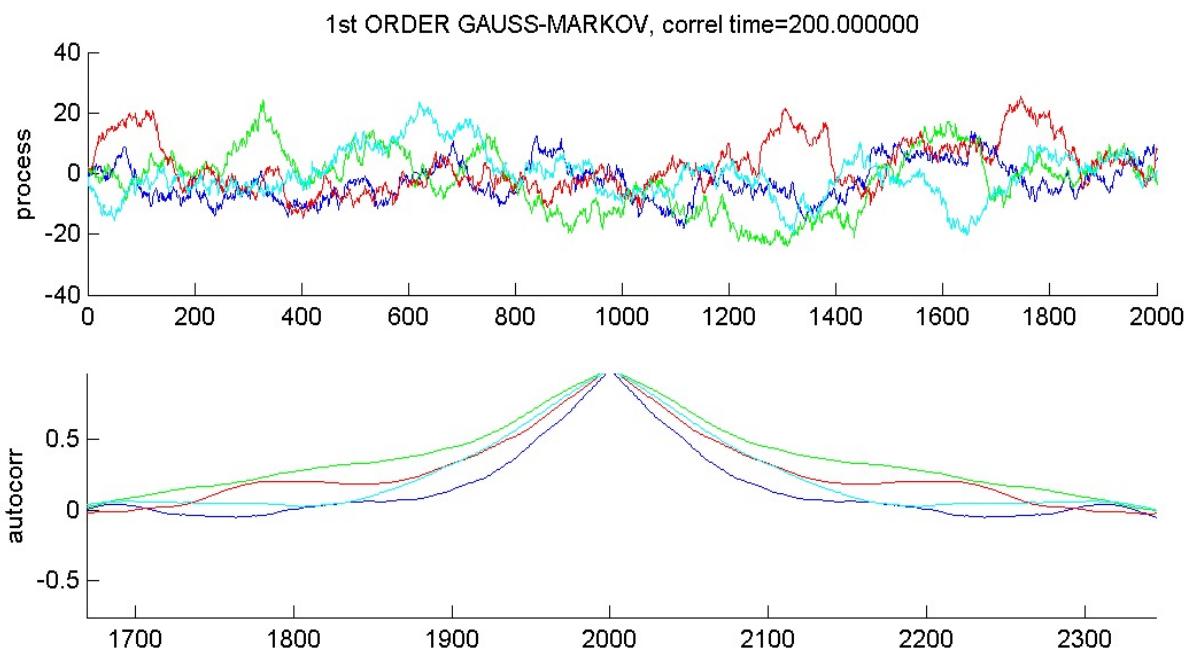


1st order Gauss-Markov process

- Differential equation: $\dot{x}(t) = -\beta x(t) + w(t)$
- State propagation: $x_{k+1} = e^{-\beta \Delta t} x_k + w_k$



1st o. Gauss-Markov process - example



Other random processes

- Random ramp
- Quantization noise
- Auto-Regressive (AR) process
- Moving-Average (MA) process
- Auto-Regressive Moving Average (ARMA)
- ...

Power spectrum (or PSD)

- PSD is the discrete Fourier transform (DFT) of AC:

$$\Phi_{xx}(\omega) = \sum_{\tau=-\infty}^{\infty} \varphi_{xx}(\tau) e^{-j\omega\tau}$$

- If we have a signal of length N:

- Sample AC (AC estimate):

$$\hat{\varphi}_{xx}(\tau) = \frac{1}{N-\tau-1} \sum_{n=0}^{N-1-\tau} x_{n+\tau} x_n; \quad \tau = 0, 1, \dots, N-1$$

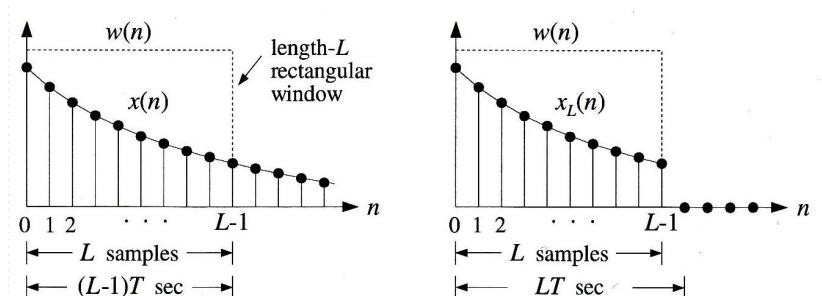
- Periodogram spectrum (PSD estimate)

$$\hat{\Phi}_{xx}(\omega) = \sum_{\tau=-\infty}^{\infty} \hat{\varphi}_{xx}(\tau) e^{-j\omega\tau}$$

General note about windowing in DFT

- Time windowing -rectangular window,

$$x(nT) = \varphi_{xx}(\tau)$$



- Original and time-windowed spectrum:

$$\hat{\Phi}(\omega) = \sum_{n=-\infty}^{\infty} x(nT) e^{-j\omega nT}$$

$$\hat{\Phi}_L(\omega) = \sum_{n=0}^{L-1} x_L(nT) e^{-j\omega nT} = \sum_{n=-\infty}^{\infty} x_L(n) e^{-j\omega n}$$

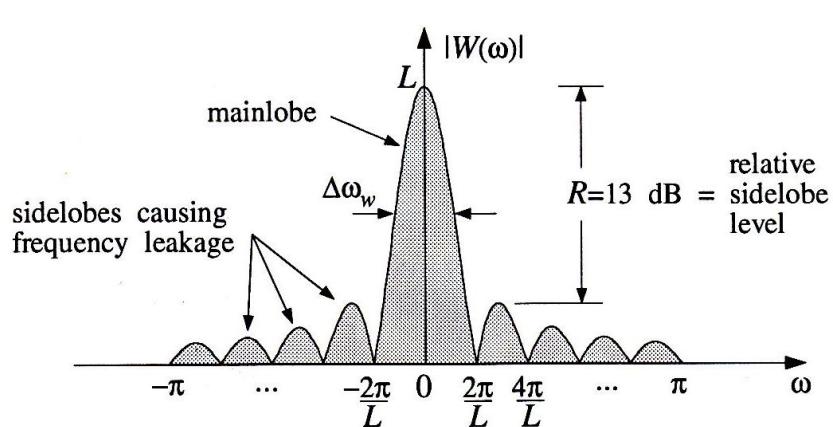
General note about windowing in DFT

- Windowing has two (side) effects:
 - Reduction of the frequency **resolution** of the computed spectrum
 - Frequency leakage
 - Introduction of high-frequency components into the spectrum
 - Caused by the sharp clipping of the signal at the left & right sides of the rectangular window

$$|W(\omega)| = \left| \frac{\sin(\omega L / 2)}{\sin(\omega / 2)} \right|$$

General note about windowing in DFT

- Magnitude spectrum of rectangular window:

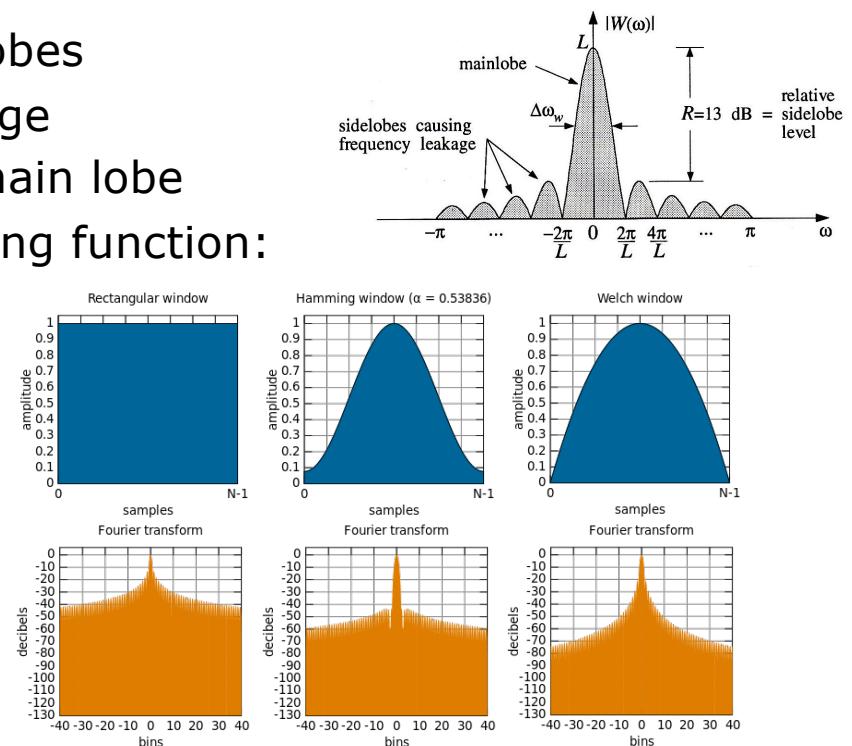


$$|W(\omega)| = \left| \frac{\sin(\omega L / 2)}{\sin(\omega / 2)} \right|$$

General note about windowing in DFT

- Reduces sidelobes
- Reduces leakage
- Narrows the main lobe
- Some windowing function:

- Welch
- Hamming
- Hanning
- Kaiser
- ...



Common Random Processes (distributed)

PROCESS	AUTOCORRELATION FUNCTION	POWER SPECTRAL DENSITY
WHITE NOISE	$\phi_{xx}(\tau) = \phi_0 \delta(\tau)$	Φ_0
MARKOV PROCESS $m = 0$	$\phi_{xx}(\tau) = \sigma^2 e^{-\beta_1 \tau }$	$\Phi_{xx} = \frac{2\beta_1 \sigma^2}{\omega^2 + \beta_1^2}$
SINUSOID	$\phi_{xx}(\tau) = \frac{A^2}{2} \cos \omega_1 \tau$	$\Phi_{xx} = \frac{\pi}{2} A^2 [\delta(\omega - \omega_1) + \delta(\omega + \omega_1)]$
RANDOM BIAS	$\phi_{xx}(\tau) = m^2$	$\Phi_{xx} = 2\pi m^2 \delta(\omega)$

After Gelb, A. (1974)

Error Models – Discrete Case (distributed)

NAME	STATE DIFFERENCE EQUATION	BLOCK DIAGRAM	RELATION of DISCRETE q_k to CONTINUOUS q
RANDOM CONSTANT	$x_{k+1} = x_k$		$q_k = 0$
RANDOM WALK	$x_{k+1} = x_k + w_k$		$q_k = q(t_{k+1} - t_k)$
RANDOM RAMP	$x_{1k+1} = x_{1k} + \frac{\Delta t}{t_{k+1} - t_k} x_{2k}$ $x_{2k+1} = x_{2k}$		$q_k = 0$
EXPONENTIALLY CORRELATED RANDOM VARIABLE	$x_{k+1} = e^{-\beta(t_{k+1} - t_k)} x_k + w_k$		$q_k = \frac{q}{2\beta} [1 - e^{-2\beta(t_{k+1} - t_k)}]$

After Gelb, A. (1974)

Allan variance (AV) - D. Allan 1966

- Alternative measure of variability
- = “variations of sample averages of different length τ ”

$$\bar{X}_k(\tau) = \frac{1}{\tau} \sum_{j=0}^{\tau-1} X_{k-j} \quad \sigma_{\bar{X}}^2(\tau) = \frac{1}{2} \mathbf{E} \left[(\bar{X}_k(\tau) - \bar{X}_{k-\tau}(\tau))^2 \right]$$

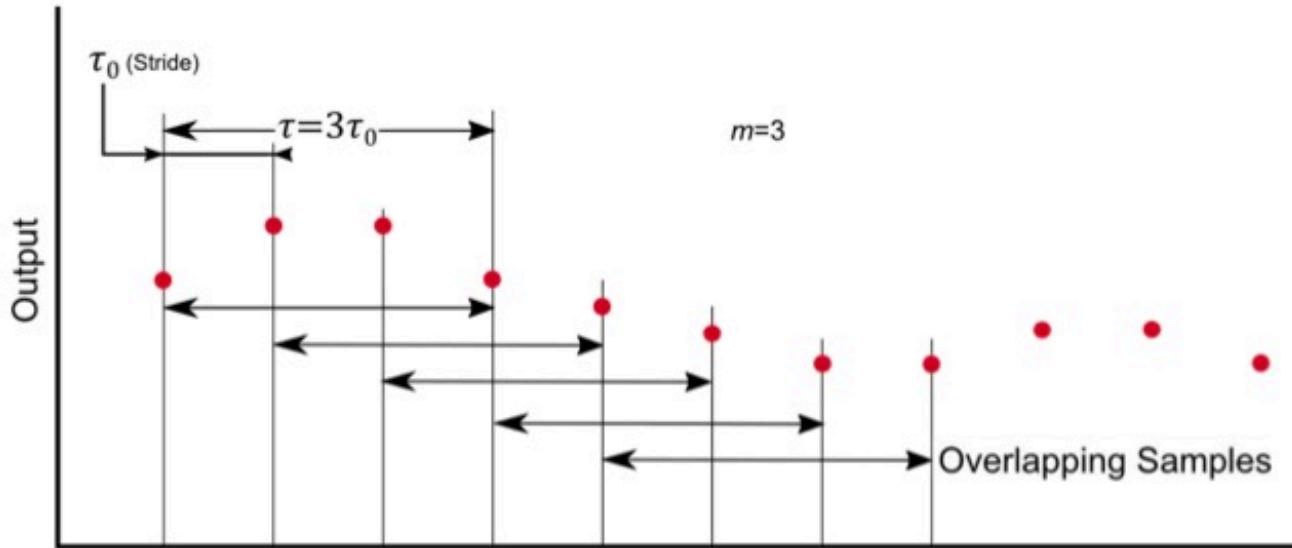
- Greenhall (1991) estimator of AV

$$\hat{\sigma}_{\bar{x}}^2(\tau) = \frac{1}{2(N-2\tau+1)} \sum_{k=2\tau}^N (\bar{x}_k(\tau) - \bar{x}_{k-\tau}(\tau))^2$$

$x_k : k = 1, \dots, N$

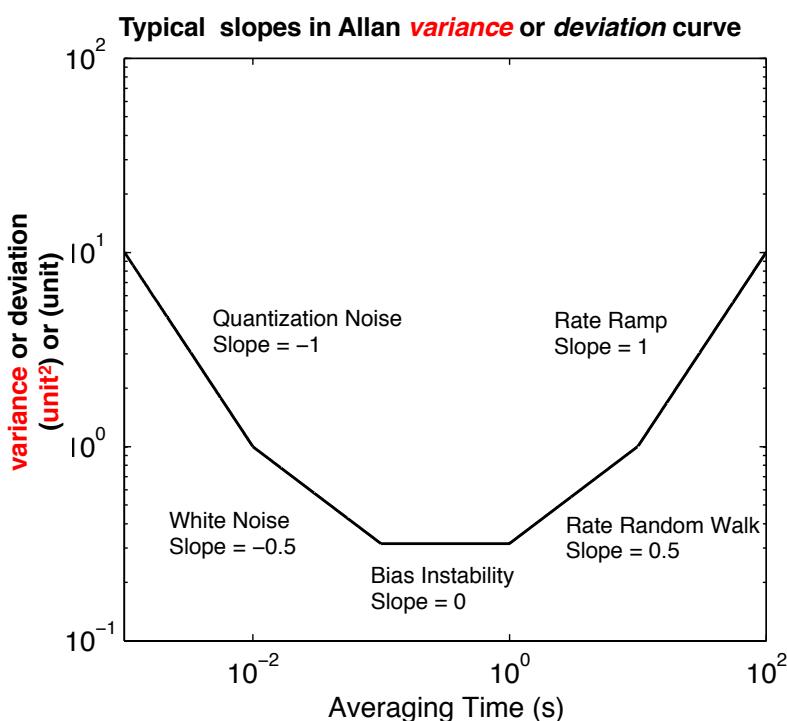
Allan variance – with sample overlap

Concept of AV with overlapping samples



source: Freescale Semiconductor, Application note #AN5087, Rev. 0,2/2015

Process identification in AV plots

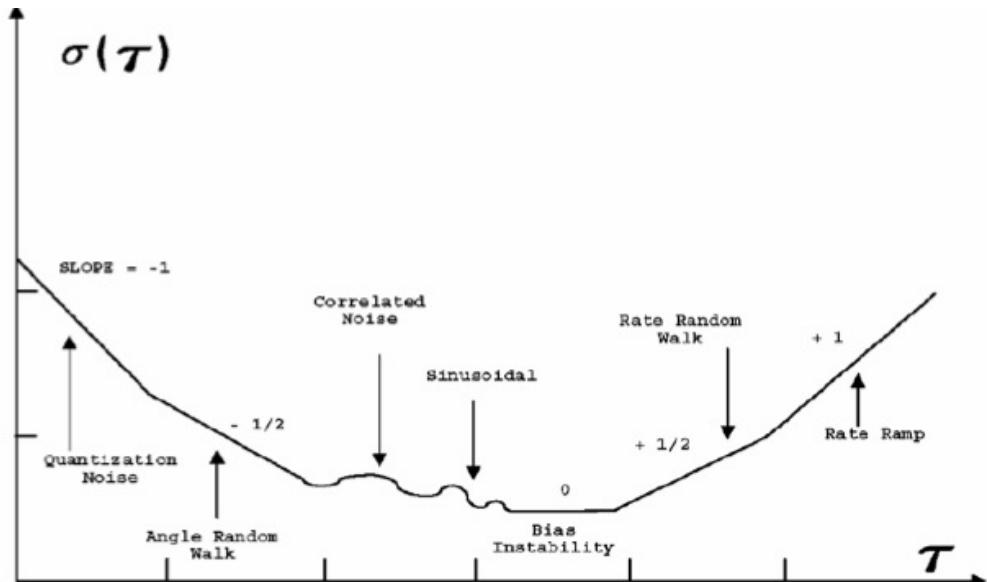


Remarks:

- Forward mapping:
 - Easy
 - IEEE standard
- Inverse:
 - not always
 - not a standard
 - Use GMWM ...

Allan deviation – process signature

Complex error structure -> parameter estimation difficult



AV of a “static” gyro, source: scientific publication

Latent time series models estimation methods

- **Transformation** into a “non-latent” model (e.g. ARMA)
 - Does not work in general
 - Difficult to “inverse”
- “Graphical” / **lin. regression** method
 - Limited to a few possible models
 - Not consistent in general and “inefficient”
- Maximum Likelihood Estimation (**MLE**) / EM algorithm
 - Computationally intensive, laborious for new models
 - Diverges with “complex” models
- General Method of Wavelet Moment (**GMWM**)
 - Rigorous, precise and efficient (*from students in this course*)
 - Released as a freely available package in “R” (v1. 2015)
 - Released as a GUI online tool (v1. 2018)
 - <http://ggmwm.smac-group.com/>