Stochastic Processes — agenda (Chap5)

|
[0 Introduction

B Concept & classification

B Model identification

[0 Examples
B White Noise
B Random bias
B Autoregressive/shaped white noise (Gauss-Markov)

[0 Characteristics
B Auto-correlation (AC)
B Power Spectral Density (PSD)
m Allan Variance (AV) / Wavelet Variance (WV)
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Random process — an example
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Random processes - general concept

[0 Association of random variable(s) with a
deterministic parameter (e.g. time)

[0 Stochastic collection - values depend on the
outcome of an experiment

O Time is a parameter, but the process is ONLY
LOOSELY/stochastic “function” of time

[0 Discrete or continuous

= [ 3/3/23 Sensor Orientaion 3/L2
=PrL

Random variable vs. random process

[0 Probability
m Distribution
B Density

B Characteristics

[0 Variables [0 Processes
B Moments m Autocorrelation func. (AC)
B Characteristic function B Power spectral density (PSD)

TABLE - black b. / Ch.5

= = 3/3/23 Sensor Orientaion 4/L2
=PrL



Classification of random processes

O By ergodicity y

E(x)= lim% [ x(t)at

too L

1 T
RT 2
E(x*)=lim—— [ @at

oo T

T

o1
P (tvtz) = hmﬁ J x(tl)x(tz)dt

t—>o0 -T
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Classification of random processes

[0 By stationarity
B Characteristics = const.(t)

B Can be computed from “sample interval”
(rather than absolute time)
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Empirical model identification

[0 Stochastic model
W structure (type) + parameter (values)
B prerequisite for sensor fusion (e.g. Kalman filtering)

prior knowledge/reference

empiical i MODEL (structure + parameters)
DATA stochastic model

identification

A

A

(state-space)
estimation

— ESTIMATE

other input —
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Empirical model identification

O Autocorrelation techniques:

B Assumption 1: Underlying process is stationary
Gaussian random process

B Assumption 2: Data (z) sampled at constant At
1 N
m=— Z.
N2
/

1
N—l—lz(zi _m)(Zi+l _m)T;l =0,1..N=-2

i=1

¢ (IAt) =

O Time series (or frequency) analysis:
B AR, MA, ARMA, ARIMA, ... + estimators
m AV, WV, ... + estimators
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White noise process

[0 State propagation: X =w
k k
O Differential equation: theoretically not differentiable

0. (7)=9..(0)5(c) o, (0)=0’

|

Autocorrelation PSD

= [ 3/3/23 Sensor Orientaion 11/1L2
=PrL

White noise - example
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Random bias/constant

[0 State propagation: — _
Propas X =X, =M
O Differential equation: x(t) =0
0. (7)=m’ O, (0)=27m"6(w)

Autocorrelation PSD
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Shaped white noise

O Amplitude:

B Gaussian probability density -> results of number of
independent random variables.

[0 Correlation in time (frequency)
B White noise: not correlated in time

u : white noise put through a small linear
system can duplicate virtually many forms of time-
correlated noise.

[0 Linear transformation of white noise = Shaping
Filter
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Random walk

O Differential equation: x(t) — W(t)
O State propagation: X, =X Tw

O Not a stationary process!

RANDOM WALK

process
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1st order Gauss-Markov process

O Differential equation: x(t) = —ﬁx(t)+ w(t)
. _ —BAr
[0 State propagation: X, =€ X, +Ww,
2
_ 2 i _ _2Bo
T)=0"¢ b w)=——
(Dxx( ) xx( ) w2 +ﬁ2
---l-—— 62 (noise var) 1 20°
p
. . "t . =
1/B=correlation time (T) PSD
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1st 0. Gauss-Markov process - example

1st ORDER GAUSS-MARKOV, correl time=200.000000
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Other random processes

Random ramp

Quantization noise

Auto-Regressive (AR) process
Moving-Average (MA) process
Auto-Regressive Moving Average (ARMA)

OO0O00a0
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Power spectrum (or PSD)

[0 PSD is the discrete Fourier transform (DFT) of
AC:

o (@)=Y (1)

T=—00

O If we have a signal of length N:
m Sample AC (AC estimate):
1 N-1-7

T)=—— x x; 7=01,..N-1
(pxx( ) N—T—l % nttT n

B Periodogram spectrum (PSD estimate)

b (@)=Y ¢_(1)e

T=—00
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General note about windowing in DFT

[0 Time windowing -rectangular window, x(nT)=¢_(1)

A
W(rf-)-- length-L

/ rectangular
x(n) window

Ll /

012 -1 o 012 L-1
l«— L samples — f«— L samples —
le— (L-1)T sec —»] fe— LT sec —f

B Original and time-windowed spectrum:

d(w) = i x(nT)e ™"

Nn=—oo

L-1 o0
(iDL(a)) = ZxL(nT)e'j“’”T = 2 x, (n)e ™"
n=0

N=—oo
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General note about windowing in DFT

[0 Windowing has two (side) effects:

B Reduction of the frequency resolution of the computed

spectrum .

Aw=—
TL
B Frequency leakage
O Introduction of high-frequency components into the
spectrum

O Caused by the sharp clipping of the signal at the left &
right sides of the rectangular window

sin(wlL/2)

(@)= sin(/2)
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General note about windowing in DFT

[0 Magnitude spectrum of rectangular window:

mainlobe
\ T
_ relative
Aw,, | R=13 dB = sidelobe
sidelobes causing level
frequency leakage N\

-2n 0 2r 4n
L E L

sin(wlL/2)

(@)= sin(e/2)
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General note about windowing in DFT

IW(w)!

Reduces sidelobes L T

mainlobe \
Reduces leakage i comin Re1s ap = Sloe
. frequency leakage
Narrows the main lobe \

Some windowing function: B R

T ()

O0O04d

. W e I C h Rectangular window Hamming window (a = 0.53836) Welch window
T T
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Common Random Processes i

PROCESS | AUTOCORRELATION FUNCTION POWER SPECTRAL DENSITY
WHITE Po
NOISE
T w
Py lT) = ¢08(T) Duy = )
202/ﬁ1
MARKOV
PROCESS -/_X
m=0 T 5 w
2 6kl 20
Bux(7) =05 P1 17 ¢""=w_2-+-ﬁ?
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SINUSOID T pre pre @
2 LT 2
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RANDOM 2
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T w
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B (1) = m2 Ligye = 275l After Gelb, A. (1974)
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El‘rOI‘ MOdEIS - DiSCrEte Case (distributed)
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Allan variance (AV) - D. Allan 1966

[0 Alternative measure of variability

[0 = “variations of sample averages of different
length T”

_ 1 7-1 . . 5
Xk(f)=;§0Xk_j G%(T)z%E[(Xk(T)—Xk_T(T))}

[0 Greenhall (1991) estimator of AV
G(1)= ! EN‘,()T (7)—-Xx, (T))2
X AN=-2t+) 5" ° ke
x k=1,....N

k
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Allan variance - with sample overlap

Concept of AV with overlapping samples

T ) (Stride)
'(—T=3T()—> m=3

= - @
Q.
5 ® s
O - > o ¢ e ©

B a . .

- >
- -
- Overlapping Samples

source: Freescale Semiconductor, Application note #AN5087, Rev. 0,2/2015
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Process identification in AV plots

) Typical slopes in Allan variance or deviation curve
10 -

] Remarks:

S

*Forward mapping:
+ Easy
» IEEE standard

Quantization Noise Rate Ramp
Slope = -1 Slope =1

)

variance or deviation
(unit2) or (unit)

Inverse:
« not always

White Noise Rate Random Walk y

Slope = -0.5 Slope = 0.5 * not a standard
Bias Instability e Use GMWM ...
Slope =0

10_1 : > I 0 2
10° 10 10

Averaging Time (s)
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Allan deviation - process signature

Complex error structure -> parameter estimation difficult

A

o(7)

Correlated
Noise Rate Random
Walk + 1

Sinugoidal T
i i Rate Ramp
Quantization
Noise
Angle Random Di_as
Walk l l Instability l l T

\ 4

AV of a “static” gyro, source: scientific publication
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Latent time series models estimation methods

|

O Transformation into a “non-latent” model (e.g. ARMA)
m Does not work in general
m Difficult to “inverse”

O “Graphical” / lin. regression method
B Limited to a few possible models
B Not consistent in general and “inefficient”

[0 Maximum Likelihood Estimation (MLE) / EM algorithm
®m Computationally intensive, laborious for new models
® Diverges with “complex” models

O General Method of Wavelet Moment (GMWM)
m Rigorous, precise and efficient (from students in this course)
B Released as a freely available package in "“R” (v1. 2015)
B Released as a GUI online tool (v1. 2018)
B http://ggmwm.smac-group.com/
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