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Sensor orientation – main topics

This translates into three rough big areas

1. Fundamentals 
• How to characterize sensor noise
• How to transform from the sensed signals to navigation frame? 

2. Position, velocity, attitude (navigation)
• How to formulate navigation equation in different frames?
• How to resolve them numerically? 

3. Sensor fusion 
• How to formulate models for sensor fusion? 
• How to implement it in optimization and use it for mapping?
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You need the frames

You need the navigation 
quantities and the noise 
properties



Cockpit view of SO course’s topics 
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Sensor Fusion

Sensors
(inertial + GPS)

Noise 
characterization

Stochastic 
Processes

Extended 
Kalman Filter

Strapdown 
Inertial 

Navigation
Navigation 

Frames

Estimation 
principle - RLS

How to reach integrated sensor orientation? 
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Inertial Navigation – agenda I
o Introduction

n Systems & realization
n Navigation equation in i-frame

o Numerical integration for position & velocity
n 1st order – Euler method
n 2nd order – Trapezoidal 
n 3rd order – Simpson’s method 
n Higher orders

o 2D example 
n General  
n Particular - Lab 2 
n Integration of 1-axis attitude 
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6Inertial navigation systems 
(1/9)

Inertial technique
• Measurements

Specific force along the axis of a well-defined reference frame (navigation 
frame) via accelerometers

Angular rates about the axis of the navigation frame via gyroscopes

Mechanical stabilization vs. computational compensation of the rotations of 
the navigation frame
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7Inertial navigation systems 
(2/9)

The measurement of specific force allows deducing accelerations:
First time integration of acceleration yields velocity differences

Second time integration of acceleration yields position differences (è
relative positioning)

Integration constants
• Initial position

• Initial velocity

è Initial attitude is required implicitly
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8Inertial navigation systems 
(3/9)

Problems
1. Presence of gravitational fields è kinematic vehicle acceleration is 

superimposed by gravitation

2. Depending on the choice of the navigation frame, apparent forces
arise è these are caused by the rotation of the navigation frame w.r.t.
to inertial space

Consequences
Original laws of Newtonian mechanics do not hold! 
“Disturbing” accelerations must be considered
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9Inertial navigation systems 
(4/9)

Example: Coriolis effect

Se
ns

or
 o

rie
nt

at
io

n



J.
 S

ka
lo

ud
, E

SO
  

10Inertial navigation systems 
(5/9)

Inertial measurement unit (IMU)
• Accelerometers and gyros are 

combined with a timing device 
• Typical: orthogonal assemblies 

(triads) of sensors

• Possibilities for the navigation frame
Inertially non-rotating
• Quasi-inertial frame ... i- frame

Inertially rotating
• Earth-fixed frame ... e- frame
• Local-level frame ... l- frame
• Body frame ... b- frame
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11Inertial navigation systems 
(6/9)

• i-frame: Specific force is difference between:
kinematic vehicle acceleration
gravitational acceleration at the vehicle position

è Why difference?  Experiment of thought:
Vertically aligned accelerometer:
• Observation while static?

• Observation while in free fall?

• Observation during upward acceleration?

• Other frames: Disturbing accelerations occur
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15Inertial navigation systems 
(7/9)

Behavior of an accelerometer
Reaction to gravitation (proof mass is kept from free fall)
Inertia of proof mass with respect to other forces
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17Inertial navigation systems 
(8/9)

Main types of INS
Gimbaled platforms
• Mechanical isolation of the platform from the rotational dynamics of the 

vehicle
• Orientation w.r.t. inertial space (i) or w.r.t. earth (l ) is kept fixed (use of 

gimbals)
• Gimbal motors are driven due to gyro output

Strapdown systems
• No mechanical isolation (maybe shock mounts), i.e., no gimbals (IMU is 

“strapped down”)
• Fully analytic solution of the navigation equations
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18Inertial navigation systems 
(9/9)

Schematic plot of a local-level (gimbaled) platform:
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19Navigation equations 
(1/4)

Objectives
• Determination of the state vector of a vehicle:

Position
Velocity
Attitude

Criteria è the solution depends on: 
• the type of INS (gimbaled vs. strapdown)
• the choice of the navigation frame 

è Mathematical derivation …

Se
ns

or
 o

rie
nt

at
io

n



o Strapdown navigation – general view
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21Navigation equations 
(3/4)

Strapdown system in the i-frame – more detail
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o Inertial frame (i)
n Newton’s mechanics ”holds” 

n Non-accelerating, non-rotating

J.
 S

ka
lo

ud
, E

SO
  

22

F
i
= miẍ

i

n In a gravitation field 

miẍ
i
= Fi

+mgg
i

n Under Einstein principle of equivalence
n Dividing both sides by               

ẍi
= f i + gi

mi = mg

specifc force we need !
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o Two realizations (to get it) 
n “Gimbled”  

n 3-axes with 3 accels in the middle
n Obtained physically in i-frame

n ”Strap-down” (later)
n Attached to a b-frame
n Obtained mathematically (later) 

n How to get initial R (later) ?   

f i = ẍi
− gi

f
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Navigation equations (4/4)

n Rotation 
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Inertial Navigation – agenda I
o Introduction

n Systems & realization
n Navigation equation in i-frame

o Numerical integration for position & velocity
n 1st order – Euler method
n 2nd order – trapezoidal 
n 3rd order – Simpson’s method  
n Higher orders

o 2D example 
n General  
n Particular - Lab 2 
n Integration of 1-axis attitude 
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Ordinary differentiation equation (ODE) of a 1st order

Euler’s method

Modified Euler / e.g. two-stage Runge-Kutta

Four-stage Runge-Kutta
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Numerical integration

1st order (Euler, rectangular) 

Velocity integration

Position integration 

Se
ns

or
 o

rie
nt

at
io

n

J.
 S

ka
lo

ud
, E

SO
  

26

APPENDIX iv

The first-order approximate solution of Eq. (24) is given by

vi(tk) = vi(tk−1) +
(

f i(tk) + gi(tk)
)

· (tk − tk−1) . (32)

As the area under the curve for each component of v̇i(t) is replaced by a rect-
angle, this approximation is known as rectangular rule (Fig. 7).

The second-order approximation is known as trapezoidal rule and reads

vi(tk) = vi(tk−1) +
1

2

[ (

f i(tk) + gi(tk)
)

+ ...
(

f i(tk−1) + gi(tk−1)
) ]

· (tk − tk−1) . (33)

Thereby, the area under the curve for each component of v̇i(t) is replaced by a
trapeze (Fig. 7).

vi

rectangular�rule

ttk 1– tk

vi

ttk 1– tk
trapezoidal�rule

Figure 7: Rectangular and trapezoidal integration rules

Finally, a third-order approximation known as Simpson’s rule combines the
known values of the time derivative by a weighted sum

vi(tk) = vi(tk−1) +
1

6

[ (

f i(tk) + gi(tk)
)

+ ...

4
(

f i(tk−1) + gi(tk−1)
)

+ ...
(

f i(tk−2) + gi(tk−2)
) ]

· (tk − tk−1) . (34)

Finally, note that the time dependence of the gravitational acceleration gi

is indirect, i.e., via the time dependence of the position and its own position
dependence. As the gravitational vector changes relatively slowly with position,
it is usually sufficient to compute it at a reduced update frequency as compared
to the other calculations.

v̇i(tk) = f i(tk) + gi(tk)

v
i(tk) = v

i(tk−1) + v̇
i(tk) · (tk − tk−1)

p
i(tk) = p

i(tk−1) + v
i(tk) · (tk − tk−1)

Properties  
Largest error (--) 
Very simple (++)
∆t can vary (+)



Numerical integration

2nd order (trapezoidal)
= 2nd order Runge-Kutta

Velocity integration

Position integration 
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v̇i(tk) = f i(tk) + gi(tk)

Properties  
Error still large (-)  
Simple (+) 
∆t can vary (+)

APPENDIX iv

The first-order approximate solution of Eq. (24) is given by

vi(tk) = vi(tk−1) +
(

f i(tk) + gi(tk)
)

· (tk − tk−1) . (32)

As the area under the curve for each component of v̇i(t) is replaced by a rect-
angle, this approximation is known as rectangular rule (Fig. 7).

The second-order approximation is known as trapezoidal rule and reads

vi(tk) = vi(tk−1) +
1

2

[ (

f i(tk) + gi(tk)
)

+ ...
(

f i(tk−1) + gi(tk−1)
) ]

· (tk − tk−1) . (33)

Thereby, the area under the curve for each component of v̇i(t) is replaced by a
trapeze (Fig. 7).

vi

rectangular�rule

ttk 1– tk

vi

ttk 1– tk
trapezoidal�rule

Figure 7: Rectangular and trapezoidal integration rules

Finally, a third-order approximation known as Simpson’s rule combines the
known values of the time derivative by a weighted sum

vi(tk) = vi(tk−1) +
1

6

[ (

f i(tk) + gi(tk)
)

+ ...

4
(

f i(tk−1) + gi(tk−1)
)

+ ...
(

f i(tk−2) + gi(tk−2)
) ]

· (tk − tk−1) . (34)

Finally, note that the time dependence of the gravitational acceleration gi

is indirect, i.e., via the time dependence of the position and its own position
dependence. As the gravitational vector changes relatively slowly with position,
it is usually sufficient to compute it at a reduced update frequency as compared
to the other calculations.

v
i(tk) = v

i(tk−1) +
1

2

[

v̇
i(tk) + v̇

i(tk−1)
]

· (tk − tk−1)

p
i(tk) = p

i(tk−1) +
1

2

[

v
i(tk) + v

i(tk−1)
]

· (tk − tk−1)



Numerical integration
3rd order – Simpson’s method

• Combination by a weighted sum
• = 3rd order Runge-Kutta

Velocity integration

Position integration 
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v̇i(tk) = f i(tk) + gi(tk)

Properties  
Smaller error  
Less simple (-) 
∆t = const. (--)

v
i(tk) = v

i(tk−1) +
1

6

[

v̇
i(tk) + 4v̇i(tk−1)

v̇
i(tk−2)

]

· (tk − tk−1)

p
i(tk) = p

i(tk−1) +
1

6

[

v
i(tk) + 4vi(tk−1)

v
i(tk−2)

]

· (tk − tk−1)



Numerical integration

Higher order – Runge-Kutta
• General n-order
• Popular 4th order (RK4) 

Velocity integration

Position integration 
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Properties  
Smallest error  
Not simple (-) 
∆t = const. (--)

v
i(tk) = v

i(tk−1) +
1

12

[

− v̇
i(tk−2) + 8v̇i(tk−1)

+5v̇i(tk)
]

· (tk − tk−1)

p
i(tk) = p

i(tk−1) +
1

12

[

− ṗ
i(tk−2) + 8ṗi(tk−1)

+5ṗi(tk)
]

· (tk − tk−1)

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods


Inertial Navigation – agenda I
o Introduction

n Systems & realization
n Navigation equation in i-frame

o Numerical integration for position & velocity
n 1st order – Euler method
n 2nd order – Trapezoidal 
n 3rd order – Simpson’s method 
n Higher orders

o 2D example 
n General  
n Particular - Lab 2 
n Integration of 1-axis attitude 
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31Inertial navigation in 2D 
- principle

o To be monitored: 
n translational motion in two directions 
n direction change (i.e. rotational motion)

o Is required:
n Two accelerometers - detects the acceleration in two directions
n One gyroscope - detects the rotational motion in a direction perpendicular to 

the plane of motion.

o Possible implementations: 
n Stable platform system (Gimbaled System)
n Strapdown systemSe
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322D INS – stable platform system
o The platform (defined by two accelerometers) is kept 

aligned by a torque motor with the navigation frame.
o The torque is driven by the gyroscopic signal.
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33Rotation matrix in 2D

n n b
ba R a= n - navigation frame

b – body frame

Transformation of accelerometers (a) output:
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o The output of the accelerometers attached to the body is transformed 
mathematically system before performing the integration.

Se
ns

or
 o

rie
nt

at
io

n



J.
 S

ka
lo

ud
, E

SO
  Example 2D – Lab2

Simulation example (no gravity): Gyro signal:

Accelerometer signal:

1

02

0b
b

b

f
f

rf w
é ù é ù

= =ê ú ê ú
ë ûë û

Run the code in terminal … 

… and with realistic signal

ω
b

ib
= ω

b

mb
= ω0

α
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Simulation example (no gravity): Initialization
• Initial coordinates

• Initial azimuth

α

α
i(tk) = α

i(tk−1) +
1

2

[

ω
b

ib
(tk) + ω

b

ib
(tk−1)

]

· (tk − tk−1)

α(t0) =
π

2

xm

1
(t0) = r , xm

2
= 0

Azimuth integration 
• In 1-axis system – as vel / pos
• Simple - Euler 
• Less simple - higher order, e.g. 
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Inertial navigation – agenda II (outlook)
Navigation equations 

• e-frame
• Local-level –frame

Attitude 
• Attitude solution in 3D
• Initialization – how? 

Navigation errors & impact  
• Initialization 
• Others  
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