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Sensor Fusion

Sensors
(inertial + GPS)

Noise 
characterization

Stochastic 
Processes

Extended 
Kalman Filter

Strapdown 
Inertial 

Navigation
Navigation 

Frames

Estimation 
principle - RLS

How to reach integrated sensor orientation? 



Cockpit view of inertial navigation
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Strapdown 
Inertial 

Navigation

Equation 
Definition

i-frame 

e-frame
l-frame

Numerical 
Solution

Attitude 
Initialization + 
Imperfection 

impact

Attitude 
Integration 

(SO-3 manifold)

Integration 
(Cartesian 
manifold)

Prerequisite for reaching integrated sensor orientation 

Home read 6.4+6.5



Inertial navigation – agenda 
Navigation equations  

• i-frame (Week 5)
• e-frame (Week 6) & SHOW CASE
• l-frame (local-level) – polycopié (6.4) to read for next week! 

Attitude (Week 7)  
• Initialization – how ? 
• Initialization – imperfections & impact 

Strapdown inertial navigation (Week 8) 
• (1) Attitude solution in 3D 
• (2) Navigation equations e-frame, l-frame & their solution 
• (3) Impact of error accumulation
• (4) Procedure(s) in strapdown inertial navigation
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o Goal: solve the differential equation 
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  Attitude integration in 3D 
(1) analytical solution
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Ṙ
a
b = R

a
b Ω

b
ab
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where is an arbitrary frame of 3 possibilities  a ∈ {i, e, ℓ}Ṙ
a
b −R

a
b Ω

b
ab = 0

o Under the condition of a sufficiently small interval                 , the angular matrix
Solution is found :  

Ωb
ab

∼ const.(t− tk−1)

R
a
b (t) = R

a
b (tk−1) exp

(

Ω
b
ab · (t− tk−1)

)

Ṙ
a

b
(t) = R

a

b
(tk−1) exp

(

Ω
b

ab
· (t− tk−1)

)

︸ ︷︷ ︸

Ra

b
(t)

Ω
b

ab

o The validity of this solution may be proved by its time differentiation and backward 
substitution into the original differential equation  …

where is the integration constant CRa
b
(tk−1)



In a case of solution for the attitude differential eq.:
with the use of current angular-rate measurements*

o Why / how the integration constant is chosen?  
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  Attitude integration in 3D 
(2) numerical solution
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ω
b
ab
×

]

= Ωb
ab

eA = exp (A) = I+A+
1

2!
A

2 +
1

3!
A

3 + ...

o In analogy to scalar numbers, the exponential function of an arbitrary (squared) matrix A is:

R
a
b (t) = C e

Ω
b

ab
(tk−tk−1)

Ṙ
a

b
(t) = C e

Ω
b

ab
(tk−tk−1)

︸ ︷︷ ︸

Ra

b
(tk)

Ω
b

ab
As the term “underbrace” is the 
solution =⇒ C = R

a
b (tk−1)

*in case the solution is e-frame or l-frame, the gyro observations needs to be “corrected” 
for (e- or l-frame) rotations with respect to the inertial frame.

A =
(

Ωb
ib
· (t− tk−1)

)

expm(matrix) in Matlab, Python: scipy.linalg.expm(matrix)
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  Review of navigation equations 
(1) e-frame
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Ṙ
e

b
= R

e

b

(

Ω
b

ib
− Ω

b

ie

)

v̇e = Re

b
f b − 2Ωe

ie
ve + ge

ṙ
e
= v

e

gyroscope sensed rate in skew-symmetric matrix

o Angular rate related components 

Ωb
ib
=

[

ω
b
ib
×

]

Ωb
ie =

[(

Rb
eω

e
ie

)

×

]

skew-symmetric matrix of earth rotation expressed in body-frame

ω
e

ie
= [0 , 0 ,ωe]

T mean Earth rotation rate in e-frame



o Position is expressed in geographical (ellipsoidal) coordinates, related to e-frame 
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  Review of navigation equations 
(2) local-level frame (see 6.4)
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N - the ellipsoid main radii
a, b – the major and minor axis 

o Attitude and  related angular rate components 

Ωb
bℓ

=
[(

ω
b
ib
− ω

b
ie − ω

b
eℓ

)

×

]

=
[(

ω
b
ib
− ω

b
iℓ

)

×

]

v
ℓ
e =

⎡

⎣

vn
ve
vd

⎤

⎦ =

⎡

⎣

(M + h) ϕ̇
(N + h) cosϕ λ̇

−ḣ

⎤

⎦

gyros 
observations

o Velocity involves derivatives of the ellipsoidal coordinates (6.37) 

x
e =

⎡

⎣

(N + h) cosϕ cosλ
(N + h) cosϕ sinλ

( b
2

a2N + h) sinϕ

⎤

⎦

M - the ellipsoid curvature

Rℓ
b

Earth
rotation

transport
rate

= a rate in which local-level frame 
rotates due to local-level velocity

3.2 Transformations 18
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Fig. 3.2. Cartesian and ellipsoidal coordinates

The inversion of Eq. (3.4) directly yields the ellipsoidal longitude

λ = arctan(xe2/x
e
1) . (3.6)

The computation of the ellipsoidal latitude requires two auxiliary quantities

p =
√

xe
2

1 + xe
2

2 = (N + h) cosϕ , (3.7)

ψ = arctan(xe3 a/p b) , (3.8)

where p is the orthogonal distance of xe from the symmetry axis of the ellipsoid.
(The second equality in Eq. (3.7) is added for the sake of completeness.) Using
these auxiliary quantities, the ellipsoidal latitude is computed (without proof)
by

ϕ = arctan
xe3 + e′2 b sin3 ψ

p− e2 a cos3 ψ
, (3.9)

where e2 and e′2 are the first and second numerical eccentricities of the ellipsoid,
respectively. These are given by

e2 = (a2 − b2)/a2 , e′2 = (a2 − b2)/b2 . (3.10)

Once ϕ is known, the height may be obtained by restructuring Eq. (3.7):

h = p/ cosϕ−N , (3.11)

where N follows from Eq. (3.5).

3.2.2 Frame transformations

A rotation-based transformation between two arbitrary frames with identical
origins, denoted as p-frame and q-frame, is described by

xq = Rq
px

p , (3.12)

3.2 Transformations 20

Celestial and terrestrial equatorial frame

The transformation from the terrestrial frame (e-frame) to the celestial frame
(i-frame) is achieved by a rotation about the common x3-axis (Fig. 3.1) and is,
thus, defined by the rotation matrix

Ri
e = R3(−Θ0) , (3.17)

where Θ0 is denoted as Greenwich sidereal time (GST). With respect to the
rotation of the e-frame into the i-frame (Fig. 3.1), Θ0 counts counterclockwise
so that a negative sign in Eq. (3.17) is required.

Terrestrial equatorial and local-level frame

To get the same orientation as the right-handed ECEF frame (e-frame), the
north-, east-, and down-axis are chosen as the xl

i-axes (i = 1, 2, 3) of the local-
level frame (l-frame). This situation for a point P with ellipsoidal latitude ϕ
and longitude λ is shown in Fig. 3.3. In the e-frame, these axes are denoted as
ne, ee, and de and are given by

de =

⎡

⎣

− cosϕ cos λ
− cosϕ sinλ

− sinϕ

⎤

⎦ , ne = −∂d
e

∂ϕ
, ee = − 1

cosϕ

∂de

∂λ
, (3.18)

where ne and ee result from de by partial derivatives.

x1
e

x2
e

x3
e

¸

P.

ne

ee

de

Fig. 3.3. ECEF and local-level frame

Generally, the columns of a rotation matrix Rq
p may be interpreted as the

axes of the p-frame expressed in the q-frame. Accordingly, the rotation matrix
Re

l for the coordinate transformation from the l- to the e-frame is

Re
l =

⎡

⎣

− sinϕ cos λ − sinλ − cosϕ cos λ
− sinϕ sinλ cos λ − cosϕ sinλ

cosϕ 0 − sinϕ

⎤

⎦ . (3.19)

Since the origins of the e-frame and the l-frame are not identical, only
difference vectors may be transformed, if the rotation matrix Re

l is solely used
without shift vector.

x
e
ℓ
=

⎡

⎣

ϕ
λ
h

⎤

⎦



o Synthesis Polycopie 6.4
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  Review of navigation equations 
(3) local-level frame
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gyroscope signal in skew-symmetric matrix

o Angular rate related components 

g
ℓ(tk) =

⎡

⎣

0
0

γ (ϕ(tk), h(tk))

⎤

⎦

Ωb
iℓ
=

[

ω
b
iℓ
×

] skew-symmetric matrix of an angular rate
between inertial and local-level frame 
combining Earth rotation and transport rate

Ṙℓ
b
= Rℓ

b

(

Ωb
ib
− Ωb

iℓ

)

v̇ℓ
e = Rℓ

b
f b − (Ωℓ

iℓ
+Ωℓ

ie)v
ℓ
e + gℓ

ẋe
= Re

ℓ
vℓ
e

Ωb
ib
=

[

ω
b
ib
×

]

ω
ℓ
iℓ
=

⎡

⎣

(λ̇+ ωE) cosϕ
−ϕ̇

− (λ̇+ ωE) sinϕ

⎤

⎦

Note: such “normal gravity model”
applies also for e-frame, 
after rotation by Re

ℓ

ẋℓ
e = D−1vℓ

e or

D−1 =

⎡

⎣

1
M+h

0 0

0
1

(N+h)cosφ 0

0 0 −1

⎤

⎦
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  Strapdown inertial navigation  
(1) flow-char ECEF e-frame
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ṙ
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Strapdown inertial navigation  
(2) local-level L-frame
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  Impact of initial attitude imperfection 
(1) synthesis of “alignment”
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since Re

b = R
e

ℓ (ϕ, λ) ·R
ℓ

b

Accelerometers 

Gyros

tan(r) =
−fy
−fz

tan(p) = fx
√

f2
y
+f2

z

ω
ℓ̄
ib
= Rℓ̄

b
ω
b
ib

R
ℓ̄

b
= [R1(r)R2(p)]

T

tan(y) =
−ω

ℓ̄
y

ω
ℓ̄
x

Static

Coarse (approx.)

Fine (precise) 
e.g. Kalman 

Filter

A. Roll & Pitch 
Leveling

B. Azimuth/yaw
Gyro-compass.
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• The roll, pitch accuracy is governed by accel’s. accuracy (mainly bias Δf):
.

• → Yaw accuracy will mainly depend on the gyro bias (b) and integrated 
random noise (bRW) :

14

∆y =

b
ω

ℓ̄
y

ωe cosϕ

Impact of initial attitude imperfection 
(2) synthesis of “main imperfections”

∆yRW =
bRW

ωe cosϕ
√

T

∆r = −∆fy/g

∆p = −∆fx/g
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o AirINS: static data over 2 hours
n 20 min of fine-alignment (using zero-velocity, positon-fix) followed by 

navigation (free integration without external input) 

o Video:
n Effect of (mainly) misalignment error coupled with velocity error 

n Start sequence 

15Impact of attitude imperfection 
(3) - demo navigation 



Assumptions  
• No position error (e.g. GPS)
• No velocity error (static, or GPS)  
• Platform is aligned (perfectly) to north - N
• For simplicity consider location at the equator of a spherical non-rotating Earth

A small tilt    about north (x - axis) results in an acceleration error in the 
east (y - axis) :
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θ

Impact of initial attitude imperfection 
(4) demo – explanation

∆ay = −g θx where g is the gravity (constant) 



A small tilt ϴ about north (x - axis) results in an acceleration error in the east (y -
axis) :
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Impact of initial attitude imperfection 
(5) demo – explanation

∆ay = −g θx

The velocity error due to this tilt is then (integrated acceleration error) :

∆vy =

∫
t

0
∆ay dτ = −g

∫
t

0
θx dτ

This results in a positioning error (integrated velocity error) : ∆py =

∫
t

0
∆vy dτ

The navigation algorithm will rotate its notion of local level according to the sensed 
velocity. This corresponds to a tilt error (error in transport rate): 

θ̇x = ∆vy/R = −g/R
∫

t

0
θx dτ

where R is the radius of Earth



Differentiating the above equation with respect to time :
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Impact of initial attitude imperfection 
(6) demo – explanation

ω =

√

g/R

The navigation algorithm will rotate its notion of local level according to the sensed 
velocity. This corresponds to a tilt error (error in transport rate): 

θ̇x = ∆vy/R = −g/R
∫

t

0
θx dτ

θ̈x + (g/R) θx = 0

… we obtained an equation of a simple harmonic oscillator with an oscillation 
frequency :  

The period of oscillation is: T = 2π/ω

with g = 9. 81 m/s2  , R = 6’371000 m,  T =    ? (min) 
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Impact of initial attitude imperfection 
(7) demo – explanation

The period : 

T =
2π

√

R/g

min

is called Schuler oscillation! 
and is formally identical to that 
for a simple pendulum of length R

(position and velocity oscillate 
at the same frequency) 
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Complex behavior
• Horizontal channels show oscillations

Schuler (~ 84.4 min)

Foucault (24 h/sin(φ) è e.g., 34 h for φ = 45°)

24 h

• Vertical channel is inherently unstable
No earth curvature as for horizontal channels

Direct influence of gravitational errors

20
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error of gyro drift

o 0.01 deg/h drift error
o Ramp function
o 0.7 nm (nautical mile) 

position error after 1 
hour

21
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(1/3) – sensor & initial attitude errors 

Example from Titterton and Weston (1997)
• Aim: parameter investigation

• Vertical: not included

• Duration: 24 h

• True errors:
Initial roll, pitch: +0.1 mrad (~ 0.006° = 0.36’)

Initial heading: +1.0 mrad (~ 0.06° = 3.6’)

Gyro biases: +0.01°/h
Acc. biases: +0.1 mg (~ 0.001 m/s²)

22
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nError coupling A
(2/3) – horizontal position errors 

23



Se
ns

or
 O

ri
en

ta
tio

nError coupling A
(3/3) – attitude errors

24
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determination with INS

Before use:

• System calibration for deterministic part the sensor output (if any)

• Estimation of noise parameters (GM correlation time …)

• Estimate of the needed alignment time as a function of the gyro random 
walk (for navigation-grade or tactical-grade IMUs) versus bias stability   

25
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nTypical ‘orientation’ mission – case 
High-end (navigation, tactical) IMU 

System initialization ( position, velocity )
Alignment
• Static - zero velocity (known) updates (ZUPT)
• Kinematic – GNSS (GPS) under const. heading

Error control by sensor fusion (Kalman Filter / smoother)
• Zero-velocity update (ZUPT), (GNSS) /Doppler-velocity
• Coordinate position update (CUPT) (GNSS)
• Height update (barometer)
• Distance update - odometer (terrestrial vehicle)

26



Typical ‘orientation’ mission – case 
Low-cost (MEMS) IMU  
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System initialization ( position, velocity )
Alignment
• Transfer (e.g. multi-antenna GNSS)
• Static – not possible without other info (e.g. magnetometers)
• Kinematic – GNSS (GPS) with const. heading + 

magnetometers

Error control by sensor fusion (Kalman Filter /smoother)
• ZUPT, GPS/Doppler-velocity
• Coordinate position update (CUPT) (GNSS)
• Height update (barometer)
• Distance update - odometer (terrestrial vehicle)


