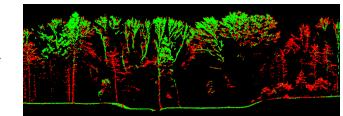


# Sensor Orientation INS/GNSS Integration

Jan SKALOUD

# Sensor orientation – main topics

This translates into three rough big areas



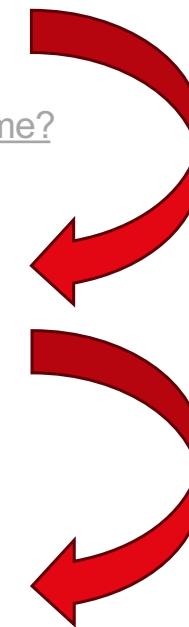
## 1. Fundamentals

- How to characterize sensor noise
- How to transform from the sensed signals to navigation frame?

You need the frames

## 2. Position, velocity, attitude (navigation)

- How to formulate navigation equation in different frames?
- How to resolve them numerically?



## 3. Sensor fusion

- How to formulate models for sensor fusion?
- How to implement it in optimization and use it for mapping?

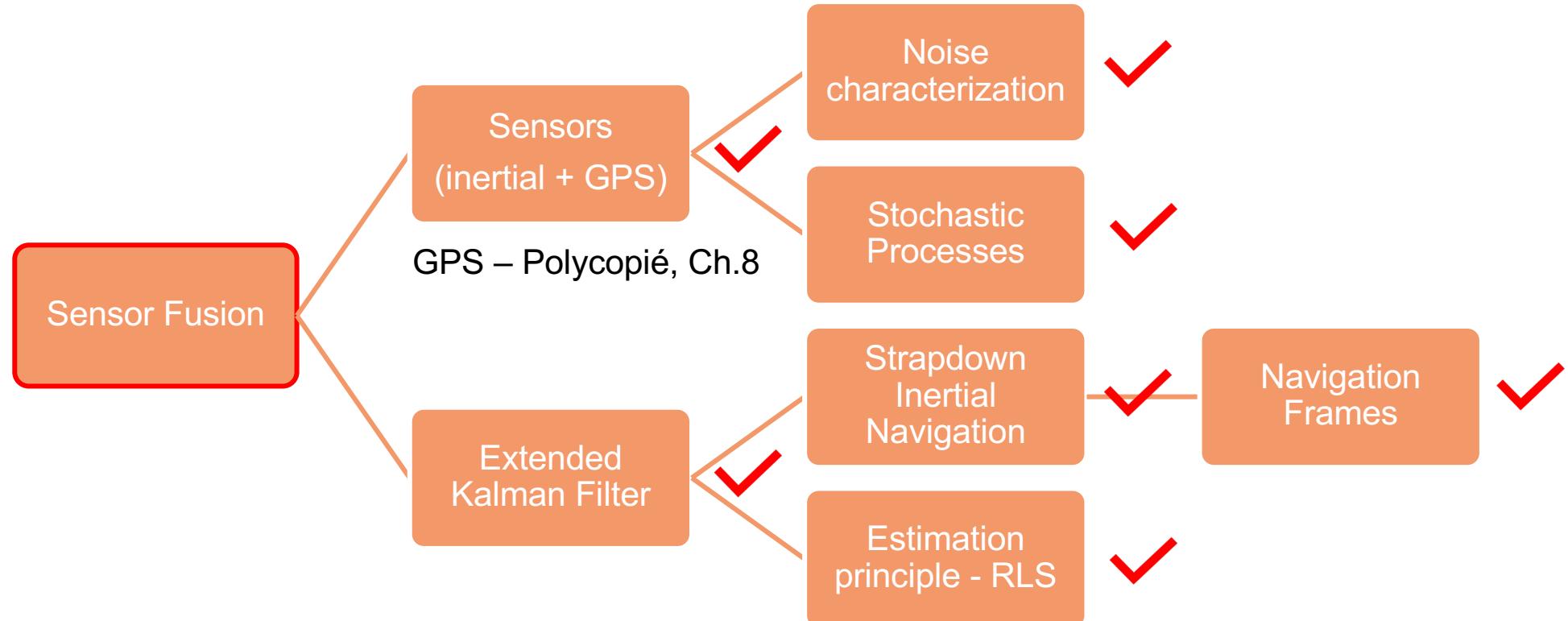
You need the navigation quantities and the noise properties



# Cockpit view of SO course's topics

How to reach *integrated* sensor orientation?

■ Sensor orientation



# Sensor fusion – agenda

## Kalman filter – base (Week 10)

- Intuitive approach
- Discrete KF – components, steps, implementation (Lab 5)

## Kalman filter – extension (Week 11)

- Computation of transition and process noise matrices  $\Phi_k$ ,  $\mathbf{Q}_k$
- Linearized & Extended Kalman filter
- Some other ‘motion model’ examples

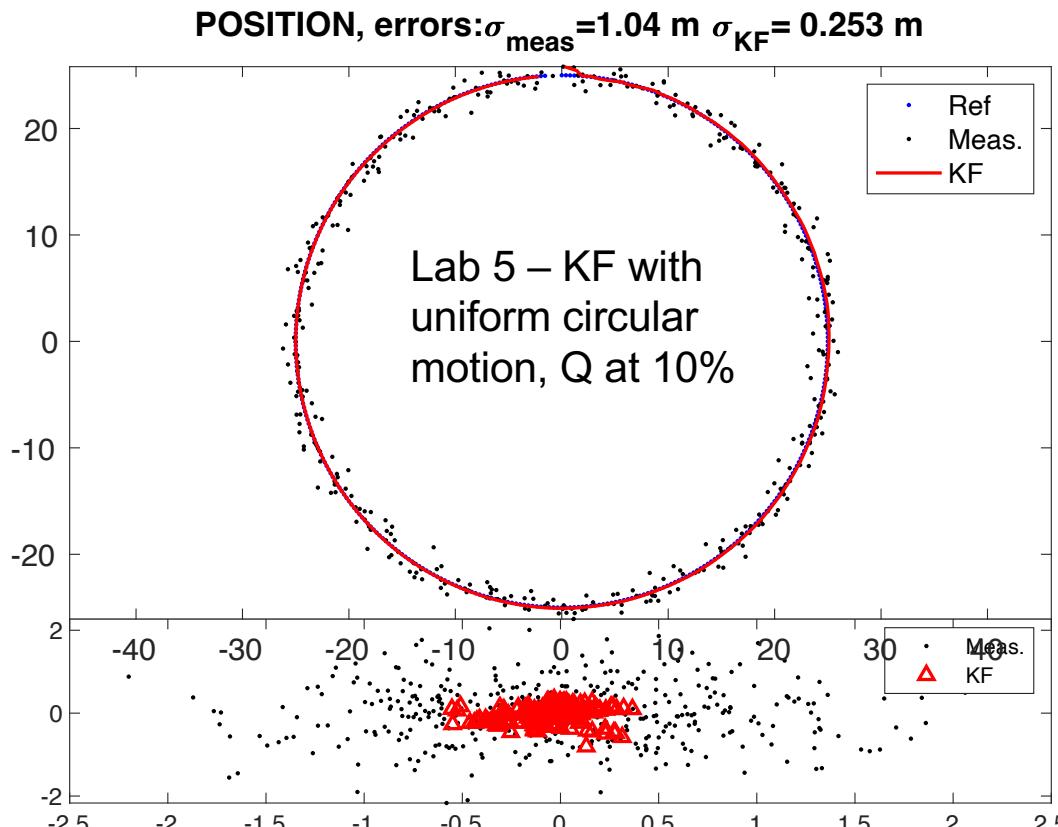
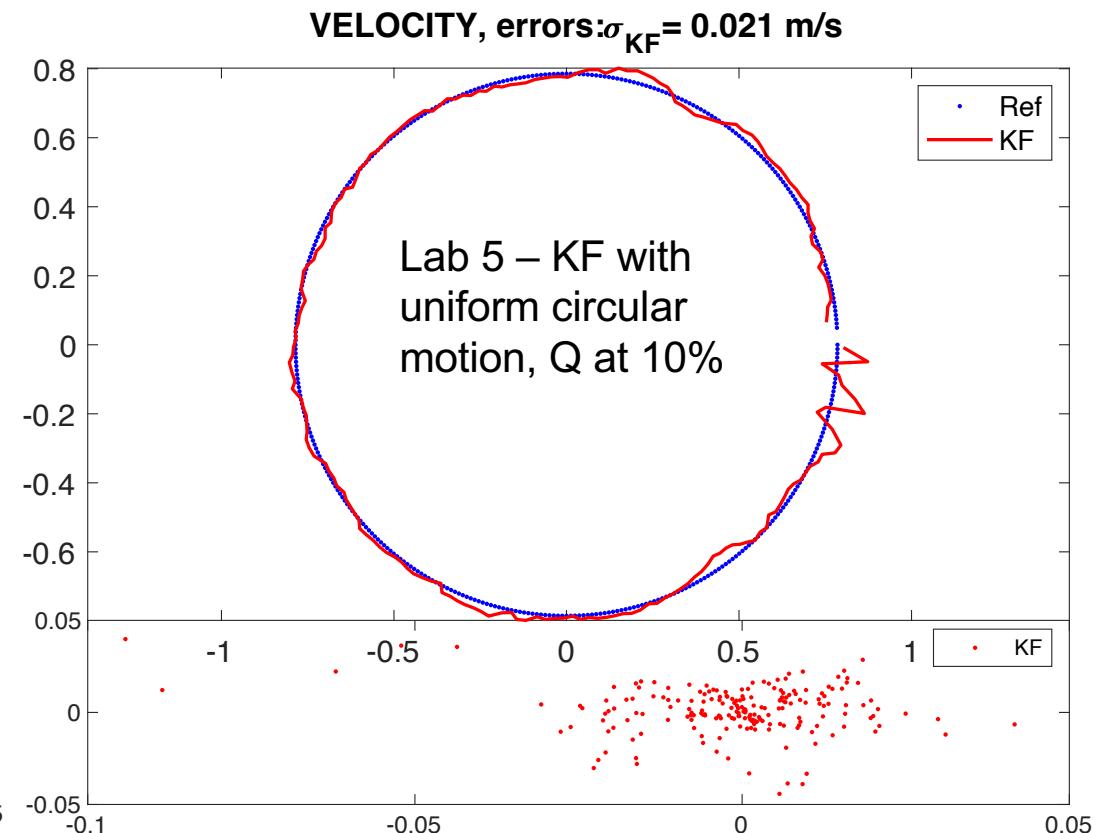
## INS/GPS integration (Week 12)

- Synthesis of integration levels (Ch. 9 polycopié)
- Theory of a differential filter
- Practice – derivation & implementation (Lab 6)

## Sensor orientation

- Direct & integrated orientation of optical sensors (Week 13)
- More on filtering & modern forms of sensor fusion (Week 14)

# Motivation – correct process model → excellent results! How to generalize?



# Merits of INS/GNSS Integration

| GNSS                                                                                                                                                                 | INS                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"><li>+ Uniform accuracy</li><li>+ Not sensitive to gravity</li><li>+ No initialization errors</li></ul>                             | <ul style="list-style-type: none"><li>- Time dependent accuracy</li><li>- Affected by gravity</li><li>- Affected by initialisation</li></ul>                                            |
| <ul style="list-style-type: none"><li>- Low PVA* accuracy in SHORT term</li><li>- Noisy attitude</li><li>- Non-autonomous</li><li>- Environment dependence</li></ul> | <ul style="list-style-type: none"><li>+ High PVA* accuracy in SHORT term</li><li>+ <u>Good attitude</u></li><li>+ <u>Autonomous</u></li><li>+ <u>Environment independence</u></li></ul> |

GPS – "Global Positioning System" – acronym for the 1<sup>st</sup> realization by USA

GNSS – "Global Navigation Satellite Systems" – acronym for all realizations (US, Russia, Europe, China)

■ \* PVA – Position Velocity Attitude

# Merits of INS/GNSS Integration

## GNSS + INS

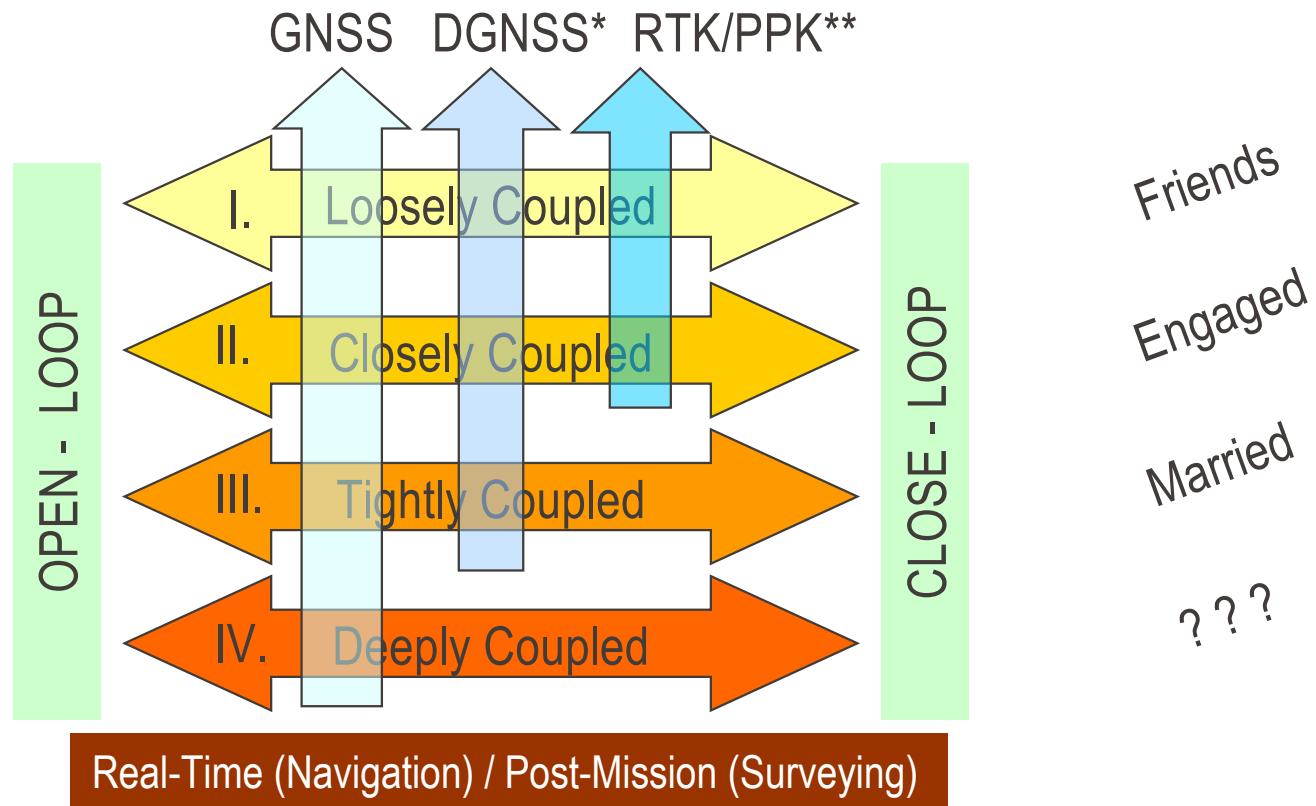
- + Uniform accuracy
- + Not sensitive to gravity
- + Less initialization errors

- + Robust navigation
- + Precise orientation
- + Autonomous (longer)
- + Environment independence

GPS – "Global Positioning System" – acronym for the 1<sup>st</sup> realization by USA

GNSS – "Global Navigation Satellite Systems" – acronym for all realizations (US, Russia, Europe, China)

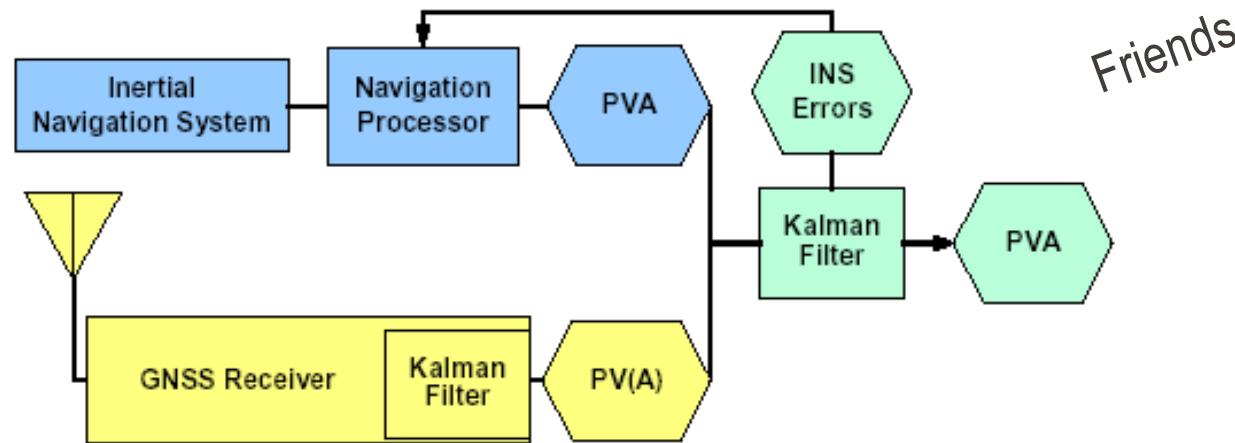
# Levels of INS/GNSS relationships



\* DGNSS – differential GNSS: relative positioning at 0.1 - 1 m level of accuracy

\*\*RTK/PPK – real-time kinematic / post-processed kinematic: relative positioning up to cm-level

# Level 1: Loosely coupled INS/GNSS

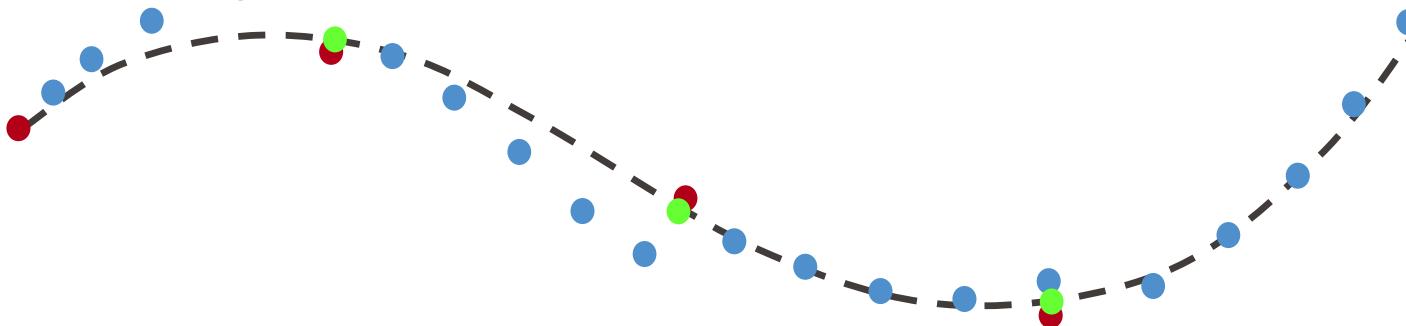
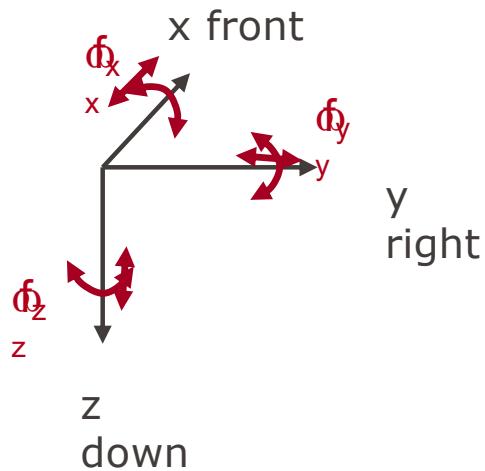


- + Simplicity
- + Smaller filters

- Error propagation between 2 filters !
- No position if No. of satellites < 4 !

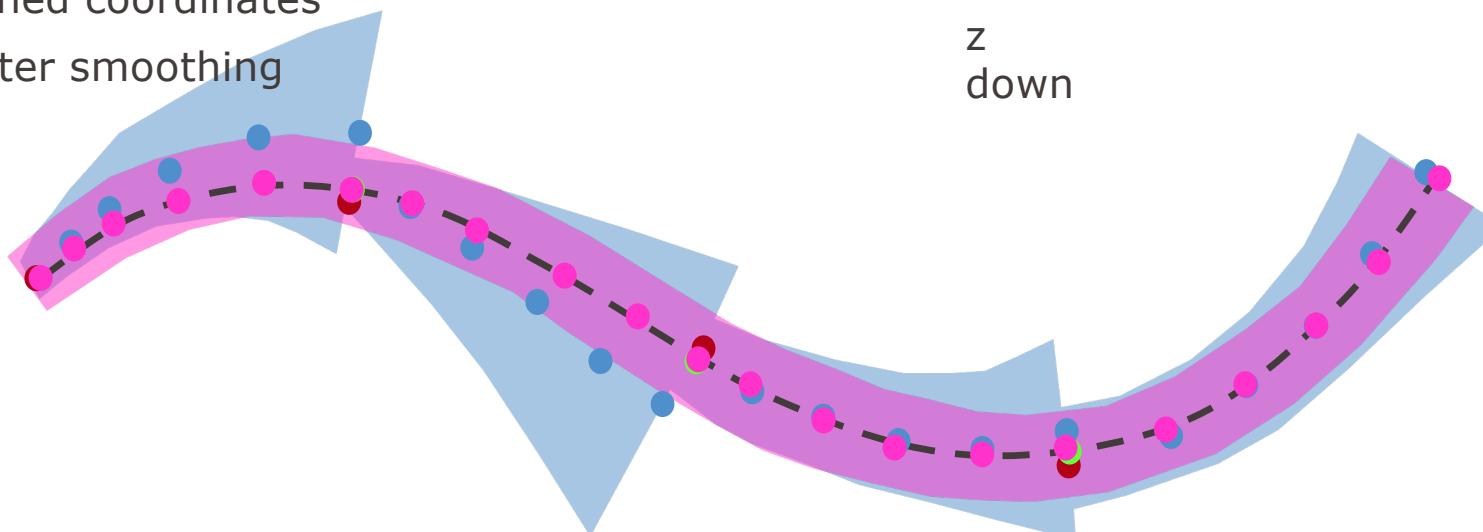
# EKF in INS/GPS(GNSS) integration

- GPS coordinates
- Reference trajectory
- Strapdown inertial navigation
- Updated coordinates

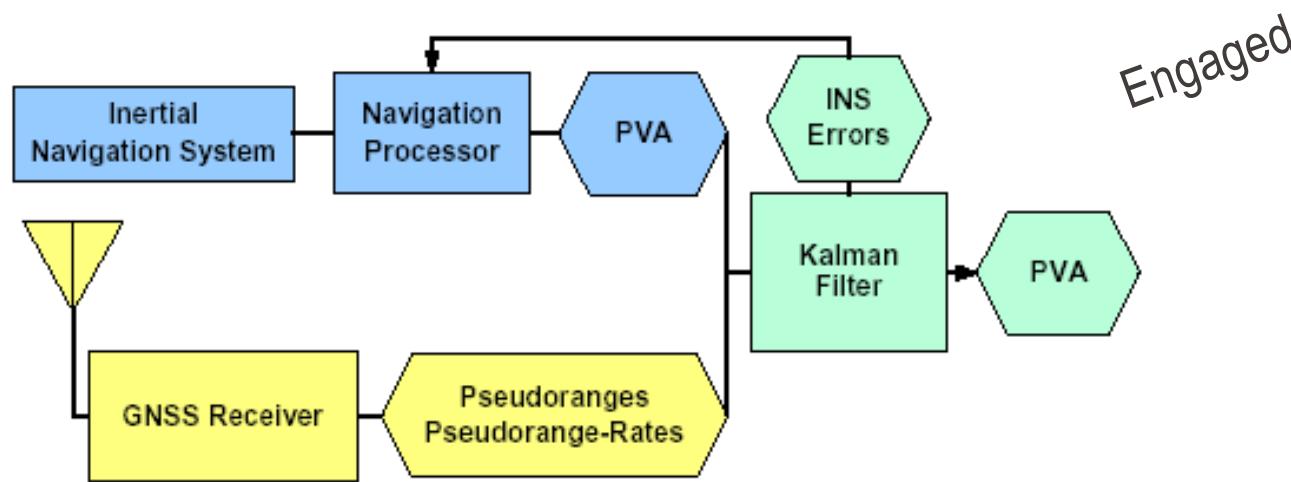


# INS/GNSS integration principle

- GPS coordinates
- Reference trajectory
- Strapdown inertial navigation
- Updated coordinates
- Std. after forward processing
- Smoothed coordinates
- Std. after smoothing



# Level 2: Closely coupled INS/GNSS

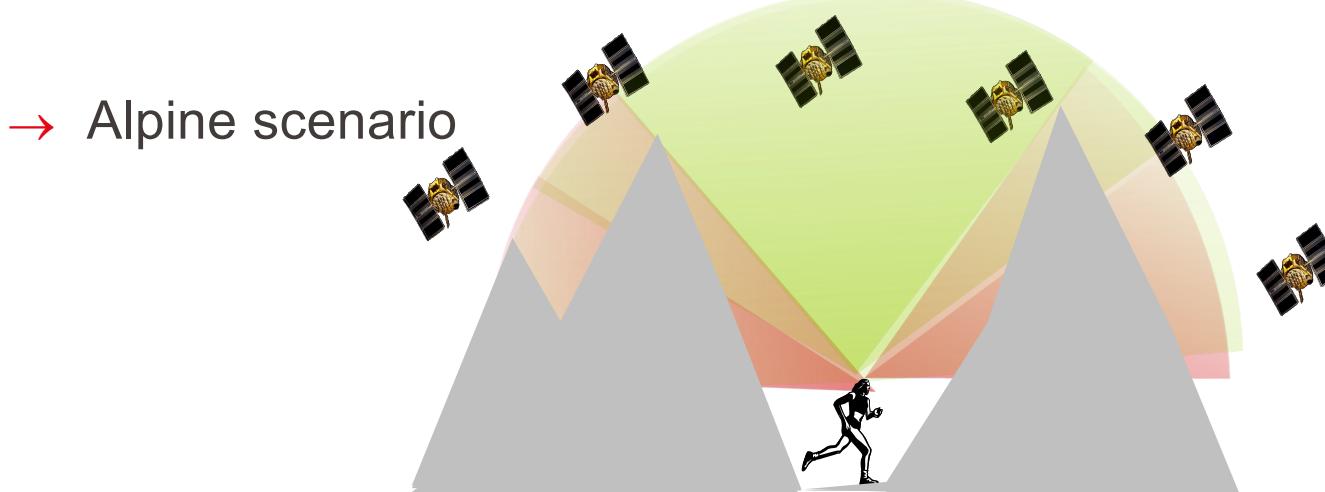


- + More optimal aiding
- + Faster RTK/PPK
- + Can be used if No. satellites < 4

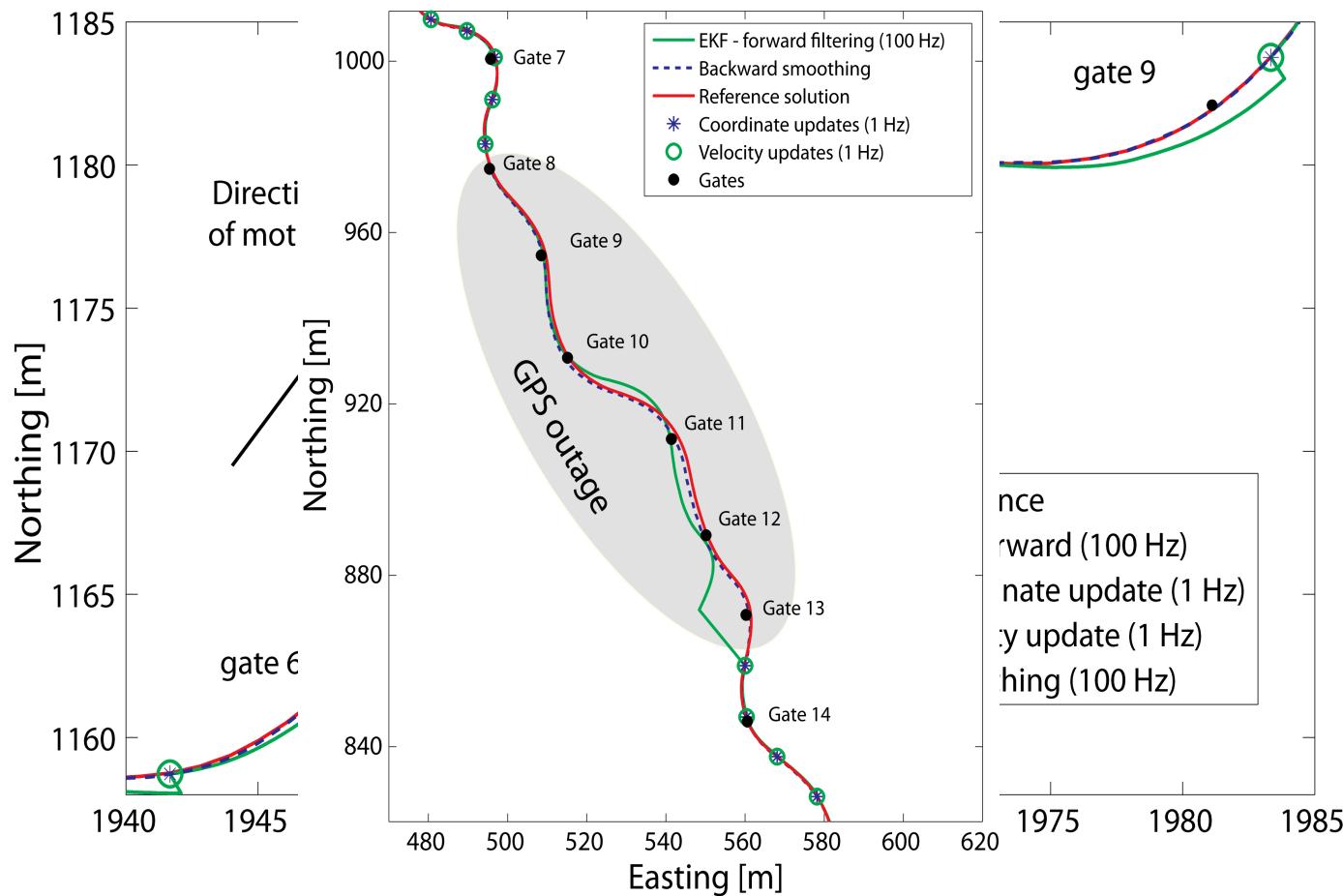
- Larger filter
- Higher chances of KF divergence

# Example – closely coupled INS/GPS

- How does the navigation / filter perform during reduced satellite reception (with small low-cost inertial MEMS-sensors)?
- Case of typical outage of satellite signal reception: 5-30 s



# MEMS-IMU/GPS-differential navigation performance in ski-racing trajectory



Nominal (no outage):

- Position (+ velocity) accuracy driven by the GPS solution quality (< dm – m)

- Attitude accuracy (almost) insensitive to the GPS solution

In GNSS-signal outage:

- smoothing superior

# Levels 3+4: Tightly & Deeply coupled INS/GNSS

## Motivation

- Not to lose satellite signal under high acceleration
- Maintain “lower” noise level (of ranging) in high dynamic
- Fast re-acquisition of satellite signal

Engaged |  
Married

## Realization

- INS “steers” the signal tracking of a GNSS receiver

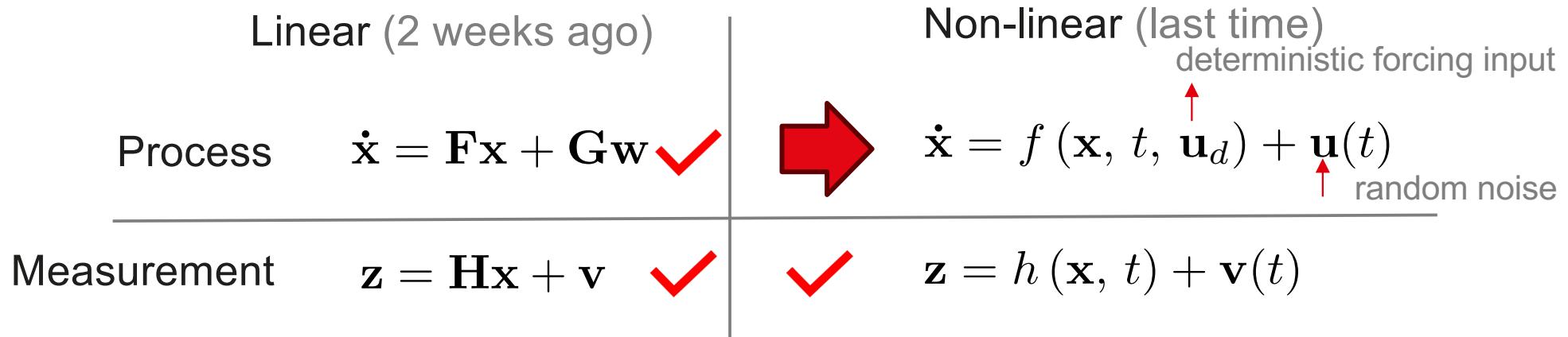
- + Lower noise in higher dynamic
- + Faster signal acquisition

- Higher price & complexity
- Interdependency
- Special hardware

# How to implement ?

## Reality

- Either the process model and/or measurement model are non-linear functions



# 3D inertial navigation in L-frame

Non-linear process model of INS  $\dot{\mathbf{x}} = f(\mathbf{x}, t, \mathbf{u}_d) + \mathbf{u}(t)$

- Forcing input is via inertial sensors output - specific force and angular rates

$$\dot{\mathbf{x}}^l = \begin{pmatrix} \dot{r}^l \\ \dot{v}^l \\ \dot{R}_l^b \end{pmatrix} = \begin{pmatrix} D^{-1}v^l \\ R_b^l \mathbf{f}^b - (2\Omega_{ie}^l + \Omega_{el}^l)v^l + \gamma^l \\ R_b^l(\Omega_{ib}^b - \Omega_{il}^b) \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & (N+h)\cos\phi & 0 \\ (M+h) & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\omega_{el}^{l_{ENU}} = \begin{pmatrix} -\frac{v^n}{R+h} \\ \frac{v^e}{R+h} \\ \frac{v^e \tan\phi}{R+h} \end{pmatrix} \quad \omega_{ie}^{l_{ENU}} = \begin{pmatrix} 0 \\ \omega^e \cos\phi \\ \omega^e \sin\phi \end{pmatrix}$$

■

# 3D inertial error model in L-frame (15 states)

$$\dot{\mathbf{x}} = f(\mathbf{x}, t, \mathbf{u}_d) + \mathbf{u}(t)$$

18

$$\dot{\mathbf{x}}^l = \begin{pmatrix} \dot{r}^l \\ \dot{v}^l \\ \dot{R}_l^b \end{pmatrix} = \begin{pmatrix} \dot{r}^l \\ \dot{v}^l \\ R_b^l \mathbf{f}^b - (2\Omega_{ie}^l + \Omega_{el}^l) v^l + \gamma^l \\ R_b^l (\Omega_{ib}^b - \Omega_{il}^b) \end{pmatrix}$$

Sensor Orientation

Linearized model of INS

- accounting for 9 errors in PVA + 6 sensor errors (gyro drift + accelerometer bias)

$$\Delta \dot{\mathbf{x}} = \left[ \frac{\partial f(\cdot)}{\partial \mathbf{x}} \right] + \mathbf{u}(t)$$

$$\begin{pmatrix} \delta \dot{r}^l \\ \delta \dot{v}^l \\ \dot{\varepsilon}^l \\ \dot{d}^l \\ \dot{b}^l \end{pmatrix} = \begin{pmatrix} D^{-1} \delta v^l + D^{-1} D_r \delta r^l \\ -F^l \varepsilon^l - (2\Omega_{ie}^l + \Omega_{el}^l) \delta v + V^l (2\delta \omega_{ie}^l + \delta \omega_{el}^l) + \delta \gamma^l + R_b^l b \\ -\Omega_{il}^l \varepsilon^l - \delta \omega_{il}^l + R_b^l d \\ -\alpha d + w_d \\ -\beta b + w_b \end{pmatrix}$$

Where,

$F$  = skew symmetric matrix of specific force vector

$V$  = skew symmetric matrix of velocity vector

$b$  = accelerometer bias (modeled as GM1 with  $\alpha$ )

$d$  = gyro drift (modeled as GM1 with  $\beta$ )

$$D = \begin{pmatrix} 0 & (N+h) \cos \phi & 0 \\ (M+h) & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

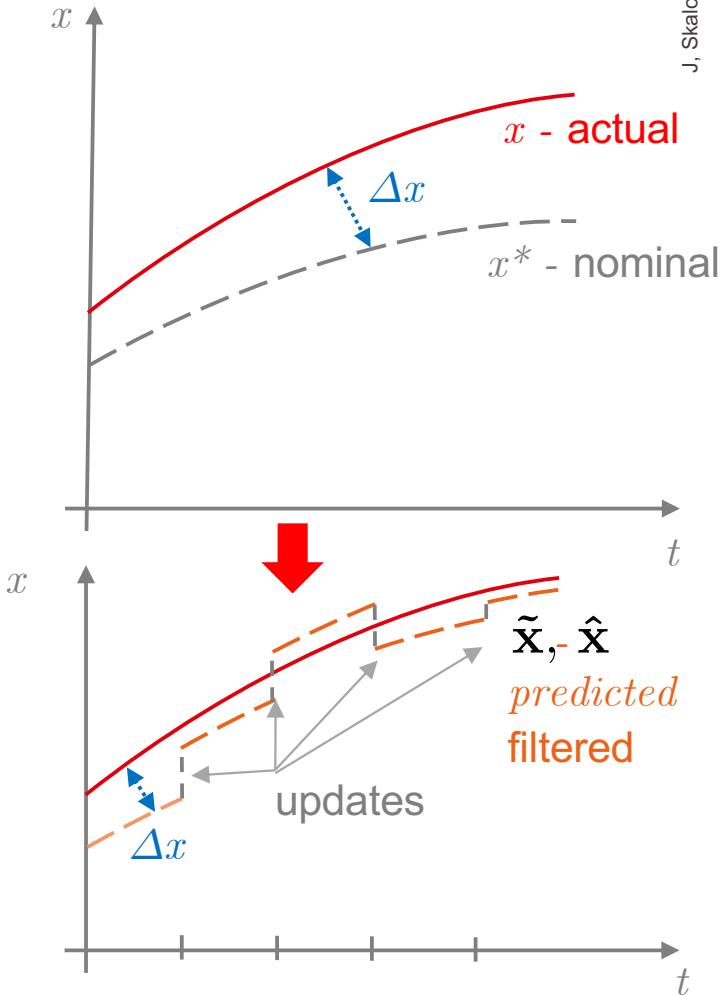
# 2D INS/GPS via EKF

Important EKF details on INS/GNSS are in the implementation of Lab 6

You prepared at home (before this lecture)

- **read 4 pages in Lab 6 help (8-11):**  
from Moodle

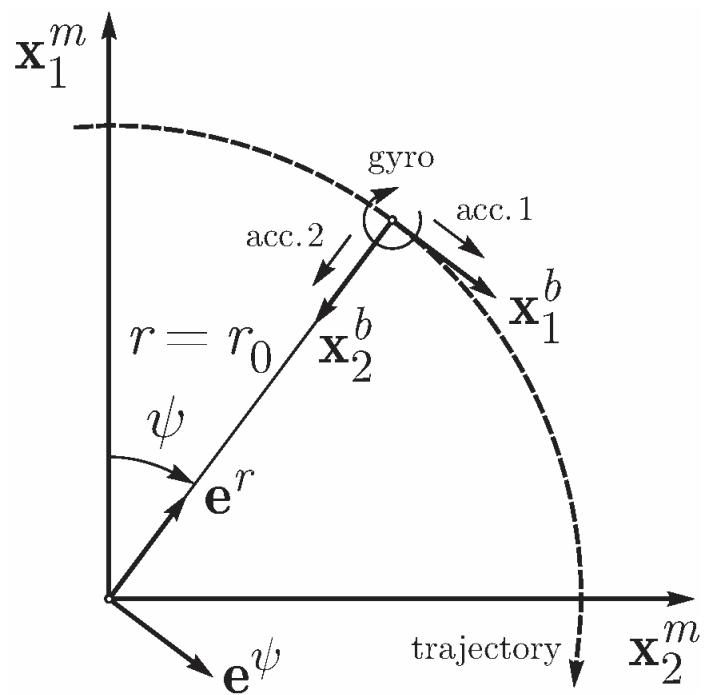
$$\mathbf{x}^*(t) \longrightarrow \tilde{\mathbf{x}}(t) / \hat{\mathbf{x}}(t)$$



# Extended Kalman Filter

## Lab 6 – INS as a motion model (1)

Uniform circular trajectory with IMU data



### Realisation

- Motion is predicted by INS (as in Lab 3) by resolving differential equations
- Motion is corrected by GPS, similarly to Lab 5, but using difference of positions:  

$$\tilde{\mathbf{p}}_{imu} - \mathbf{p}_{gps} = \Delta \mathbf{p} = \Delta \mathbf{z}$$
- Filter process model follows from INS's motion model corrections

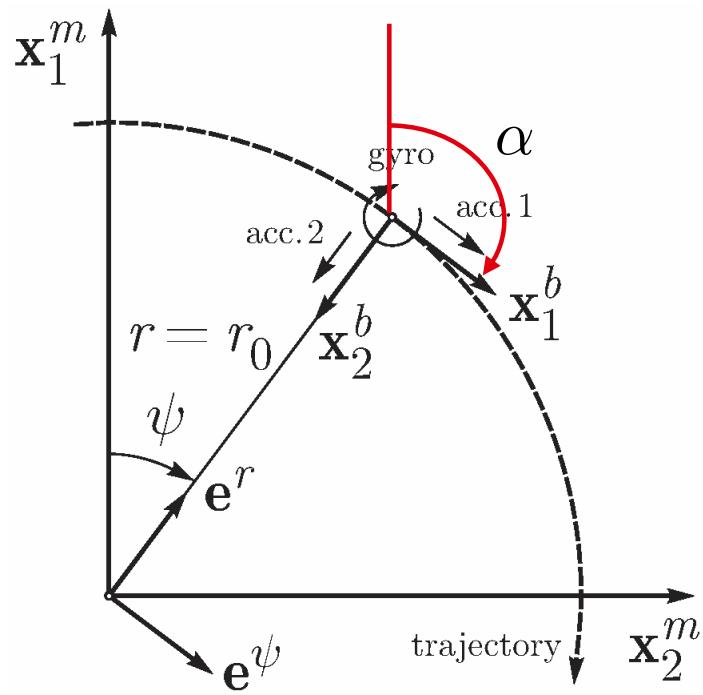
$$\Delta \dot{\mathbf{x}} = \underbrace{\left[ \frac{\partial f(\cdot)}{\partial \mathbf{x}} \right]_{\mathbf{x}=\mathbf{x}^*} \Delta \mathbf{x}}_{\mathbf{F} - \text{perturbation to INS differential eq.}} + \mathbf{u}(t)$$

$\mathbf{F}$  - perturbation to INS differential eq.

# Extended Kalman Filter

## Lab 6 – INS as a motion model (2)

Uniform circular trajectory with IMU data



### INS motion perturbation

- IMU in 2D i-frame, no gravity

$f(\mathbf{x}^*, t, \mathbf{u}_d) :$

$$\begin{aligned}\dot{\alpha} &= \omega_{mb}^b \\ \dot{\mathbf{v}}^m &= \mathbf{R}_b^m \mathbf{f}^b \\ \dot{\mathbf{p}}^m &= \mathbf{v}^m\end{aligned}$$

$\frac{\partial f(\cdot)}{\partial}$

perturbation INS

$$\begin{aligned}\delta \dot{\alpha} &= \delta \omega_{mb}^b \\ \delta \dot{\mathbf{v}}^m &= \delta \mathbf{R}_b^m \mathbf{f}^b + \mathbf{R}_b^m \delta \mathbf{f}^b \\ \delta \dot{\mathbf{p}}^m &= \delta \mathbf{v}^m\end{aligned}$$

- Re-expressing  $\delta \mathbf{R}_b^m \mathbf{f}^b$ :

$$\begin{aligned}\delta \mathbf{R}_b^m \mathbf{f}^b &= \mathbf{R}_b^m \boldsymbol{\Omega}_{mb}^b \mathbf{f}^b = \mathbf{R}_b^m \begin{bmatrix} 0 & -\delta \alpha \\ \delta \alpha & 0 \end{bmatrix} \begin{bmatrix} f_1^b \\ f_2^b \end{bmatrix} \\ &= \mathbf{R}_b^m \begin{bmatrix} -f_2^b \\ f_1^b \end{bmatrix} \delta \alpha = \begin{bmatrix} -f_2^m \\ f_1^m \end{bmatrix} \delta \alpha\end{aligned}$$

# Extended Kalman Filter

## Lab 6 – INS as model (3)

General non-linear perturbation with random noise

$$\Delta \dot{\mathbf{x}} = \underbrace{\left[ \frac{\partial f(\cdot)}{\partial \mathbf{x}} \right]_{\mathbf{x}=\mathbf{x}^*}}_{\mathbf{F}} \Delta \mathbf{x} + \mathbf{u}(t)$$

2D IMU perturbation with random noise

- **F + noise** - together per element
- **case** : errors in sensor ('deltas') are modeled as a white noise e.g.  $\delta \dot{\alpha} = \delta \omega_{mb}^b = w_g$

$$\begin{bmatrix} \delta \dot{\alpha} \\ \delta \dot{v}_n \\ \delta \dot{v}_e \\ \delta \dot{p}_n \\ \delta \dot{p}_e \end{bmatrix} = \begin{bmatrix} \quad & \quad & \quad & \quad & \quad \\ \quad & \quad & \quad & \quad & \quad \\ \quad & \quad & \quad & \quad & \quad \\ \quad & \quad & \quad & \quad & \quad \\ \quad & \quad & \quad & \quad & \quad \end{bmatrix} \begin{bmatrix} \delta \alpha \\ \delta v_n \\ \delta v_e \\ \delta p_n \\ \delta p_e \end{bmatrix} + \begin{bmatrix} \quad & \quad & \quad & \quad & \quad \\ \quad & \quad & \quad & \quad & \quad \\ \quad & \quad & \quad & \quad & \quad \\ \quad & \quad & \quad & \quad & \quad \\ \quad & \quad & \quad & \quad & \quad \end{bmatrix} \begin{bmatrix} w_g \\ w_{a_1} \\ w_{a_2} \end{bmatrix}$$

(2) perturbation of 2D INS  $\rightarrow \mathbf{F}$  :

$$\begin{aligned} \delta \dot{\alpha} &= \delta \omega_{mb}^b \\ \delta \dot{\mathbf{v}}^m &= \mathbf{R}_b^m \boldsymbol{\Omega}_{mb}^b \mathbf{f}^b + \mathbf{R}_b^m \delta \mathbf{f}^b \\ \delta \dot{\mathbf{p}}^m &= \delta \mathbf{v}^m \end{aligned}$$

# Extended Kalman Filter

## Lab 6 – INS as model (6) details

Simulated sensor errors - as in Lab 3

- not only white noise !
- **Gyros:** random const. (RC) bias ( $b_c$ ) + 1st order Gauss Markov ( $b_g$ ) + white noise
- **Accelerometers:** 1st order Gauss Markov (GM1) process ( $b_a$ ) + white noise (WN)

Filter **stochastic models for sensor errors**

- Gyro - 3 components (RC-bias, GM1-bias, WN)
- Accelerometers - 2 components (per each accelerometer – GM1+WN)
- Parameter values follows from error simulation
- How to "account for them" in the filter?

# Extended Kalman Filter

## Lab 6 – INS as model (5)

**State augmentation** for modeling time correlated errors:

- Idea 1 : model time correlated error as additional (auxiliary) filter states
- Idea 2 : later estimate their value (realisation), e.g. random bias
- Idea 3 : once sensor correlated errors are estimated, use them to calibrate IMU

$$\left[ \begin{array}{c} \delta\alpha \\ \delta\mathbf{v} \\ \delta\mathbf{p} \\ \delta\omega \\ \delta\mathbf{f} \end{array} \right] \quad \left. \right\} \begin{array}{l} \delta\mathbf{x}_1 \text{ system / navigation (error) states} \\ \delta\mathbf{x}_2 \text{ augmented states } \rightarrow \text{correlated errors (e.g. random const., Gauss Markov)} \end{array}$$

During the derivation of “a differential filter” as a convenience :

- we separate state vector ( $\mathbf{x}$ ), dynamic ( $\mathbf{F}$ ) and noise shaping ( $\mathbf{G}$ ) matrices into sub-blocks (as some of them = zeros)

■

# Extended Kalman Filter

## Lab 6 – INS as model (6)

State augmentation for modeling time correlated errors:

$$\begin{bmatrix} \delta\alpha \\ \delta\mathbf{v} \\ \delta\mathbf{p} \\ \delta\omega \\ \delta\mathbf{f} \end{bmatrix} \left. \begin{array}{c} \\ \\ \\ \\ \end{array} \right\} \delta\mathbf{x}_1 \text{ system / navigation (error) states}$$

$$\left. \begin{array}{c} \\ \\ \\ \\ \end{array} \right\} \delta\mathbf{x}_2 \text{ augmented states} \rightarrow \text{correlated errors (e.g. random const., Gauss Markov)}$$

$$\begin{bmatrix} \delta\dot{\mathbf{x}}_1 \\ \delta\dot{\mathbf{x}}_2 \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \cdot & \mathbf{F}_{22} \end{bmatrix}}_{\mathbf{F}} \begin{bmatrix} \delta\mathbf{x}_1 \\ \delta\mathbf{x}_2 \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{G}_{11} & \cdot \\ \cdot & \mathbf{G}_{22} \end{bmatrix}}_{\mathbf{G}} \mathbf{w}$$

$\mathbf{F}_{11}, \mathbf{G}_{11}$  - as before (4)

$\mathbf{F}_{12}$  - relations  $\delta\mathbf{x}_2 \rightarrow \delta\mathbf{x}_1$  e.g.  $\delta\dot{\alpha} = \delta\omega_{mb}^b + b_c + b_g + w_g$

$\mathbf{G}_{22}$  - evolution of  $\delta\mathbf{x}_2$  in time (diff. eq. of time correlated errors) e.g.  $\dot{b}_c = 0$   
 $\dot{b}_g = -\beta b_g + w_{gm}$

bias Gauss Markov  
white noise

# Extended Kalman Filter

## Lab 6 – INS as model (7) details

Refer to Lab 6 help and/or black–board

$$\underbrace{\begin{bmatrix} \delta\dot{\alpha} \\ \delta\dot{v}_n \\ \delta\dot{v}_e \\ \delta\dot{p}_n \\ \delta\dot{p}_e \\ \delta\dot{b}_c \\ \delta\dot{b}_g \\ \delta\dot{b}_{a_1} \\ \delta\dot{b}_{a_2} \end{bmatrix}}_{\delta\dot{\mathbf{x}}} = \underbrace{\begin{bmatrix} \mathbf{F}_{11}^{5 \times 5} & \mathbf{0}^{4 \times 5} \\ \mathbf{0}^{4 \times 5} & \mathbf{F} \end{bmatrix}}_{\mathbf{F}} \underbrace{\begin{bmatrix} \delta\alpha \\ \delta v_n \\ \delta v_e \\ \delta p_n \\ \delta p_e \\ \delta b_c \\ \delta b_g \\ \delta b_{a_1} \\ \delta b_{a_2} \end{bmatrix}}_{\delta\mathbf{x}} + \underbrace{\begin{bmatrix} \mathbf{G}_{11}^{5 \times 3} & \mathbf{0}^{4 \times 3} \\ \mathbf{0}^{4 \times 3} & \mathbf{G} \end{bmatrix}}_{\mathbf{G}} \underbrace{\begin{bmatrix} w_g \\ w_{a_1} \\ w_{a_2} \\ q_b \\ q_{a_1} \\ q_{a_2} \end{bmatrix}}_{\mathbf{w}}$$

■

# Extended Kalman Filter

## Lab 6 – INS as model (7) details

Refer to Lab 6 help and/or black–board  $c\alpha \rightarrow \cos \alpha$   
 $s\alpha \rightarrow \sin \alpha$

$$\underbrace{\begin{bmatrix} \delta\dot{\alpha} \\ \delta\dot{v}_n \\ \delta\dot{v}_e \\ \delta\dot{p}_n \\ \delta\dot{p}_e \\ \delta\dot{b}_c \\ \delta\dot{b}_g \\ \delta\dot{b}_{a_1} \\ \delta\dot{b}_{a_2} \end{bmatrix}}_{\delta\dot{\mathbf{x}}} = \underbrace{\begin{bmatrix} 1 & 1 & \cdot & \cdot \\ \cdot & \cdot & c\alpha & -s\alpha \\ \cdot & \cdot & s\alpha & c\alpha \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -\beta_g & \cdot \\ \cdot & \cdot & -\beta_{a_1} & \cdot \\ \cdot & \cdot & \cdot & -\beta_{a_2} \end{bmatrix}}_{\mathbf{F}} \underbrace{\begin{bmatrix} \delta\alpha \\ \delta v_n \\ \delta v_e \\ \delta p_n \\ \delta p_e \\ \delta b_c \\ \delta b_g \\ \delta b_{a_1} \\ \delta b_{a_2} \end{bmatrix}}_{\delta\mathbf{x}} + \underbrace{\begin{bmatrix} \mathbf{0}^{5 \times 3} \\ \mathbf{0}^{4 \times 3} \end{bmatrix}}_{\mathbf{G}} \underbrace{\begin{bmatrix} w_g \\ w_{a_1} \\ w_{a_2} \\ q_b \\ q_{a_1} \\ q_{a_2} \end{bmatrix}}_{\mathbf{w}}$$

# Numerical evaluation of $\Phi_k$ $\mathbf{Q}_k$

Step 1: form and auxiliary matrix  $\mathbf{A}$

$$\mathbf{A} = \begin{bmatrix} -\mathbf{F} & \mathbf{G} \mathbf{W} \mathbf{G}^T \\ 0 & \mathbf{F}^T \end{bmatrix} \cdot (t_k - t_{k-1})$$

Note 1: on the diagonal of  $\mathbf{W}$  are either zeros or variances of the process (white) noise  $\mathbf{Q}$

Step 2: using Matlab / Python form  $e^{\mathbf{A}}$ , call it  $\mathbf{B}$

$$\mathbf{B} = \exp(\mathbf{A}) = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix} = \begin{bmatrix} \dots & \Phi_k^{-1} \mathbf{Q}_k \\ 0 & \Phi_k^T \end{bmatrix}$$

Step 3: Obtain  $\Phi_k$ ,  $\mathbf{Q}_k$  from the components of  $\mathbf{B}$  :

$$\Phi_k = (\mathbf{B}_{22})^T$$

$$\mathbf{Q}_k = \Phi_k \cdot (\Phi_k^{-1} \mathbf{Q}_k) = \Phi_k \cdot \mathbf{B}_{12}$$

Note 2: for const. time interval and invariant  $\mathbf{F}$ , this operation is needed only once!

# Extended Kalman Filter

## Lab 6 – INS as model (8) details

### Filter **stochastic models for sensor errors**

- Parameters follows from error simulation
  - white noise – attention square sigma (PSD) !
  - Gauss Markov – attention use square of process driving noise !  $q_b = \sqrt{2\sigma_b^2\beta_b}$
  - Random bias – use square PSD in  $\mathbf{P}(0)$  !

▪

# Extended Kalman Filter

Mathematical “acrobacy” in engineering

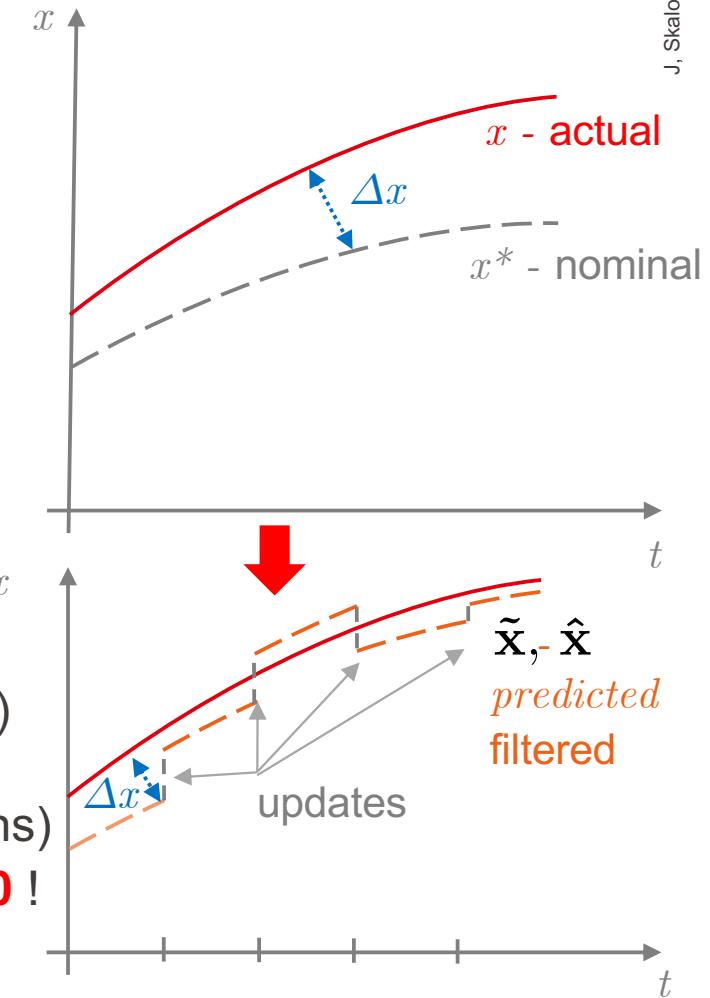
Idea

- In the approximation replace the nominal state with the predicted/filtered state:

$$\mathbf{x}^*(t) \longrightarrow \tilde{\mathbf{x}}(t) / \hat{\mathbf{x}}(t)$$

Implications

1. Nominal state is predicted via a non-linear equation
2. The filter estimates only differential quantities (errors)
3. After measurement update the nominal state (1) is corrected with the estimated values (errors/corrections)
4. After (3), the differential states in the filter are set to **0** !  
[corrections are considered in prediction via (1)+(3)]



# Extended Kalman Filter

## Lab 6 – INS as model (9) - flowchart

Refer to black–board

# Course check-points

## I. Midterm - conceptual details

- Written

## II. Oral exam aligned with both filtering labs & their prerequisites

- Lab 6 submission (~10 days after the last lecture)
- Small preparation after that announced by e-mail 1 day after Lab 6 submission
- Discussions around Lab 6 or Lab 5

■