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B Sensor orientation

This translates into three rough big areas

J. Skaloud, ESO N

i

3. Sensor fusion
* How to formulate models for sensor fusion?
* How to implement it in optimization and use it for mapping?

You need the frames

You need the navigation
quantities and the noise
properties



=7k Cockpit view of SO course’s topics

J. Skaloud, ESO  «

How to reach integrated sensor orientation?

Nois_e : \/

characterization

Sensors

(|nert|al + GPS)

Stochastic \/

GPS — Polycopié, Ch.8 Processes

Sensor Fusion

Strapdown

Inertial + Ng\r/é?ﬁgg . V

Navigation
Extended \/
Kalman Filter
Estimation

principle - RLS \/

B Sensor orientation
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B Sensor orientation

Sensor fusion — agenda

Kalman filter — base (Week 10)
* Intuitive approach
* Discrete KF — components, steps, implementation (Lab 5)

Kalman filter — extension (Week 11)
Computation of transition and process noise matrices @,
* Linearized & Extended Kalman filter
 Some other ‘motion model’ examples

INS/GPS integration (Week 12)

e Synthesis of integration levels (Ch. 9 polycopié)
* Theory of a differential filter
* Practice — derivation & implementation (Lab 6)

Sensor orientation

» Direct & integrated orientation of optical sensors (Week 13)
* More on filtering & modern forms of sensor fusion (Week 14)

J, Skaloud, ESO »
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Motivation — correct process model —
excellent results! How to generalize”
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="t Merits of INS/GNSS Integration

Sensor Orientation

GNSS INS
+ Uniform accuracy - Time dependent
+ Not sensitive to gravity accuracy
+  No initialization errors - Affected by gravity
- Affected by initialisation
= Low PVA* accuracy in + High PVA* accuracy in
SHORT term SHORT term
- Noisy attitude + Good attitude
- Non-autonomous + Autonomous
- Environment F Environment
dependence independence

GPS — "Global Positioning System” — acronym for the 15! realization by USA
GNSS - “Global Navigation Satellite Systems” — acronym for all realizations (US, Russia, Europe, China)
= * PVA — Position Velocity Attitude



=t Merits of INS/GNSS Integration

GNSS + INS

+ Uniform accuracy

+ Not sensitive to gravity
+ Less initialization errors
+ Robust navigation

+ Precise orientation

+ Autonomous (longer)

+ Environment

independence

GPS - "Global Positioning System” — acronym for the 15! realization by USA
GNSS - “Global Navigation Satellite Systems” — acronym for all realizations (US, Russia, Europe, China)
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=Pl Levels of INS/GNSS
relationships

GNSS DGNSS* RTK/PPK*™

o9
Lopsely Coupled > Fe
S Closely Cpupled S =
1 —1
1 ' " 6
e & et
O O
L —
@ o )
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Real-Time (Navigation) / Post-Mission (Surveying)

* DGNSS - differential GNSS: relative positioning at 0.1 - 1 m level of accuracy
**RTK/PPK - real-time kinematic / post-processed kinematic: relative positioning up to cm-level

Sensor Orientation (=]
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Level 1: Loosely coupled
INS/GNSS

+
+

¥
Inertial || Navigation PVA \
Navigation System Processor /
; Kalman < Y
GNSS Receiver Filter PV(A) /

Simplicity
Smaller filters

Kalman
Filter

Error propagation
between 2 filters !
No position if No. of
satellites < 4 !

Sensor Orientation ©



="' EKF in INS/GPS(GNSS) integration
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INS/GNSS integration principle

GPS coordinates x front
Reference trajectory /
Strapdown inertial navigation >

y right

Updated coordinates

Std. after forward processing
Smoothed coordinates

Std. after smoothi

[
[

Sensor Orientation
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Level 2: Closely coupled
INS/GNSS

+ o

el
' \ E(\Qe‘g
Inertial [ Navigation _< PVA
Navigation System Processor /
K7 | | Kalman
Filter

Pseudoranges \

GNSS Receiver _<Pseudorange-RateS /

More optimal Larger filter
aiding —  Higher chances of KF
Faster RTK/PPK divergence

Can be used if
No. satellites < 4

=
N
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=rL Example — closely coupled INS/GPS

O How does the navigation / filter perform during reduced satellite
reception (with small low-cost inertial MEMS-sensors)?

O Case of typical outage of satellite signal reception: 5-30 s

— Alpine scenario @‘ @ @‘
;! 1
o

N

A

rientation



=PrL - MEMS-IMU/GPS-differential navigation
performance in ski-racing trajectory
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— Position (+ velocity)
accuracy driven by
the GPS solution
quality (< dm —m)
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In GNSS-signal outage:

— smoothing superior
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Levels 3+4: Tightly & Deeply
coupled INS/GNSS

ed!

Motivation E“Qaie(\
\
— Not to lose satellite signal under high acceleration e

— Maintain “lower” noise level (of ranging) in high dynamic

— Fast re-acquisition of satellite signal

Realization
— INS "steers" the signal tracking of a GNSS receiver

+  Lower noise in — Higher price &
higher dynamic complexity
+  Faster signal — Interdependency

acquisition - Special hardware

=
(4]

Sensor Orientation



=
)]

** How to implement ?

J, Skaloud, ESO

Reality
« Either the process model and/or measurement model are non-linear functions

Linear (2 weeks ago) Non-linear (last time)
deterministic forcing input

T
Process x=Fx+ Gw/ » x = f(x,t ug)+ lTl(t)

random noise

Measurement z=Hx+v | ~ z=h(xt)+v(t)

B Sensor orientation
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3D inertial navigation in L-frame

Sensor Orientation

Non-linear process model of INS %X = f (x, , ug) + u(?)
« Forcing input is via inertial sensors output - specific force and angular rates

! DY
=l vo=| RO +Q W 4y
5b
& RU, -2
J— vn
R+h
0 (N+h)cosg 0 . 0
lgvy 4 / e
= ) = VENU  —
D=|(M+h) 0 0 ol R @, a)ec?sqﬁ
0 0 1 v tan g @’ sin ¢
- R+h




= . . x = f(x,t, ug) +u(t)
=L 3D inertial error model e
in L-frame (15 states) - v |5 &r-coi+aisy

& RI(Q, - Q)

Linearized model of INS
« accounting for 9 errors in PVA + 6 sensor errors (gyro drift + accelerometer bias)

Ax = [%9] +u(t)

57 D™'6v'+ D™'D 6r'
Sv! —F'e' = (2Q, +Q!)év+V' (26w, +6w’)+8y' + Rb
¢ |= ~Qle' — 50 +R'd
d' —od+w,
bl
Where, —Pb+w,
F = skew symmetric matrix of specific force vector 0 (N +h)cosg 0

V = skew symmetric matrix of velocity vector B
b = accelerometer bias (modeled as GM1 with a) D= (M +h) 0 0
d = gyro drift (modeled as GM1 with B) 0 0 1

=
®
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=7 2D INS/GPS via EKF
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Important EKF details on INS/GNSS are in
the implementation of Lab 6

You prepared at home (before this lecture)
 read 4 pages in Lab 6 help (8-11):
from Moodle

B Sensor orientation

v



=PFL - Extended Kalman Filter
Lab 6 — INS as a motion model (1)

Uniform circular
frajectory with IMU data

m
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A
\\\\ gyro
~,
ce. 1
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! m
trajectorv I
eqp J y' X2

N
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J, Skaloud, ESO

Realisation

* Motion is predicted by INS (as in Lab 3)
by resolving differential equations

* Motion is corrected by GPS, simlarly to
Lab 5, but using difference of positions:

f)z'mu — Pgps — Ap = Az

e Filter proces model follows from INS’s
motion model corrections

Ax = [%] XAX +u(t)

LOX e

F - perturbation to INS differential eq.
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Extended Kalman Filter
Lab 6 — INS as a motion model (2)

J, Skaloud, ESO

. INS motion perturbation
with IMU data * IMU in 2D i-frame, no gravity
X71n } f(x*, t,ug): perturbation INS
-1~~~ 4 ) 4 )
~— Qv . b S b
’1 & =w, 950 0 = 0w, ,
, v =Ry | T [ 5™ = SRIMEY + RyVOT
\ffl pr=vr Sp™ = ov™ y
\
\
\\ * Re-expressing (5Rg”fb:
“ m£b mQOb b m 0 —da f{)
- e rpat e —wy [ 0 ][
| x5

ew trajectory' X _R™ [ —féj :|5a/ _ [ _me ]504
- bl A H"
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=PrL Extended Kalman Filter
Lab 6 — INS as model (3)

General non-linear perturbation with random noise

J, Skaloud, ESO

af() (2) perturbation of 2D INS — F :
Ax = |:8—X:| szx}i ‘|‘11(t) 5& — 5w$nb
¥ v = R0 £+ RIOEY
2D IMU perturbation with random noise Sp™ = Gy

* F + noise - together per element
* case : errors in sensor (‘deltas’) are modeled as a white noise e.g. 0 = 5wf?nb = Wy

dox dox

OV, Ov,, Wy |

0Ue OVe Wa,

5pn 5pn Way
Cope || 1L ope | | ]
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Extended Kalman Filter
Lab 6 — INS as model (6) details

J, Skaloud, ESO

Simulated sensor errors - as in Lab 3
* not only white noise !
* Gyros: random const. (RC) bias (b_c) + 1st order Gauss Markov (b_g) + white noise
* Accelerometers: 1st order Gauss Markov (GM1) process (b_a) + white noise (VWN)

Filter stochastic models for sensor errors
* Gyro - 3 components (RC-bias, GM1-bias, WN)
* Accelerometers - 2 components (per each accelerometer — GM1+WN)
* Parameter values follows from error simulation
* How to "account for them” in the filter?



=PrL Extended Kalman Filter
Lab 6 — INS as model (5)

State augmentation for modeling time correlated errors:
* |dea 1: model time correlated error as additional (auxiliary) filter states
* |dea 2 : later estimate their value (realisation), e.g. random bias
* |dea 3 : once sensor correlated errors are estimated, use them to calibrate IMU

dar | )

ov ~ 0X71 system / navigation (error) states

op |

ow |

5 >~ 0Xo augmented states — correlated errors (e.g. random const., Gauss Markov)

During the derivation of “a differential filter” as a conveniance :

* we separate state vector (x) , dynamic (F) and noise shaping (G)
matrices into sub-blocks (as some of them = zeros)

N
(4]

J, Skaloud, ESO
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Extended Kalman Filter

Lab 6 — INS as model (6)

State augmentation for modeling time correlated errors:

oo
ov
op
ow
of

0X1
0Xo

~

J\

>~ 0X71 system / navigation (error) states

~/

-~ 0Xo augmented states — correlated errors (e.g. random const., Gauss Markov)

:[Fu F12][5X1]_|_[G11 : w
- Fao 0X2 : Goo

Fi1, Gu1

. . ¥
F{, -relations 0X9 — 0X1 e.g. d& = 5wf§1b + be + by + wy
Ga2 - evolution of dx3 in time (diff. eq. of time correlated errors) e.g. b =0
bg = —Bbg + wgm

N\ 4 A\ . 7
Ve

F G
- as before (4) bias Gauss Markov
Y White noise

N
)]

J, Skaloud, ESO
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Extended Kalman Filter

Lab 6 — INS as model (7) details

Refer to Lab 6 help and/or black—board

R

SR

ovp,
0Ve
Opn
OPe
0b.
5bg
Sba,
5ba,

ox

—— ] =

24

N
N

J, Skaloud, ESO
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=" Extended Kalman Filter
Lab 6 — INS as model (7) details
Refer to Lab 6 help and/or black—board ca — cosa
SO — S1n &
[ oa ] : [ da | :
Oy : v, :
0Ve : S0, Q533 | 05%3 Wy
S : 5 o e
ODe : ope |+ | Wa
obe || e 1/ I e @
569 : by S| _ da,
0ba, : Sba, 04x3 | 1 | L e |
L 56@ i | i 0ba, 1L | 1 | W
e ¥ . S ’

N
®

J, Skaloud, ESO
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Numerical evaluation of &, Q.

J, Skaloud, ESO

are either zeros or variances
0 FT of the process (white) noise Q

Step 1: form and auxiliary matrix A . _
| T *| Note 1: on the diagonal of W
—-F GWG
A:[ ]‘(tk—tkl

Step 2: using Matlab / Python form eA, callit B

B, B L. ®
B:expm(A):[Bi B;z]:[ 0 %kgk]

Step 3: Obtain @, Qx from the components of B :

T
[(I)k — (B22) ] Note 2: for const. time interval

. —1 . . and invariant F, this operation
Qk = &y, ((I)k Qk) = ®; - Bip is needed only once!

rientation
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Extended Kalman Filter
Lab 6 — INS as model (8) details

J, Skaloud, ESO

Filter stochastic models for sensor errors

* Parameters follows from error simulation
white noise — attention square sigma (PSD) !
Gauss Markov — attention use square of process driving noise ! gy = +/ 202519
Random bias — use square PSD in P(0) !
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Extended Kalman Filter
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Mathematical “acrobacy” in engineering

ldea

* In the approximation replace the nominal
state with the predicted/filtered state:

x*(t) — X(t)/%(?)

Implications 4 " '
1. Nominal state is predicted via a non-linear equation ' Xy X
2. The filter estimates only differential quantities (errors) predicted

3. After measurement update the nominal state (1) is filtered
corrected with the estimated values (errors/corrections)

After (3), the differential states in the filter are setto 0!
[corrections are considered in prediction via (1)+(3)] — ,

>
Az® " ypdates

v

B Sensor orientation



=FFL - Extended Kalman Filter

Lab 6 — INS as model (9) - flowchart

Refer to black—board



=PrL

W
H

Course check-points

J, Skaloud, ESO

l.  Midterm - conceptual details
*  Written

Il.  Oral exam aligned with both filtering labs & their prerequisites
* Lab 6 submission (~10 days after the last lecture)

* Small preparation after that announced by e-mail 1 day after Lab 6 submission
* Discussions around Lab 6 or Lab 5




