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Sensor orientation – main topics

This translates into three rough big areas

1. Fundamentals 
• How to characterize sensor noise
• How to transform from the sensed signals to navigation frame? 

2. Position, velocity, attitude (navigation)
• How to formulate navigation equation in different frames?
• How to resolve them numerically? 

3. Sensor fusion 
• How to formulate models for sensor fusion? 
• How to implement it in optimization and use it for mapping? 
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You need the frames

You need the navigation 
quantities and the noise 
properties



Cockpit view of SO course’s topics 
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Sensor Fusion

Sensors
(inertial + GPS)

Noise 
characterization

Stochastic 
Processes

Extended 
Kalman Filter

Strapdown 
Inertial 

Navigation
Navigation 

Frames

Estimation 
principle - RLS

How to reach integrated sensor orientation? 

GPS – Polycopié, Ch.8



Sensor fusion – agenda 
Kalman filter – base (Week 9) 

• Intuitive approach
• Discrete KF – components, steps, implementation (Lab 5)  

Kalman filter – extension (Week 10)  
• Computation of transition and process noise matrices
• Linearized & Extended Kalman filter 
• Some other ‘motion model’ examples

INS/GPS integration (Week 11)  
• Synthesis of integration levels (Ch. 9 polycopié) 
• Theory of a differential filter 
• Practice – derivation & implementation (Lab 6) 

Sensor orientation (Week 12)  
• Direct & integrated orientation of optical sensors  
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Φk, Qk



Motivation – correct process model →
excellent results! How to generalize? 
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6Merits of INS/GNSS Integration

- Time dependent 
accuracy

- Affected by gravity
- Affected by initialisation

+ Uniform accuracy
+ Not sensitive to gravity
+ No initialization errors

- Low PVA* accuracy in 
SHORT term

- Noisy attitude
- Non-autonomous
- Environment 

dependence

GNSS                                                 INS

+ High PVA* accuracy in 
SHORT term

+ Good attitude
+ Autonomous
+ Environment 

independence

GPS – ”Global Positioning System” – acronym for the 1st realization by USA
GNSS – “Global Navigation Satellite Systems” – acronym for all realizations (US, Russia, Europe, China)
*  PVA – Position Velocity Attitude
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7Merits of INS/GNSS Integration

+ Uniform accuracy
+ Not sensitive to gravity
+ Less initialization errors

GNSS + INS

+ Robust navigation
+ Precise orientation
+ Autonomous
+ Environment 

independence

GPS – ”Global Positioning System” – acronym for the 1st realization by USA
GNSS – “Global Navigation Satellite Systems” – acronym for all realizations (US, Russia, Europe, China)
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8Levels of INS/GNSS 
relationships

Loosely Coupled

Closely Coupled

Tightly Coupled

Deeply Coupled

GNSS   DGNSS*  RTK/PPK**
OP

EN
 -

LO
OP

CL
OS

E 
-L

OO
P

Real-Time (Navigation) / Post-Mission (Surveying)

Friends

Engaged

Married

? ? ? 

I.

II.

III.

IV.

* DGNSS – differential GNSS: relative positioning at 0.1 - 1 m level of accuracy 
**RTK/PPK – real-time kinematic / post-processed kinematic: relative positioning up to cm-level 
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9Level 1: Loosely coupled 
INS/GNSS

+ Simplicity
+ Smaller filters

– Error propagation 
between 2 filters !

– No GPS position if  
No. satellites < 4 ! 

Friends
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10EKF in INS/GPS(GNSS) integration
x front

y
right

z 
down

GPS coordinates

Strapdown inertial navigation

Reference trajectory

Updated coordinates w
z

w
y

w
x

fz

fy
fx
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11INS/GNSS integration principle
x front

y right

z 
down

GPS coordinates

Strapdown inertial navigation

Reference trajectory

Updated coordinates

Smoothed coordinates
Std. after forward processing

Std. after smoothing
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12Level 2: Closely coupled 
INS/GNSS

+ More optimal 
aiding 

+ Faster RTK/PPK
+ Can be used if 

No. satellites < 4

– Larger filter
– Higher chances of KF 

divergence

Engaged
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13Example – closely coupled INS/GPS
o How does the navigation / filter perform during reduced satellite 

reception (with small low-cost inertial MEMS-sensors)?

o Case of typical outage of satellite signal reception: 5-30 s

® Alpine scenario 

Back
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14MEMS-IMU/GPS-differential navigation 
performance in ski-racing trajectory 

Nominal (no outage): 
® Position (+ velocity) 

accuracy driven by 
the GPS solution 
quality (< dm – m)

® Attitude accuracy 
(almost) insensitive 
to the GPS solution

In GNSS-signal outage: 
® smoothing superior
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15Levels 3+4: Tightly & Deeply 
coupled INS/GNSS

+ Lower noise in 
dynamic

+ Faster signal 
acquisition

– Higher price & 
complexity

– Interdependency
– Special hardware

Engaged /

MarriedMotivation
® Not to lose satellite signal under high acceleration
® Maintain “lower” noise level (of ranging) in high dynamic
® Fast re-acquisition of satellite signal
Realization
® INS ”steers" the signal tracking of a GNSS receiver



How to implement ? 
Reality

• Either the process model and/or measurement model are non-linear functions
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Process

Measurement

Linear (2 weeks ago) Non-linear (last time) 

ẋ = Fx+Gw

z = Hx+ v

ẋ = f (x, t, ud) + u(t)

z = h (x, t) + v(t)

deterministic forcing input

random noise
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173D inertial navigation in L-frame
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Non-linear process model of INS
• Forcing input is via inertial sensors output - specific force and angular rates 

ẋ = f (x, t, ud) + u(t)
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183D inertial error model 
in L-frame (15 states)
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F = skew symmetric matrix of specific force vector
V = skew symmetric matrix of velocity vector
b = accelerometer bias (modeled as GM1 with α)
d = gyro drift (modeled as GM1 with β)

Where, 

Linearized model of INS
• accounting for 9 errors in PVA  + 6 sensor errors (gyro drift + accelerometer bias) 

∆ẋ =
[

∂f()
∂x

]

+ u(t)



2D INS/GPS via EKF
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Important EKF details on INS/GNSS are in 
the implementation of Lab 6

You prepared at home (before this lecture)  
• read 4 pages in Lab 6 help (8-11):  

from Moodle
t

x

∆x
x - actual

x* - nominal

x

x∗(t) −→ x̃(t)/x̂(t)

-
predicted 
filtered

t

x̃, x̂

∆x
updates



Extended Kalman Filter 
Lab 6  – INS as a motion model (1)   

Realisation
• Motion is predicted by INS (as Lab 3) 

by resolving differential equations 

• Motion is corrected by GPS, simlarly to 
Lab 5, but using difference of positions
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Uniform circular 
trajectory with IMU data

• Filter proces model follows from INS’s 
motion model corrections   

∆ẋ =

[
∂f()

∂x

]

x=x∗

∆x

︸ ︷︷ ︸

F

+u(t)

- perturbation to INS differential eq.

p̃imu − pgps = ∆p = ∆z



Extended Kalman Filter 
Lab 6  – INS as a motion model (2)  

INS motion perturbation
• IMU in 2D i-frame, no gravity    
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Uniform circular 
trajectory with IMU data

α̇ = ω
b

mb

• Re-expressing

perturbation INS

α

v̇
m

= R
m

b
f
b

ṗm
= vm

f (x∗, t, ud) :

∂f()
−−−→

δα̇ = δω
b

mb

δv̇
m

= δR
m

b
f
b
+R

m

b
δf

b

δṗm
= δvm

δR
m

b
f
b
:

δRm

b
f
b
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m

b
Ω
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mb
f
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= R

m

b

[

0 −δα

δα 0

] [

f b
1

f b
2

]

= R
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b

[

−f b
2

f b
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]

δα =

[

−fm
2

fm
1

]

δα



Extended Kalman Filter 
Lab 6  – INS as model (3)  

General non-linear perturbation with random noise
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b
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∂f()
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]

x=x∗
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︸ ︷︷ ︸

F

+u(t)

e.g. δα̇ = δω
b
mb + wg

2D IMU perturbation with random noise 
• F + noise - together per element 
• case : errors in sensor (‘deltas’) are modeled as a white noise

(2) perturbation of 2D INS → F :



Extended Kalman Filter 
Lab 6  – INS as model (6) details   

Simulated sensor errors - as in Lab 3 
• not only white noise ! 
• Gyros: random const. bias (bias_c)  + 1st order Gauss Markov (bias_g) + white noise  
• Accelerometers: GM1 process (bias_a) + white noise
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Filter stochastic models for sensor errors 
• Gyro - 3 components  (const. bias, GM1-bias, WN) 
• Accelerometers - 2 components (same for both accelerometers – GM1+WN) 
• Parameters follows from error simulation 
• How to ”account for them” in the filter? 



Extended Kalman Filter 
Lab 6  – INS as model (5)  

State augmentation for modeling time correlated errors:
• Idea 1 : model time correlated error as additional filter states
• Idea 2 : later estimate their value (realisation), e.g. random bias   
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δx1 system / navigation (error) states
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









augmented states  → correlated errors (e.g. random const., Gauss Markov)δx2

During filter-mode derivation:
• For a convenience we separate state vector, dynamic and noise 

shaping matrices into sub-blocks (as some of them = zeros) 



Extended Kalman Filter 
Lab 6  – INS as model (6)  

State augmentation for modeling time correlated errors: 
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δx1

[

δẋ1

δẋ2

]

=

[

F11 F12

· F22

]

︸ ︷︷ ︸

F

[

δx1

δx2

]

+

[

G11 ·

· G22

]

︸ ︷︷ ︸

G

w

e.g. δα̇ = δω
b
mb + bc + bg + wg

system / navigation (error) states
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









augmented states  → correlated errors (e.g. random const., Gauss Markov)δx2

F11, G11 - as before (4) 

F12
- relations δx2 → δx1

G22 - evolution of         in time (diff. eq. of time correlated errors)   δx2 e.g. ḃc = 0

ḃg = −βbg + wgm

bias Gauss Markov
white noise



Extended Kalman Filter 
Lab 6  – INS as model (7) details   

Refer to Lab 6 help and/or black–board 
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Numerical evaluation of 
Step 1:  form and auxiliary matrix A

Se
ns

or
 o

rie
nt

at
io

n

J,
 S

ka
lo

ud
, E

SO

29

Step 2:  using Matlab / Python form       , call it Be
A

Φk Qk

A =

[

−F GWGT

0 FT

]

· (tk − tk−1)

B = expm(A) =

[

B11 B12

B21 B22

]

=

[

. . . Φ−1

k
Qk

0 Φk
T

]

Φk = (B22)
T

Step 3:  Obtain               from the components of B :   Φk, Qk

Qk = Φk ·

(

Φ−1

k
Qk

)

= Φk ·B12

Note 1: on the diagonal of W
are either zeros or variances 
of the process (white) noise Q

Note 2: for const. time interval 
and invariant F, this operation 
is needed only once! 



Extended Kalman Filter 
Lab 6  – INS as model (8) details   
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Filter stochastic models for sensor errors 
• Parameters follows from error simulation 

white noise – attention  squared sigma (PSD) ! 
Gauss Markov – attention use squared driving noise (white)  ! 
Random bias – use squared PSD in P(0) !  

qb =
√

2σ2

b
βb



Extended Kalman Filter 
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Mathematical “acrobacy” in engineering
Idea 

• In the approximation replace the nominal 
state with the predicted/filtered state: 

t

x

∆x
x - actual

x* - nominal

x

x∗(t) −→ x̃(t)/x̂(t)

t

-
predicted 
filtered

x̃, x̂

∆x updates

Implications
1. Nominal state is predicted via a non-linear equation
2. The filter estimates only differential quantities (errors) 
3. After measurement update the nominal state (1) is 

corrected with the estimated values (errors/corrections)  
4. After (3), the differential states in the filter are set to 0 ! 

[corrections are considered in prediction via (1)+(3)] 



Extended Kalman Filter 
Lab 6  – INS as model (9) - flowchart   
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Refer to black–board 


