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Sensor Fusion

Sensors
(inertial + GPS)

Noise 
characterization

Stochastic 
Processes

Extended 
Kalman Filter

Strapdown 
Inertial 

Navigation
Navigation 

Frames

Estimation 
principle - RLS

How to reach integrated sensor orientation? 



Cockpit view of inertial navigation
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Strapdown 
Inertial 

Navigation

Equation 
Definition

i-frame 

e-frame
l-frame

Numerical 
Solution

Attitude 
Initialization + 
Imperfection

Attitude 
Integration 

(SO-3 manifold)

Integration 
(Cartesian 
manifold)

Prerequisite for reaching integrated sensor orientation 

Home read 6.4+6.5 (p.47-55)



Inertial navigation – agenda 
Navigation equations  

• i-frame (Week 5)
• e-frame & SHOW CASE
• l-frame (local-level) – polycopié (6.4) to read for next week! 

Attitude (Week 6)  
• Initialization – how ? 
• Initialization – imperfections & impact 

Strapdown inertial navigation (Week 7) 
• Attitude solution in 3D
• Review of differences e-frame, l-frame
• Strapdown inertial navigation – polycopié (6.5) to read for next week!
• Impact of error accumulation
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o Goal: to determine
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  Attitude initialization (in a navigation 
jargon = Initial Alignment Ch.7) 
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since Re

b = R
e

! (ϕ, λ) ·R
!

b

recall Re

! (ϕ, λ) = [ne, ee, de] = . . . is known! 

Methods

Kinematic
... external aid! 

Static

Coarse (approx.)

Fine (precise) 
e.g. Kalman 

Filter

A. Roll & Pitch 
Leveling

B. Azimuth/yaw
Gyro-compass.

e.g. GPS velocity, several GPS antennas, certain conditions, …

Accels

Gyros

Input



J.
 S

ka
lo

ud
, 

ES
O

  Attitude initialization – A. Leveling
(1) approximation(2) for small angles
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sin(p) = fx
||f ||

tan(r) =
−fy
−fz

fzb

fyb

-g

r

E=fyl

+D=fzl

r

sin(r) =
fy
||f ||

fzb

fxb

-g

p

-

N=fxl

p

D=fzl

-(-fxb)

o Intuitive determination of roll (r) and pitch (p) angles from static triad of accelerometers, 
trough the projection of local gravity (g) to the sensed specific force (f) 

Notes: 1. for obtaining a correct sign it is better/safer to use function atan2(nominator, denominator)
2. approximative because the drawing does not consider a rotational sequence!    

ROLL (+) PITCH (+)



o Recall from the previous lecture 
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  Attitude initialization – A. Leveling
(2) starting relation (accelerometers)
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o Under static (non-moving) conditions                                   , the above eq. reduces:          

o By multiplying the above eq. from left by                        (see slide 7)   

… is a function of time

v
e = 0 ; v̇

e = 0

v̇e = Re

b
f b − 2Ωe

ie
ve + ge

0 = Re

b
f b + ge

R
!
e = (Re

!
)
T

−R!
eR

e

b
f b = R!

eg
e

o The above term is equivalent to   

−R!

b
f b = g!

−f b = Rb

!
g!

readings from 3
accelerometers

known 
from a model, e.g. Eq. 6.45

?
g
! = [0, 0, γ(ϕ, h)]T



o Expressing                           in the individual components, while considering yaw=0:                             
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  Attitude initialization – A. Leveling
(3) final relation (accelerometers)
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o After substituting R1(r), R2(p) matrices and performing a multiplication of the right side : 

−





fx
fy
fz



 = R1(r)R2(p) I3(yaw = 0)





0
0
g





−f b = Rb

!
g!

(1)
(2)
(3)

(1) :  sin(p) = fx
||f ||

−





fx
fy
fz



 =





−g sin(p)
g sin(r) cos(p)
g cos(r) cos(p)





(2)/(3) :  tan(r) = −fy
−fz

(1)/[(2)2 +(3)2]  

tan(p) = fx
√

f2
y
+f2

z

o We obtain 3 equations for two unknowns, several possibilities:  

Note: absolute knowledge of gravity is not needed – all is known from the accelerometers ! 



o Goal: to determine yaw after roll & pitch are known !   
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  Attitude initialization –
B. gyro compassing (1) 
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Static

Coarse (approx.)

A. Roll & Pitch 
Leveling

B. Azimuth/yaw
Gyro-compass.

1. Project gyro observations to “leveled” plane (e.g. plane where r = p = 0)
2. Determine yaw from the projected gyro data (formulas via I. drawing, vs. II. equations)  

o How? 

R
!̄

b
= [R1(r)R2(p)]

T

o Transformation to “leveled” plane :  

Note: in such a plane z axis – points down, but x, y axes do not necessary align with North, East



o 1. Projection of gyro readings to a “leveled” plane          
( using previously determined  roll & pitch ): 
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  Attitude initialization –
B. gyro compassing (2) 
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ω
!̄
ib =





ωx

ωy

ωz





!̄

= R
!̄
b ω

b
ib

Note: in a static (non-rotating with respect to Earth) case

R
!̄

b
= [R1(r)R2(p)]

T

||ω!̄

ib
|| = ||ωb

ib
|| = ωe

ω
b

ib
= ω

b

ie
+ ω

b

eb
︸︷︷︸

=0

Therefore,  the norm
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  Attitude initialization –
B. gyro compassing (3) 
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o 2. Determine yaw from the projected gyro data via I. deduction from drawing 

ω
!̄
x = ωe cos(ϕ) cos(yaw)

ωe

ω
e

ie

ω
!
ie
(ϕ = 0) ϕ

x
!(ϕ)

z
!(ϕ)

N

x
!(ϕ = 0)

z
!(ϕ = 0)

In the top (above local-level) view

ω !̄
y =

−

ω
e cos(ϕ) sin(yaw)

N

E

x
!(ϕ)

y
!(ϕ)

ω
!
iex

(ϕ) = ωe cos(ϕ)

Local meridian

x
!̄(ϕ)

y
!̄(ϕ)

(yaw)

ω
!̄
y

ω!̄
x

=

−ωe cos(ϕ) sin(yaw)
ωe cos(ϕ) cos(yaw)

=⇒ tan(yaw) =
−ω

!̄
y

ω
!̄
x

Equator

Note: knowledge about Earth
rotation rate value is not needed!
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ω
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

. . . . . . cosϕ

. . . . . . 0

. . . . . . − sinϕ






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


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  Attitude initialization –
B. gyro compassing (4) 
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o 2. Determine yaw from the projected gyro data via II. equations  

ω
b

ib
= R

b

!
ω
!
ie
= R

b

!
R

!
e ω

e
ie

Here: main idea – details in polycopié (Ch. 7)

R
!

b
ω
b

ib
= R

!
eω

e
ie

Multiplying the above equation from left by R!

b

ω
!̄

ib

Eq. 3.19

Decomposition: 





cos(y) − sin(y) 0
sin(y) cos(y) 0

0 0 1









ω
!̄
x

ω
!̄
y

ω
!̄
z



 =





ωe cosϕ
0

−ωe sinϕ





(1)
(2)
(3)

tan(y) =
−ω

!̄
y

ω
!̄
x

from 2nd Eq.: 
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Q1 – What is the expected accuracy derived from leveling process? 
• Since (in NED): 

sin(r)= -fy /g → roll
sin(p)=  fx /g → pitch

• The roll, pitch accuracy is governed by accel’s. accuracy (mainly bias b). 
For small angles: 

Δr = -b(fy)/g 
Δp = b(fx)/g

• Example: 10 mg bias → leveling error of …?
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o Considering NED and small yaw error:

n sin(y)~y and cos(y)~1 in

n → Yaw accuracy will mainly depend on the gyro 
accuracy – bias (b), e.g.:

n Example: 45 deg latitude, gyro bias 0.2 deg/h 
o → Yaw error?
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ω
!̄
x = ωe cos(ϕ) cos(y) ∼ ωe cosϕ

ω
!̄
y = −ωe cos(ϕ) sin(y) ∼ ωe cosϕ · (−y)

δy =

b
ω"̄
y

ωe cosϕ
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Azimuth (=yaw) accuracy 
vs. gyro bias (drift)
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o Integrated gyro noise produces Angular Random Walk bias 
(bRW)

o aRW depends on noise level and the integration time!

o -> For a given bRW we can achieve different azimuth 
alignment accuracy as a function of averaging time T!
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δy =
bRW

ωe cosϕ
√

T
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Effect of gyro angular RW 
on alignment time
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δy =
bRW

ωe cosϕ
√

T
√

T =
bRW

ωe cosϕδy


