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Sensor Fusion

Sensors
(inertial + GPS)

Noise 
characterization

Stochastic 
Processes

Extended 
Kalman Filter

Strapdown 
Inertial 

Navigation
Navigation 

Frames

Estimation 
principle - RLS

How to reach integrated sensor orientation? 



Cockpit view of inertial navigation
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Strapdown 
Inertial 

Navigation

Equation 
Definition

i-frame 

e-frame
l-frame

Numerical 
Solution

Attitude 
Initialization + 
Imperfection

Attitude 
Integration 

(SO-3 manifold)

Integration 
(Cartesian 
manifold)

Prerequisite for reaching integrated sensor orientation 

Home read 6.4+6.5 (p.47-55)



Inertial navigation – agenda 
Navigation equations  

• i-frame (Week 5)
• e-frame (Week 6) & SHOW CASE
• l-frame (local-level) – polycopié (6.4) to read for Week 8 (8 pages)! 

Attitude (Week 7)  
• Initialization – how ? 
• Initialization – imperfections & impact 

Strapdown inertial navigation (Week 8) 
• Attitude solution in 3D
• Review of differences e-frame, l-frame
• Strapdown inertial navigation – polycopié (6.5) to read before !
• Impact of error accumulation
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o Goal: to determine
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  Attitude initialization (in a navigation 

jargon = Initial Alignment Ch.7) 
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since Re

b = R
e

ℓ (ϕ, λ) ·R
ℓ

b

recall Re

ℓ (ϕ, λ) = [ne, ee, de] = . . . is known! 

Methods

Kinematic
... external aid! 

Static

Coarse (approx.)

Fine (precise) 
e.g. Kalman 

Filter

A. Roll & Pitch 
Leveling

B. Azimuth/yaw
Gyro-compass.

e.g. GPS velocity, several GPS antennas, certain conditions, …

Accels

Gyros

Input
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(1) approximation(2) for small angles
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sin(p) = fx
||f ||

tan(r) =
−fy
−fz

fzb

fyb -g
r

E=fyl

+D=fzl

r

sin(r) =
−fy
||f ||

fzb

fxb

-g

p

-

N=fxl

p

D=fzl

-(-fxb)

o Intuitive determination of roll (r) and pitch (p) angles from static triad of accelerometers, 
trough the projection of local gravity (g) to the sensed specific force (f) 

Notes: 1. for obtaining a correct sign it is better/safer to use function atan2(nominator, denominator)
2. approximative because the drawing does not consider a rotational sequence!    

ROLL (+) PITCH (+)
-fyb



o Recall from the previous lecture 
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  Attitude initialization – A. Leveling

(2) starting relation (accelerometers)
7
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o Under static (non-moving) conditions                                   , the above eq. reduces:          

o By multiplying the above eq. from left by                        (see slide 7)   

… is a function of time

v
e = 0 ; v̇

e = 0

v̇e = Re

b
f b − 2Ωe

ie
ve + ge

0 = Re

b
f b + ge

R
ℓ
e = (Re

ℓ
)
T

−Rℓ
eR

e

b
f b = Rℓ

eg
e

o The above term is equivalent to   

−Rℓ

b
f b = gℓ

−f b = Rb

ℓ
gℓ

readings from 3
accelerometers

known 
from a model, e.g. Eq. 6.45

?
g
ℓ = [0, 0, γ(ϕ, h)]T



o Expressing                           in the individual components, while considering yaw=0:                             
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  Attitude initialization – A. Leveling

(3) final relation (accelerometers)
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o After substituting R1(r), R2(p) matrices and performing a multiplication of the right side: 

−

⎡

⎣

fx
fy
fz

⎤

⎦

b

= R1(r)R2(p) I3(yaw = 0)

⎡

⎣

0
0
g

⎤

⎦

ℓ

−f b = Rb

ℓ
gℓ

(1)
(2)
(3)

(1) :  sin(p) = fx
||f ||

−

⎡

⎣

fx
fy
fz

⎤

⎦

b

=

⎡

⎣

−g sin(p)
g sin(r) cos(p)
g cos(r) cos(p)

⎤

⎦

(2)/(3) :  tan(r) = −fy
−fz

(1)/[(2)2 +(3)2]  

tan(p) = fx
√

f2
y
+f2

z

o We obtain 3 equations for two unknowns, several possibilities:  

Note: absolute knowledge of gravity is not needed – all is known from the accelerometers ! 

ℓ̄



o Goal: to determine yaw after roll & pitch are known !   
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  Attitude initialization –

B. gyro compassing (1) 
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Static

Coarse (approx.)

A. Roll & Pitch 
Leveling

B. Azimuth/yaw
Gyro-compass.

1. Project gyro observations to “leveled” plane (e.g. plane where r = p = 0)
2. Determine yaw from the projected gyro data (formulas via I. drawing, vs. II. equations)  

o How? 

R
ℓ̄

b
= [R1(r)R2(p)]

T

o Transformation to “leveled” (but not yet oriented to North), symbol (      ) :   

Note: in such a -plane z axis – points down, but x, y axes do not necessary align with North, East

ℓ̄

ℓ̄



1. Projection of gyro readings to a “leveled” -plane          
(using previously determined  roll & pitch ): 
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  Attitude initialization –

B. gyro compassing (2) 
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ω
ℓ̄
ib =

⎡

⎣

ωx

ωy

ωz

⎤

⎦

ℓ̄

= R
ℓ̄
b ω

b
ib

Note: in a static (non-rotating with respect to Earth) case

R
ℓ̄

b
= [R1(r)R2(p)]

T

||ωℓ̄

ib
|| = ||ωb

ib
|| = ωe

ω
b

ib
= ω

b

ie
+ ω

b

eb
︸︷︷︸

=0

Therefore,  the norm

ℓ̄
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  Attitude initialization –

B. gyro compassing (3) 
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o 2. Determine yaw from the projected gyro data via I. deduction from drawing 

ω
ℓ̄
x = ωe cos(ϕ) cos (y)

ωe

ω
e

ie

ω
ℓ
ie
(ϕ = 0) ϕ

x
ℓ(ϕ)

z
ℓ(ϕ)

N

x
ℓ(ϕ = 0)

z
ℓ(ϕ = 0)

In top view (above local-level) 

ω ℓ̄
y =

−

ω
e cos(ϕ) sin (y)

N

E

x
ℓ(ϕ)

y
ℓ(ϕ)

ω
ℓ
iex

(ϕ) = ωe cos(ϕ)

Local meridian

x
ℓ̄(ϕ)

y
ℓ̄(ϕ)

(yaw) (1)

ω
ℓ̄
y

ωℓ̄
x

=

−ωe cos(ϕ) sin (y)
ωe cos(ϕ) cos (y)

=⇒ tan(y) =
−ω

ℓ̄
y

ω
ℓ̄
x

Equator

Note: knowledge about Earth
rotation rate value is not needed!

y
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. . . . . . cosϕ
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. . . . . . − sinϕ
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⎦
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o 2. Determine yaw from the projected gyro data via II. equations  

ω
b

ib
= R

b

ℓ
ω
ℓ
ie
= R

b

ℓ
R

ℓ
e ω

e
ie

Here: main idea – details in polycopié (Ch. 7)

R
ℓ

b
ω
b

ib
= R

ℓ
eω

e
ie

Multiplying the above equation from left by Rℓ

b

ω
ℓ̄

ib

Eq. 3.19

Decomposition: 

⎡

⎣

cos(y) − sin(y) 0
sin(y) cos(y) 0

0 0 1

⎤

⎦

⎡

⎣

ω
ℓ̄
x

ω
ℓ̄
y

ω
ℓ̄
z

⎤

⎦ =

⎡

⎣

ωe cosϕ
0

−ωe sinϕ

⎤

⎦

(1)
(2)
(3)

tan(y) =
−ω

ℓ̄
y

ω
ℓ̄
x

from 2nd Eq.: 
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Q1 – What is the expected accuracy derived from leveling process? 
• in NED: 

roll

pitch

• The roll, pitch accuracy is governed by accel’s. accuracy (mainly bias b 
= Δf). For small angles: 

.

• Example: 10 mg bias → leveling error of …?
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sin(r) =
−fy

||f ||
−→

sin(p) =
fx

||f ||
−→

∆r = −∆fy/g

∆p = −∆fx/g
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nGyro compassing – limiting factors
o Considering NED and small error in yaw        :

n and in

n → Yaw accuracy will mainly depend on the gyro 
accuracy – bias (b), e.g.:

n Example: 45 deg latitude, gyro bias 0.2 deg/h 
o → What is the error in yaw ?
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ω
ℓ̄
x = ωe cos(ϕ) cos(y) ∼ ωe cosϕ

ωℓ̄
y = −ωe cos(ϕ) sin(y) ∼ ωe cosϕ · (−δy)

δy =

b
ωℓ̄
y

ωe cosϕ

(δy)
sin(δy) ≈ δy cos(δy) ≈ 1
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Azimuth (=yaw) accuracy 
vs. gyro bias (drift)
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o Integrated gyro noise produces Angular Random Walk (RW) 
bias (aRW)

o aRW depends on noise level and the integration time!

o -> For a given aRW we can achieve different azimuth alignment 
accuracy as a function of averaging time T!
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∆yRW =
bRW

ωe cosϕ
√

T
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Effect of gyro angular RW 
on alignment time
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∆y =
bRW

ωe cosϕ
√

T
√

T =
bRW

ωe cosϕ∆yRW


