
where the relation ėr = ψ̇ eψ has been used. Similiarly, the second derivative is
found to be

ẍm = r̈ er + ṙ ėr + ṙ ψ̇ eψ + r ψ̈ eψ + r ψ̇ ėψ

= (r̈ − r ψ̇2) er + (2ṙ ψ̇ + r ψ̈) eψ , (10)

where now the relation ėψ = −ψ̇ er has been used. Thereby, one can easily
identify the apparent accelerations that are due to the rotation of the rψ-frame
with respect to the inertial space: centrifugal acceleration (−r ψ̇2), Coriolis
acceleration (2ṙ ψ̇), and tangential acceleration (r ψ̈).

In case of a circular motion with constant angular rate, some simplifications
can be made that are in accordance with Eqs. (2) and (3). Thus, Eqs. (9) and
(10) convert to

ẋm = r ψ̇ eψ , (11)

ẍm = −r ψ̇2 er . (12)

Thus, there is only an along-track velocity but no across-track component (the
radius remains unchanged); in contrast, there is only an across-track acceler-
ation (i.e., the apparent centrifugal acceleration) but there is no along-track
component (the angular rate is constant).

Consequently, the nominal measurements are found to be

f b =

[

f b
1

f b
2

]

=

[

0
r ω2

0

]

(13)

for the accelerometers, where ω0 has been used instead of ψ̇; and

ω
b
mb =

[

ωb
mb

]

=
[

ω0

]

(14)

in case of the gyro. As the m-frame is assumed to be inertial and since there is
only one gyro, ωb

mb is used rather than the conventional quantity ω
b
ib.

Note that Eq. (13) clearly shows the effect of an apparent acceleration,
because there is always a nonzero across-track acceleration although the radius
remains constant. Hence, the observed accleration in the b-frame is only due to
its rotation with respect to the m-frame.

1.3 Strapdown inertial navigation

As usual, it is necessary to define the initial conditions and to integrate the
sensor measurements to obtain the current state vector of the vehicle.

Initial conditions

These are defined by five quantities, i.e., the initial position xm
0 , the initial

velocity vm
0 , and the initial heading (or yaw) angle α. For the sake of simplicity,

it will be assumed that there is no accleration phase – in other words: the
measurements are only started when the vehicle is already in a “steady state”
of motion. Furthermore, it is supposed that the along axis of the vehicle is
always aligned with its velocity vector, i.e., there is no drift.

3



In this case, the initial conditions are given by xm
0 = [n0, 0]

T, vm
0 = [0, v0]

T,
and α0 = ψ0 + π/2 = π/2. From the latter, the initial attitude matrix is found
by evaluating its general form at α = α0:

Rm
b =

[

cosα − sinα
sinα cosα

]

⇒ Rm
b (α0) =

[

0 −1
1 0

]

. (15)

Note that this definition holds as Rb
m = Rm

b
T = R(α). Further, note that it is

not necessary in this example to introduce the local-level frame since it would
always be parallel to the m-frame due to the 2D (planar) modeling.

Dead reckoning

Attitude computation

As a first step, the current attitude matrix must be computed. This is achieved
by numerical integration of the corresponding differential equation which is
obtained by differencing the first part of Eq. (15) and rearranging the result:

Ṙm
b =

[

− sinα − cosα
cosα − sinα

]

α̇ = Rm
b

[

0 −α̇
α̇ 0

]

= Rm
b Ωb

mb , (16)

where α̇ = ωb
mb is the gyro measurement.

When using a sufficiently small integration interval, it may be assumed that
the angular rate remains constant during that interval. Thus, the numerical
integration of Eq. (16) is given by

Rm
b (tk) = Rm

b (tk−1) exp
(

Ωb
mb(tk) · (tk − tk−1)

)

. (17)

Alternatively, the attitude angle itself may be computed from the first- or
second-order approximations

α(tk) = α(tk−1) + α̇(tk) · (tk − tk−1) , (18)

α(tk) = α(tk−1) +
1

2

(

α̇(tk) + α̇(tk−1)
)

· (tk − tk−1) . (19)

Navigation computation

As them-frame is supposed to be inertial and the gravitational field is neglected,
the navigation equations are given by

v̇m = fm , ẋm = vm . (20)

Using the integrated attitude matrix, the specific-force measurements of the
accelerometers need to be resolved in the m-frame, i.e., fm = Rm

b f b. After-
wards, the transformed measurement can be integrated to obtain the current
velocity vector. When using a first-order approximation, the velocity vector
follows from

vm(tk) = vm(tk−1) +Rm
b (tk) f

b(tk) · (tk − tk−1) . (21)

Again, a second-order approximation is obtained from

vm(tk) = vm(tk−1) + ... (22)

+
1

2

(

Rm
b (tk) f

b(tk) +Rm
b (tk−1) f

b(tk−1)
)

· (tk − tk−1) .

4



Finally, the current position is found in analogy to the velocity vector by using
either a first- or second-order approximation:

xm(tk) = xm(tk−1) + vm(tk) · (tk − tk−1) , (23)

xm(tk) = xm(tk−1) +
1

2
(vm(tk) + vm(tk−1)) · (tk − tk−1) . (24)
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