

LAB 5 – Kalman Filtering with simulated GPS data: simple (a=0) model (1 week)

Objective:

Filter “2D” GPS data on a circle by a simple (and suboptimal) Kalman Filter.

Tasks:

1. Use your Matlab code from Lab 4 and re-generate the reference trajectory of the virtual vehicle along the circular path. Note: use radius $r = 25 \text{ m}$, angular rate $\omega = \pi/100 \text{ rad/s}$, and time interval $\Delta t = 1 \text{ s}$.
2. Simulate ‘GPS-position’ measurements along this path by adding random white noise ($\sigma_{gps,x} = 0.5 \text{ m}$, $\sigma_{gps,y} = 0.5 \text{ m}$) to the reference trajectory (separately for each coordinate).
3. Calculate the Kalman-filtered trajectory based on GPS-position observations, assuming the following initial conditions and motion model:
 - a. Assume an initial uncertainty in the vehicle's initial position ($\sigma_{x_0} = 10 \text{ m}$), velocity ($\sigma_{v_0} = 0.1 \text{ m/s}$)
 - b. Uniform linear motion of constant velocity (i.e. acceleration $a = 0 \text{ m/s}^2$)
 - c. Consider the uncertainty of the motion model (noise covariance matrix based on $\sigma_v = 0.05 \text{ m/s}^2/\sqrt{\text{Hz}}$)
4. Repeat Tasks 2 and 3 **five** times. Assuming the error in the estimate to be a white noise with a mean of 0. For each realization, calculate the standard deviation of the error:
 - a. Empirical standard deviations characterizing **real** GPS positioning quality

$$\sigma_{xy}^{GPS_{emp}} = \sqrt{\sigma_{x,mean}^2 + \sigma_{y,mean}^2}$$
, using the differences: $E(p_{ref} - p_{gps})^2$
 - b. Empirical standard deviations characterizing **filtered** positioning quality

$$\sigma_{xy}^{KF_{emp}} = \sqrt{\sigma_{x,mean}^2 + \sigma_{y,mean}^2}$$
, using the differences: $E(p_{ref} - p_{kf})^2$
 - c. Plot the evolution of the **KF-predicted** positioning quality $\sigma_{xy}^{KF_p} = \sqrt{\sigma_x^2 + \sigma_y^2}$, derived from the diagonal elements of the \hat{P} post-update (σ_x^2 and σ_y^2). Report the stabilized value in the table. **Submission of this plot is not required for the report.**

Process noise =xx ; Frequency =yy

	1	2	3	4	5
$\sigma_{xy}^{GPS_{emp}}$					
$\sigma_{xy}^{KF_{emp}}$					
$\sigma_{xy}^{KF_p}$					

Questions:

- I. What is the true overall improvement of the positioning accuracy by the filtering (i.e. through comparing $\sigma_{xy}^{KF_{emp}}$ versus $\sigma_{xy}^{GPS_{emp}}$).
- II. How many measurements does it take to stabilize the predicted accuracy in position?
- III. Does the evolution of the predicted positioning accuracy depend on the actual measurements? If yes, why is that? If not, why is that?
- IV. How well does the empirically estimated position accuracy ($\sigma_{xy}^{KF_{emp}}$) correspond to the anticipated/predicted accuracy ($\sigma_{xy}^{KF_p}$) and, which parameters of the filter would you suggest modifying to improve the agreement?
- V. What do you observe when you increase/decrease the process noise 10 times?
- VI. What happens to the standard deviation of the estimated position and velocity while filtering at 100 Hz?
- VII. What happens to the innovation sequences when you increase/decrease the process noise

Deliverables

1. Plot the position (N and E separately) and velocity (N and E separately) errors alongside 3-sigma bounds (from \hat{P}) for **1 realization** each for 1 Hz and 100 Hz at the three different process noises.
2. The **innovation** sequence, i.e. the differences between the predicted and the real observation ($z_t^{GPS} - Hx_t$), at each update of the North and East coordinates. Plot the histogram of innovation sequences for **1 realization** for 1 Hz (KF) at three different process noises.
3. Tables
4. Answer the questions
5. Code

Lab weight: 10%

Deadline: 19/05/2024 (without penalty)