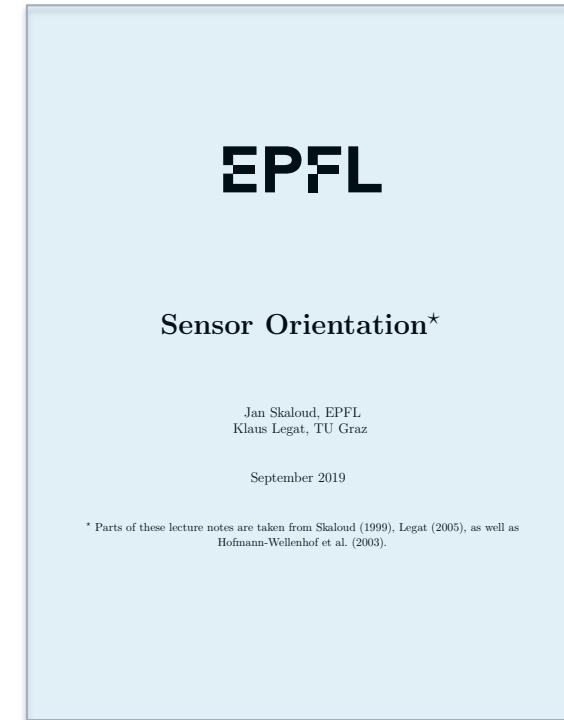


□ **AGENDA** of Sensor Orientation

Jan Skaloud
ENAC

Spring semester

Section SSIE, Faculty ENAC
Section SYSCOM, Faculty I&C
Section SEL, MT, Robotics, Faculty STI



Fr 13:15-17:00 **GC D0 386 (or/& GC D0 383)**

Support

- Lecture notes, no.279 – RC shop

- moodle.epfl.ch (ENV-548)
 - **planning**
 - skeleton
 - selected **slides**
 - **lab-assignments**
 - grades

- (your notes are important !)

Agenda – details per session

Orientation / Lecture

1. Intro, LS review, Random proc. 1
2. Seq. LS, Random proc. 2
3. Ref. systems 1+2, Sensors (1*)
- 4. T1**, R, dR , Eq. i-frame
5. **PL**: e-frame, Attitude Sol., Sensors.(2*)
6. I-frame, num. integ., Sensors(3*)
7. Alignment principle, Sensors(3*)
- 8. T2** Alignment limits, Schuler
9. KF-intuitive, Sensors (4*)
10. $\Phi = e^{F\Delta t}$, obs., Sensors (5*)
11. EKF, INS/GNSS integration
12. Total x vs. Δx , GPS/INS in 2D
- 13. T3** Direct sensor orientation

Estimation/LAB

L1a: noise gener.:WN, RW, GM1
b: noise characteristics

L2a: collect real IMU data
b: analyze & characterize

L3 : dR/dt

L4/5 : 2D INS – ideal + realistic

L5 : 2D INS – realistic case

L6: INS physic – initialization

L7 : KF of GPS – model $a=0$

L8 : KF of GPS – model $a=\text{con.}$

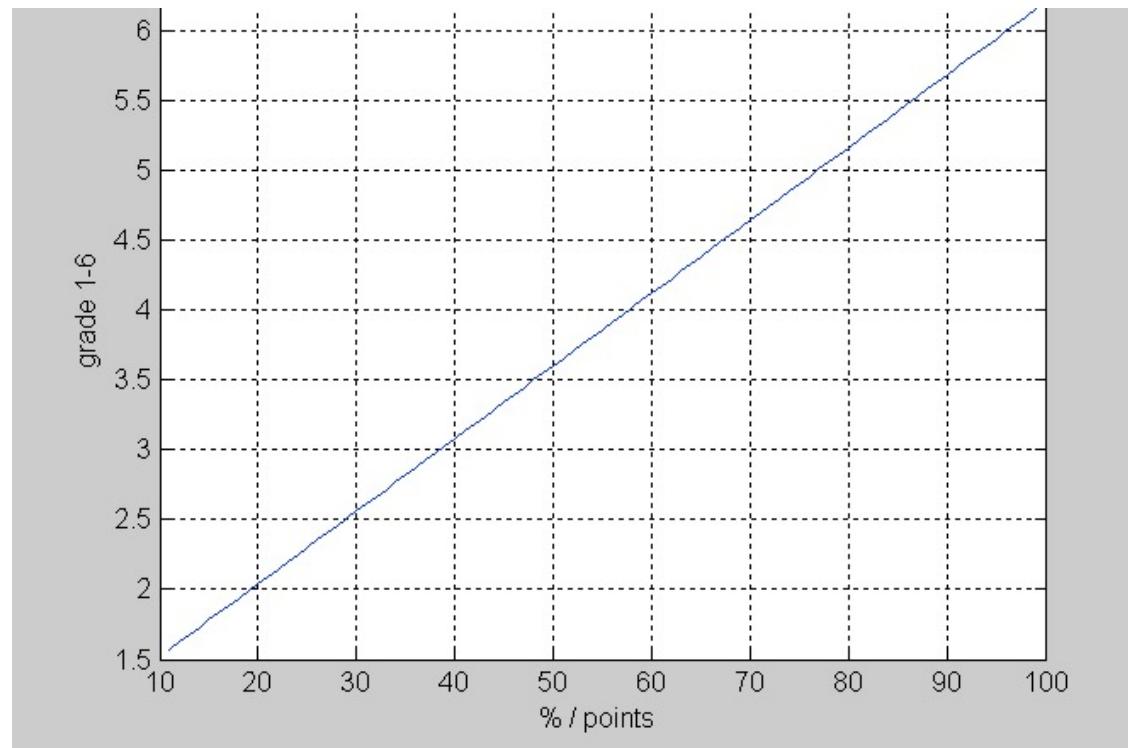
L9 : KF of GPS – model $rdot=0$

L10a: GPS/INS – implement
b: debug

* = presented by students,

practical labs

Control



<input type="checkbox"/> Test 1 (lecture 4, 17.03.)	20%	
<input type="checkbox"/> Test 2 (lecture 8, 28.04.)	20%	
<input type="checkbox"/> Test 3 (lecture 13, 02.06.)	20%	60%
<input type="checkbox"/> Participation/presentation	10%	
<input type="checkbox"/> Labs	30%	40%
<hr/>		
<input type="checkbox"/> TOTAL	100%	

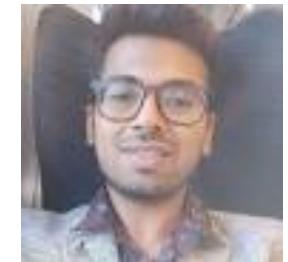
% → grade conversion

☐ $\text{Mark} \approx [\%] * 5.2/100 + 1$

Labs – rules

- Lab weight 3% per lab, 10 labs in total
- Evaluation
 - Completeness ~ 1%
 - Correctness (plots) ~ 1%
 - Answers (questions) ~ 1%
 - Penalty -0.5% per day past deadline
- Content
 - Written ~1 page: **answers** with analysis (poss. synthesis)
 - Plots (relevant)
 - Code (all that is new)
- Hand in
 - **via Moodle**, deadlines – Friday 11AM

Lab - evaluation



- Completeness** – 1/3
- Correctness** – 1/3
- Answers** – 1/3

- Later delivery** – 50% (of the lab weight)

- Reports:**
 - Answers** – max 1 page
 - Description (plots)** – n pages
 - Code** (with all functions)

Assistant support

- Aman Sharma
 - main assistant (labs & consulting)

- Pasquale Longobardi
 - present in labs (& consulting)

- Kenneth Joseph Paul
 - present in labs (& consulting back-up)

Sensor presentation (group of 2)

- Prepare
 - 1. Presentation (~7-8 min)
 - 2. PDF version sent to teacher (slides or extended abstract with references)

- Content
 - 1. Physical concept** , mathematical relations
 - 2. Limits** – physical and in realization/fabrication
 - 3. Advantages** and disadvantages (environment, size, ~cost, **accuracy ranges**)

Inertial sensors – student distribution

<input type="checkbox"/> Gyroscopes	<input type="checkbox"/> Students
■ Rigid rotors gyros (RRG)	■ 1:
■ Nuclear resonant (NMRG)	■ 2:
■ Ring laser gyro (RLG)	■ 3:
■ Fibro optic gyro (FOG)	■ 4:
■ Hemispherical resonator (HRG)	■ 5:
■ MEMS: Vibrating fork-quartz (QRS)	■ 6:
■ MEMS: Resonant ring	■ 7:
<input type="checkbox"/> Accelerometers	<input type="checkbox"/> 8:
■ Force/mass rebalance	■ 9:
■ MEMS: vibrating (QRS)	■ 10:
■ Compact cold-atomic	■ 11:
■ MEMS gravimeter	■ 12:
<input type="checkbox"/> Magnetometers	

First group in 2 weeks (3rd session)
