
Image
processing
for Earth
Observation

4b
Convolutional

neural networks
Devis TUIA

EPFL, fall semester
2024

Content (6 weeks)

§ W1 General concepts of image classification / segmentation
Traditional supervised classification methods (RF)

§ W2 Traditional supervised classification methods (SVM)
 Best practices

§ W3 Elements of neural networks
§ W4 Convolutional neural networks
§ W5 Convolutional neural networks for semantic segmentation
§ W6 Sequence modeling, change detection

2

IP
EO

 c
ou

rs
e

–
3

im
ag

e
cl

as
si

fic
at

io
n

(S
VM

)
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

Convolutional neural
networks

Larger inputs need weight sharing

From dense to convolutional layers

Padding, stride and pooling

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

3

MLPs consider feature interactions only

§ MLPs consider each datapoint as a point in feature space
§ It is often the best we can do if we have tabular data

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a,

 E
C

EO

4

Height

Age

Eyes c.

Class

ID Height Age Eye color class

1 65 7 blue dog

2 34 3 brown cat

3 55 12 brown cat

When dealing with
images…

§ One could consider every pixel as a feature
§ Ex: 1MPixel = 1000 x 1000 pixels = 1 million pixels*
§ We could represent them as a table with a million features (1 per

pixel*)

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

5

*This is not even true, a RGB image would have

3 millions pixels values, since there are 3 channels

But for the time being, let’s do as if it was grayscale.

...

1
’0

0
0

’0
0

0

1’000

1’000

...

... Output:
“cat” or “dog”

When dealing with
images…

§ One could consider every pixel as a feature
§ Ex: 1MPixel = 1000 x 1000 pixels = 1 million pixels*
§ We could represent them as a table with a million features (1 per

pixel*)

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

6

...

1
’0

0
0

’0
0

0

1’000

1’000

1
’0

0
0

...

... Output:
“cat” or “dog”

When dealing with
images…

§ One could consider every pixel as a feature
§ Ex: 1MPixel = 1000 x 1000 pixels = 1 million pixels*
§ We could represent them as a table with a million features (1 per

pixel*)

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

7

...

1
’0

0
0

’0
0

0

1’000

1’000

1
’0

0
0

Looks feasible…

… wait a second…

… how many weights are

we talking about?

...

... Output:
“cat” or “dog”

When dealing with
images…

§ One could consider every pixel as a feature
§ Ex: 1MPixel = 1000 x 1000 pixels = 1 million pixels*
§ We could represent them as a table with a million features (1 per

pixel*)

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

8

...

1
’0

0
0

’0
0

0

1’000

1’000

1
’0

0
0

...

1’000 weights

1’000’000’000 weights (YES, 1 billion)

... ...

… it becomes a
bigger problem.

§ So we are talking 1 billion learnable weights.
§ The value of a hidden neuron can be expressed as

§ Where i,j and k,l are pixels locations in the image

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

9

h[i, j] = u[i, j] +
X

k,l

W [i, j, k, l] · x[k, l]

= u[i, j] +
X

a,b

V [i, j, a, b] · x[i+ a, j + b]

… it becomes a
bigger problem.

§ So we are talking 1 billion learnable weights.
§ The value of a hidden neuron can be expressed as

§ Where i,j and k,l are pixels locations in the image
• we want to express a pixel (i,j) as a combination of all other pixels (k,l)
• each neuron h is specific to one pixel location i,j

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

10

h[i, j] = u[i, j] +
X

k,l

W [i, j, k, l] · x[k, l]

= u[i, j] +
X

a,b

V [i, j, a, b] · x[i+ a, j + b]Meaning: each feature in the hidden layer h depends on ALL
locations of the input image (hint: look at the sum on k,l).

… it becomes a
bigger problem.

§ So we are talking 1 billion learnable weights.
§ The value of a hidden neuron can be expressed as

§ Where i,j and a,b are pixels locations in the image
• k = i+a (we just re-express by relative positions)
• j = j+bIP

EO
 c

ou
rs

e
–

4b
 C

on
vn

et
s,

31
 O

ct
ob

er
 2

02
4

D
. T

ui
a.

 E
C

EO

11

h[i, j] = u[i, j] +
X

k,l

W [i, j, k, l] · x[k, l]

= u[i, j] +
X

a,b

V [i, j, a, b] · x[i+ a, j + b]

… it becomes a
bigger problem.

§ So we are talking 1 billion learnable weights.
§ The value of a hidden neuron can be expressed as

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

12

h[i, j] = u[i, j] +
X

k,l

W [i, j, k, l] · x[k, l]

= u[i, j] +
X

a,b

V [i, j, a, b] · x[i+ a, j + b]
Final value of the feature
(specific to a location i,j)

Bias (specific to a location i,j)

Filter weights (arrows in slide 8)
specific to pairs of locations

Original pixel values
at a location (i+a,j+b)

… it becomes a
bigger problem.

§ So we are talking 1 billion-ish learnable weights.
§ To learn this, you would need m(b)illions of examples and a lot of

computational power
§ The population of cats and dogs on the planet is around 1.5 billions…
§ We need to be more clever than that.

§ What can we do?

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

13

Evidence #1
Location is NOT so important

§ Our visual system recognizes objects independently of their specific
location in the image.

§ You will re-use the same filters at different locations

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

14

Source: petguide, boredpanda, countryliving

Evidence #1
Location is NOT so important

§ This can simply be implemented in the neuron equation by removing
dependence of the weights on location:

§ This implements translation invariance and is the main reason why
CNNs are nowadays trainable.

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

15

h[i, j] = u[i, j] +
X

a,b

V [i, j, a, b] · x[i+ a, j + b]

h[i, j] = u+
X

a,b

V [a, b] · x[i+ a, j + b]

Evidence #1
Location is NOT so important

§ In other words (example involving a 4 x 5 pixels image):

FROM 400
Learnable weights

TO 20!

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

16

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

w31 w35w34w33w32

w36 w40w39w38w37

w21 w25w24w23w22

w26 w30w29w28w27

w391 w395w394w393w392

w396 w400w939w398w397

w381 w385w384w383w382

w386 w390w389w388w387

WEIGHTS MULTIPLYING THE GREEN PIXEL

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

WEIGHTS MULTIPLYING THE GREEN PIXEL

...

...

Evidence #2
Global context is NOT so important

§ Our visual system recognizes objects (mostly) by looking at local
features.

§ You don’t need to encode neuron dependencies between far away
parts of the image

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

17

Source: bigstock, petguide, boredpanda, countryliving

Evidence #2
Global context is NOT so important

§ In other words, the relevant information must be close to location i,j
§ The weights should be nonzero only in the vicinity of the pixel you are

considering

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

18

Source: bigstock, petguide, boredpanda, countryliving

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 00 0 0 0 0

w w w w w
w w w w w
w w w w w
w w w w w

Evidence #2
Global context is NOT so important

§ In other words, the relevant information must be close to location i,j
§ The weights should be nonzero only in the vicinity of the pixel you are

considering
§ If we consider a neighborhood of size 2D x 2D

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

19

Source: bigstock, petguide, boredpanda, countryliving

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 00 0 0 0 0

D

Evidence #2
Global context is NOT so important

§ In other words, the relevant information must be close to location i,j
§ The weights should be nonzero only in the vicinity of the pixel you are

considering

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

20

h[i, j] = u+
X

a,b

V [a, b] · x[i+ a, j + b]

h[i, j] = u+
�X

a=��

�X

b=��

V [a, b] · x[i+ a, j + b]

Evidence #2
Global context is NOT so important

§ In other words (example involving a 4 x 5 pixels image and D=1):

FROM 20
Learnable weights

TO 9!

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

21

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

WEIGHTS MULTIPLYING THE GREEN PIXEL

...

w1 w2 w3

w4 w5 w6

w7 w9w8

WEIGHTS MULTIPLYING THE GREEN PIXEL

...

w1 w2 w3

w4 w5 w6

w7 w9w8 w1 w2

w4 w5

This is called a (2D)
convolution

§ The weights are organized as a filter, slid over the image

§ In the original example of cats and dogs:

§ Location-specific : (i x j x a x b) weights: 109

§ Translation invariant : (a x b) weights: 106

§ Local windows : ((2D+1)^2) weights: 9 * 1000

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

22

Exercise

§ Calculate the result of the following convolutional filters (W) when
applied to an image (I) :

§ What is the dimension of the output? Any idea why?IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

23

I
W1 W2

3 1 4 3
3 2 3 1
4 3 6 4

1 -1 2
3 1 4
5 -2 9

3 3 1

1 1 1
1 1 1
1 1 1

7

Images are 3D
tensors though

§ Images have (at least) 3 bands: Red, Green, Blue

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

24

Images are 3D
tensors though

§ Images have (at least) 3 bands: Red, Green, Blue
§ The result of a 2D convolution is the sum of 2D filters over the single

input bands:

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

25

h[i, j] = u+
�X

a=��

�X

b=��

V [a, b] · x[i+ a, j + b]

h[i, j] = u+
�X

a=��

�X

b=��

X

c

V [a, b] · x[i+ a, j + b, c]

But it’s just sliding
windows…

§ Yes, but

§ Different filters have
different effects

§ This time, the filters are
learned
• We don’t know them in

advance
• We learn the weights by

gradient descent

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

26

Learning more filters

§ Convolutional filters have different effects
§ So we want to learn more than 1 filter
§ For k filters:

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

27

h[i, j] = u+
�X

a=��

�X

b=��

X

c

V [a, b] · x[i+ a, j + b, c]

h[i, j, k] = u+
�X

a=��

�X

b=��

X

c

V [a, b, k] · x[i+ a, j + b, c]

Attention! k here is a filter
index, not the position index
as in previous slides…

Convolutional neural
networks

Larger inputs need weight sharing

From dense to convolutional layers

Padding, stride and pooling

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

29

Convnets are a bit
like lego playing

§ Now you know how to compute a
convolutional filter

§ A convolutional network is a stack of such
convolutions

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a,

 E
C

EO

30

http://www.inference.vc/deep-learning-is-easy/

Convolutional neural
networks

In convolutional neural networks, the filters are spatial (on 2D grids).
• local : they convolve the values of the image in a local window

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

31

[F
ro

m
 W

eg
ne

r,
ET

H
]

Convolutional neural
networks

In convolutional neural networks, the filters are spatial (on 2D grids).
• local : they convolve the values of the image in a local window
• the convolution is followed by a nonlinearity to make the result

nonlinear.

• your nonlinearity can be a sigmoid or (easier to compute) a
Rectified Linear Unit (RELU):

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

32

<latexit sha1_base64="yen1vcTTGZ+wNRVvUeuPRUZLP2U=">AAAB/HicbZDLSgMxFIYz9VbrbbRLN8EitCBlpoi6EYpuXFawF2iHkkkzbWiSGZKMdCj1Vdy4UMStD+LOtzHTzkJbfwh8/OcczsnvR4wq7TjfVm5tfWNzK79d2Nnd2z+wD49aKowlJk0cslB2fKQIo4I0NdWMdCJJEPcZafvj27TefiRS0VA86CQiHkdDQQOKkTZW3y4G5UkFXsMeR5NyymdOpW+XnKozF1wFN4MSyNTo21+9QYhjToTGDCnVdZ1Ie1MkNcWMzAq9WJEI4TEakq5BgThR3nR+/AyeGmcAg1CaJzScu78npogrlXDfdHKkR2q5lpr/1bqxDq68KRVRrInAi0VBzKAOYZoEHFBJsGaJAYQlNbdCPEISYW3yKpgQ3OUvr0KrVnUvqrX781L9JosjD47BCSgDF1yCOrgDDdAEGCTgGbyCN+vJerHerY9Fa87KZorgj6zPH0j1kpo=</latexit>

f(x) = max(f(x), 0)

Convolutional neural
networks

In convolutional neural networks, the filters are spatial (on 2D grids).
• local : they convolve the values of the image in a local window
• shared: the same filter is applied everywhere in the image, leading

to an activation map

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

33

[F
ro

m
 W

eg
ne

r,
ET

H
]

Convolutional neural
networks

In convolutional neural networks, the filters are spatial (on 2D grids).
• local : they convolve the values of the image in a local window
• shared: the same filter is applied everywhere in the image, leading

to an activation map
• many filters are learned in parallel

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

34

[F
ro

m
 W

eg
ne

r,
ET

H
]

Convolutional neural
networks

In convolutional neural networks, the filters are spatial (on 2D grids).
• local : they convolve the values of the image in a local window
• shared: the same filter is applied everywhere in the image, leading

to an activation map
• many filters are learned in parallel (in this case 6)

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

35

[F
ro

m
 W

eg
ne

r,
ET

H
]

Convnets are a bit
like lego playing

§ The thing is: you need to be sure of the sizes
of your activation maps

§ Like Legos, they need to fit to eachother

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a,

 E
C

EO

36

http://www.inference.vc/deep-learning-is-easy/

Convnets are a bit
like lego playing

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a,

 E
C

EO

37

INPUT
IMAGE

CONV.
LAYER 1

CONV.
LAYER 2

CONV.
LAYER 3

FULLY
CONNECTED LAYER

nf = 5

sf = 3 x 3 x 3

nf = 10

sf = 3 x 3 x 5

nf = 40

sf = 2 x 2 x 10

nf = 1000

sf = 2 x 2 x 40

CLASSIFIER

OUTPUT
1 score per class

. . .

1000

40

10

5

3

Convnets are a bit
like lego playing

§ In this example, the last set of filters is 2 x 2 x 40
§ They need to resume all filters into a single number
§ It is called a fully connected layer (same as a perceptron, see last

week). More explanation later (slide 50)

§ To the CNN to work, this cascade of filters needs to lead to a matrix
which is 2 x 2 x 40 (conv. layer 3)

§ What are the ingredients to control the cascading size?

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a,

 E
C

EO

38

Ingredient #1
padding

§ In the previous exercise (slide 23), the resulting activation map was of
size 2 x 2

§ The convolution by W1 could only consider the four pixels centered in
the red square

§ With an input image of size (nh x nw) and a filter (kh x kw), the output size
is:

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

39I
W1 W2

3 1 4 3
3 2 3 1
4 3 6 4

1 -1 2
3 1 4
5 -2 9

3 3 1

1 1 1
1 1 1
1 1 1

7

(nh � kh + 1)⇥ (nw � kw + 1)

Ingredient #1
padding

§ Without padding

§ With padding

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

40

Image ActivationW

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1

1 1 1
1 1 1

29 27
28 30

1 1 1

7

Image ActivationW

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1

1 1 1
1 1 1

18 28
13 20

9 16
16 29

30 22
24 18

14 11
27 21

1 1 1

7

Image

3 1 4 3
3 2 3 1
4 3 6 4
3

0
0
0
0 3 1 7

0
0 0 0 00 0

0
0
0

Padded image

00 0 0 0 0

Ingredient #2
stride

§ By default, convolutions scan the image from top left to bottom right,
one pixel at a time

§ We call this stride of 1
§ Sometimes, to reduce resolution or need less filters, we can compute

only one every k pixels, which leads to stride k
§ If you use stride = 2, the activation map size is half of the original

image
§ Different strides in row and column are rarely used.

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

41

Ingredient #2
stride

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

42

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1 7

3
1
4
7

3 3 1 7 7

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1 7

3
1
4
7

3 3 1 7 7

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1 7

3
1
4
7

3 3 1 7 7

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1 7

3
1
4
7

3 3 1 7 7

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1 7

3
1
4
7

3 3 1 7 7

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1 7

3
1
4
7

3 3 1 7 7

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1 7

3
1
4
7

3 3 1 7 7

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1 7

3
1
4
7

3 3 1 7 7

Filter 3 x 3, Padding = 0, Stride 1. Activation map size: 3 x 3

Filter 3 x 3, Padding = 0, Stride 2. Activation map size: 2 x 2

Ingredient #3
pooling

§ Pooling is an operation that decreases the size of the activation map
§ It seems similar to stride (it reduces size), but selects the information

to carry over, rather than skipping calculations
§ Pooling works by applying a function locally in an activation map:

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

43

1 1 1 1
1 2 1 1
1 1 1 3

2 2 1
2 2 3
1 1 3

1.25 1.25 1

1.25

1

1.25

1

1.5

1.5

1 1 1 1

max

average

Pooling with
padding = 0
stride = 1

Ingredient #3
pooling

§ Pooling has desirable effects:
• It increases the receptive field, i.e. allows to see more of the image

with a fixed size filter
§ Example: if we constantly apply 3 x 3 filters, this is what they “see”

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

44

Ingredient #3
pooling

§ Pooling has desirable effects:
• It increases the receptive field, i.e. allows to see more of the image

with a fixed size filter
• Max pooling helps with translation invariance (the exact pixel

position of the max is not so important, by shifting the image by 1
pixel the result is the same)

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

45

Ingredient #3
Pooling

§ Pooling has desirable effects:
• It increases the receptive field, i.e. allows to see more of the image

with a fixed size filter
• Max helps with translation invariance (the exact pixel position of

the max is not so important, by shifting the image by 1 pixel the
result is the same)

§ Stride is often set equal to
the pooling size

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

46

1 1 1 1
1 2 1 1
1 1 1 3

2 1
1 3

1.25 1

1 1.5

1 1 1 1

max

average

Pooling with
padding = 0
stride = 2

From the simplied
convnet view…

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a,

 E
C

EO

47

INPUT
IMAGE

CONV.
LAYER 1

CONV.
LAYER 2

CONV.
LAYER 3

FULLY
CONNECTED LAYER

nf = 5

sf = 3 x 3 x 3

nf = 10

sf = 3 x 3 x 5

nf = 40

sf = 2 x 2 x 10

nf = 1000

sf = 2 x 2 x 40

CLASSIFIER

OUTPUT
1 score per class

. . .

1000

40

10

5

3

… to the real one (for 1
layer, then repeat)

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a,

 E
C

EO

48

INPUT
(image)

Max

Max

Max O
U

T
P

U
T

 (
im

ag
e

o
f

re
d
u
ce

d
 r

es
o
lu

ti
o
n

w
it

h

n
f

 f
il

te
rs

 l
ea

rn
ed

)

nf CONVOLUTIONS NON-LINEARITY SPATIAL POOLING

filters
w1 w2 w3

w4 w5 w6

w7 w8 w9

w27

Nonlinearity

g(A1)

Nonlinearity

g(A2)

Nonlinearity

g(AF)

From the simplied
convnet view…

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a,

 E
C

EO

49

INPUT
IMAGE

CONV.
LAYER 1

CONV.
LAYER 2

CONV.
LAYER 3

FULLY
CONNECTED LAYER

nf = 5

sf = 3 x 3 x 3

nf = 10

sf = 3 x 3 x 5

nf = 40

sf = 2 x 2 x 10

nf = 1000

sf = 2 x 2 x 40

CLASSIFIER

OUTPUT
1 score per class

. . .

1000

40

10

5

3

What is it???

The fully connected
layer

§ More or less what we saw in the MLP last week.
§ First we flatten the tensor we have (either by learning a layer combining all

activations (as in previous slide) or by simple reordering (as below)
§ Then we use a fully connected layer (all inputs are mixed in each neuron of the

output) and learn many neurons (here n)
§ This final Fc layer is used for classification

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

50

Last pooled convolutional
layer
4 x 3 x 3

>> ...

...

Flattened
vector
1 x 36 x 1 Fc with n neurons

output
1 x #n x 1

Each neuron of the fc
receives information
from ALL inputs
(it is fully connected)

Convolutional neural
networks

Larger inputs need weight sharing

From dense to convolutional layers

Padding, stride and pooling

LeNet as a base architecture

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

51

LeNet?

§ The ‘90s .. A period many would like to forget
§ But it has its good moments: in 1992, Y. LeCun

and L. Bottou proposed LeNet, the first
Convolutional Neural Network

§ They used it to recognize digits for the U.S. post
§ By lack of computational power and big datasets,

the model didn’t beat state of art.
§ But still, these concepts are at the core of

basically all modern deep learning.

§ It is simple but powerful.

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a,

 E
C

EO

52

LeNet

§ 2 convolutional layers, 5 x 5 filters >> neurons give image-like activation maps
§ 2 average pooling layers >> reduce resolution of the maps
§ Sigmoid nonlinearities >> no ReLUs back in the day
§ 2 fully connected layers >> all the image gets summarized in a neuron, 120 times
§ 10 output classes (10 digits) >> final output

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

53

LetNet

§ 2 convolutional layers, 5 x 5 filters
§ 2 average pooling layers
§ Sigmoid nonlinearities
§ 2 dense layers (same as “fully connected”)
§ 10 output classes (10 digits)

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

54

INPUT

You are now a convnet padawan

§ CNN models design you can
§ CNN parameters you

understand
§ Still much know you must

(e.g. BatchNorm and Dropout)

§ Before looking into semantic
segmentation (next week), still
some tricks you will learn…

IP
EO

 c
ou

rs
e

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO

55

