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Content (6 weeks)

§ W1  General concepts of image classification / segmentation
Traditional supervised classification methods (RF)

§ W2 Traditional supervised classification methods (SVM)
           Best practices

§ W3 Elements of neural networks
§ W4 Convolutional neural networks
§ W5 Convolutional neural networks for semantic segmentation
§ W6 Sequence modeling, change detection
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Convolutional neural 
networks

Larger inputs need weight sharing

From dense to convolutional layers

Padding, stride and pooling
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MLPs consider feature interactions only

§ MLPs consider each datapoint as a point in feature space
§ It is often the best we can do if we have tabular data
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Height

Age

Eyes c.

Class

ID Height Age Eye color class

1 65 7 blue dog

2 34 3 brown cat

3 55 12 brown cat



When dealing with 
images…

§ One could consider every pixel as a feature
§ Ex: 1MPixel = 1000 x 1000 pixels = 1 million pixels*
§ We could represent them as a table with a million features (1 per 

pixel*)
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*This is not even true, a RGB image would have

3 millions pixels values, since there are 3 channels

But for the time being, let’s do as if it was grayscale.
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...

... Output:
“cat” or “dog”

When dealing with 
images…

§ One could consider every pixel as a feature
§ Ex: 1MPixel = 1000 x 1000 pixels = 1 million pixels*
§ We could represent them as a table with a million features (1 per 

pixel*)
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...

... Output:
“cat” or “dog”

When dealing with 
images…

§ One could consider every pixel as a feature
§ Ex: 1MPixel = 1000 x 1000 pixels = 1 million pixels*
§ We could represent them as a table with a million features (1 per 

pixel*)
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Looks feasible…

… wait a second…

… how many weights are 

we talking about?



...

... Output:
“cat” or “dog”

When dealing with 
images…

§ One could consider every pixel as a feature
§ Ex: 1MPixel = 1000 x 1000 pixels = 1 million pixels*
§ We could represent them as a table with a million features (1 per 

pixel*)
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1’000 weights

1’000’000’000 weights (YES, 1 billion)

... ...



… it becomes a 
bigger problem.

§ So we are talking 1 billion learnable weights.
§ The value of a hidden neuron can be expressed as

§ Where i,j and k,l are pixels locations in the image
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h[i, j] = u[i, j] +
X

k,l

W [i, j, k, l] · x[k, l]

= u[i, j] +
X

a,b

V [i, j, a, b] · x[i+ a, j + b]



… it becomes a 
bigger problem.

§ So we are talking 1 billion learnable weights.
§ The value of a hidden neuron can be expressed as

§ Where i,j and k,l are pixels locations in the image 
• we want to express a pixel (i,j ) as a combination of all other pixels (k,l )
• each neuron h is specific to one pixel location i,j
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h[i, j] = u[i, j] +
X

k,l

W [i, j, k, l] · x[k, l]

= u[i, j] +
X

a,b

V [i, j, a, b] · x[i+ a, j + b]Meaning: each feature in the hidden layer h depends on ALL
locations of the input image (hint: look at the sum on k,l).



… it becomes a 
bigger problem.

§ So we are talking 1 billion learnable weights.
§ The value of a hidden neuron can be expressed as

§ Where i,j and a,b are pixels locations in the image
• k = i+a (we just re-express by relative positions)
• j = j+bIP
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h[i, j] = u[i, j] +
X

k,l

W [i, j, k, l] · x[k, l]

= u[i, j] +
X

a,b

V [i, j, a, b] · x[i+ a, j + b]



… it becomes a 
bigger problem.

§ So we are talking 1 billion learnable weights.
§ The value of a hidden neuron can be expressed as
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h[i, j] = u[i, j] +
X

k,l

W [i, j, k, l] · x[k, l]

= u[i, j] +
X

a,b

V [i, j, a, b] · x[i+ a, j + b]
Final value of the feature
(specific to a location i,j)

Bias (specific to a location i,j)

Filter weights (arrows in slide 8)
specific to pairs of locations

Original pixel values
at a location (i+a,j+b)



… it becomes a 
bigger problem.

§ So we are talking 1 billion-ish learnable weights.
§ To learn this, you would need m(b)illions of examples and a lot of 

computational power
§ The population of cats and dogs on the planet is around 1.5 billions…
§ We need to be more clever than that.

§ What can we do?
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Evidence #1
Location is NOT so important

§ Our visual system recognizes objects independently of their specific 
location in the image.

§ You will re-use the same filters at different locations
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Source: petguide, boredpanda, countryliving



Evidence #1
Location is NOT so important

§ This can simply be implemented in the neuron equation by removing 
dependence of the weights on location:

§ This implements translation invariance and is the main reason why 
CNNs are nowadays trainable.
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h[i, j] = u[i, j] +
X

a,b

V [i, j, a, b] · x[i+ a, j + b]

h[i, j] = u+
X

a,b

V [a, b] · x[i+ a, j + b]



Evidence #1
Location is NOT so important

§ In other words (example involving a 4 x 5 pixels image):

FROM 400
Learnable weights

TO 20!
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w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

w31 w35w34w33w32

w36 w40w39w38w37

w21 w25w24w23w22

w26 w30w29w28w27

w391 w395w394w393w392

w396 w400w939w398w397

w381 w385w384w383w382

w386 w390w389w388w387

WEIGHTS MULTIPLYING THE GREEN PIXEL

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

WEIGHTS MULTIPLYING THE GREEN PIXEL

...

...



Evidence #2
Global context is NOT so important

§ Our visual system recognizes objects (mostly) by looking at local 
features. 

§ You don’t need to encode neuron dependencies between far away 
parts of the image
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Source: bigstock, petguide, boredpanda, countryliving



Evidence #2
Global context is NOT so important

§ In other words, the relevant information must be close to location i,j
§ The weights should be nonzero only in the vicinity of the pixel you are 

considering
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Source: bigstock, petguide, boredpanda, countryliving
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0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 00 0 0 0 0
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w w w w w
w w w w w
w w w w w



Evidence #2
Global context is NOT so important

§ In other words, the relevant information must be close to location i,j
§ The weights should be nonzero only in the vicinity of the pixel you are 

considering
§ If we consider a neighborhood of size 2D x 2D
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Source: bigstock, petguide, boredpanda, countryliving
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Evidence #2
Global context is NOT so important

§ In other words, the relevant information must be close to location i,j
§ The weights should be nonzero only in the vicinity of the pixel you are 

considering
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h[i, j] = u+
X

a,b

V [a, b] · x[i+ a, j + b]

h[i, j] = u+
�X

a=��

�X

b=��

V [a, b] · x[i+ a, j + b]



Evidence #2
Global context is NOT so important

§ In other words (example involving a 4 x 5 pixels image and D=1):

FROM 20 
Learnable weights

TO 9!
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w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

w11 w15w14w13w12

w16 w20w19w18w17

WEIGHTS MULTIPLYING THE GREEN PIXEL

...

w1 w2 w3

w4 w5 w6

w7 w9w8

WEIGHTS MULTIPLYING THE GREEN PIXEL

...

w1 w2 w3

w4 w5 w6

w7 w9w8 w1 w2

w4 w5



This is called a (2D) 
convolution

§ The weights are organized as a filter, slid over the image

§ In the original example of cats and dogs:

§ Location-specific : (i x j x a x b) weights: 109

§ Translation invariant :        (a x b) weights: 106

§ Local windows :           ((2D+1)^2) weights:    9 * 1000
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Exercise

§ Calculate the result of the following convolutional filters (W) when 
applied to an image (I) :

§ What is the dimension of the output? Any idea why?IP
EO

 c
ou

rs
e 

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO
  

23

I
W1 W2

3 1 4 3
3 2 3 1
4 3 6 4

1 -1 2
3 1 4
5 -2 9

3 3 1

1 1 1
1 1 1
1 1 1

7



Images are 3D 
tensors though

§ Images have (at least) 3 bands: Red, Green, Blue

IP
EO

 c
ou

rs
e 

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO
  

24



Images are 3D 
tensors though

§ Images have (at least) 3 bands: Red, Green, Blue
§ The result of a 2D convolution is the sum of 2D filters over the single 

input bands:
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h[i, j] = u+
�X

a=��

�X

b=��

V [a, b] · x[i+ a, j + b]

h[i, j] = u+
�X

a=��

�X

b=��

X

c

V [a, b] · x[i+ a, j + b, c]



But it’s just sliding 
windows…

§ Yes, but

§ Different filters have 
different effects

§ This time, the filters are 
learned
• We don’t know them in 

advance
• We learn the weights by 

gradient descent
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Learning more filters

§ Convolutional filters have different effects
§ So we want to learn more than 1 filter
§ For k filters:
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h[i, j] = u+
�X

a=��

�X

b=��

X

c

V [a, b] · x[i+ a, j + b, c]

h[i, j, k] = u+
�X

a=��

�X

b=��

X

c

V [a, b, k] · x[i+ a, j + b, c]

Attention! k here is a filter
index, not the position index 
as in previous slides…



Convolutional neural 
networks

Larger inputs need weight sharing

From dense to convolutional layers

Padding, stride and pooling
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Convnets are a bit 
like lego playing

§ Now you know how to compute a 
convolutional filter

§ A convolutional network is a stack of such 
convolutions
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http://www.inference.vc/deep-learning-is-easy/



Convolutional neural 
networks

In convolutional neural networks, the filters are spatial (on 2D grids). 
• local : they convolve the values of the image in a local window
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Convolutional neural 
networks

In convolutional neural networks, the filters are spatial (on 2D grids). 
• local : they convolve the values of the image in a local window
• the convolution is followed by a nonlinearity to make the result 

nonlinear.

• your nonlinearity can be a sigmoid or (easier to compute) a 
Rectified Linear Unit (RELU):
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<latexit sha1_base64="yen1vcTTGZ+wNRVvUeuPRUZLP2U=">AAAB/HicbZDLSgMxFIYz9VbrbbRLN8EitCBlpoi6EYpuXFawF2iHkkkzbWiSGZKMdCj1Vdy4UMStD+LOtzHTzkJbfwh8/OcczsnvR4wq7TjfVm5tfWNzK79d2Nnd2z+wD49aKowlJk0cslB2fKQIo4I0NdWMdCJJEPcZafvj27TefiRS0VA86CQiHkdDQQOKkTZW3y4G5UkFXsMeR5NyymdOpW+XnKozF1wFN4MSyNTo21+9QYhjToTGDCnVdZ1Ie1MkNcWMzAq9WJEI4TEakq5BgThR3nR+/AyeGmcAg1CaJzScu78npogrlXDfdHKkR2q5lpr/1bqxDq68KRVRrInAi0VBzKAOYZoEHFBJsGaJAYQlNbdCPEISYW3yKpgQ3OUvr0KrVnUvqrX781L9JosjD47BCSgDF1yCOrgDDdAEGCTgGbyCN+vJerHerY9Fa87KZorgj6zPH0j1kpo=</latexit>

f(x) = max(f(x), 0)



Convolutional neural 
networks

In convolutional neural networks, the filters are spatial (on 2D grids). 
• local : they convolve the values of the image in a local window
• shared: the same filter is applied everywhere in the image, leading 

to an activation map
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Convolutional neural 
networks

In convolutional neural networks, the filters are spatial (on 2D grids). 
• local : they convolve the values of the image in a local window
• shared: the same filter is applied everywhere in the image, leading 

to an activation map
• many filters are learned in parallel
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Convolutional neural 
networks

In convolutional neural networks, the filters are spatial (on 2D grids). 
• local : they convolve the values of the image in a local window
• shared: the same filter is applied everywhere in the image, leading 

to an activation map
• many filters are learned in parallel (in this case 6)
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Convnets are a bit 
like lego playing

§ The thing is: you need to be sure of the sizes 
of your activation maps

§ Like Legos, they need to fit to eachother
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Convnets are a bit 
like lego playing
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INPUT
IMAGE

CONV.
LAYER 1

CONV.
LAYER 2

CONV.
LAYER 3

FULLY
CONNECTED LAYER

nf = 5

sf = 3 x 3 x 3

nf = 10

sf = 3 x 3 x 5

nf = 40

sf = 2 x 2 x 10

nf = 1000

sf = 2 x 2 x 40

CLASSIFIER

OUTPUT
1 score per class

. . .

1000

40

10

5

3



Convnets are a bit 
like lego playing

§ In this example, the last set of filters is 2 x 2 x 40
§ They need to resume all filters into a single number
§ It is called a fully connected layer (same as a perceptron, see last 

week). More explanation later (slide 50)

§ To the CNN to work, this cascade of filters needs to lead to a matrix 
which is 2 x 2 x 40 (conv. layer 3)

§ What are the ingredients to control the cascading size?
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Ingredient #1
padding

§ In the previous exercise (slide 23), the resulting activation map was of 
size 2 x 2

§ The convolution by W1 could only consider the four pixels centered in 
the red square

§ With an input image of size (nh x nw) and a filter (kh x kw), the output size 
is:
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W1 W2

3 1 4 3
3 2 3 1
4 3 6 4

1 -1 2
3 1 4
5 -2 9

3 3 1

1 1 1
1 1 1
1 1 1

7

(nh � kh + 1)⇥ (nw � kw + 1)



Ingredient #1
padding

§ Without padding

§ With padding
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Image ActivationW

3 1 4 3
3 2 3 1
4 3 6 4
3 3 1

1 1 1
1 1 1
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Image ActivationW
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Ingredient #2
stride

§ By default, convolutions scan the image from top left to bottom right, 
one pixel at a time

§ We call this stride of 1
§ Sometimes, to reduce resolution or need less filters, we can compute 

only one every k pixels, which leads to stride k 
§ If you use stride = 2, the activation map size is half of the original 

image
§ Different strides in row and column are rarely used.
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Ingredient #2
stride
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Filter 3 x 3, Padding = 0, Stride 1. Activation map size: 3 x 3

Filter 3 x 3, Padding = 0, Stride 2. Activation map size: 2 x 2



Ingredient #3
pooling

§ Pooling is an operation that decreases the size of the activation map
§ It seems similar to stride (it reduces size), but selects the information 

to carry over, rather than skipping calculations
§ Pooling works by applying a function locally in an activation map:
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max

average

Pooling with 
padding = 0
stride = 1



Ingredient #3
pooling

§ Pooling has desirable effects:
• It increases the receptive field, i.e. allows to see more of the image 

with a fixed size filter
§ Example: if we constantly apply 3 x 3 filters, this is what they “see”
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Ingredient #3
pooling

§ Pooling has desirable effects:
• It increases the receptive field, i.e. allows to see more of the image 

with a fixed size filter
• Max pooling helps with translation invariance (the exact pixel 

position of the max is not so important, by shifting the image by 1 
pixel the result is the same)

IP
EO

 c
ou

rs
e 

–
4b

 C
on

vn
et

s,
31

 O
ct

ob
er

 2
02

4

D
. T

ui
a.

 E
C

EO
  

45



Ingredient #3
Pooling

§ Pooling has desirable effects:
• It increases the receptive field, i.e. allows to see more of the image 

with a fixed size filter
• Max helps with translation invariance (the exact pixel position of 

the max is not so important, by shifting the image by 1 pixel the 
result is the same)

§ Stride is often set equal to 
the pooling size
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Pooling with 
padding = 0
stride = 2



From the simplied 
convnet view…
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… to the real one (for 1 
layer, then repeat)
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From the simplied 
convnet view…
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What is it???



The fully connected 
layer

§ More or less what we saw in the MLP last week.
§ First we flatten the tensor we have (either by learning a layer combining all 

activations (as in previous slide) or by simple reordering (as below)
§ Then we use a fully connected layer (all inputs are mixed in each neuron of the 

output) and learn many neurons (here n )
§ This final Fc layer is used for classification
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Last pooled convolutional
layer
4 x 3 x 3

>> ...

...

Flattened
vector
1 x 36 x 1 Fc with n neurons

output
1 x #n x 1

Each neuron of the fc
receives information 
from ALL inputs
(it is fully connected)



Convolutional neural 
networks

Larger inputs need weight sharing

From dense to convolutional layers

Padding, stride and pooling

LeNet as a base architecture
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LeNet?

§ The ‘90s .. A period many would like to forget
§ But it has its good moments: in 1992, Y. LeCun

and L. Bottou proposed LeNet, the first 
Convolutional Neural Network

§ They used it to recognize digits for the U.S. post
§ By lack of computational power and big datasets, 

the model didn’t beat state of art. 
§ But still, these concepts are at the core of 

basically all modern deep learning.

§ It is simple but powerful.
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LeNet

§ 2 convolutional layers, 5 x 5 filters >> neurons give image-like activation maps
§ 2 average pooling layers >> reduce resolution of the maps
§ Sigmoid nonlinearities >> no ReLUs back in the day
§ 2 fully connected layers >> all the image gets summarized in a neuron, 120 times
§ 10 output classes (10 digits) >> final output
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LetNet

§ 2 convolutional layers, 5 x 5 filters 
§ 2 average pooling layers
§ Sigmoid nonlinearities
§ 2 dense layers (same as “fully connected”)
§ 10 output classes (10 digits)
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INPUT



You are now a convnet padawan

§ CNN models design you can
§ CNN parameters you 

understand
§ Still much know you must    

(e.g. BatchNorm and Dropout)

§ Before looking into semantic 
segmentation (next week), still 
some tricks you will learn…
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