

Infrastructure Robotics

Prof. Mirko Kovač

Dr. Lachlan Orr

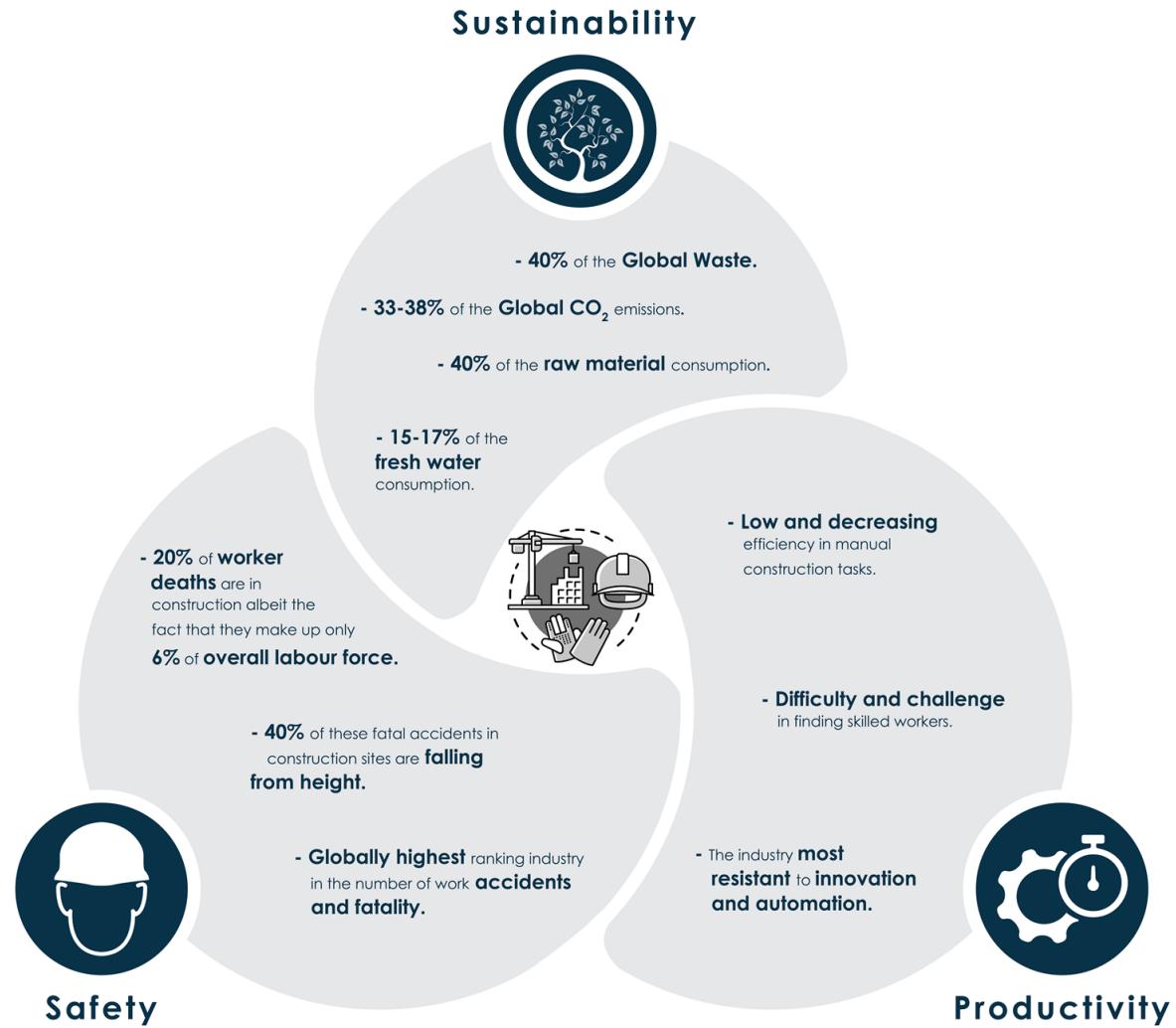
Laboratory of Sustainability Robotics

EPFL, Switzerland

ENV-530 Sustainability Robotics

Lecture goals

- Understand the current state of the art in infrastructure robotics.
- Explore how different robotic systems can be used in such as aerial manipulators, perching drones, industrial climbers, and construction/landscaping robots.
- Learn the concept of robot degrees of freedom and how they relate to joint and task spaces.
- Develop an understanding of forward and inverse kinematics for robotic motion control.
- Identify and classify different types of robotic manipulators based on their structure and capabilities.



Main problems of the construction industry.

The construction chart book: The U.S. Construction Industry and its workers (2013).

Silver Spring, MD: CPWR - The Center for Construction Research and Training.

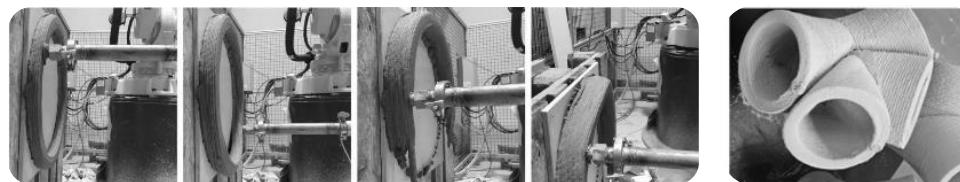
Illustration: Yusuf Furkan Kaya

EPFL Application – additive manufacturing

State-of-the-art Ground-based Robotic AM

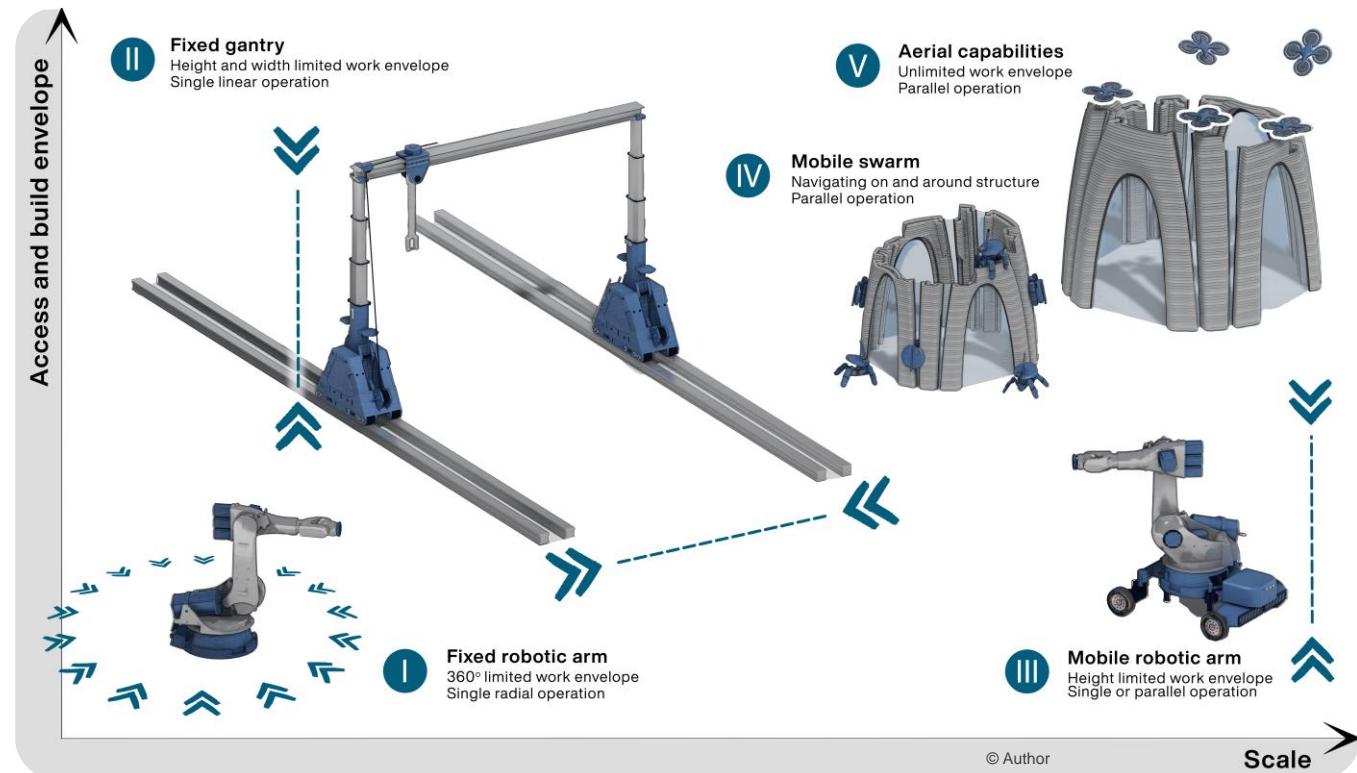
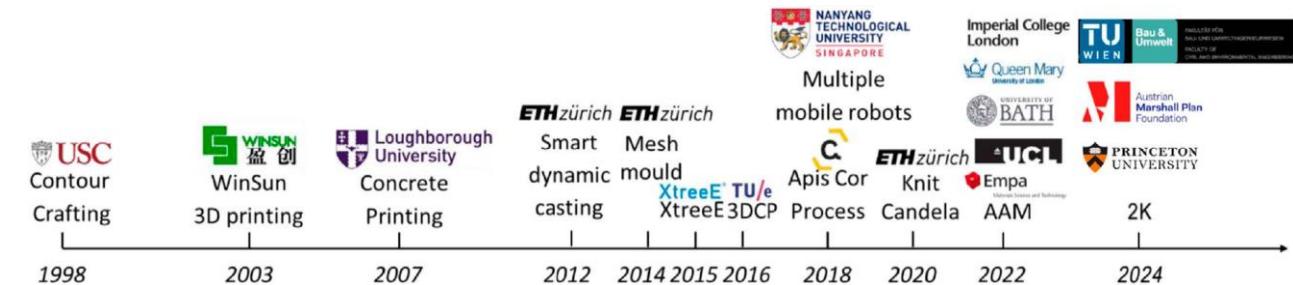
© ICON 3D Concrete Printing

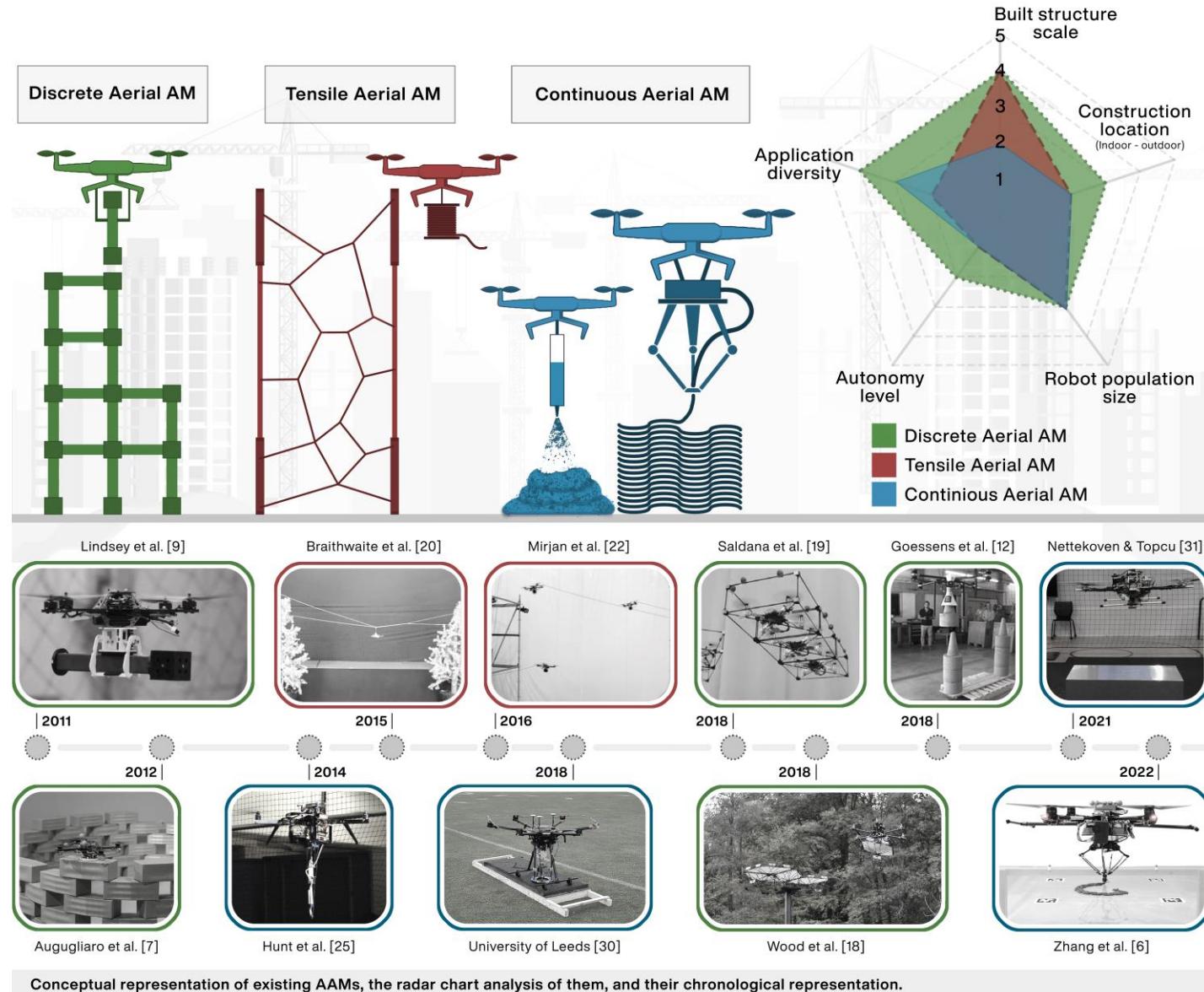
© CyBe Mobile Robot

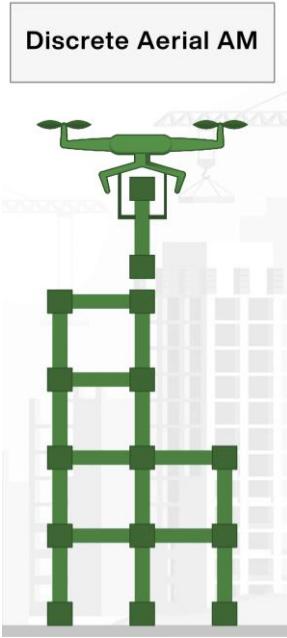


Carneau et al. Additive manufacturing of cantilever - From masonry to concrete 3D printing 2020.

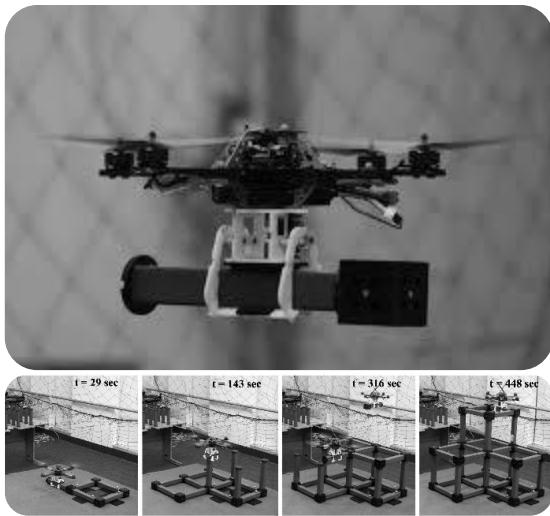
Bhooshan et al. Function Representation for Robotic 3D Printed Concrete. 2019.



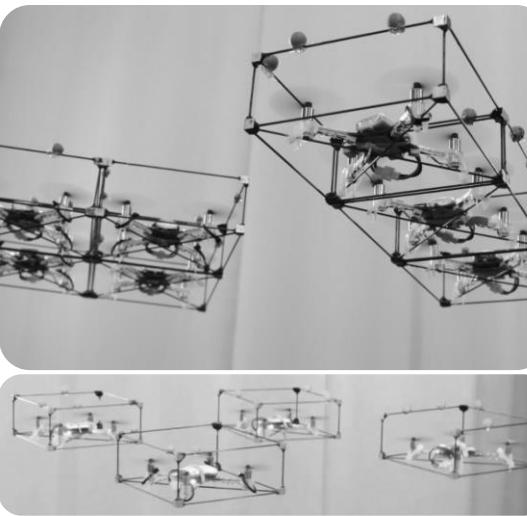




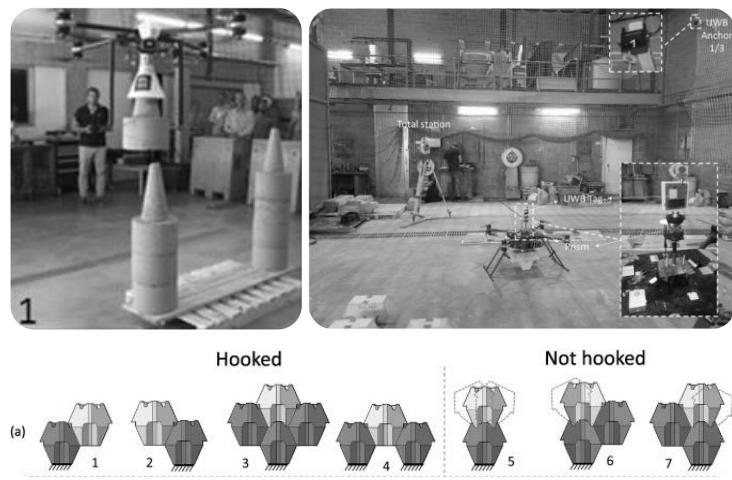
Lindsey et al. - Construction of Cubic Structures



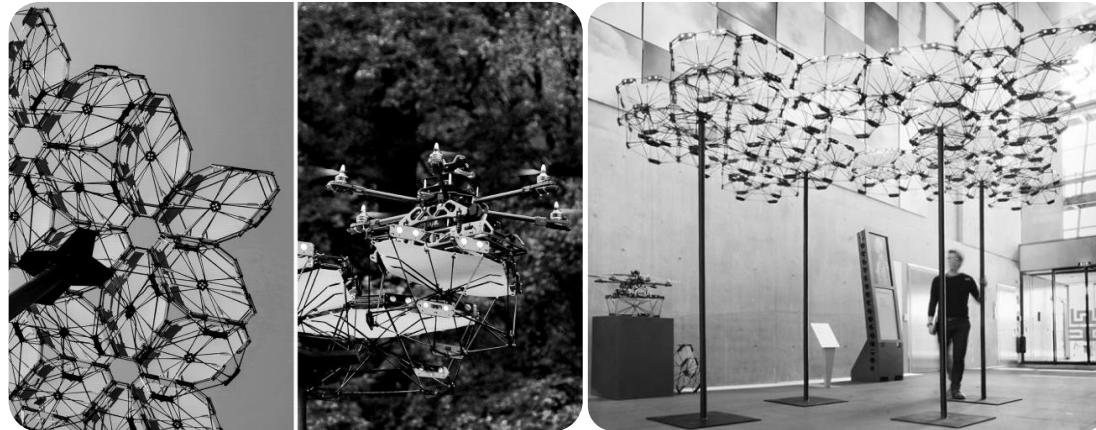
Saldana et al. - Modquad



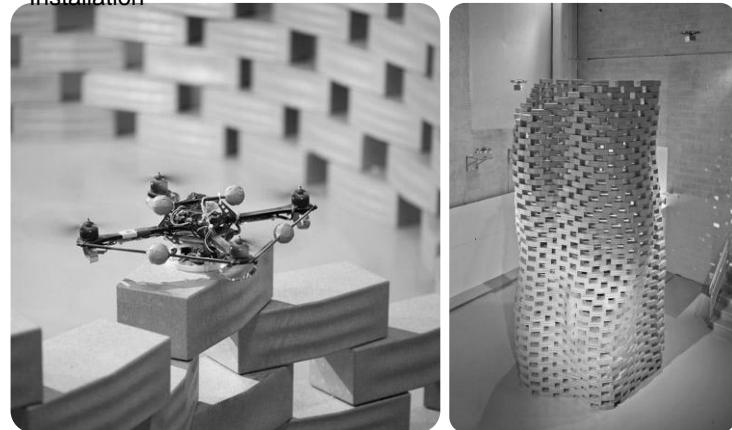
Goessens et al. – Feasibility Study of Drone-based Masonry

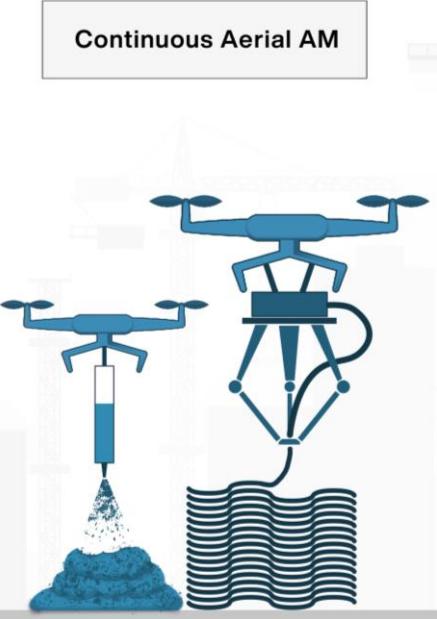


Wood et al. – Cyber Physical Macro Material as a UAV [re]Configurable Architectural System

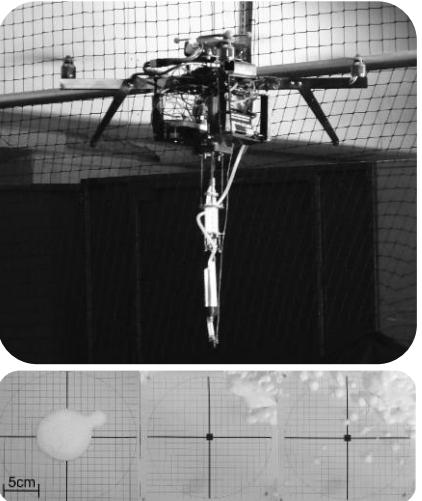


Augugliaro et al. – The Flight Assembled Architecture Installation

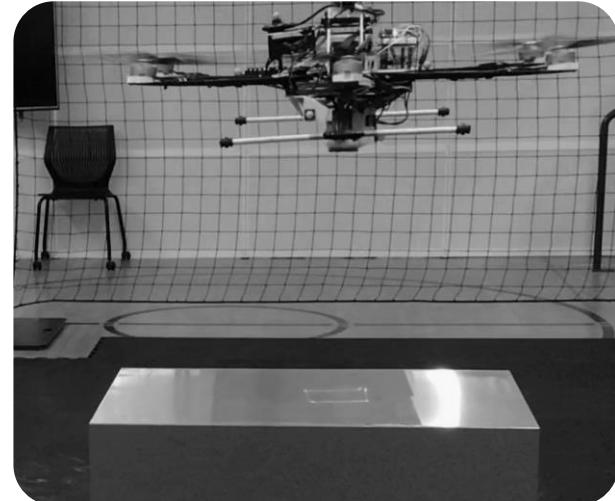




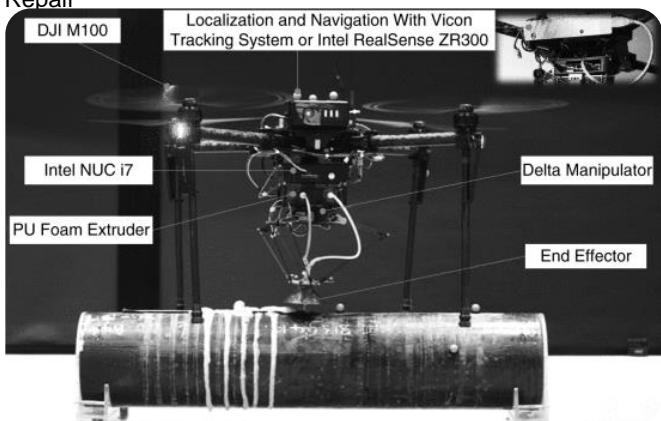
Hunt et al. - 3D Printing with Flying Robots Eskandari et al. – Self-repairing Cities



Nettekoven and Topcu – A 3d Printing Hexacopter



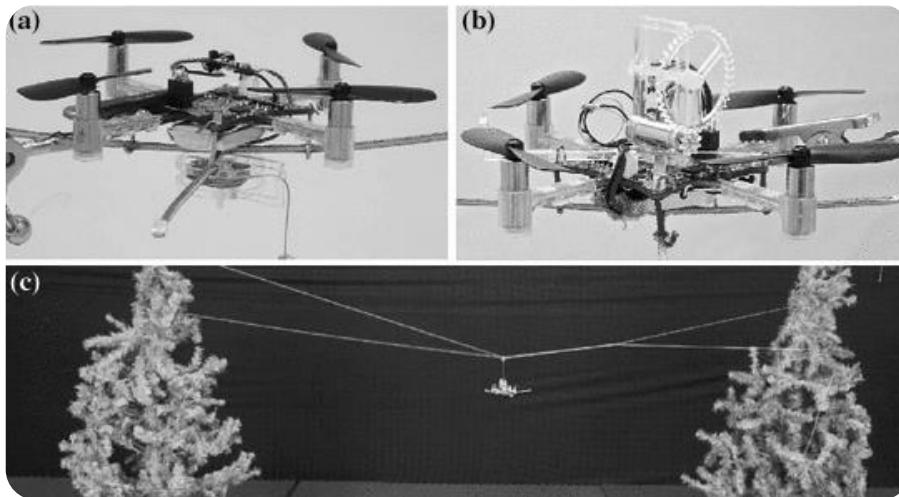
Chermprayong et al. – An Integrated Delta Manipulator for Aerial Repair



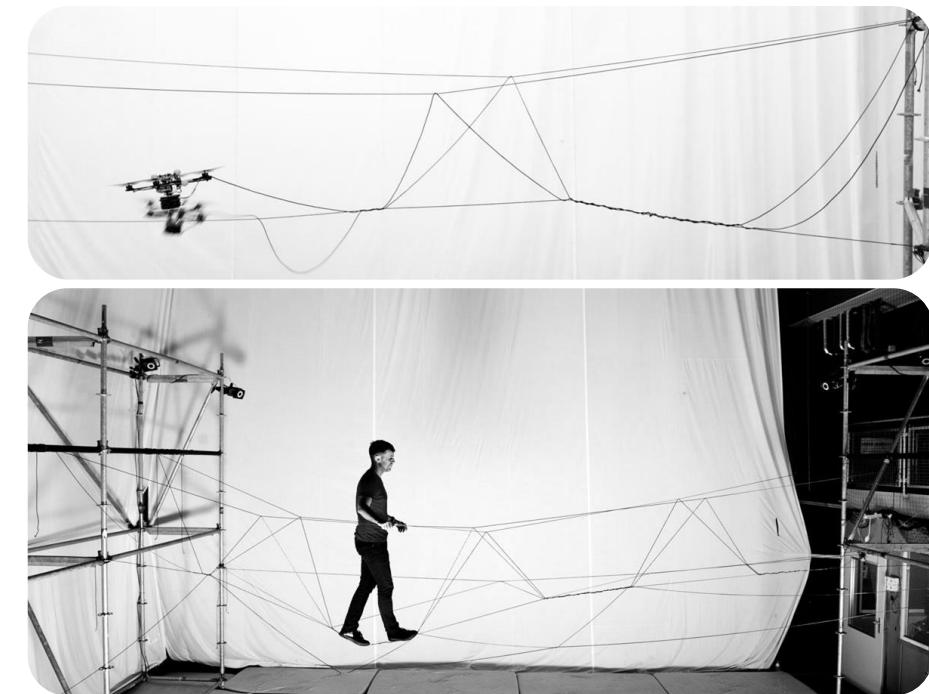
Zhang et al. – Aerial Additive Manufacturing

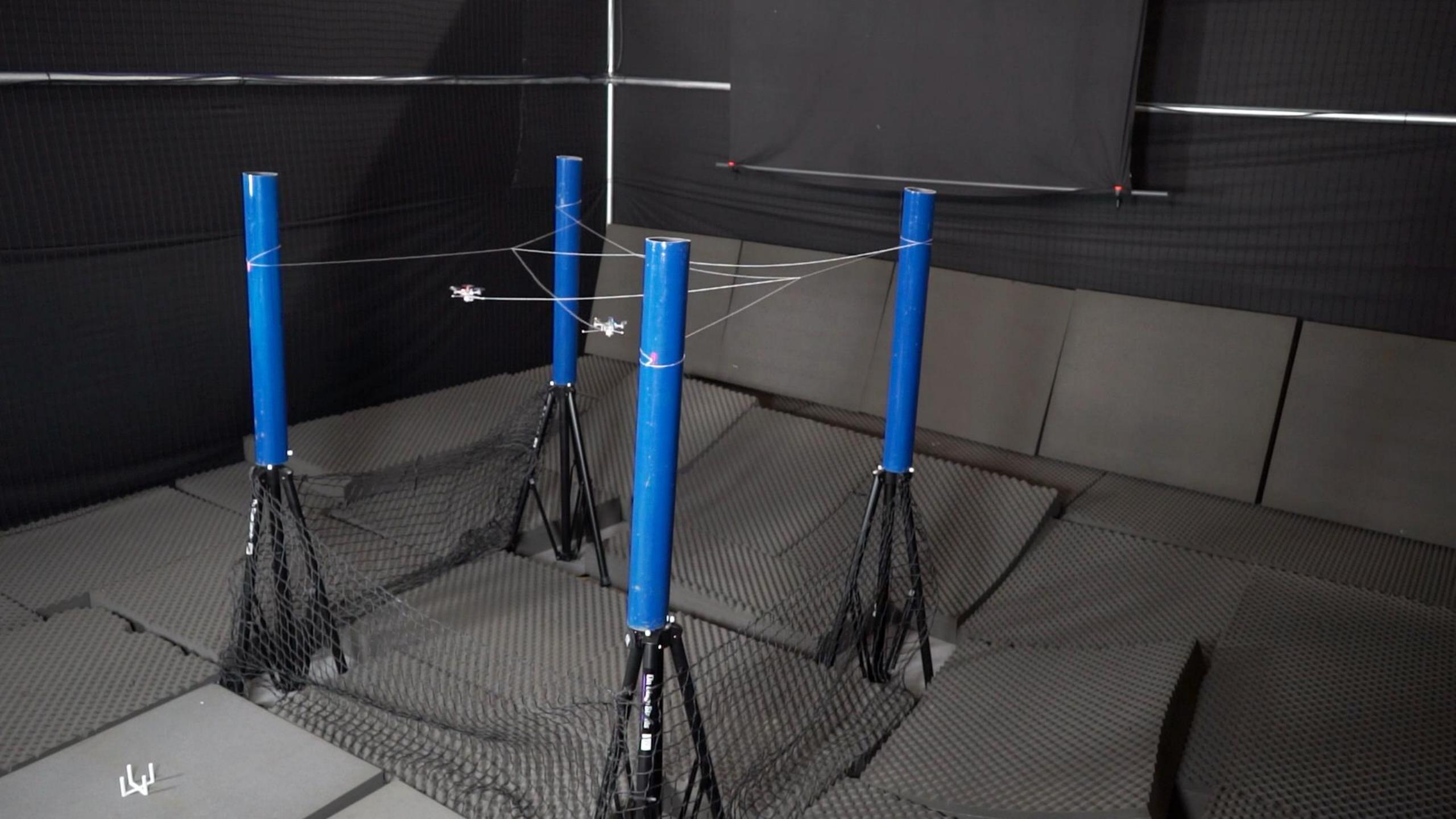
Tensile Aerial AM

Braithwaite et al. - Tensile Web Construction and Perching

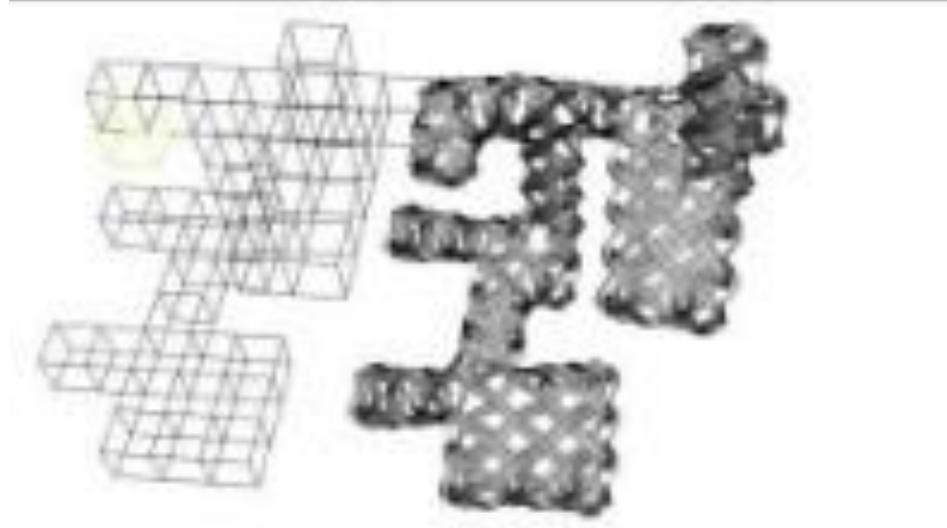
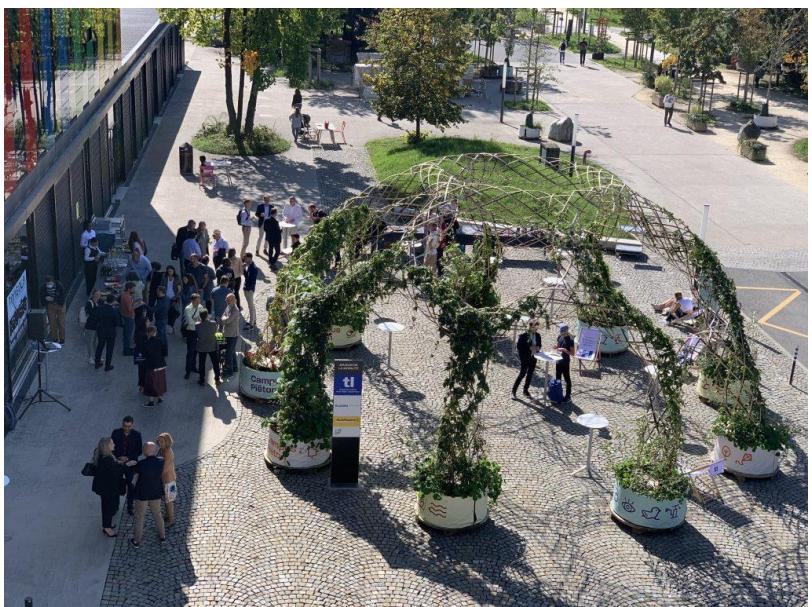


Mirjan et al. – Building a Tensile Bridge with Flying Vehicles





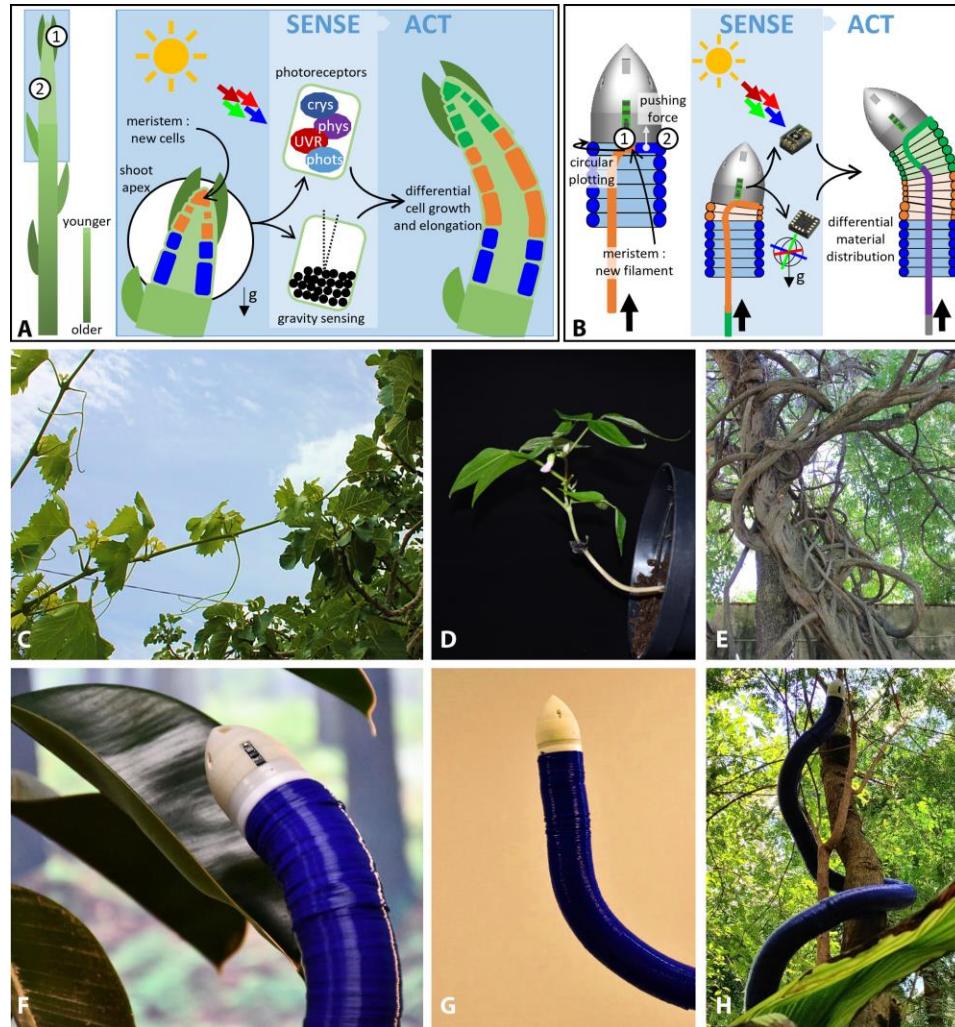
Vines – living infrastructure



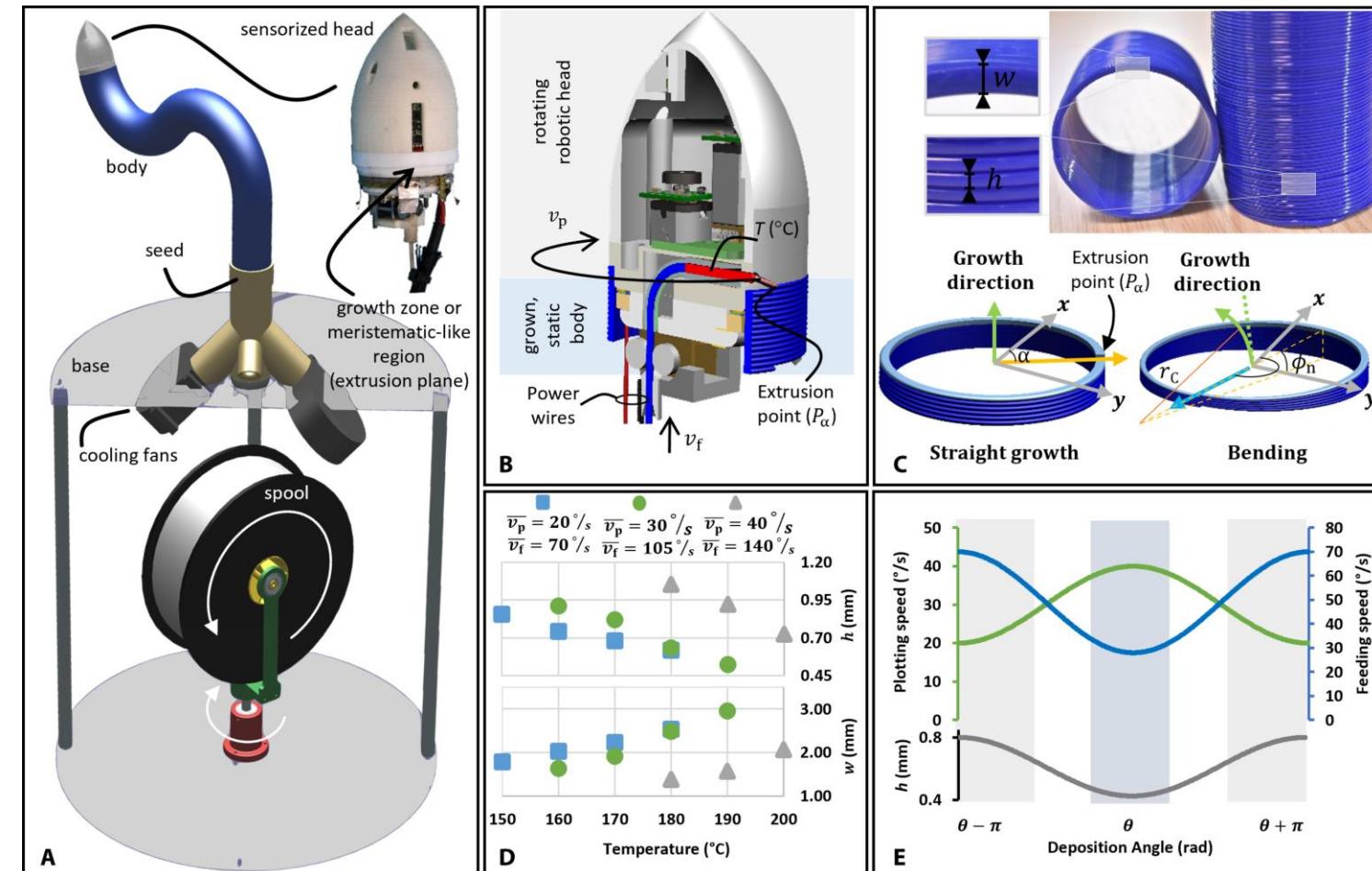
Modular & reconfigurable

Climbing robots for additive manufacturing

climbing robots for additive manufacturing



<https://www.science.org/doi/full/10.1126/scirobotics.adi5908>



Surface inspection

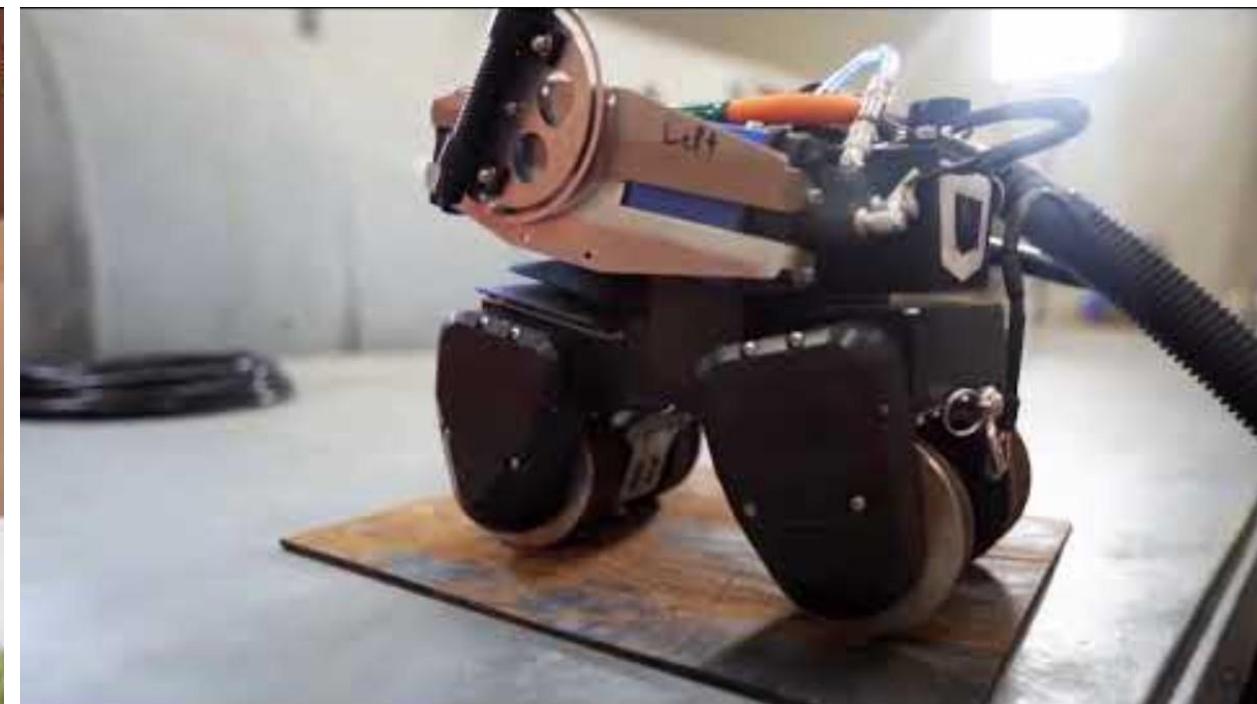
Silo inspection – Gecko Robotics



Ship Derusting – ROBOT++

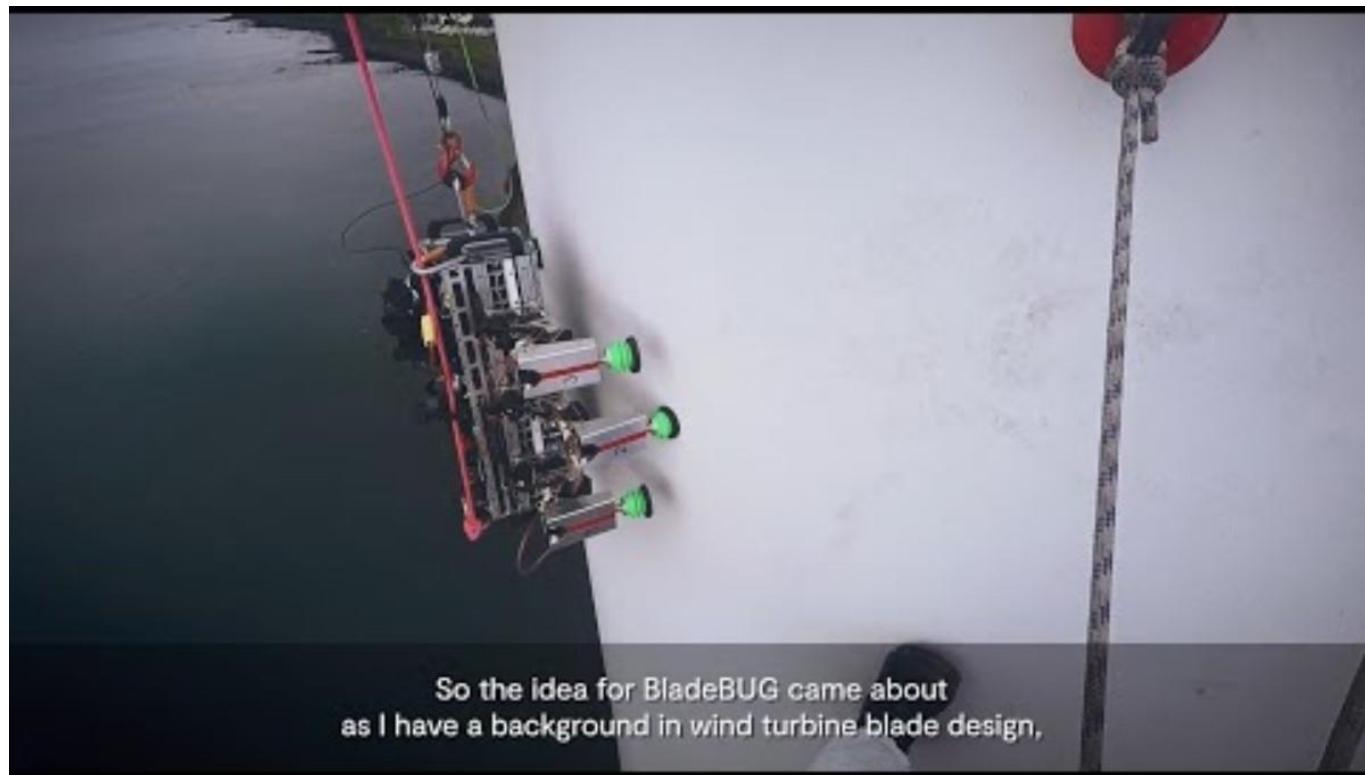
Multi-dimensional inspecting

Steel Bridge Inspection



Pipe Inspection (Waygate Technologies)

Wind turbine inspection



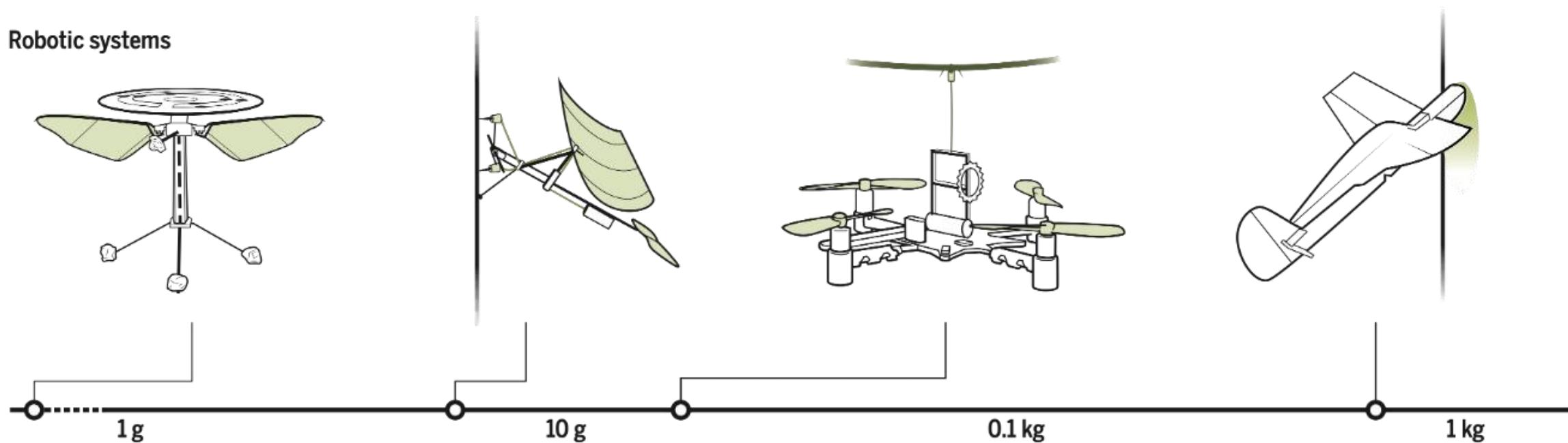
BladeBUG

Soft sensing

Perching robots

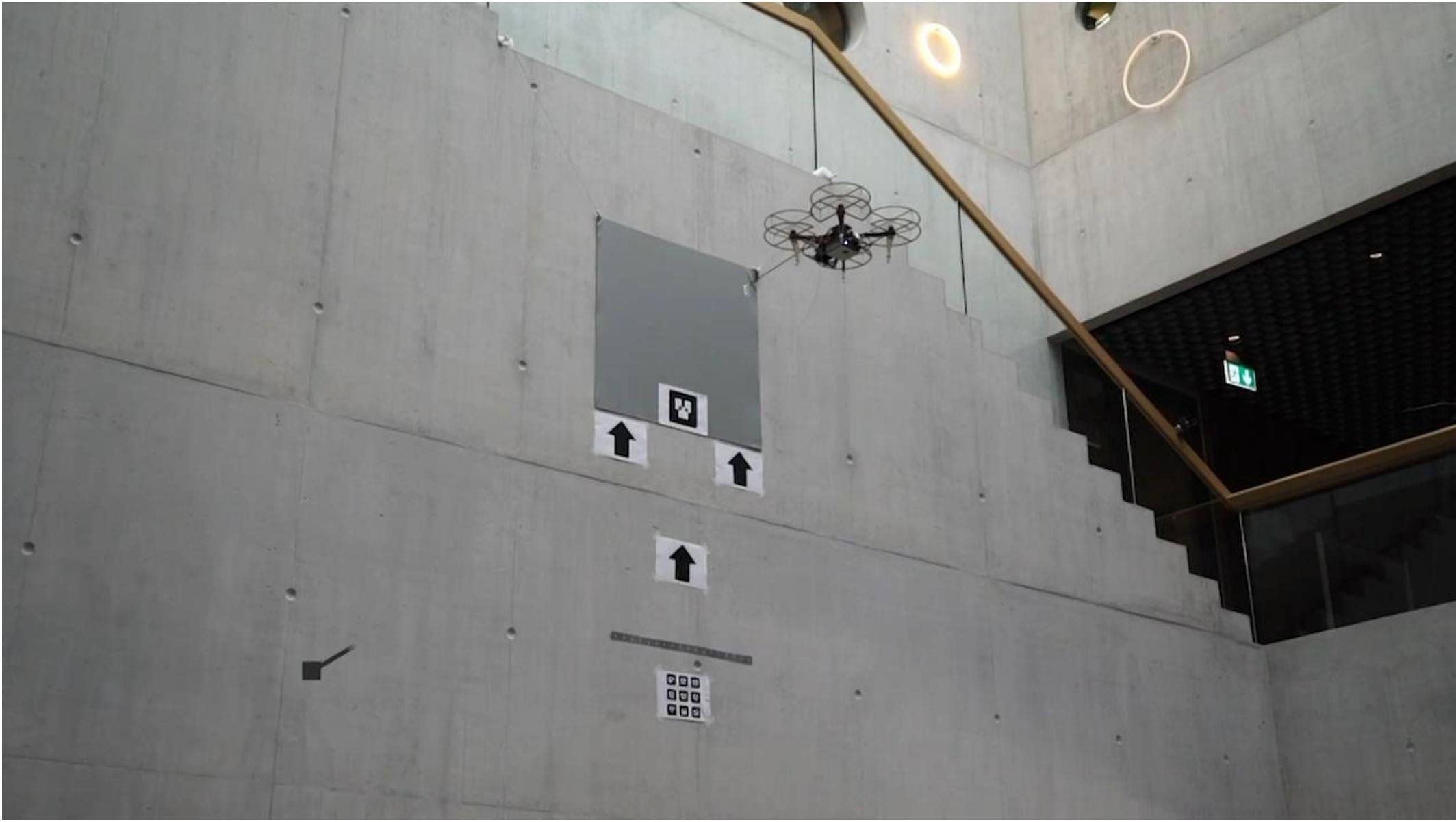
Comparable biological systems

Robotic systems



High passivity and mechanical intelligence

High control, sensing, and planning



Sensor placement and aerial drilling

Section - Robot manipulation

Motivation

- *Why are organisms designed the way they are, how are limbs coordinated, and how do we perform complex tasks?*
- In order to operate a robot we must:
 - Develop methods to convert a desired task to a sequence of commands to the robot's actuators
 - Understand the limitations of the chosen configuration

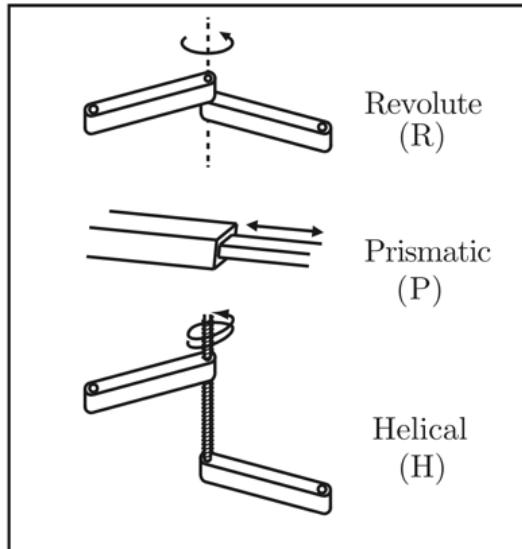
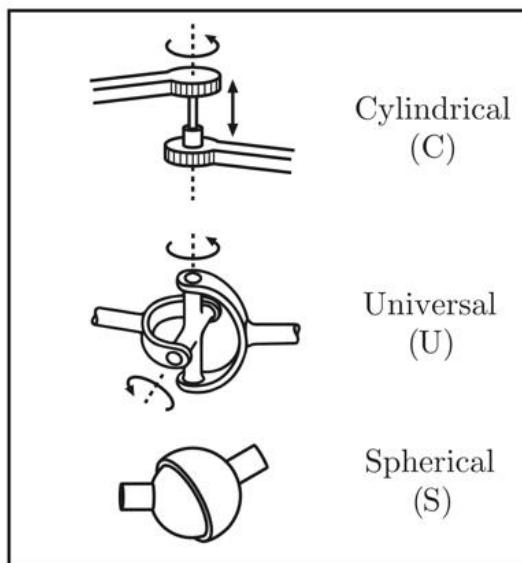
Key terms

- **configuration:** a specification of the positions of all points of a mechanism
- **End-effector:** a component that interacts with objects or performs tasks in the surrounding world
- **degrees of freedom (DoF):** How many variables are required to describe a configuration
- How many DoF does an object moving in 2D have?
 - 3
- How many in 3D?
 - 6

Vector spaces

- **configuration space** (C-space): the dof-dimension space of all configurations (sometimes referred to as joint space)
- The **task space** is the space in which a task is most naturally represented. It is independent of a robot.
- How do we convert between joint angles (C-space) and task space?

Types of joints

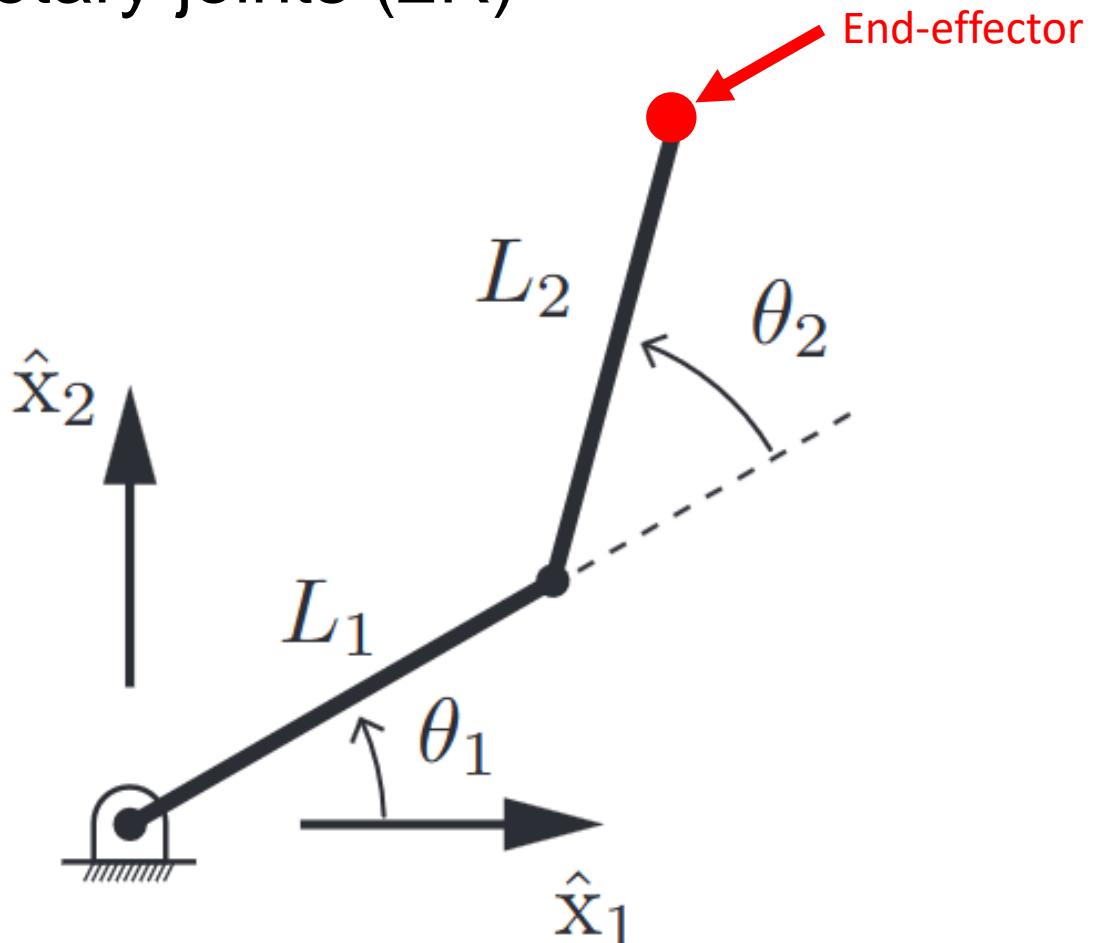


Joint type	dof f	Constraints c between two planar rigid bodies	Constraints c between two spatial rigid bodies
Revolute (R)	1	2	5
Prismatic (P)	1	2	5
Helical (H)	1	N/A	5
Cylindrical (C)	2	N/A	4
Universal (U)	2	N/A	4
Spherical (S)	3	N/A	3

Modern Robotics: Mechanics, Planning, and Control," Kevin M. Lynch and Frank C. Park, Cambridge University Press, 2017

The 2R planar robot

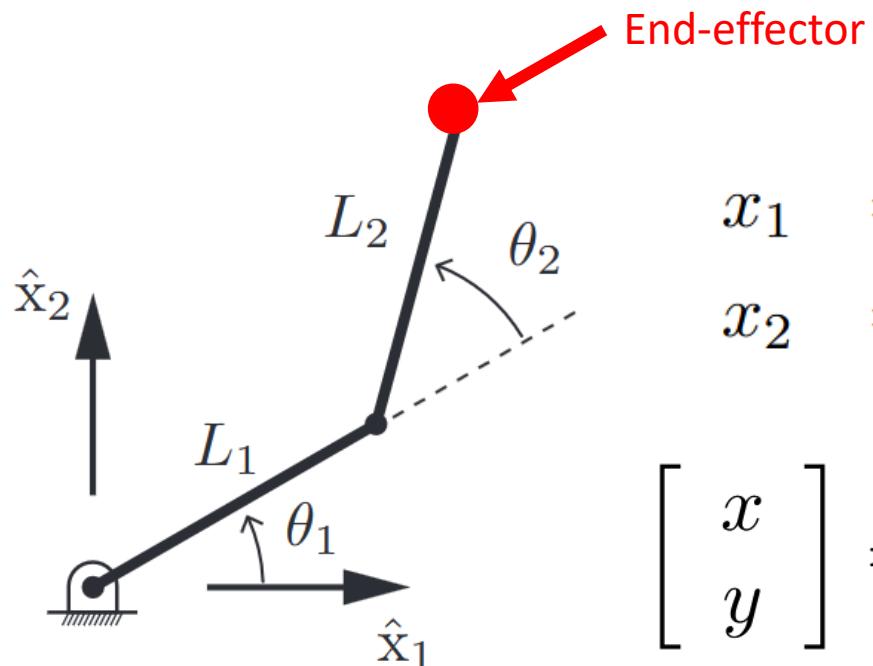
- Minimal example to explain concepts.
- 2 linkages with 2 rotary joints (2R)



Forward Position Kinematics (FPK)

*Determine position and orientation of a robot's end-effector (x)
from its joint coordinates (θ)*

Forward Position Kinematics - Example



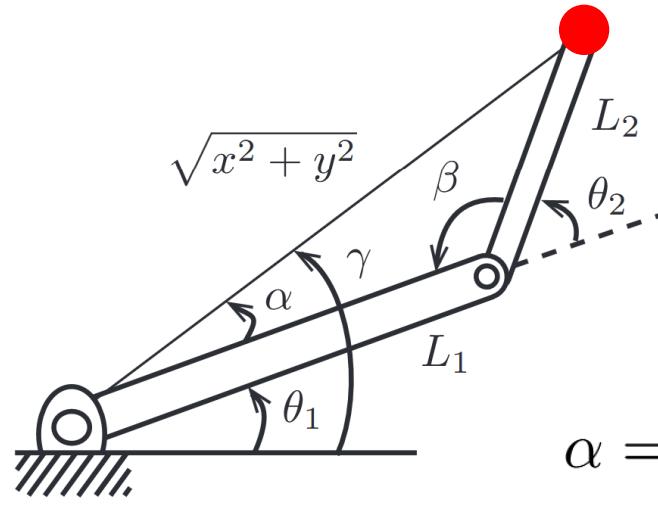
$$\begin{aligned}x_1 &= L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) \\x_2 &= L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2).\end{aligned}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) \\ L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2) \end{bmatrix}$$

Inverse Position Kinematics (IPK)

Determine the required joint coordinates (θ) to achieve a desired end-effector state (x)

Inverse Position Kinematics - Example



- Cosine rule: $c^2 = a^2 + b^2 - 2ab \cos C$
- Solve for alpha, beta & gamma:

$$L_1^2 + L_2^2 - 2L_1 L_2 \cos \beta = x^2 + y^2$$

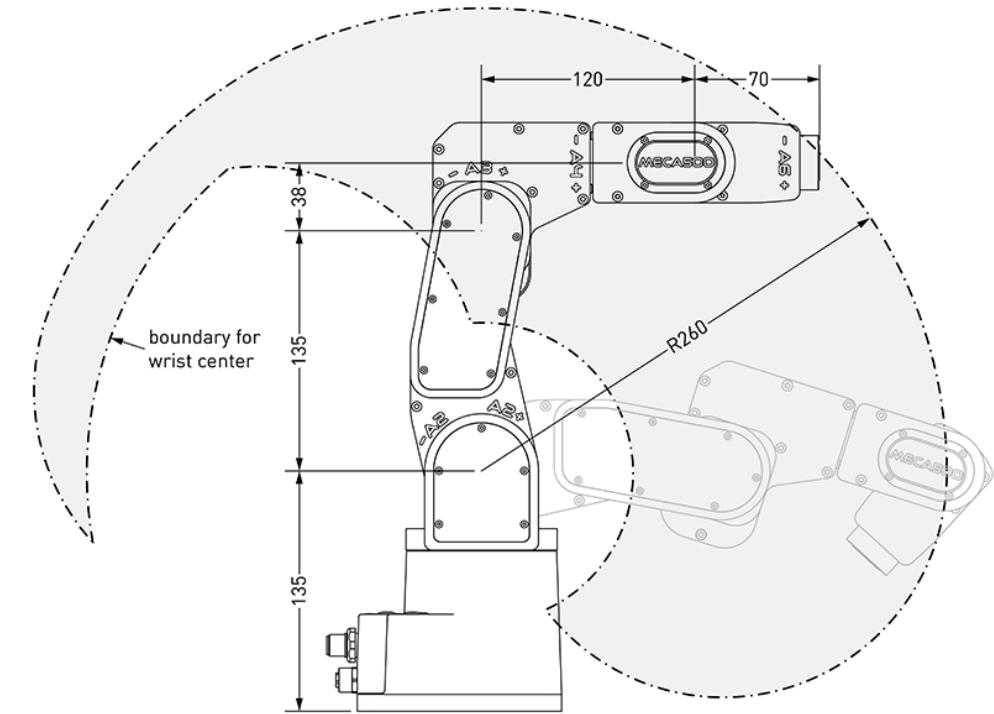
$$\alpha = \cos^{-1} \left(\frac{x^2 + y^2 + L_1^2 - L_2^2}{2L_1 \sqrt{x^2 + y^2}} \right) \quad \beta = \cos^{-1} \left(\frac{L_1^2 + L_2^2 - x^2 - y^2}{2L_1 L_2} \right)$$

(note that most configurations have multiple solutions)

$$\gamma = \tan^{-1} \frac{y}{x} \quad \theta_1 = \gamma - \alpha, \quad \theta_2 = \pi - \beta$$

Workspace

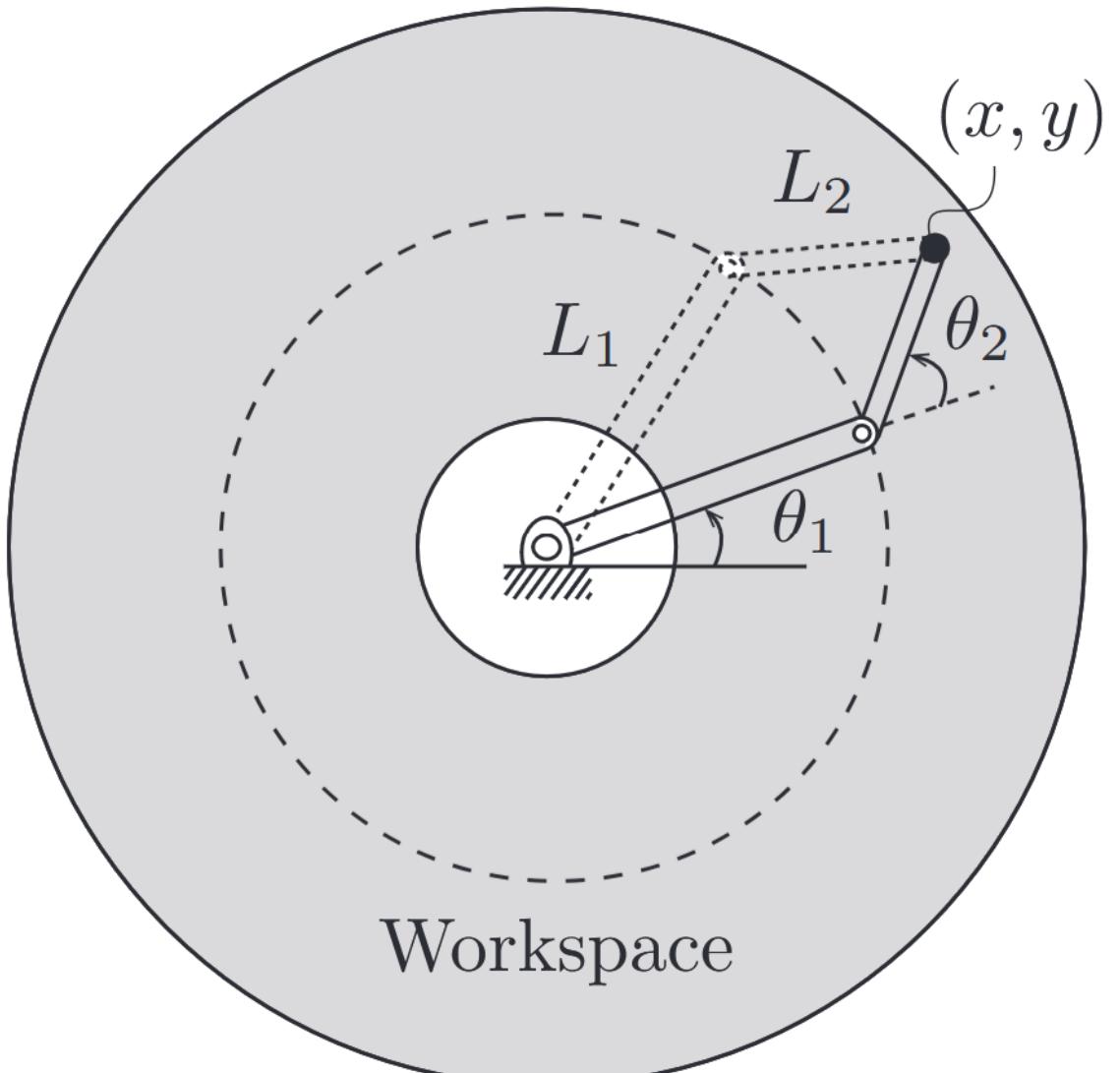
- The **workspace** is usually a specification of the reachable space by a robot (or its wrist, or end-effector).
 - Often defined in terms of (x,y,z) translational positions only.
 - Sometimes the **dexterous workspace** is the set of translational positions that can be reached with arbitrary orientation.



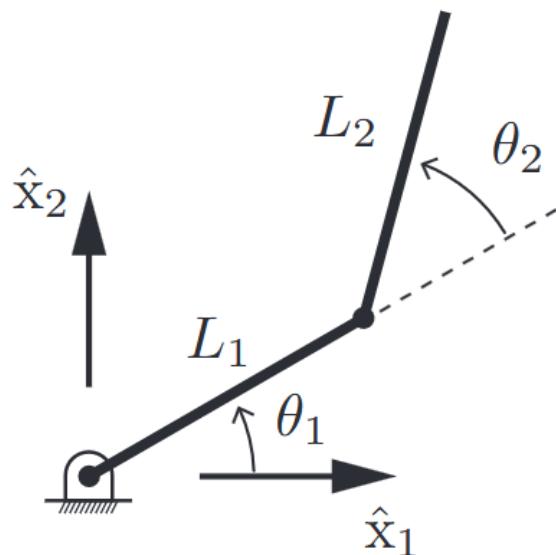
Cross section of workspace for a 6R robot respecting joint limits (Mecademic Meca500)

Workspace - Example

- What is the workspace of the 2R planar robot?



Velocity kinematics

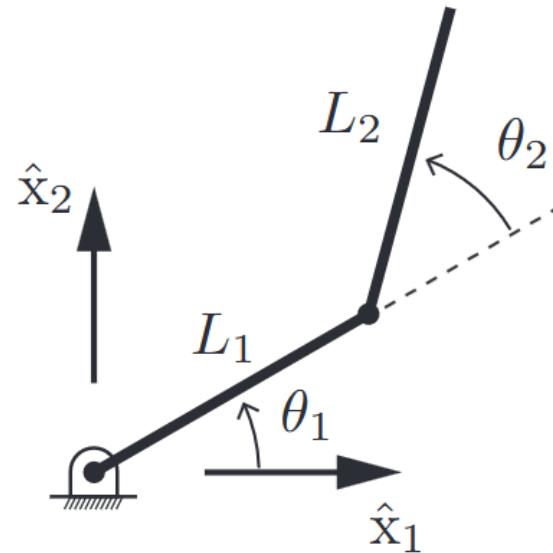


- Determine end effector velocity as a function of joint velocities
- In general: $x(t) = f(\theta(t)),$

Using the chain rule:

$$\begin{aligned}\dot{x} &= \frac{\partial f(\theta)}{\partial \theta} \frac{d\theta(t)}{dt} = \frac{\partial f(\theta)}{\partial \theta} \dot{\theta} \\ &= J(\theta) \dot{\theta},\end{aligned}$$

Velocity kinematics - Example



Previous FPK solution:

$$x_1 = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$$

$$x_2 = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2).$$

Take derivative (using chain rule):

$$\dot{x}_1 = -L_1 \dot{\theta}_1 \sin \theta_1 - L_2 (\dot{\theta}_1 + \dot{\theta}_2) \sin(\theta_1 + \theta_2)$$

$$\dot{x}_2 = L_1 \dot{\theta}_1 \cos \theta_1 + L_2 (\dot{\theta}_1 + \dot{\theta}_2) \cos(\theta_1 + \theta_2),$$

Matrix representation:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -L_1 \sin \theta_1 - L_2 \sin(\theta_1 + \theta_2) & -L_2 \sin(\theta_1 + \theta_2) \\ L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) & L_2 \cos(\theta_1 + \theta_2) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

Jacobian Matrix

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \underbrace{\begin{bmatrix} -L_1 \sin \theta_1 - L_2 \sin(\theta_1 + \theta_2) & -L_2 \sin(\theta_1 + \theta_2) \\ L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) & L_2 \cos(\theta_1 + \theta_2) \end{bmatrix}}_{\dot{x} = J(\theta)\dot{\theta}} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

$J(\theta)$ is the **Jacobian matrix** of the system

The Jacobian matrix represents: “*the linear sensitivity of the end-effector velocity ‘x to the joint velocity ‘θ*”

Robot singularities

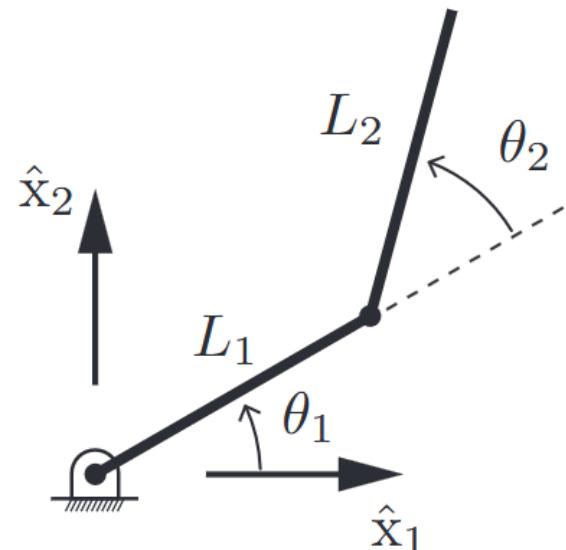
- Singularities occur when Jacobean matrix becomes **non-invertible** (i.e. $\det(J) = 0$)
- Non-invertible means that there is no solution to the inverse velocity kinematics (ie. A case where we cannot solve a set of joint velocities to achieve a desired end effector speed).
 - Robot tip becomes unable to generate velocities in certain directions
 - Why avoid singularities?
 - Low precision near singular positions
 - Difficult to produce smooth motion at constant velocity
 - Actuator velocities may become excessively high while performing a motion close to this position

Robot singularities - Example

Where are the singular positions of the 2R planar robot?

$$J(\theta) = \begin{bmatrix} -L_1 \sin \theta_1 - L_2 \sin(\theta_1 + \theta_2) & -L_2 \sin(\theta_1 + \theta_2) \\ L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) & L_2 \cos(\theta_1 + \theta_2) \end{bmatrix}$$

$$\begin{aligned} \det(J) &= ad - bc, \text{ where } J = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ &= -L_2 \cos(\theta_1 + \theta_2) [L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)] \\ &\quad + L_2 \sin(\theta_1 + \theta_2) [L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)] \end{aligned}$$



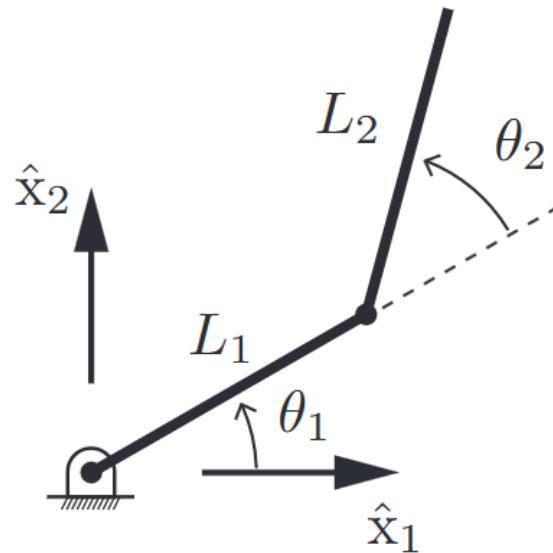
Robot singularities - Example

$$\det(J) = -L_2 \cos(\theta_1 + \theta_2) [L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)] \\ + L_2 \sin(\theta_1 + \theta_2) [L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)]$$

Recall that $\cos \theta = \sin(180 + \theta)$,

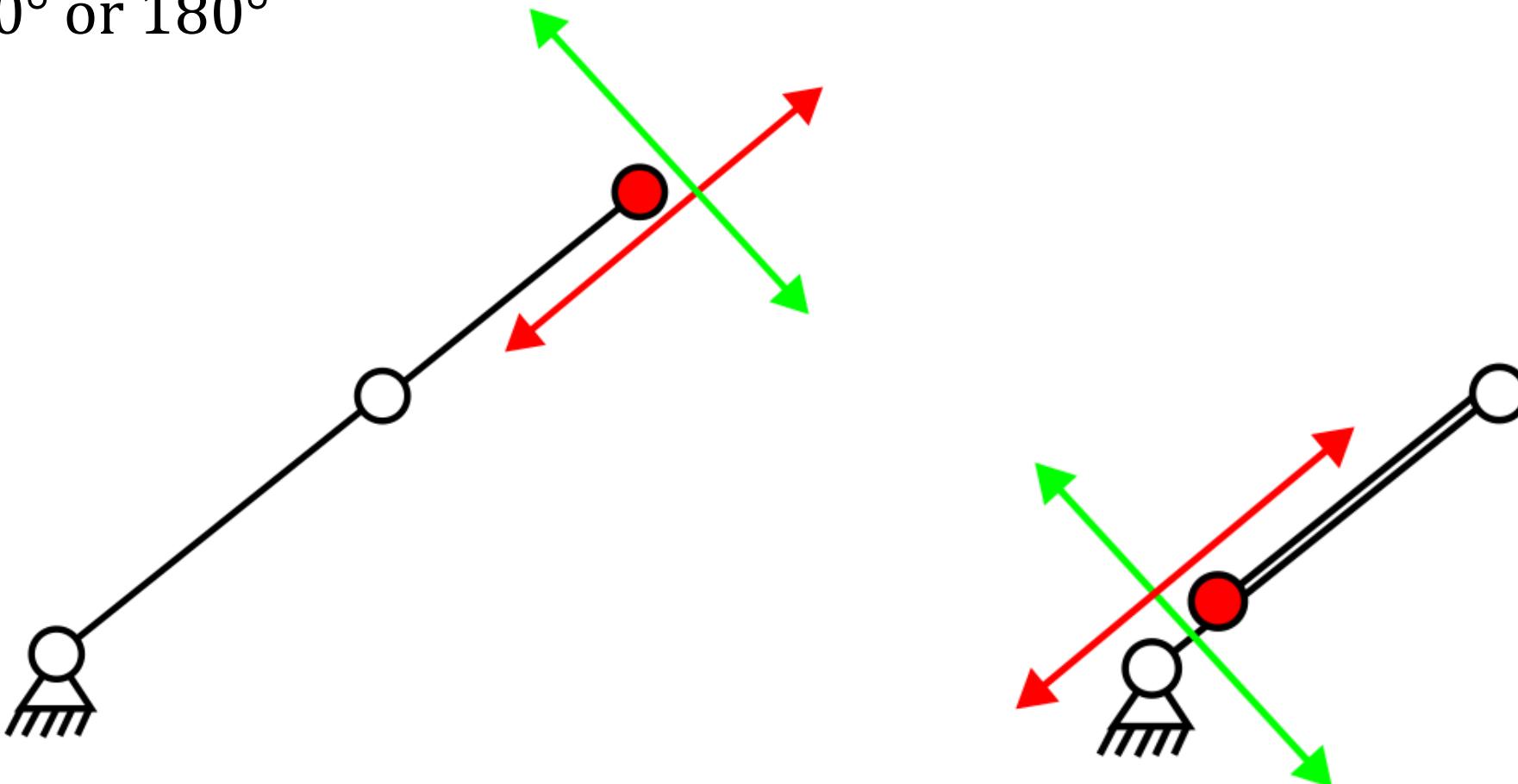
$$\det(J) = \sin(\theta_1 + \theta_2) \sin(\theta_1 + 180) - \sin(\theta_1) \sin(\theta_1 + \theta_2 + 180)$$

When is the determinant zero?: $\theta_2 = 0^\circ$ or 180° (for $0^\circ \leq \theta < 360^\circ$)



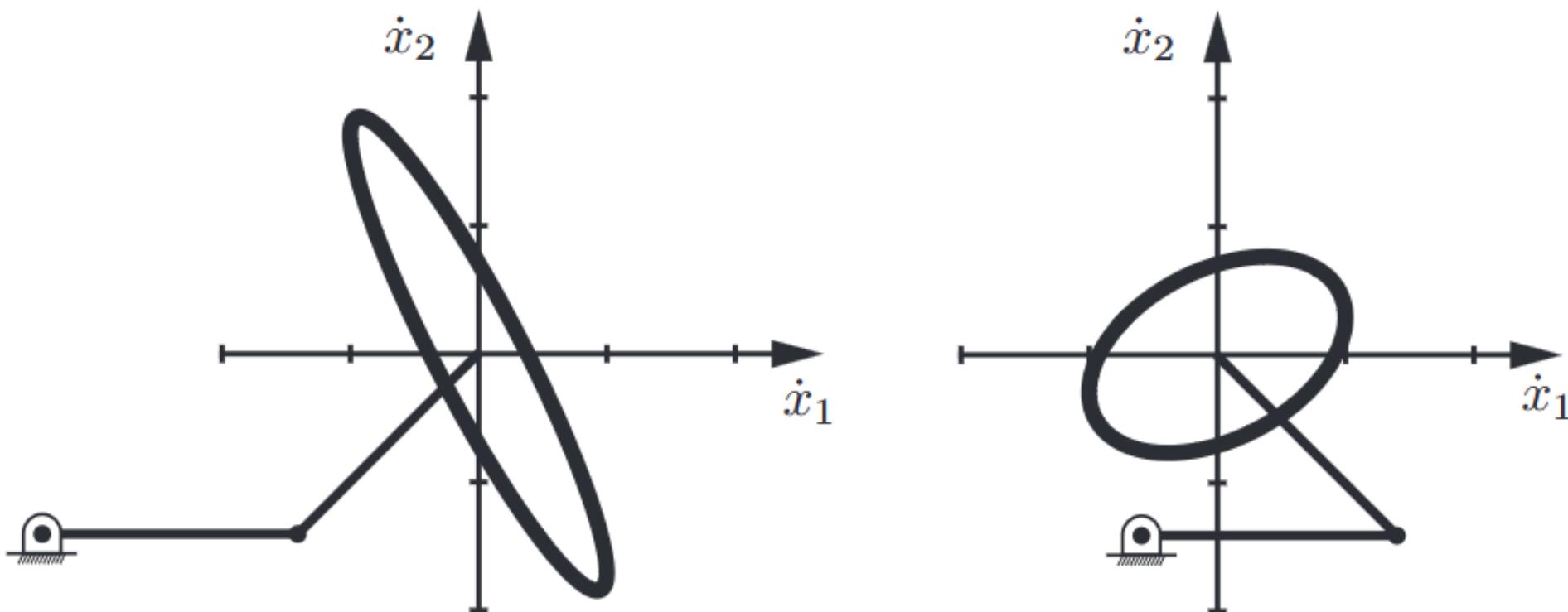
Robot singularities - Example

$\theta_2 = 0^\circ$ or 180°



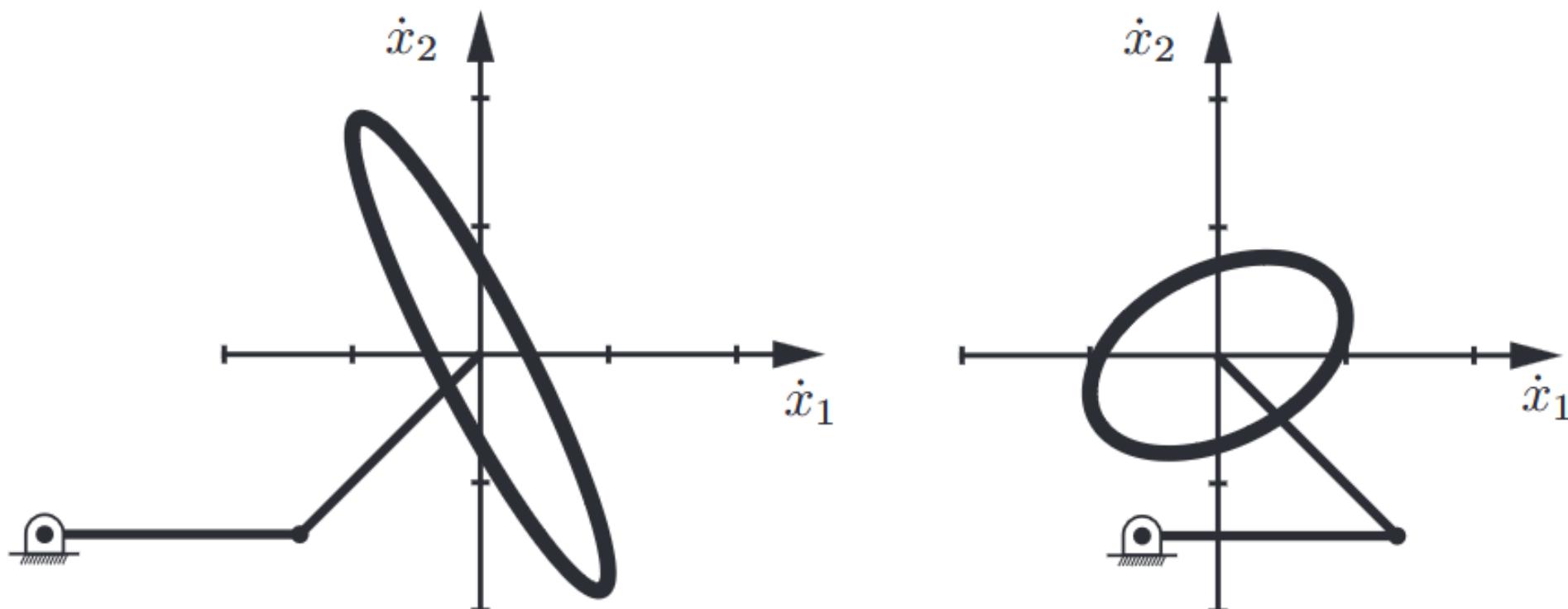
Manipulability ellipsoid

- *How do we quantify how the arm can move when close to singular positions?*
- The Jacobean maps how fast the end-effector can move for given actuator speed limits.



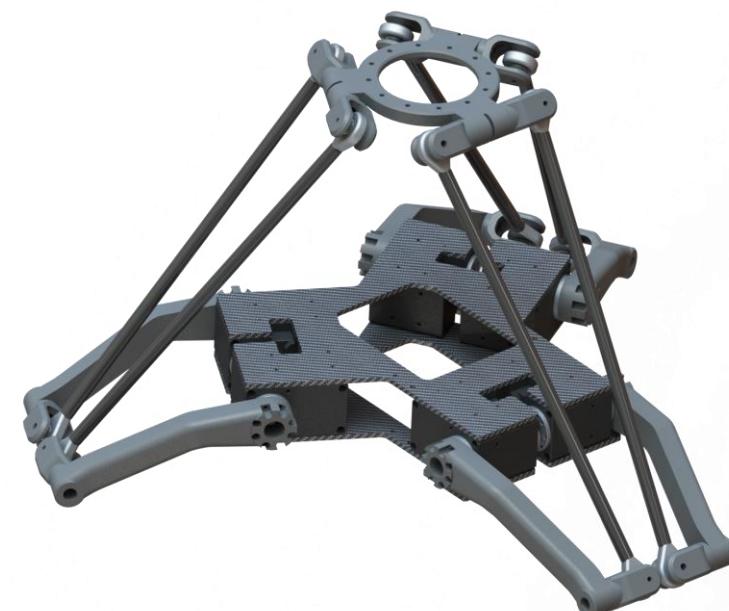
Manipulability ellipsoid

- The principle axes of the ellipse are the eigenvectors of JJ^T
- The magnitude of the axes are the square roots of the corresponding eigenvalues (see Modern Robotics page 197 for derivation)



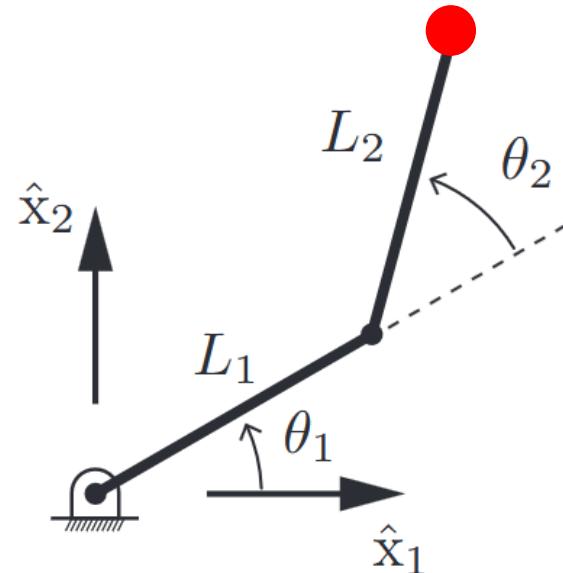
Parallel mechanisms

- Any kinematic chain that contains one or more loops is called a **closed chain**
- Manipulators that exploit closed chains are called **parallel manipulators**
- Examples:

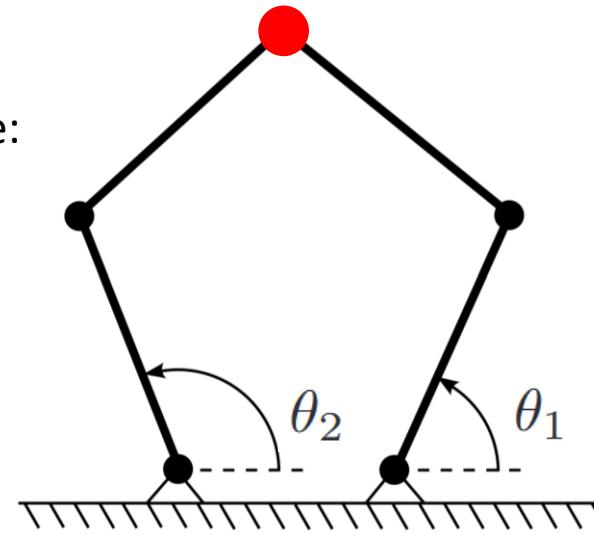


Open vs. Closed kinematic chains

2R planar robot:

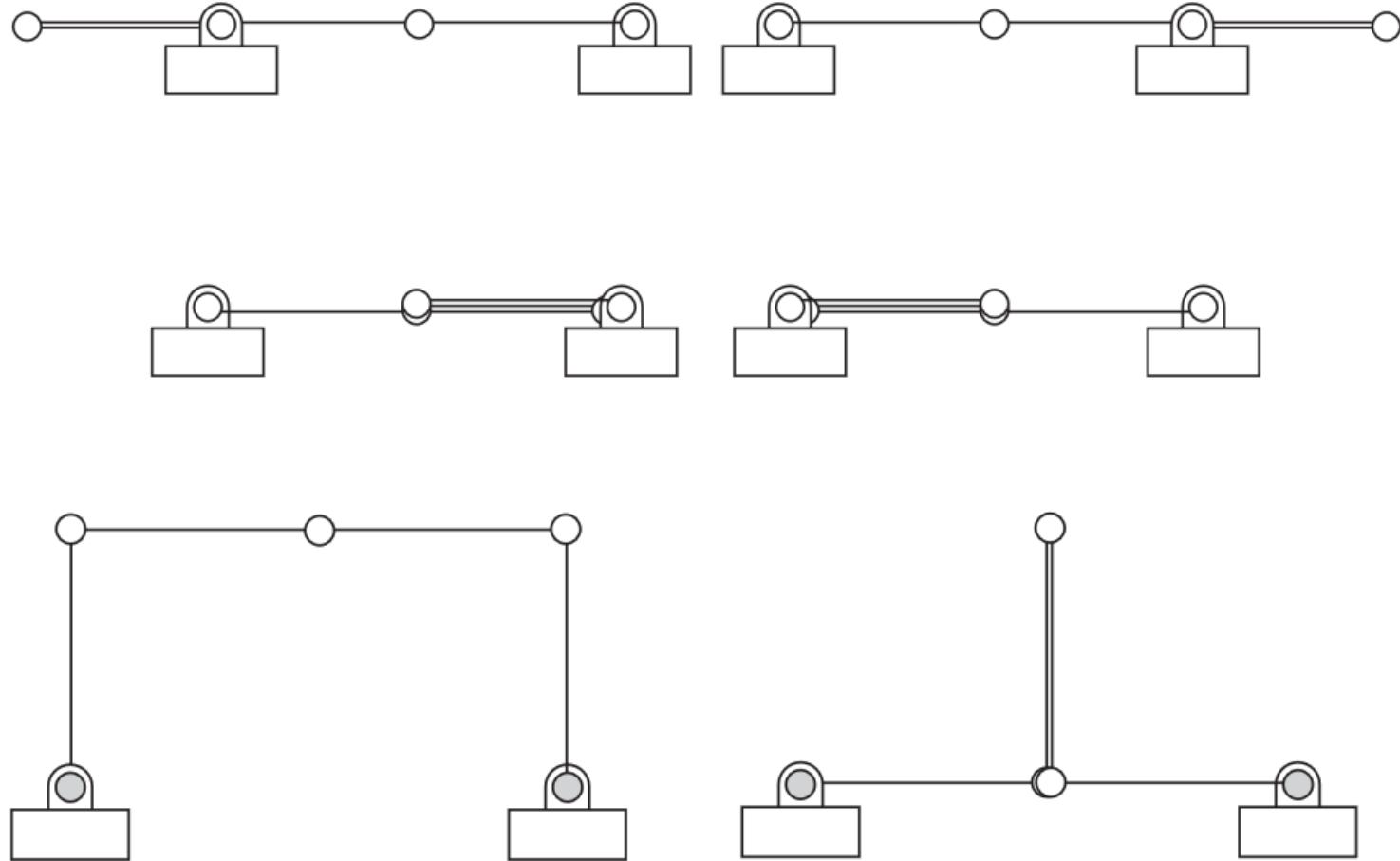


5 bar linkage:



Open chains	Closed chains
Simple analytical FPK	Analytical solutions to FPK are only feasible in simple cases
Numerical IPK – high numbers of joints lead to infinite solutions	Analytical IPK is typically possible
Singularities within workspace limits	Singularities at outer limits of workspace (typically)
Actuators mounted on moving parts	Actuators mounted at base
Large workspace & ability to navigate around obstacles	Limited workspace

5 bar linkage singularities



More complex examples

- 2R planar robot is a very simple example where forward/inverse kinematics can be solved analytically
- Additional constraints:
 - Collisions with environment
 - Joint limits
 - Visibility (keep end effector within visibility cone of a sensor)
- Software such as *MoveIt* contains libraries for motion planning with collision avoidance and numerical kinematics – however only for open chains.

Summary

- Automation is needed in the construction industry
- Aerial Additive Manufacturing
- Climbing Robots
- Perching and sensor placement

- Configuration & Task space
- Forward/Inverse kinematics
- Velocity kinematics & robot singularities
- Parallel vs Serial manipulators

Further reading

- **Modern Robotics: Mechanics, Planning, and Control**, Kevin M. Lynch and Frank C. Park, Cambridge University Press, 2017 (free preprint: <https://hades.mech.northwestern.edu/images/2/25/MR-v2.pdf>)
- **Infrastructure Robotics: Methodologies, Robotic Systems and Applications**, Dikai Liu, Carlos Balaguer, Gagini Dissanayake, Mirko Kovac, Wiley Online Library, 2023 (<https://onlinelibrary.wiley.com/doi/book/10.1002/9781394162871>)
- **Aerial additive manufacturing with multiple autonomous robots**, Ketao Zhang, ... Mirko Kovac, Nature, 2022 (<https://www.nature.com/articles/s41586-022-04988-4>)