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Chapitre 4: théorie des valeurs extrêmes

Une introduction...

•Rappel :
• probabilités : définition et propriétés

• théorème de Bayes

•Ajustement de loi
• principe de l’estimation de paramètres

• stationnarité et indépendance
• tests graphiques d’adéquation
•méthode des moments
•méthode du maximum de vraisemblance

• inférence bayésienne
• algorithme de Metropolis-Hastings
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Qu’est ce qu’une probabilité?

Deux approches :

•Approche classique ou fréquentiste. Théorie des jeux :

P =
nombre de cas favorables

nombre de possibilités
Par extension

P = lim
n→∞

nombre d’événements observés

nombre total d’événements n
.

•Approche bayésienne
P = mesure du degré de croyance qu’un événement se produise.
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Définitions

Probabilité : à tout événement, on associe un nombre positif P compris entre 0 et 1. Soient E1

et E2 deux événements, on a :

• complémentarité de deux événements

P (non E1) = 1− P (E1).

•probabilité d’observer deux événements. Deux notations :
•E1

⋃
E2 : on observe E1 ou E2 (ou bien encore au moins une des propositions E1 ou E2 est vraie)

•E1

⋂
E2 : on observe à la fois E1 et E2 (ou bien encore à la fois E1 et E2 sont vraies).

La probabilité d’observer E1 ou E2 est égale à la somme des probabilités d’observer

individuellement E1 et E2 moins la probabilité d’observer E1 et E2 ensemble (afin de ne pas

compter deux fois le même événement)

P (E1

⋃
E2) = P (E1) + P (E2)− P (E1

⋂
E2).
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Définitions et propriétés
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Définitions et propriétés (2)
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Définitions et propriétés (3)
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Définitions

•Probabilité conditionnelle : probabilité d’observer E1 sachant que E2 est observé.

C’est la probabilité d’observer à la fois E1 et E2 sur la probabilité d’observer E2

séparément.

P (E1|E2) =
P (E1

⋂
E2)

P (E2)
.

Si les deux événements sont dits (statistiquement) indépendants alors :

P (E1|E2) = P (E1)

•Première relation de Bayes :

P (E2|E1) =
P (E1|E2)P (E2)

P (E1)
.
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Théorème de Bayes

•Seconde relation de Bayes : en combinant avec la première règle de composition

(étendue à une série de n événements complémentaires (exclusifs les uns par

rapport aux autres :
∑n

i=1P (Ei) = 1)), on obtient :

P (Ej|F ) =
P (F |Ej)P (Ej)

P (F )
,

où F désigne un événement quelconque et où

P (F ) =

n∑
i=1

P (F |Ei)P (Ei).

•Pour des variables aléatoires continues (y et z deux variables aléatoires) :

P (z|y) = P (y|z)P (z)∫
P (y|z)P (z)dz
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Théorème de Bayes: exemple 1

Révérend Thomas Bayes

Comparez les énoncés :

•J’ai deux enfants. Quelle est la probabilité pour que les

deux soient des fils ?

•J’ai deux enfants, dont un fils. Quelle est la probabilité

pour que l’autre soit aussi un fils ?
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Théorème de Bayes: exemple 1 (2)

Raisonnement par dénombrement. On a 4 possibilités équiprobables (25 %), qui

sont

•A- une fille puis une fille
•B- un garçon puis une fille

•C- une fille puis un garçon

•D- un garçon puis un garçon

Dans le 1er énoncé, je déduis que la réponse est 25 %. Dans le 2nd énoncé, j’ai eu

un fils. Du coup la combinaison A avec les deux filles est à retirer de ma liste des

possibilités. Donc, si je regarde parmi les combinaisons qui me restent, seule la D

satisfait au problème. La probabilité est donc 1/3.
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Théorème de Bayes: exemple 1 (3)

Appelons F l’événement (( l’enfant E1 = g et E2 = g )) (g : garçon). On a

P (F ) = 0,25 (d’après le dénombrement précédent). Appelons (H) la probabilité

que l’un ou l’autre des enfants soit un garçon. On a P (H) = 0,75.

P (F |G) =
P (G|F )P (F )

P (G)
=

1× 0,25

0,75
=

1

3

Morale de l’histoire : il ne faut pas confondre la probabilité (dite marginale) P (F ) et

la probabilité conditionnelle P (F |G). L’information modifie la valeur des

probabilités.
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Théorème de Bayes: exemple 2

Données (chiffres d’octobre 2020) :

•Actuellement 0,55 % de la population suisse a la covid, mais disons que 1 % l’a

•Si vous passez un test au bout d’une semaine, le test PCR détectera la maladie

dans 30 % des cas, 70 % des cas au bout de 2 semaines, 90 % au bout de 3

semaines, et pas plus après. Pour aller dans le sens de la sécurité, on peut supposer

que le test donne un vrai positif dans 90 % des cas (donc 10 % de faux négatif) ;

•Si la personne n’a pas la covid, il y a une probabilité de 2 % que le test soit quand

même positif (faux positif).

Vous passez le test. Il est positif. Quelle est la probabilité que vous soyez réellement

malade ?
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Théorème de Bayes: exemple 2 (2)

Dénombrement

sain malade

négatif positif positif négatif

1000

990 10

970 20 9 1

Sur 1000 personnes :

•990 pas malades, donc s’ils font le test,

0,02× 990 = 19,8 ∼ 20 des faux positifs et 970

négatifs

•10 malades, donc s’ils font le test, 0,9× 10 = 9

positifs, et 1 faux négatif.

Si on est positif, cela représente une population de 20

+ 19 = 29 personnes. La probabilité pour qu’on soit

positif et malade est donc : P = 9/29 ≈ 31 %
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Théorème de Bayes: exemple 2 (3)

Résolution avec le théorème de Bayes :

P (malade|positif) = P (positif|malade)P (malade)

P (positif)

P (malade) = 0,01, P (sain) = 1− P (malade) = 0,99, P (positif|malade) = 0,9, et

P (positif|sain) = 0,02. Pour le dénominateur, la règle de composition des

probabilités nous donne :

P (positif) = P (positif|malade)P (malade) + P (positif|sain)P (sain),

et P (positif) = 0,9× 0,01 + 0,02× 0,99 = 0,0288 donc on trouve :

P (malade|positif) = 0,9× 0,01

0,0288
= 31,25 %.
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Théorème de Bayes: exemple 3

Selon Mikaela Wapman et and Deborah Belle, le langage véhicule des “biais de genre,”
c’est-à-dire à des stéréotypes sur les sexes. Elles veulent le mettre en évidence à travers cette
devinette posée à 472 étudiants :

“A father and his son are out driving and are involved in a terrible accident. The father is
killed instantly, and the son is in critical condition. The son is rushed to the hospital and
prepared for an operation that could save his life. The surgeon comes in, sees the patient, and
exclaims, “I can’t operate, that boy is my son!’ How can this be? ”

Résultat du sondage : 30 % des étudiants considéraient que le chirurgien était la mère, et 67 %
en déduisirent qu’il s’agissait d’un père (beau-père, père adoptif, second père d’un couple
homosexuel). Dans le détail, 19 % des garçons ont pensé à la mère, contre 36 % des filles.

Belle, D., A.B. Tartarilla, M. Wapman, M. Schlieber, and A.E. Mercurio, “I Can’t Operate, that Boy Is my Son:´´ Gender Schemas and a Classic
Riddle, Sex Roles, 1-11, 2021.
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Théorème de Bayes: exemple 3 (2)

homme femme

homo hétéro homo hétéro

père pas enfant mère pas enfant

nucléaire autre nucléaire autre

1000

800 200

40 760 10 190

471 289 106 84

203 268 46 60

Que dit l’analyse bayésienne du problème ?
•20 % des chirurgiens sont des femmes dans les services
d’urgence américains

•On compte environ 5 % d’homosexuels, 62 % des hommes
sont pères, et 56 % des femmes sont mères

•Un enfant a 43 % de chances d’être élevé dans une famille
nucléaire, et 57 % de chances de vivre dans une famille
recomposée ou un parent seul

La probabilité que le chirurgien soit une femme est
106/(106+268)=28 % contre 268/(106+268)=72 % pour un
homme (il est alors le beau-père) ; si on inclut les gays, alors ce
chiffre grimpe à 73 %.

Le résultat est conforme au mode de fonctionnement bayésien
du cerveau. L’étude de Belle et al. ne permet pas de conclure à
un “biais de genre.”
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Loi de probabilité

Convention. Variable aléatoire X , et sa valeur particulière x est le quantile.

Si la variable est discrète, la loi de probabilité fournit la probabilité d’observer dans

quel état est le système :

PX(X = x) = prob(X prend la valeur x).

C’est un nombre entre 0 et 1.

Si la variable est continue, on introduit la densité de probabilité f (x) qui est la

probabilité d’observer l’état du système dans un certain voisinage dx :

f (x)dx = PX(x ⩽ X ⩽ x + dx).

f est positive, mais peut prendre des valeurs > 1. On a :

f =
dPX

dx
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Fonction de répartition

Pour une densité de probabilité f de support [a, b], on

appelle fonction de répartition FX l’intégrale de f :

FX(x) = P (X ≤ x) =

x∫
a

f (u)du

C’est la probabilité que la variable aléatoire ne dépasse par

une valeur donnée x : probabilité de non-dépassement. La

quantité complémentaire est la probabilité de dépassement :

1− FX(x) = P (X ≥ x) =

b∫
x

f (u)du.
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Fonction de répartition (2)

À noter : FX(b) = P (X ⩽ b) =
∫ b

a f (u)du = 1. La fonction FX doit tendre vers 1.

Inversement FX(a) = P (X ⩽ a) = 0. La fonction de répartition est une probabilité,

donc comprise entre 0 et 1. On déduit

prob[a ≤ X ≤ b] =

∫ b

a

f (x)dx = FX(b)− FX(a).

Changement de variable : x → y = v(x) (g densité de probabilité de Y ), la

probabilité doit rester invariante :

f (x)dx = PX(x ≤ X ≤ x + dx) = PY (y ≤ Y ≤ y + dx) = g(y)dy,

Et donc :

g(y) = f (x)
dx

dy
= f (x)|v′(x)|−1.
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Risques hydrologiques et aménagement du territoire 20
o



Moyenne et variance

On appelle moyenne (ou espérance ou moment d’ordre 1) la moyenne arithmétique

des différentes valeurs que X peut prendre, pondérées par leurs probabilités

m = E(X) =
∑

i xiP (X = xi). On appelle variance (ou moment centré d’ordre 2) :

σ2 = varX =
∑
i

(xi −m)2PX(X = xi).

Les équivalents pour une variable continue sont :

m = E(X) =

b∫
a

xf (x)dx =

b∫
a

xdPX

σ2 = varX = E[(X −m)2] =

b∫
a

(x−m)2f (x)dx
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Loi de Bernoulli

Modèle d’urne

Il s’agit d’une loi discrète à un paramètre p d’une

variable N qui peut prendre deux valeurs (0 ou 1 par

exemple) avec les probabilités p et 1− p

respectivement. On parle aussi de modèle d’urne : si l’on

place des boules noires et blanches et qu’il y a une

proportion p de boules blanches, alors la probabilité de

tirer au hasard une blanche est p.

La moyenne est : E(N) = p ; la variance est :

varN = p(1− p).
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Risques hydrologiques et aménagement du territoire 22
o



Loi binomiale

Supposons que l’on répète m fois l’expérience de tirage de boule ; après chaque

tirage, on replace la boule dans l’urne (pour que le nombre de boules soit

identique). On note N le nombre de fois qu’une boule blanche est apparue dans

cette séquence de m tirages. La probabilité que N = k est :

Bin(m, p)(k) = prob(N = k) = Ck
mp

k(1− p)m−k.

La moyenne est : E(N) = mp ; la variance est : varN = mp(1− p).

Exemple : crue centennale p = 1/100. On a une série de m = 100 années.

Probabilité d’observer 0, 1 et 2 crues ? Bin(m, p)(0) = 0,3660,

Bin(m, p)(1) = 0,3697 et Bin(m, p)(2) = 0,1848.
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Loi binomiale négative

On appelle N le nombre de tirages qu’il faut réaliser pour obtenir un ensemble de k

succès. On montre que :

Neg(k, p)(i) = prob(N = i) = Ck−1
i−1 p

k(1− p)i−k.

La moyenne est : E(N) = k(1− p)/p ; la variance est : varN = k(1− p)/p2. La

variance est toujours supérieure à la moyenne. En pratique, cette loi peut se révéler

utile en remplacement de la loi de Poisson pour décrire des processus hydrologiques

instationnaires. En effet, la loi binomiale négative peut être vue comme une loi de

Poisson dont le taux est lui-même aléatoire et distribué selon une loi gamma.
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Loi de Poisson

Série temporelle d’événements

distribués selon une loi de Poisson

Nombre d’événements se produisant dans un intervalle

de temps fixé

Po(λ)(k) = prob(N = k) = e−λλ
k

k!
La moyenne est : E(N) = λ ; la variance est :

varN = λ. Lois binomiale et de Poisson sont reliées. Si

on décompte les événements sur l’intervalle T (entier) :

(m = T, p = λ/T ), alors Bin(m, p) → Po(λ) quand

T ≫ 1.

my header

Risques hydrologiques et aménagement du territoire 25
o



Loi de Poisson (2)

Exemple : nombre de crues décennales par décennie. Par définition λ = 1. On a :

•0 crue : Po(λ = 1)(0) = 0,36787 (on avait Bin(10, 1/10)(0) = 0,34867)

•1 crue : Po(λ = 1)(1) = 0,36787 (on avait Bin(10, 1/10)(1) = 0,38742)

•2 crues : Po(λ = 1)(2) = 0,18394 (on avait Bin(10, 1/10)(2) = 0,19371)

● ●

●

●

● ●

+
+

+

+

+ +

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4
Résultat pour la crue décennale :

nombre de crues sur 10 ans

● loi de Poisson

+ loi binomiale
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Loi de Poisson (3)

Exemple : nombre de crues centennales par siècle. Par définition λ = 1. On a donc :

•0 crue : Po(λ = 1)(0) = 0,36787 (on avait Bin(100, 1/100)(0) = 0,36660)

•1 crue : Po(λ = 1)(1) = 0,36787 (on avait Bin(100, 1/100)(1) = 0,36973)

•2 crues : Po(λ = 1)(2) = 0,18394 (on avait Bin(100, 1/100)(2) = 0,18486)

● ●

●

●

● ●

+ +

+

+

+ +

0 1 2 3 4 5

0.0

0.1

0.2

0.3

Résultat pour la crue centennale :

nombre de crues sur 100 ans

● loi de Poisson

+ loi binomiale
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Loi exponentielle

Série temporelle d’événements

distribués selon une loi de Poisson

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

C’est une loi continue qui est le pendant de la loi de

Poisson. On appelle τ le temps entre deux événements :

Exp(λ)(τ = t) = λe−λt

La moyenne est : E(τ ) = 1/λ ; la variance est :

varτ = 1/λ2.
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Loi uniforme

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Loi uniforme sur [0, 1]

Loi continue définie sur un intervalle [a, b] (aucun

paramètre hormis les deux bornes). La densité de

probabilité est constante :

U[a, b](x) =


0 si x < a
1

b−a si a ≤ x ≤ b

0 si x > b

La moyenne est : E(X) = 1 ; la variance est : varX = 0.

Cette loi sert souvent à traduire l’absence d’information

ou de connaissance.
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Loi normale (Laplace-Gauss)

-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

Loi normale µ = 0 et σ = 1

Une variable X est distribuée selon une loi de

Laplace-Gauss de moyenne µ et de variance σ2 si :

No(µ, σ)(x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (1)

C’est une courbe symétrique en forme de cloche autour

de la valeur moyenne. La moyenne est : E(X) = µ ; la

variance est : varX = σ2.

my header

Risques hydrologiques et aménagement du territoire 30
o



Loi faible des grands nombres

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Somme de X ∼ Γ(1, 1)

(E(X) = varX = 1)

Soit X1, X2, . . . Xn une séquence de variables

indépendantes distribuées selon une loi dont les deux

moments µ et σ2 sont finis, alors pour tout ε >, on a :

prob

(∣∣∣∣X1 + · · · +Xn

n
− µ

∣∣∣∣ > ε

)
→ 0 quand n → ∞.

Formulation forte :

lim
n→∞

X1 + · · · +Xn

n
= µ.
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Théorème central de la limite

-3 -2 -1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

Histogramme de

Zn = (Xn − nµ)/(
√
nσ) et

comparaison avec No(0, 1)

Soit X1, X2, . . . Xn une séquence de variables

indépendantes distribuées selon une loi dont les deux

moments µ et σ2 sont finis, alors a :
X1 + · · · +Xn − nµ√

nσ
→ No(0, 1).

Quand on fait des essais avec une variable aléatoire, on

peut approcher sa moyenne en prenant :

µ ≈ X̄ ±
z
√
Z2
n√

n

avec z ∼ No(0, 1). Théorème asymptotique de grande

importance !

my header

Risques hydrologiques et aménagement du territoire 32
o



Intervalle de confiance

Loi normale centrée et intervalle de

confiance à 95 %

L’intervalle de confiance définit la précision avec laquelle

la moyenne empirique X̄ tend vers la moyenne µ. On

définit Z2
n = (X2

1 + · · ·+X2
n)/(n− 1)− X̄2

n (écart-type

empirique). Soit α un réel (petit) et zα/2 le réel tel que :∫ zα/2

−zα/2

dx
1√
2π

e−x2/2 = 1− α.

On pose :

T1 = X̄ −
zα/2σ√

n
T ′
1 = X̄ −

zα/2
√
S2
n√

n
,

T2 = X̄ +
zα/2σ√

n
T ′
2 = X̄ +

zα/2
√
S2
n√

n
,
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Intervalle de confiance (2)

Jouer avec le notebook Mathematica

IntervalleConfiance.nb

On a en théorie

lim
n→∞

prob[T1 ≤ µ ≤ T2] = 1− α

mais aussi de façon pratique

lim
n→∞

prob[T ′
1 ≤ µ ≤ T ′

2] = 1− α

Intervalle de confiance classique :

• à 5 % : zα/2 = quantile(0,975) = 1,96

• à 10 % : zα/2 = quantile(0,95) = 1,64

• à 30 % : zα/2 = quantile(0,85) = 1,03
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Ajustement de loi

1 5 10 50 100
20

40

60

80

100

120

On a des données. Que fait-on ?

• les données sont-elles indépendantes et distribuées
selon la même loi ?

•quelle forme de loi puis-je a priori utiliser ?

•comment ajuster les paramètres de cette loi (problème
d’inférence) ?

•comment vérifier la pertinence du choix d’une forme

particulière de loi de probabilité ?

•quelle incertitude ou quelle confiance ai-je dans

l’ajustement des paramètres ?

my header

Risques hydrologiques et aménagement du territoire 35
o



Principe de l’estimation

x = {1,62334, 1,31887, 3,04122,
0,454991, 0,922461, 1,54628,

8,55486, 1,2709, 1,1607, 1,66493}
avec ici N = 10

Supposons que j’aie un échantillon x de N valeurs xi

tirées selon une loi gamma Γ(1,2) dont la moyenne et la

variance sont m = 2 et σ2 = 4. Je définis la moyenne et

la variance empirique de la façon suivante

m̂ =
1

N

N∑
i=1

xi et σ̂
2 =

1

N

N∑
i=1

(xi − m̂)2

Je veux savoir si on peut préciser la précision et la

robustesse d’une telle estimation (à noter le chapeau

sur les variables). Les opérateurs introduits sont appelés

des estimateurs.
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Principe de l’estimation (2)

Quand on a un estimateur θ̂ d’un paramètre théorique (inconnu) θ, on qualifie

l’écart entre les deux valeurs avec le biais

Biais(θ̂) = E(θ̂)− θ,

et l’erreur quadratique moyenne

MSE(θ̂) = E
(
(θ̂ − θ)2

)
.
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Principe de l’estimation (3)

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25 Les estimateurs sont optimisés pour réduire à

la fois le biais et l’erreur quadratique moyenne.

Par exemple, pour la variance empirique

σ̂2 =
1

N − 1

N∑
i=1

(xi − m̂)2

ou bien

σ̂2 =
1

N

N∑
i=1

(xi − m̂)2

La première forme permet une estimation plus

robuste de la variance.
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Stationnarité et indépendance

Ajuster une loi de probabilité sur des données suppose que ces données sont bien

issues d’une même loi, donc que la loi est unique, et que ces paramètres sont

constants.

Indépendance : indépendance des mesures dans le temps des propriétés. Tests :

fonction d’autocorrélation, autocorrélation partielle (modèle ARMA) pour les

processus à une variable, et tests de Spearman ou Kendall pour les processus à deux

variables.
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Stationnarité et indépendance (2)
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On a N événements (datek)1≤k≤N ordonnés

chronologiquement sur une durée T :

• report du ième point (datei, i)

• tracé de la droite théorique y = xN/T (le

point (0, 0) doit correspondre au

1er événement)

• tracé du résidu εi = i− y (distance entre le

ième point et la droite théorique) en fonction

de i
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Densité de probabilité empirique
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On a N événements (xi)1≤i≤N en ordre croissant :

•partition de l’intervalle [x1, xN ] en n intervalles

longueur δ = (xN − x1)/n

• les bornes de ces intervalles yk = x1 + (k − 1)δ

(1 ≤ k ≤ n + 1).

•On compte le nombre mj d’événements dans chaque

intervalle

•La densité de probabilité empirique peut alors se

définir comme :

pj =
mj

δN
.
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Fonction de répartition empirique
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On a N événements (xi)1≤i≤N en ordre croissant :

•probabilité de non-dépassement et dépassement
empirique

P ′
i =

i

N + 1
et Pi = 1− i

N + 1
=

N + 1− i

N + 1
•La fonction de répartition empirique (de

non-dépassement) :

P ′(x) =


0 si x < x1
i− 1

N + 1
si xi−1 ≤ x < xi

1 si x > xN

my header

Risques hydrologiques et aménagement du territoire 42
o



Fonction de répartition empirique (2)

Quand la loi de probabilité est connue à l’avance, on peut modifier la fonction de

répartition empirique :

P (x) =


0 si x < x1
i− a

N + b
si xi−1 ≤ x < xi

1 si x > xN

où a et b sont choisis selon la loi :

•a = −0,28 et b = 0,28 pour une loi de Gumbel

•a = 0,375 et b = 0,25 pour une loi de Gauss-Laplace.
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Test: diagramme QQ
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Diagramme de quantiles

On a N événements (xi)1≤i≤N en ordre croissant :

•détermination de la fonction de répartition empirique

F

•un diagramme de quantile le tracé des points dans un

diagramme (F−1[i/(N + 1)],xi) pour i = 1 · · ·N
•Si F est un modèle raisonnable alors les points doivent

se trouver alignés sur une droite diagonale (première

bissectrice)
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Test: diagramme PP
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diagramme de probabilités

On a N événements (xi)1≤i≤N en ordre croissant :

•détermination de la fonction de répartition empirique

F

• tracé des points dans un diagramme

(F (xi), i/(N + 1)) pour i = 1 · · ·N
• si F est un modèle raisonnable alors les points doivent

se trouver alignés sur une droite diagonale (première

bissectrice)
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Méthode d’ajustement

Soit une loi de distribution f (x ; θ) où θ représente le ou les paramètre(s) à

déterminer. On note p le nombre de paramètres : p = dim θ et [a, b] = supp f le

support de f (a ou b pouvant prendre des valeurs infinies). On désigne par F la

fonction de répartition de cette loi. On dispose d’un jeu de n données

x = (xi)1≤i≤n. De ce jeu, on cherche à obtenir une estimation des paramètres θ (on

parle d’inférence) ; on note ici θ̂ cette estimation de θ. On va voir :

•méthode des moments
•méthode du maximum de vraisemblance

• inférence bayésienne
Alternatives : maximisation des espacements, L-moments (voir § 4.3 notes de cours)
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Méthode desmoments

Idée : si les moments de la loi sont finis (< ∞) et si on sait les calculer

analytiquement :

Mk =

b∫
a

xkf (x)dx

alors il suffit d’égaler les moments théoriques Mk et les moments empiriques M̂k

(1 ≤ k ≤ p). On aboutit alors à p équations (linéaires ou non) liant les p

paramètres θ. On peut également utiliser les moments centrés :

mk =

∫ b

a

(x−m)kf (x)dx,

avec m = E[f ].
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Méthode desmoments: exemple 1

diagrammes PP et QQ sur un échantillon de 200

valeurs tirées Exp(x; λ = 2) : λ̂ = 1/x̄ = 2,09
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L’estimateur de λ est obtenu en égalant moyennes

théorique et empirique λ̂ = n/
∑

xi = 1/x̄

Considérons la loi exponentielle dont la

densité de probabilité est

Exp(x; λ) = λe−λx,

donc la moyenne théorique (espérance)

est :

E(X) =

∫
R+

λxe−λxdx

E(X) =

[
−e−xλ(xλ + 1)

λ

]∞

0

=
1

λ
.
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Méthode desmoments: exemple 2

Si x ∼ f (x ; µ, σ, ξ) avec f loi de valeurs extrêmes, les trois premiers moments sont :

E[X ] =

∫
R+

xf (x, µ, σ, ξ)dx = µ +
σ

ξ
(Γ(1− ξ)− 1) ,

VarX =

∫
R+

(x− X̄)2f (x, µ, σ, ξ)dx =
σ2

ξ2
(
Γ(1− 2ξ)− Γ2(1− ξ)

)
,

SkewX =

∫
R+
(x− X̄)3f (x, µ, σ, ξ)dx

(VarX)3/2

=
−Γ(1− 3ξ) + 3Γ(1− 2ξ)Γ(1− ξ)− 2Γ3(1− ξ)

(Γ(1− 2ξ)− Γ2(1− ξ))3/2
,

où Γ(x) =
∫∞
0 tx−1e−tdt la fonction gamma. Ces moments définis que pour ξ < 1/2.
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Méthode desmoments: exemple 3

On trouve que pour la loi de Gumbel, la moyenne et la variance théoriques sont

données par

X̄ = µ + σγ et VarX =
σ2π2

6
,

avec γ ≈ 0,577 la constante d’Euler
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Méthode dumaximumde vraisemblance

Idée : soit x un échantillon de n valeurs xi tirées de f (·; θ). La probabilité

d’observer x est

prob(x|θ) =
n∏

k=1

f (xk ; θ).

Au lieu de regarder cette expression comme une fonction de x, θ, on la définit

comme une fonction L(θ) que l’on appelle la vraisemblance de l’échantillon x :

L(θ) =

n∏
k=1

f (xk ; θ).

On emploie souvent la log-vraisemblance ℓ = lnL :

ℓ(θ) = lnL =

n∑
k=1

ln f (xk ; θ)
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Méthode dumaximumde vraisemblance (2)

Le principe de maximum de vraisemblance affirme que les valeurs de θ ajustées à

l’échantillon sont celles qui maximalisent la fonction L(θ). Si θ̂ est un maximum de

L, alors on a :
∂L(θ)

∂θi

∣∣∣∣
θ=θ̂

= 0 pour 1 ≤ i ≤ p.

En résolvant ce système, on trouve les valeurs estimées de θ. Pour certaines lois,

une solution analytique générale existe ; dans la plupart des cas, il faut procéder à

une résolution numérique pour déterminer le maximum de L.
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Méthode dumaximumde vraisemblance (3)

Commentaires :

• l’estimateur du maximum de la vraisemblance θ̂ peut ne pas exister ou quand il

existe, il peut ne pas être unique ;

• la vraisemblance n’est pas la densité de probabilité de θ ;

• la méthode du maximum de vraisemblance est intéressante car elle est rapide (par

rapport à l’inférence bayesienne) et permet également de calculer des intervalles de

confiance ;

•attention la méthode du maximum de la vraisemblance ne marche pas pour

ξ < −1 dans le cas de la loi des valeurs extrêmes, mais ce cas ne se rencontre pas

en hydrologie.
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Méthode dumaximumde vraisemblance (4)

θ̂

−�(θ)

θ

Approximation par une

quadratique

Localement autour du pic de vraisemblance, la courbe a

généralement une forme parabolique. Comme ℓ′(θ̂) = 0, un

développement limité à l’ordre 2 donne

ℓ(θ) ≈ ℓ(θ̂) +
1

2
ℓ′′(θ̂)(θ − θ̂)2,

•Plus il y a de données, plus le pic sera effilé (ℓ′′ est plus

grand), plus (( certaine )) sera la détermination de θ.

•La courbure ℓ′′(θ̂) influe sur la précision de l’estimation. On

l’appelle l’information observée.

•La valeur du pic (le maximum de vraisemblance) est de

moindre importance.

my header

Risques hydrologiques et aménagement du territoire 54
o



Méthode dumaximumde vraisemblance: exemple
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Approximation par une

quadratique

Estimateur λ̂ du paramètre λ d’une loi exponentielle

Exp(x ; λ) = λe−λx,

La log-vraisemblance d’un échantillon x est :

ℓ(λ) = n lnλ− λ
∑

xi.

L’estimateur de λ est obtenu en recherchant ℓ′(λ) = 0, soit

λ̂ =
n∑
xi

=
1

x̄
.

Dans ce cas particulier, méthodes des moments et du

maximum de vraisemblance donnent la même chose.
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Intervalle de confiance

Soit un échantillon x de n valeurs x = x1, . . . xn tirées de f (· ; θ0) où θ0 est le

paramètre à estimer. ℓ est la log-vraisemblance de l’échantillon et θ̂ est l’estimateur

du maximum de vraisemblance. Alors pour n suffisamment grand, on a :√
IA(θ0)(θ̂ − θ0) ∼ No(0, 1)

soit encore
θ̂ − θ0

1/
√

IA(θ0)
∼ No(0, 1)

où l’on a défini l’information attendue

IA(θ
0) = E

(
− ∂2

∂θ2
ℓ(θ0|x)

)
,

my header

Risques hydrologiques et aménagement du territoire 56
o



Intervalle de confiance (2)

Forme équivalente

θ̂ ∼ No(θ0, IA(θ
0)−1).

L’estimateur θ̂ se comporte comme une variable aléatoire normale centrée sur θ0,

avec pour variance I−1
A . L’intervalle de confiance pour θ0 à 1− α % est

1− α = prob
[
zα/2 ≤

√
IA(θ0)(θ̂ − θ0) ≤ z1−α/2

]
,

où zβ est le β-quantile de la loi normale (prob(zβ) = β), ou encore

1− α = prob
[
θ̂ − z1−α/2I

−1/2
A (θ0) ≤ θ0 ≤ θ̂ − zα/2I

−1/2
A (θ0)

]
Par exemple, pour un intervalle de confiance à 95 % (soit α = 0,05 et

z0,975 = 1,96) :

θ0 ∈ [θ̂ − 1,96I
−1/2
O (θ̂), θ̂ + 1,96I

−1/2
O (θ̂)].
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Intervalle de confiance (3)

Généralisation : soient x1 . . . xn des réalisations indépendantes d’une distribution

f (· ; θ) où θ = (θi)1≤i≤d désigne l’ensemble des d paramètres de f , ℓ la

log-vraisemblance, et θ̂ l’estimateur du maximum de vraisemblance. Alors pour n

suffisamment grand, on a :

θ̂ ∼ No(θ0, IA(θ
0)−1),

où l’on introduit la matrice d’information attendue

IA(θ) =

e1,1 · · · e1,d
... ei,j ...

ed,1 · · · ed,d

 , avec ei,j = −E
(
∂2ℓ(θ)

∂θi∂θj

)
.

La matrice IA mesure la courbure de la surface (( log-vraisemblance )).
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Intervalle de confiance (4)

Remarques :

•Par construction, intervalle de confiance symétrique par rapport à la valeur estimée

θ̂. On peut faire mieux...

•La théorie demande de calculer la moyenne des dérivées d’ordre 2 de la

log-vraisemblance, ce qui impliquerait en pratique d’avoir un grand nombre

d’échantillons. En pratique donc, on substitue la matrice d’information IA par

l’information observée JA :

JA(θ̂) =


∂2ℓ(θ)
∂θ21

· · · ∂2ℓ(θ)
∂θ1∂θd

... ∂2ℓ(θ)
∂θi∂θj

...
∂2ℓ(θ)
∂θd∂θ1

· · · ∂2ℓ(θ)
∂θ2d

 .
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Intervalle de confiance (5)

Approximation à l’aide de la fonction déviance :

D(θ0) = 2(ℓ(θ̂)− ℓ(θ0))

où ℓ = logL est la log-vraisemblance et θ0 la (( bonne )) valeur. On montre que

pour n suffisamment grand, on a :

D(θ0) ∼ χ2
1

Ce théorème se généralise à des fonctions à d paramètres :

D(θ0) ∼ χ2
d

où χd est la loi du χ2 à d paramètres.
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Intervalle de confiance (6)

Intervalle de confiance : on définit cβ le β-quantile (prob[Z ≤ cβ] = β, avec

Z ∼ χ2
d), alors on a Iα = {θ tel que D(θ) ≤ c1−2α} qui est un (1− 2α) intervalle de

confiance (β = 1− 2α). Puisque D ∼ χ2
d, la définition du quantile implique

prob(D ≤ cβ) = β,

donc D ≤ cβ peut être interprété comme l’intervalle où il est probable de trouver θ0,

avec un niveau de confiance de β, ce qui veut également dire que

θ tel que ℓ(θ) ≥ ℓ(θ̂)− 1

2
cβ

est le β-intervalle de confiance pour le paramètre recherché θ0. Pour un intervalle de

confiance à 95 %, on a β = 0,95, soit cβ = 3,84. On cherche les valeurs de θ telles que

D(θ) = 3,84 (graphiquement en retranchant 3,84/2 = 1,92 à la valeur maximale).
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Exemple 1

On tire 10 000 échantillons de n = 100 valeurs de Exp(λ0) avec λ0 = 2. La

log-vraisemblance est ℓ(λ ; x) = n lnλ− λ
∑n

i=1 xi et la courbure est ℓ′′(λ) = −n/λ2.

Si on prend, p. ex., le premier échantillon on a : λ̂1 = 1/0,47 = 2,09 et

IO = −ℓ′′(λ̂1) = n/λ2
1 = 22,7. La loi normale de moyenne λ1 et variance I

−1
O fournit une

approximation de λ0
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Exemple 1 (2)

On tire 10 000 échantillons avec maintenant n = 200 valeurs de Exp(λ0) avec λ0 = 2. Si

on prend le premier échantillon on a : λ̂1 = 1/0,502 = 1,99 et

IO = −ℓ′′(λ̂1) = n/λ2
1 = 50,46. La loi normale de moyenne λ1 et variance I

−1
O fournit

une approximation de λ0
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Exemple 1 (3)

Pour la loi exponentielle, la déviance d’un échantillon est

D(λ0) = 2(ℓ(λ̂)− ℓ(λ0)) = 2n

(
ln
λ0

x̄
− 1 + λ0x̄

)
,

On vérifie en simulant 10 000 échantillons de 100 valeurs que D est bien distribué selon

χ2
1
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Exemple 1 (4)

Avec la loi du χ2
1, il est simple de trouver l’intervalle de confiance : il suffit de retrancher

1,92 au pic de ℓ (pour l’intervalle de confiance à 95 %).
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Exemple 1 (5)

Résumé des intervalles de confiance à 95 % trouvés pour un échantillon de n = 100

valeurs :

•approximation de ℓ par une loi normale :

•λmin = quantile(No(λ̂1, λ̂1/
√
n))(0,025) = 1,52

•λmax = quantile(No(λ̂1, λ̂1/
√
n))(0,975) = 2,27

•approximation de la déviance par une loi du χ2
1 :

•D(λ̂min) = 3,84 ⇒ λ̂min = 1,55

•D(λ̂max) = 3,84 ⇒ λ̂max = 2,29
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Inférence bayésienne

Idée : le théorème de Bayes dit que si on a des observations x = (xi)1≤i≤n et qu’on veut

déterminer les paramètres θ d’une loi de probabilité f , alors

π(θ|x) = f (x|θ)π(θ)∫
dθf (x|θ)π(θ)

.

Interprétation : un apport d’information x modifie notre connaissance a priori de la

valeur possible de θ, qui est encodée via la probabilité dite prior π(θ). La distribution a

posteriori de θ connaissant l’information x est notée π(θ|x) ; elle est proportionnelle au
prior π(θ) et à la fonction f (x|θ), qui est la vraisemblance

L(θ) = f (x ; θ) =
∏

f (xi ; θ). En résumé on a :

π(θ|x) ∝ L(θ)π(θ)

Le dénominateur (compliqué) ne va pas nous embêter...
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Inférence bayésienne (2)

Supposons qu’on étudie un phénomène aléatoire et qu’on sache que le phénomène soit

correctement traduit sous forme d’une probabilité f de θ :

•Si on n’a pas d’idée sur la valeur de ce paramètre, on dit qu’on n’a pas d’information a

priori : θ peut prendre n’importe quelle valeur, p. ex. sur un intervalle [a, b]. Sa

probabilité est donc (loi uniforme) :

π(θ) =
1

b− a
•Au contraire, on peut avoir une idée assez précise de la valeur. Un expert dira, par

exemple, que θ doit proche de la valeur θ0 un certain pourcentage ε près. On pourra

alors employer (p. ex.) la loi normale

π(θ) = No(θ, ε
2)
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Inférence bayésienne (3)

Dans les deux cas, le prior π encode notre connaissance (notre méconnaissance) de θ.

C’est une connaissance subjective.

Supposons maintenant que l’on ait de nouvelles données x = (xi)1≤i≤n. Comment ces

données modifient-elles notre connaissance de θ ? D’après le théorème de Bayes, la

connaissance a posteriori (posterior) est

π(θ|x) = L(θ)π(θ)

Z
avec Z =

∫
dθf (x|θ)π(θ) et L = f (x|θ)

Formule simple, mais que généralement on ne sait pas calculer. Il faut donc simuler...

L’idée est de simuler un échantillon θ de valeurs à partir du posterior π(θ|x), et tracer
l’histogramme pour voir comment évolue notre connaissance.
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Inférence bayésienne (4)

Tirer un échantillon de valeurs aléatoires d’une

loi de probabilité : exercice difficile.

Analogie : comment trouver le volume du lac

Léman ?

Deux stratégies :

•approche déterministe
•approche stochastique
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Inférence bayésienne (5)

Grille à pas fixe

Approche déterministe : on se fixe une grille et

on va de point en point.

Avantages :

•nombre d’opération fixé à l’avance

• simple à mettre en œuvre

Inconvénients :

•des mesures apportent peu de chose

•coût exploration prohibitif si précision requise

my header

Risques hydrologiques et aménagement du territoire 71
o



Inférence bayésienne (6)

Grille aléatoire très lâche

Approche stochastique : on explore

aléatoirement la surface du lac.

Avantages :

•coût d’exploration que l’on peut optimiser

•précision qui peut être très bonne avec un

nombre limité

Inconvénients :

•nombre d’opération non fixé à l’avance

•pas si simple à mettre en œuvre
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Inférence bayésienne (7)

Grille aléatoire très concentrée sur les grandes

profondeurs

Approche stochastique : optimisation de

l’exploration. On peut régler la taille des

sauts...

On a intérêt :

• rester là où il y a de la profondeur

•ne pas oublier de sauter de temps à autre

vers une zone a priori peu intéressante...

minimum local ou global ?
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Méthode deMonte Carlo
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But : simuler une loi de probabilité P (x)

Idée : on simule un échantillon de N valeurs xi.

L’histogramme des valeurs de xi permet d’approcher P

Technique : on ne sait pas tirer un échantillon de

valeurs depuis P , mais on le sait faire avec une loi de

probabilité simple... on va donc employer une telle loi

dite loi instrumentale Q, et accepter/rejeter les valeurs.

Une loi normale Q = No(xi, σ
2) est intéressante (σ

taille typique des sauts)
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Algorithme deMetropolis-Hastings
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Supposons qu’on ait déjà simulé k valeurs. On va tirer

une valeur x∗ depuis Q.

Doit-on accepter cette valeur ou non ? Pour cela on

calcule le rapport

r =
P (x∗)Q(xk ; x∗, σ

2)

P (xk)Q(x∗ ; xk, σ2)
Note : si on prend une loi instrumentale symétrique,

alors Q(xk ; x∗, σ
2) = Q(x∗ ; xk, σ

2) et donc alors

r = P (x∗)/P (xk)

Avantage : pas de calcul du dénominateur Z
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Algorithme deMetropolis-Hastings (2)

•On accepte la valeur x∗ si r ≥ 1.

•Sinon, si r < 1, on l’accepte avec une probabilité r. En pratique, cela veut dire que l’on
tire un nombre aléatoire u de la loi uniforme sur [0, 1] :

• si r ≥ u on accepte x∗ et donc on pose xk+1 = x∗

• si r < u on n’accepte pas la valeur et on pose xk+1 = xk

On répète la procédure autant de fois que nécessaire pour obtenir un échantillon de taille

suffisante.

Questions : comment fixer la loi instrumentale ? Comment fixer la taille des sauts ?
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Algorithme deMetropolis-Hastings (3)
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Dilemme :

•Si on fait de petits sauts, on explore uniquement les

maxima locaux et on risque de louper le maximum

global. Il faut tolérer des sauts de plus grande taille.

•Si on fait de grands sauts, on explore tout le domaine,

mais on passe beaucoup de temps à l’explorer sans

s’attarder là où il y a des choses intéressantes (le pic

de probabilité). Il faudrait opter pour de petits sauts:

Règle empirique : l’algorithme est bien réglé quand le

taux moyen d’acceptation est compris entre 0,25 et

0,50.
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Algorithme deMetropolis-Hastings (4)

Un algorithme simple à coder avec

Mathematica, Matlab...
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Exemple 1: simuler la loi exponentielle
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(b) : histogramme + ddp
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2.0 (c) : diagramme QQ
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(d) : diagramme PP
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350 (e) : évolution de r

•Simulation de la loi

exponentielle avec λ = 2

•1000 valeurs simulées

• loi instrumentale : loi normale
avec σ = 1

Un taux d’acception moyen de

0,36. Diagrammes PP et QQ

bons
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Exemple 1: simuler la loi exponentielle (2)
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(b) : histogramme + ddp
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(c) : diagramme QQ
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(d) : diagramme QQ
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300

400
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700 (e) : évolution de r

•Simulation de la loi

exponentielle avec λ = 2

•1000 valeurs simulées

• loi instrumentale : loi normale
avec σ = 0,2 (petit pas)

Un taux d’acception moyen de

0,737 (trop fort). Diagrammes

PP et QQ bons
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Exemple 1: simuler la loi exponentielle (3)
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2.0
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2.0 (b) : histogramme + ddp
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2.5 (c) : diagramme QQ
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(d) : diagramme PP
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80

100
(e) : évolution de r

•Simulation de la loi

exponentielle avec λ = 2

•1000 valeurs simulées

• loi instrumentale : loi normale
avec σ = 4 (grand pas)

Un taux d’acception moyen de

0,10. Diagrammes PP et QQ

pas bons
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Exemple 2: caler un paramètre

0 2000 4000 6000 8000 10000
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(b) : diagramme PP
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2.5 (c) : diagramme QQ
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0

1000

2000

3000

4000
(e) : évolution de r

Supposons

•on ait un échantillon de n = 100 valeurs xi

tirées de la loi exponentielle avec λ = 2. Que

vaut λ̂ ?

•10 000 valeurs simulées λk. Loi

instrumentale : loi normale avec σ = 0,5.

Prior : loi uniforme sur [1/2, 5]

•On définit λ̂ = Quantile(0,5) = 1,74.

• Intervalles de confiance à 95 % : [1,44, 2,10]
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Exemple 2 (2) : influence du nombre de données n

n = 10 valeurs xi
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(b) : diagramme PP
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(c) : diagramme QQ
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7000 (e) : évolution de r

n = 1000 valeurs xi
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(b) : diagramme PP
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(c) : diagramme QQ
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3000 (e) : évolution de r
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Exemple 2 (3): influence du prior

n = 100 valeurs xi et π(λ) = Γ(2,2)
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(b) : diagramme PP
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(e) : évolution de r

n = 100 valeurs xi et π(λ) = Γ(200, 0,2)
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(b) : diagramme PP
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3500 (e) : évolution de r
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Exemple 2 (4) : et si le prior est mauvais?

n = 1000 valeurs xi et π(λ) = Γ(100, 0,2)
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(b) : diagramme PP
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n = 10 valeurs xi et π(λ) = Γ(100, 0,2)
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(b) : diagramme PP
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