
Christophe Ancey

Risques
hydrologiques

et
aménagement
du territoire



ii

Christophe Ancey,
EPFL, ENAC/IIC/LHE,

Ecublens, CH-1015 Lausanne, Suisse

christophe.ancey@epfl.ch, lhe.epfl.ch

Risques hydrologiques et aménagement du territoire / C. Ancey

version 21.3 du 8 novembre 2024, Lausanne

Attribution : pas d’utilisation commerciale, pas de modification, 3.0.
Licence Creative Common 3.0. Ce travail est soumis aux droits d’auteurs. Tous les droits
sont réservés ; toute copie, partielle ou complète, doit faire l’objet d’une autorisation de
l’auteur. La gestion typographique a été réalisée à l’aide du package efrench de Bernard
Gaulle. Tous les clichés sont de Christophe Ancey sauf mention contraire.

Ce livre est le support du cours Risques hydrologiques et aménagement du territoire
donné en master Sciences et Ingénierie de l’Environnement de l’EPFL. Le lecteur trou-
vera plus d’informations sur la page web du cours : http://lhe.epfl.ch/hydrologie.php.
Mes remerciements vont à Nicolas AndReini, Jean-Julien Dessimoz, Rémy MaRis,
Anne-Lise MeyenhofeR, et Édouard Boujo pour la relecture du manuscrit.

Crédit des illustrations. Première de couverture : la Navisence en crue à Zinal
(VS) le 21 juin 2024 (Bob de Graffenried). Table des matières : maître Santa Clara de
Palencia, détail de la mort de la Vierge (musée des Beaux-Arts, Lyon). Avant-propos :
Hubert Robert, vue imaginaire de la Grande Galerie du Louvre en ruines (le Louvre,
Paris).Notations : Isaack van Ostade, la rivière gelée (le Louvre, Paris).Aller plus loin :
Edouard Manet, les coquelicots (exposition « collection Bührle », Fondation de l’Hermi-
tage, Lausanne). Chapitre 1 : Pieter Bruegel l’Ancien, le combat de carnaval et carême
(Kunsthistorisches Museum, Vienne). Chapitre 2 : Félix Cortey, ex-voto représentant
la débâcle du Giétro à Sembrancher en 1818 (paroisse de Sembrancher, VS) – cliché
Robert Hofer. Chapitre 3 : Pieter Bruegel l’Ancien, les mendiants (le Louvre, Paris).
Chapitre 4 : papyrus du livre des morts (le Louvre, Paris). Chapitre 5 : Alfred Sisley,
l’inondation à Port-Marly montrant la crue de la Seine de 1876 (musée d’Orsay, Paris).
Annexes : hiéroglyphe dit « menu de Tepemânkh » (le Louvre, Paris). Bibliographie :
Gabriel Maelesskircher, l’apôtre Saint Mathieu à son pupitre (Museo Nacional Thyssen-
Bornemisza, Madrid). Index : Matthias Stom, le souper à Emmaus (Museo Nacional
Thyssen-Bornemisza, Madrid).

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/
http://lhe.epfl.ch/hydrologie.php


iii

« La ciencia engaña de tres maneras: transformando sus proposiciones en
normas, divulgando sus resultados preferentemente a sus méto-
dos, callando sus limitaciones epistemológicas. »

Nicolás GÓmez dÁvila, Escolios a un texto implícito, 28

« La science nous trompe de trois manières : en transformant ses propo-
sitions en normes, en divulguant ses résultats plutôt que ses mé-
thodes, en passant sous silence ses limitations épistémologiques. »
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Avant-propos

L
objet de ce couRs est de fournir une vision moderne de la gestion du risque
hydrologique (crue, inondation, avalanche) pour l’ingénieur en sciences en-
vironnementales. Outre la nécessaire compréhension des phénomènes na-

turels impliqués dans les risques hydrologiques, l’ingénieur doit posséder des outils
de calcul qui lui permettent de déterminer ce qui peut se produire, c’est-à-dire à la
fois l’intensité des phénomènes dommageables et leur probabilité d’occurrence. Il doit
également être en mesure d’aider les preneurs de décision dans l’élaboration des poli-
tiques publiques d’occupation des sols et de prévention des risques ainsi que dans la
réalisation d’ouvrages de protection adaptés à limiter le risque sur un enjeu donné.

Ces outils de calculs sont de deux natures. D’une part, il faut une solide base sta-
tistique pour permettre de déterminer ce qui peut potentiellement se produire (comme
phénomènes dommageables) à partir d’une connaissance des phénomènes présents et
passés. Dans le cadre de ce cours, on s’appuiera principalement sur la théorie des va-
leurs extrêmes pour proposer une approche statistique rigoureuse. D’autre part, il faut
disposer d’outils de calcul déterministes (calcul d’onde crue par exemple) pour déter-
miner le comportement d’un processus en particulier. Nous présenterons ici quelques
outils simples de calcul.





Notations, formules, &
Conventions

Les notations et formules suivantes sont utilisées :

– Vecteurs et matrices sont notés en gras.
– Les variables sont italiques.
– Les fonctions et opérateurs sont en caractères romans.
– Les algorithmes sont écrits en caractères sans empattement (sans sérif si on pré-

fère cet anglicisme).
– Pour désigner les densités de probabilité, j’emploie des polices stylisées :

– N pour la loi de Laplace-Gauss ou loi normale (voir § A.2.5);
– Nd pour sa variante à d dimensions (voir § A.2.5) ;
– χ2

k pour la loi du « chi-deux » à k degrés de liberté (voir § A.2.6) ;
– E pour la loi exponentielle (voir § A.2.4) ;
– P pour la loi de Poisson (voir § A.2.2) ;
– B pour la loi binômiale (voir § A.2.1) ;
– N eg pour la loi binômiale négative (voir § A.2.1) ;
– We pour la loi de Weibull (voir § 4.1.3) ;
– Gu pour la loi de Gumbel (voir § 4.1.3) ;
– Fr pour la loi de Fréchet (voir § 4.1.3) ;
– Pa pour la loi de Pareto (voir § 4.6.2) ;
– U pour la loi uniforme (voir § A.2.3).

– Le symbole ∼ ou← signifie « tiré selon la loi ».
– Le symbole ∝ signifie « proportionnel(le) à ».
– L’indice T après un vecteur signifie le transposé de ce vecteur.
– J’utilise 1 pour désigner le vecteur unité.
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– Le symbole ♣ indique le début d’un exemple. Le symbole
�

est employé pour
attirer l’attention sur un point difficile. Le symbole ♦ sert à repérer un théorème
tandis que le symbole ♢ est employé pour les définitions. Le symbole▶ renvoie
à des compléments en annexe. Le symbole ⊓⊔ indique la fin d’un exemple ou
d’une démonstration.

– Le symbole E désigne la moyenne (espérance ou moment d’ordre 1) d’une dis-
tribution ou d’un échantillon. Le symbole Var représente la variance, Cov la
covariance.

– Pour les opérations différentielles, la notation abrégée ∂xf signifie ∂f/∂x.
– Les notions difficiles, non nécessaires à la compréhension du cours, mais indis-

pensables pour quelqu’un qui voudrait avoir une bonne maîtrise du contenu du
cours, sont signalées à l’aide du symbole †.

– En général, les variables aléatoires sont en lettres capitales tandis que les valeurs
particulières qu’elles peuvent prendre sont en minuscules. AinsiX désigne une
variable aléatoire et X = x est une réalisation particulière.

– On introduit le coefficient binomial :(
n
k

)
= Ckn =

n!

k!(n− k)!

qui donne le nombre de sous-ensembles à k éléments parmi un ensemble à n
éléments. Ici n et k ≤ n sont deux entiers naturels.



Pour aller plus loin

Ressources

Pour le langage R :

– voir la page du CRAN pour une liste des différents paquets pour le traitement
des valeurs extrêmes dans le cadre de la théorie des valeurs extrêmes abordée
au chap. 4 ;

– voir la page github pour les modèles réservoir de type GR présentés au chap. 5

R est spécifiquement dédié aux calculs statistiques, et c’est donc le langage où l’on trou-
vera le plus d’outils pour l’hydrologie statistique. Il existe aussi des environnements
spécifiques pour les calculs statistiques et l’inférence bayesienne tels que Stan et JAGS.
Il existe également des interfaces R (RStan) et Python (PyStan) pour Stan.

En Python, on a un nombre croissant de modules, dont :

– pyextremes : calage d’une loi de valeurs extrêmes par la méthode du maximum
de vraisemblance (voir chap. 4) ;

– pymc : module assez complet permettant de faire des simulations deMonte Carlo
pour l’inférence bayesienne.

Les États européens se sont engagés à fournir l’accès libre aux données topogra-
phiques, hydrologiques et hydrauliques. C’est le cas déjà de la France :

– Données topographiques : Géoservices
– Données hydrométriques :

– Mesures in situ : Hydro Portail
– Estimations sur des bassins non jaugés : Shyreg débit

– Données météorologiques :
– Mesures in situ : Météo France

https://cran.r-project.org/web/views/ExtremeValue.html
https://hydrogr.github.io/airGR/
https://mc-stan.org/
https://mcmc-jags.sourceforge.io/
https://georgebv.github.io/pyextremes/
https://www.pymc.io/welcome.html
https://geoservices.ign.fr/
https://www.hydro.eaufrance.fr/
https://shyreg.recover.inrae.fr/
https://meteo.data.gouv.fr/form
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– Estimations sur des bassins non jaugés : Shyreg pluie
– Projections climatiques : https://www.drias-climat.fr/Drias les futurs du

climat

Je fournis des cahiers Jupyter pour le traitement des données de Météo-France sur ma
page github.

Pour l’Union Européenne, le portail Copernicus regroupe un ensemble de données
météorologiques et climatiques pour l’Europe, avec à la fois des données reconstituées
et des projections climatiques.

Pour la Suisse, il faudra attendre jusqu’au 1er avril 2025 (voir la page de Météo
Suisse).

Ouvrages conseillés

– Météorologie et climat
– Thillet, J.-J., et D. Schueller, Petit manuel demétéomontagne, Glénat, Grenoble,

2009. Comme son nom l’indique il s’agit d’un livre consacré à la météorolo-
gie dans les zones montagnes, avec un accent mis sur les Alpes françaises.
Son principal auteur est Jean-Jacques Thillet, un ancien de Météo-France
et un des grands pionniers de la prévision météorologique en montagne.

– Corboz, Y., Météorologie : 100 expériences pour comprendre les phénomènes
météo, Belin, Paris, 2008.

– Séchet, G., Y’a plus de saison, Aubanel, Genève, 2008.
– Leroy Ladurie, E., Abrégé d’histoire du climat : du Moyen Âge à nos jours,

Fayard, Paris, 2007.
– Histoire et catastrophes

– Walter, F., Catastrophes : une histoire culturelle xvie siècle–xxie siècle, Seuil,
Paris, 2008.

– Walter, F., B. Fantini, and P. Delvaux, Les cultures du risque : (xvie siècle–
xxie siècle), Presses d’Histoire Suisse, Genève, 2006.

– Favier, R., Les pouvoirs publics face aux risques naturels dans l’histoire, Publications
de la MSH-Alpes, Grenoble, 2002.

– Granet-Abisset, A.-M., and G. Brugnot, Avalanches et risques. Regards croi-
sés d’ingénieurs et d’historiens, CNRS MSH Alpes, Grenoble, 2002.

– Gros, F., Le principe Sécurité, Gallimard, Paris, 2012.
– Statistique et théorie des valeurs extrêmes

– Coles, S. G.,An Introduction to StatisticalModeling of Extreme Values, Springer,
London, 2001.

– Davison, A. C., Statistical Models, Cambridge University Press, Cambridge,
2003.

https://shyreg.pluie.recover.inrae.fr/
https://shyreg.pluie.recover.inrae.fr/
https://github.com/cancey/Meteo-France
https://cds.climate.copernicus.eu/#!/home
https://www.meteosuisse.admin.ch/services-et-publications/service/open-government-data-donnees-ouvertes-de-l-administration-publique-suisse.html
https://www.meteosuisse.admin.ch/services-et-publications/service/open-government-data-donnees-ouvertes-de-l-administration-publique-suisse.html
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– Reiss, R.-D., andM.Thomas, Statistical Analysis of Extreme Values, Birkehaüser,
Basel, 2001.

– Teegavarapu, R.S.V., Floods in a Chaning Climate: Extreme precipitations,
Cambridge University Press, Cambridge, 2012.

– Approche bayesienne et ingénierie
– Bernier, J., E. Parent, et J.-J. Boreux, Statistique pour l’environnement : trai-

tement bayésien de l’incertitude, 363 pp., Tec & Doc, Paris, 2000.
– Parent, E., and J. Bernier, Bayesian POTmodeling for historical data, Journal

of Hydrology, 274, 95–108, 2003.
– Parent, E., and J. Bernier, Le raisonnement bayesien: modélisation et infé-

rence, Springer, Paris, 2007.
– Gestion des crues et statistique des débits

– Meylan, P., A.-C. Favre, et A.Musy,Hydrologie fréquentielle, Presses Polytechniques
et Universitaires Romandes, Lausanne, 2008.

– Lang, M., et J. Lavabre (coord.), Estimation de la crue centennale pour les
plans de prévention des risques d’inondation, EditionsQuae, Versailles, 2007.

– Roche, P.-A., J. Miquel, and E. Gaume, Hydrologie quantitative : Processus,
modèles et aide à la décision, Springer Verlag France, Paris, 2012.
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et Universitaires Romandes, Lausanne, 2004.
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CHAPITRE1
Aménagement du territoire et

risques

L
objet de ce chapitRe est de camper le décor du cours avec d’une part le rap-
pel des objectifs poursuivis en aménagement du territoire et, d’autre part,
une introduction à la gestion des risques dans nos sociétés. Nous aborde-

rons la délicate question de la définition du risque et de sa mesure. Comme l’a montré
le sociologue allemande Ulrich Beck, les sociétés occidentales sont désormais des « so-
ciétés du risque », où le risque fait partie intégrante de leur fonctionnement, où préve-
nir, anticiper, et gérer le risque font désormais partie des politiques publiques. Dans le
même temps, nos sociétés aiment rationaliser et normaliser (transformer en normes).
Le risque n’échappe pas à cette tendance lourde et on le verra à travers plusieurs ana-
lyses appuyées d’exemples que les risques génèrent des controverses profondes. Ce ne
sont pas seulement les mesures de prévention qui font l’objet de critiques, mais égale-
ment les approches et la concertation entre acteurs.

1.1 Aménagement du territoire

1.1.1 Définition et principes

Par « aménagement du territoire », on entend la gestion et la planification de l’uti-
lisation du territoire national. Une bonne gestion implique que les surfaces soient amé-
nagées en respectant un certain nombre de principes, au premier rang desquels on
trouve naturellement le développement économique, la réponse aux besoins des popu-
lations locales, et la préservation des ressources naturelles. La notion d’aménagement
du territoire a des dimensions :

– politiques (qui fixent les grandes orientations du développement national),
– juridiques (qui encadrent le développement du territoire),

1
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– administratives (qui mettent en œuvre les instruments de contrôle, décision,
etc.),

– techniques (qui fournissent les outils pour les ingénieurs, architectes, etc.).

Volet politique

Pour la Suisse, le but poursuivi dans la politique nationale d’aménagement du ter-
ritoire est rappelé dans l’article liminaire de la loi fédérale sur l’aménagement du terri-
toire du 22 juin 1979 (LAT, RS 700). Voici ce que dit l’article premier :

« La Confédération, les cantons et les communes veillent à assurer
une utilisation mesurée du sol. Ils coordonnent celles de leurs activités
qui ont des effets sur l’organisation du territoire et ils s’emploient à réali-
ser une occupation du territoire propre à garantir un développement har-
monieux de l’ensemble du pays. Dans l’accomplissement de leurs tâches,
ils tiennent compte des données naturelles ainsi que des besoins de la
population et de l’économie.

« Ils soutiennent par des mesures d’aménagement les efforts qui sont
entrepris notamment aux fins :

a. de protéger les bases naturelles de la vie, telles que le sol, l’air, l’eau,
la forêt et le paysage ;

b. de créer et de maintenir un milieu bâti harmonieusement aménagé
et favorable à l’habitat et à l’exercice des activités économiques ;

c. de favoriser la vie sociale, économique et culturelle des diverses
régions du pays et de promouvoir une décentralisation judicieuse
de l’urbanisation et de l’économie ;

d. de garantir des sources d’approvisionnement suffisantes dans le
pays ;

e. d’assurer la défense générale du pays.»

Les grandes orientations de la politique suisse en matière d’aménagement du territoire
se retrouvent dans la plupart des pays occidentaux, avec toutefois des nuances que l’on
retrouve déjà dans le nom même donné à cette thématique : les anglo-saxons parlent
de « land-use planning » (ou « spatial planning ») tandis que les germanophones em-
ploient le terme « Raumplanung ». Les grands principes sont les suivants :

– développement raisonné de l’agriculture ;
– préservation du paysage, des forêts, et des sites naturels ;
– contrôle de l’urbanisation (concentration des équipements et habitations) par

une juste répartition sur le territoire ;
– garantie de circulation des biens et des personnes (développement d’un réseau

de transport) et garantie d’accès aux grands équipements et infrastructures (écoles,
centres de loisir, services publics) ;
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– dialogue avec les populations concernées ;
– compensation et indemnisation, assurances en cas de catastrophe.

Volet juridique

Plusieurs lois ont transcrit en termes juridiques les grandes orientations souhaitées
pour l’aménagement du territoire en Suisse :

– la loi fédérale sur l’aménagement du territoire (LAT, RS 700) du 22 juin 1979 fixe
les grandes lignes de la politique fédérale en Suisse et donne un cadre général
d’organisation. Dans un état fédéral comme la Suisse, il y a une séparation nette
entre d’une part la Confédération, qui fixe les orientations et dispose d’un pou-
voir d’approbation (art. 11), et les cantons, qui disposent de facto du pouvoir de
décision : « les cantons règlent la compétence et la procédure » (art. 25). Chaque
canton bénéficie donc d’une grande marge de manœuvre dans l’application des
directives fédérales et de leur transcription dans le droit cantonal. Outre ses pré-
rogatives en matière de permis de construire, le canton a en charge l’élaboration
du « plan directeur », qui dresse à la fois une planification et un outil de coor-
dination des moyens à mettre œuvre dans l’aménagement au niveau cantonal.
Le canton est également responsable de la cartographie des dangers naturels et
des risques sur son territoire. À noter qu’à l’échelle communale, le zonage et les
prescriptions de construction sont consignés dans un document appelé « plan
d’affectation » (art. 14). Sites naturels, zones urbanisées, et terres agricoles sont
concernés ;

– plusieurs lois, dont la loi fédérale sur l’aménagement des cours d’eau (RS 721.00)
du 21 juin 1991 et la loi fédérale sur les forêts (LFo, RS 921.0) du 4 octobre 1991,
fournissent des instruments de gestion du territoire, avec notamment :

– des mesures d’encouragement et d’accompagnement de la Confédération
(subvention pour la construction d’ouvrages de protection, les forêts de
protection),

– des outils de gestion comme les cartes de danger,
– la collecte de données utiles à la prévision des phénomènes (données hy-

drologiques),
– la rédaction de directives techniques,
– les dispositions légales relatives à l’expropriation,
– les droits et devoirs respectifs de la Confédération et des cantons.

Pour plus d’information sur le cadre juridique, on consultera le guide « Cadre juridique
des cartes de dangers » disponible sur le site Planat (Lüthi, 2004).

http://www.planat.ch/index.php?userhash=44748314&navID=1216&l=f
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Volet administratif

Les instances fédérales et cantonales en charge de l’aménagement du territoire se
voient attribuer trois grandes missions :

– l’identification des dangers : il faut cartographier les zones soumises à des dangers
naturels (cartes de danger) et recenser les événements naturels dommageables
(cadastre des événements). Pour chaque danger identifié sur un périmètre donné,
il faut déterminer le potentiel de dommages en cas d’événement ;

– la gestion du risque : il faut planifier correctement l’usage du sol en fonction des
dangers. Lorsqu’il n’est pas possible d’écarter un danger, il convient de prévoir
une protection des biens et des personnes. Le niveau de protection dépend de
l’enjeu. On considère que des zones habitées constituent un enjeu plus important
que des terrains agricoles. La définition des « objectifs de protection » vise à
catégoriser les enjeux en fonction de leur importance afin que l’on puisse adapter
le niveau de protection ;

– le contrôle : tout équipement (habitation, équipement, voie d’accès, etc.) doit faire
l’objet d’une autorisation avant sa construction. Cette autorisation et les éven-
tuelles prescriptions qui l’accompagnent sont délivrées au terme d’une instruc-
tion du dossier de permis de construire sur la base du plan d’affectation com-
munal. Certains ouvrages nécessitent des contrôles techniques réguliers pour
s’assurer de leur bon fonctionnement.

Pour plus d’information sur la prise en compte des dangers naturels dans les plans
d’aménagement, on consultera les recommandations « Aménagement du territoire et
dangers naturels » disponibles sur le site de l’office fédéral du développement territo-
rial.

Volet technique

Le volet technique comprend une multitude d’actions et d’acteurs :

– études socio-économiques pour évaluer l’intérêt et les besoins en équipements,
les lieux à développer, les flux de biens et de personnes ;

– collectes d’informations : données météorologiques, démographie, tourisme, tra-
fic de passagers ou de marchandises, échanges économiques, dispositifs d’alerte,
etc. ;

– conception des infrastructures : routes, grands équipements (écoles, administra-
tions, stades, aéroports, ports, etc.) ;

– planification et cartographie : schéma directeur d’aménagement sur le moyen et
long termes, plan cadastral, carte de danger, etc.

Dans le cadre de ce cours, nous nous intéresserons plus particulièrement aux dan-
gers naturels qu’il faut prendre en compte dans l’aménagement du territoire, et plus

http://www.are.admin.ch/dokumentation/00121/00224/index.html?lang=fr&msg-id=991
http://www.are.admin.ch/dokumentation/00121/00224/index.html?lang=fr&msg-id=991
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particulièrement à la gestion des risques hydrologiques : l’accent est plus particuliè-
rement mis sur les dangers hydrologiques tels qu’on peut les rencontrer en zones de
montagne et piémont.

1.1.2 Comparaison avec la France

Aperçu historique

Si la France suit une politique d’aménagement de son territoire dont les grandes
lignes sont similaires à celles de la Suisse, l’histoire, l’organisation, et la mise en œuvre
sont différentes. Contrairement à la Suisse, la France est un pays très centralisé, où le
cœur de la nation est Paris. Cette situation est le fruit d’une longue tradition centrali-
satrice naissant tout d’abord avec les monarques (en lutte contre leurs grands vassaux)
au Moyen Âge, par la suite affirmée par les monarques absolus (le roi s’identifiant à la
nation), et confirmée par les jacobins sous la Révolution (le centralisme étant alors le
garant du maintien de la République).

Paris et sa region ont donc attiré une grande partie de la population et des infra-
structures du pays. Dès les années 1950, l’État a tenté de lutter contre cet effet centripète
en cherchant un meilleur équilibre dans la distribution des populations, des moyens
économiques, et des infrastructures. En 1950, le ministre de la Reconstruction et de
l’Urbanisme Eugène Claudius-Petit définit les grandes lignes de la politique française
d’aménagement du territoire dans le rapport « Pour un plan national d’aménagement
du territoire » :

« L’aménagement du territoire, c’est la recherche dans le cadre géogra-
phique de la France d’une meilleure répartition des hommes en fonction
des ressources naturelles et de l’activité économique. »

En 1963, cette volonté de l’État de prendre en main de façon plus active le développe-
ment territorial a débouché sur la création d’une agence spécialisée : laDélégation inter-
ministérielle à l’aménagement du territoire et à l’attractivité régionale (DATAR). Pendant
plusieurs décennies, l’aménagement du territoire a été une mission partagée entre plu-
sieurs ministères (Équipement, Environnement ou Écologie, Urbanisme, Industrie) au
gré des gouvernements, puis très récemment (2009), le gouvernement Fillon a créé un
«ministère de l’espace rural et de l’aménagement du territoire ». Les missions d’aména-
gement du territoire sont, cependant, toujours partagées par plusieurs ministères, dont
celui en charge de l’Écologie pour tout ce qui touche à la prévention des risques.

Rôle central de l’État

Au cours des années 1990, la France a entamé une politique de décentralisation pour
redonner plus de latitude aux régions et aux collectivités locales dans l’organisation
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socio-économique de leur espace. L’État a toutefois rappelé son rôle prépondérant à
travers deux textes de loi : la loi no 95-115 du 4 février 1995 dite « orientation pour
l’aménagement et le développement du territoire », qui a été amendée par la loi Voynet
no 99-533 du 25 juin 1999 dite « orientation pour l’aménagement et le développement
durable du territoire ». L’article premier de la loi Voynet affirme le principe suivant :

« La politique nationale d’aménagement et de développement durable
du territoire concourt à l’unité de la nation, aux solidarités entre citoyens
et à l’intégration des populations.(…) Déterminée au niveau national par
l’État, après consultation des partenaires intéressés, des régions ainsi que
des départements, elle participe, dans le respect du principe de subsidia-
rité 1, à la construction de l’Union européenne et est conduite par l’État
et par les collectivités territoriales dans le respect des principes de la dé-
centralisation. Elle renforce la coopération entre l’État, les collectivités
territoriales, les organismes publics et les acteurs économiques et sociaux
du développement. »

Les missions de la politique d’aménagement du territoire sont données à l’article 2 de
la loi Voynet :

« La politique d’aménagement et de développement durable du terri-
toire repose sur les choix stratégiques suivants :
«– le renforcement de pôles de développement à vocation européenne

et internationale, susceptibles d’offrir des alternatives à la région
parisienne ;

«– le développement local, organisé dans le cadre des bassins d’emploi
et fondé sur la complémentarité et la solidarité des territoires ru-
raux et urbains. Il favorise au sein de pays présentant une cohésion
géographique, historique, culturelle, économique et sociale la mise
en valeur des potentialités du territoire en s’appuyant sur une forte
coopération intercommunale et sur l’initiative et la participation
des acteurs locaux ;

«– l’organisation d’agglomérations favorisant leur développement éco-
nomique, l’intégration des populations, la solidarité dans la répar-
tition des activités, des services et de la fiscalité locale ainsi que la
gestion maîtrisée de l’espace ;

«– le soutien des territoires en difficulté, notamment les territoires ru-
raux en déclin, certains territoires de montagne, les territoires ur-
bains déstructurés ou très dégradés cumulant des handicaps écono-

1. Le principe de subsidiarité est un principe d’organisation politique qui vise à confier la
responsabilité d’une action publique à l’autorité (publique) du niveau le plus faible, autorité qui
soit en mesure de résoudre par elle-même les problèmes qui se posent. L’autorité supérieure
n’intervient que si l’échelon inférieur n’est pas capable de résoudre tous les problèmes (principe
de suppléance).
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miques et sociaux, certaines zones littorales, les zones en reconver-
sion, les régions insulaires et les départements d’outre-mer-régions
ultrapériphériques françaises et des pays mentionnés à l’article 22.»

Il n’existe pas de cadre légal unique qui définisse les missions, les tâches, les respon-
sabilités des différents acteurs de l’aménagement du territoire. Pour la partie qui nous
intéresse ici, la gestion des risques, il existe un principe général, qui est celui de la
responsabilité de l’État, affirmé par exemple dans la circulaire du Ministère de l’Équi-
pement du 17 décembre 1987 (voir aussi article 40 de la loi no 87-565 du 22 juillet 1987) :

« Il revient à l’État d’afficher le risque. En effet l’usager d’un ser-
vice public ou le client d’une installation commerciale peut prétendre au
même niveau de sécurité sur tout le territoire »

ou bien dans la circulaire du 20 juin 1988

« L’État doit afficher les risques en déterminant leurs localisations et
leurs caractéristiques et en veillant à ce que les divers intervenants les
prennent en compte dans leurs actions. »

S’il revient à l’État de « dire le risque », il n’est en revanche pas responsable de la mise
en sécurité :

« Lorsque l’aménageur, collectivité publique ou investisseur privé, dé-
cide d’équiper une zone à risques moyennant des protections, la mise au
point d’un projet lui appartient »

(circulaire du Ministère de l’Équipement du 17 décembre 1987), un principe qui date du
Code civil napoléonien (article 33 de la loi du 16 septembre 1807 sur la responsabilité
pécuniaire des riverains et propriétaires).

Les services de l’État dispose d’unemultitude de textes réglementaires pour afficher
le risque et autoriser/réglementer/interdire la construction selon le niveau de risque.
Initialement, ces textes étaient contenus dans le Code civil et le Code de l’urbanisme,
par exemple à travers l’article R111-2

« Le permis de construire peut être refusé ou n’être accordé que sous
réserve de l’observation de prescriptions spéciales si les constructions,
par leur situation ou leurs dimensions, sont de nature à porter atteinte à
la salubrité ou à la sécurité publique. Il en est de même si les constructions
projetées, par leur implantation à proximité d’autres installations, leurs
caractéristiques ou leur situation, sont de nature à porter atteinte à la
salubrité ou à la sécurité publique. »

Deux lois sont venues compléter les bases légales existantes : la loi no 85-30 du 9 janvier
1985 dite « Montagne » et surtout la loi no 95-101 du 2 février 1995 relative à la protec-
tion de l’environnement. Cette dernière loi a notamment créé les « plans de prévention
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des risques naturels prévisibles » (PPR) en remplacement des « plans d’exposition aux
risques » (PER) (MATE, 1997).

1.2 Enjeuxde l’aménagement du territoire en Suisse

Les politiques d’aménagement du territoire se mesurent sur le long terme, et de ce
fait il est difficile de les évaluer et de les corriger. Elles nécessitent une anticipation de
l’évolution de la société. Quels sont les enjeux de l’aménagement du territoire pour un
pays comme la Suisse?

Le premier enjeu est d’accueillir la population et de permettre les moyens de sub-
sistance. La Suisse est le huitième pays le plus peuplé d’Europe avec une densité de
199 hab/km2 (voir figure 1.1a) ; la densité moyenne sur le continent européen est de 32
hab/km2, elle atteint 117 hab/km2 pour l’Union Européenne. Comme les zones mon-
tagneuses représentent 63 % du territoire helvétique, la densité effective est plus im-
portante que ce que la valeur moyenne n’indique. Les projections démographiques
montrent que la population suisse devrait continuer à fortement croître dans les pro-
chaines années : les démographes prévoient une croissance de 22 % entre 2020 et 2050
alors que pour l’Union Européenne (voir figure 1.1b), ils prévoient un accroissement de
4 % pour l’Union Européenne, avec plusieurs pays en décroissance. Hormis la France,
tous les pays limitrophes de la Suisse devraient voir leur population diminuer (c’est le
cas de l’Allemagne en dépit de l’accueil de 1,3 millions de réfugiés). L’augmentation
de la population suisse tient plus à l’immigration (donc à l’attrait de la Suisse) qu’à
sa natalité. Le taux de fécondité est ainsi en constante diminution en Suisse, avec un
taux actuel de 1,55 enfants par femme contre 2,08 enfant/femme pour la France et 1,44
enfant/femme pour l’Allemagne. Le problème démographique de la Suisse est au cœur
des débats actuels sur le « mitage du territoire » et la régulation des flux migratoires.

Le second enjeu est de permettre le développement d’une activité économique et de
la qualité de vie tout en préservant le milieu naturel dans sa diversité et son étendue. La
Suisse fait partie des pays les plus riches du monde, avec un produit intérieur brut (PIB)
par habitant de 81 200 $. Elle occupe la quatrième position derrière le Luxembourg, la
Norvège, et le Qatar. Ces deux derniers devant la richesse nationale à leur sous-sol, on
mesure la performance de l’économie Suisse. Il y a presque un paradoxe à la situation
économique de la Suisse, qui doit contrebalancer de nombreux obstacles :

– éloignement de la mer ;
– pauvreté en ressources (minerais, agriculture) ;
– relief du pays, rendant le transport plus difficile et plus lent.

Selon les critères actuels de l’ONU, la Suisse de 1780 serait classée parmi les pays du
Tiers Monde. En dépit de cela, la Suisse est l’un des pays les plus riches et celui qui
investit le plus à l’étranger (par habitant). Elle a bénéficié d’un développement indus-
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Figure 1.1 – (a)
Densité de la
population
dans les pays
européens (la
Suisse est
indiquée en
rouge). (b)
Évolution de la
population en
Suisse depuis
1850 et
projection à
l’horizon 2050.

triel précoce. Vers 1830, la Suisse était le second pays le plus industrialisé (ramené
à sa population), derrière l’Angleterre et devant la Belgique, et loin devant les grands
pays continentaux que sont la France et les territoires allemands. Selon l’historien Jean-
François Bergier, il y a plusieurs explications à ce miracle économique (Bairoch, 1997;
Walter, 2016) :

– la précocité de l’emploi du coton dans l’industrie textile (alors que les autres
pays ont misé sur la sidérurgie) ;

– la disponibilité d’une main d’œuvre rurale à niveau d’éducation élevé ;
– la disponibilités de capitaux ;
– la nécessité d’exporter des produits manufacturés pour payer les importations

agricoles.

L’économie suisse s’est diversifiée : industrie du luxe (textile, horlogerie), machines de
précisions, électricité, tourisme. Elle a massivement investi ses capitaux à l’étranger et
a implanté des succursales à l’étranger (ce sont les premières multinationales), notam-
ment en Italie. Dès 1870, la Suisse passe de terre d’émigration à terre d’immigration.
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Le taux d’étrangers est de 29 % (contre 12 % pour l’UE) en 2015. Par exemple, la Suisse
a accueilli les huguenots français chassés après la révocation de l’édit de Nantes par
Louis XIV en 1685, le plus souvent des bourgeois et des artisans aisés qui jouèrent un
rôle-clé dans la transition économique de la Suisse du xviiie siècle. La Suisse a aussi
accueilli des entrepreneurs tels que Henri Nestlé (venant d’Allemagne) créateur de la
multinationale éponyme (deuxième plus grande entreprise suisse) ou plus récemment
Marc Rich (homme d’affaires américain qui a créé Glencore, la plus importante entre-
prise suisse). En termes de richesse produite, elle occupait la huitième place mondiale
en 1830 (en termes de PIB par habitant). En 1913, elle était à la troisième place.

Si la Suisse est un pays très riche, elle est un mauvais élève sur le plan écologique,
se plaçant en vingtième position en termes d’empreinte écologique (voir figure 1.2).
En novembre 2015, une émission de la RTS résumait la situation : « Si tous les êtres
humains vivaient comme un Suisse moyen, ce ne sont pas les ressources d’une, mais de
presque trois Terres qui seraient nécessaires pour subvenir à leurs besoins. » Quoique
le comportement des individus ne soit pas du ressort des politiques d’aménagement du
territoire, la préservation du patrimoine naturel est un point essentiel de ces politiques.

Figure 1.2 – Empreinte écologique des pays européens dont la Suisse. Source : RTS.

Le troisième enjeu est d’assurer une protection efficace contre les dangers naturels
(crues, séismes, etc.). Parmi les catastrophes qui ont touché la Suisse depuis 30 ans, il
faut indiquer que

– toutes sont d’origine naturelle ;
– la distribution de probabilité des coûts induits par ces catastrophes suit une loi

puissance P ∝ d−3/4 comme le montrent les figures 1.3 ;

http://www.rts.ch/info/suisse/7250250-la-suisse-dans-le-top-20-des-pays-a-plus-forte-empreinte-ecologique.html
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– en conséquence, il n’est pas possible de détermine un coût moyen d’une catas-
trophe, ce qui est un défi majeur pour les compagnies d’assurances et de réassu-
rance.

L’événement le plus coûteux été constitué par les inondations de 2009 (avec 2,1 mil-
liards de francs, soit 3 % du budget de la confédération). Des événements dépassant les
10 milliards de dommage sont certains sur le siècle à venir. La compilation des données
des assurances cantonales (voir 1.4) montre également un accroissement du coût des
dommages induits par les dangers naturels. Le volet « danger naturel » des politiques
d’aménagement du territoire est donc un point essentiel pour assurer la pérennité éco-
nomique du pays. En Suisse, seuls les risques industriel (effondrement de la capacité
de production et transport d’électricité, appelé encore blackout) et sanitaire (pandémie)
ont été identifiés comme plus significatifs en termes de dommages si on prend le siècle
comme échelle de temps (voir figure 1.5) (Hohl & Brem, 2015). La RevueMilitaire Suisse
avait consacré un numéro en 2018 sur les conséquences d’un blackout en Suisse ; si la
panne du réseau électrique ne pouvait être rapidement résolue, il y aurait un effet do-
mino conduisant à une situation de chaos et des émeutes dans le pays (Chambaz, 2018).

Figure 1.3 – (a)
Coût aux
assurances et
(b) Coût total
des dommages.
Source :
EMDAT.

http://www.emdat.be/disaster_list
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Figure 1.4 – Évolution du coût des dommages assurés par les assurances cantonales.
Source : ECA.

1.3 Définition et perception du risque

La perception du risque est cruciale (Lagadec, 2012). Pour lutter contre un risque,
encore faut-il en être conscient ! Cela appelle donc des procédures qui permettent d’iden-
tifier un risque, de le mesurer, et de définir des mesures de prévention si on estime que
le risque est trop grand. Si cette démarche peut sembler simple, elle se révèle en pra-
tique fort tortueuse. Citons quelques exemples de problèmes récents et posons-nous la
question de comment les risques sont perçus/ressentis/identifiés et comment ils sont
traités par les médias et les pouvoirs publics :

– risques environnementaux : plantation d’organismes génétiquement modifiés,
crise de la vache folle, grippe aviaire, pollution de l’air (ozone), du sol (nitrates),
des eaux (métaux lourds, composés chimiques, dérivés du pétrole), pluies acides ;

– risques industriels : explosion de l’usine AZF à Toulouse en 2001, incendie de la
plate-forme BP dans le golfe du Mexique en avril 2010 ;

– risques sanitaires : coronavirus, SIDA, hépatite, sang contaminé, amiante, effets
de la canicule de 2003, radon, antenne-relais de téléphonie mobile ;

– risques liés au transport : sécurité routière, accidents aériens comme l’avion d’Air
France en juin 2009 entre Rio de Janeiro et Paris ;

– risques climatiques : débat autour du réchauffement climatique ;
– risques sociaux : terrorisme, mouvements sociaux violents, guerre civile.

http://www.vkf.ch/
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Figure 1.5 – Diagramme des risques pour la Suisse. Représentation des risques de 27
scénarios pour lesquels une fréquence a pu être estimée. Plus un scénario se situe en
haut à droite, plus élevé est le risque associé. Les dommages sont composés des indica-
teurs de dommages agrégés et sont traduits sous forme monétaire. Les menaces d’ori-
gine naturelle sont représentées en vert, celles d’origine technique en bleu et celles
d’origine sociétale en orange. Source : Office fédéral de la protection de la population
(OFPP).

1.3.1 Définition du risque

Les mots risque, risk, Risiko, rischio, et riesgo employés en français, anglais, alle-
mand, italien, ou espagnol dérivent tous du bas latin risicum (ou resicum), un mot qui
apparaît au xiie siècle dans des documents contractuels pour désigner les dangers aux-
quels étaient exposés les navires marchands italiens (Piron, 2004) ; le sens est alors
voisin de « mauvaise fortune ». Le vocabulaire s’est enrichi à partir du xviiie siècle
avec d’autres nuances autour du thème « risque » telles que périple, danger, sinistre,
fléau, désastre, vulnérabilité, résilience, etc. en français (hazard, disaster, vulnerability,
resilience en anglais).

Pour l’ingénieur 2, le risque se définit et se mesure. Le problème est qu’on ne s’en-

2. C’est évidemment une vision un peu simplificatrice que dénoncent le sociologue et l’his-
torien des risques (Borraz, 2007).

https://www.babs.admin.ch/fr/aufgabenbabs/gefaehrdrisiken.html
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tend toujours pas sur ce que le mot risque veut dire. Le dictionnaire Littré le définit
ainsi

« Étymologie : a. italien risco, risque, prob. du latin resecum, objet cou-
pant, écueil, d’où risque encouru par les navires, de resecare, couper

« Rise, n.m. Péril dans lequel entre l’idée de hasard. « Encoremême
qu’on ne coure nul risque de la vie », Pascal. »

Le Larousse définit le risque ainsi

« Rise, n. m. (ital. risco). 1. Danger, inconvénient plus ou moins
probable auquel on est exposé. ♢ À risque(s) : prédisposé à certains in-
convénients ; exposé à un danger, à une perte, à un échec ; qui présente
un danger. 2. Préjudice, sinistre éventuel que les compagnies d’assurance
garantissent moyennant le paiement d’une prime. »

La mesure du risque est tout aussi problématique. Dans bien des domaines, le risque
est défini comme

risque = fréquence/probabilité potentielle d’occurrence×intensité/sévérité du risque,

alors que d’autres le définissent plutôt comme

risque = vulnérabilité de l’objet× intensité du risque× fréquence du phénomène.

Dans des systèmes plus complexes (systèmes industriels par exemple), le risque
global résulte d’une multitude de facteurs et il est donc nécessaire de généraliser la
notion de risque en considérant le risque associé à des actions/événements individuels

risque =
∑

probabilité de l’événement× son intensité × facteur de pondération.

1.3.2 Subjectivité du risque

Le risque est subjectif ou plus exactement, nous avons une perception subjective du
risque. Chacun de nous a une conscience plus ou moins aiguisée du risque qu’il prend
ou bien auquel il est soumis. Cette prise de conscience est plus ou moins une bonne
représentation du risque réel. La perception du risque est fonction du contexte socio-
économique dans lequel nous évoluons, du caractère propre des individus (aversion ou
amour du risque), et de la représentation dans les médias et l’opinion publique.

C’est ainsi qu’assez étrangement, les enquêtes d’opinions montrent que dans les
pays occidentaux, les personnes interrogées considèrent que nous sommes soumis à
un risque croissant ; par exemple, aux États-Unis, 78 % des personnes sondées pensent
que le niveau général de risque a fortement augmenté au cours des 20 dernières années
(Wilson & Crouch, 2001). Pourtant, l’espérance de vie dans les pays occidentaux est en
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forte augmentation depuis 1945. La figure montre l’évolution de l’espérance de vie en
Suisse depuis 1880 : on y voit une augmentation à peu près linéaire sur 130 ans, qui a
amené l’espérance de vie de 40 à 80 ans. Une évolution similaire existe dans les pays
européens et en Amérique du Nord. Le tableau 1.1 montre l’évolution au cours de la
dernière décennie pour quelques pays de l’Union Européenne et la Suisse ; là encore,
les progrès sont réguliers.

Figure 1.6 – Évolution de l’espérance de vie en Suisse depuis 1880 d’après le site de
l’office fédéral de la statistique. www.bfs.admin.ch. Voir aussi(Robine & Paccaud, 2004).

Tableau 1.1 – Évolution de l’espérance de vie (à la naissance) au sein de la zone Euro (16
pays) pour les deux sexes, en Allemagne, France, Royaume-Uni (R-U), Italie, et Suisse.
Source : Eurostat.

1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021
Zone euro 78,38 78,96 79,00 79,83 80,55 80,1 81,4 81,7 81,6 82,0 82,4 81,6
Allemagne 78,05 78,62 78,63 79,43 80,09 80,3 80,6 80,6 80,7 81,1 81,3 80,8

France 78,88 79,25 79,28 80,34 81,29 81,6 81,9 82,4 82,4 82,8 83,0 82,4
Italie 79,60 80,20 80,03 80,92 81,57 82,1 82,4 82,9 82,7 83,1 83,6 82,7
R-U 77,48 78,24 78,40 79,17 79,84 80,5 80,4 81,1 81,0 81,3 81,3

Suisse 79,87 80,45 80,69 81,45 82,03 82,3 82,8 82,9 83,0 83,7 84,0 83,9

Dans un rapport de 2006 sur la perception du terrorisme en Europe, un sondage
révèle que 67 % des Européens considéraient que le terrorisme international était une
menace très importante et croissante pour la sécurité de l’Europe (Collectif, 2006). Dans

http://www.bfs.admin.ch/bfs/portal/fr/index/themen/01/06/blank/dos/la_mortalite_en_suisse/tabl04.html
https://ec.europa.eu/eurostat/databrowser/view/tps00205/default/table?lang=en
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ce même sondage, les armes de destruction massive (nucléaires, chimiques, bactériolo-
giques) et la montée de l’extrémisme musulman sont citées par plus de 60 % des per-
sonnes interrogées comme des risques très importants. La même étude montrait que
cependant, le risque lié au terrorisme n’avait jamais été aussi faible dans les pays occi-
dentaux et le nombre de victimes du terrorisme avait diminué 3. La figure 1.7 montre
l’évolution du nombre de victimes dans le monde depuis 1970. En Europe (hors Russie),
le taux de décès par attentat terroriste est de 0,65 par million d’habitants en moyenne
pour la décennie 2005–2015, un chiffre à comparer par exemple avec le taux de suicide,
qui est pour l’Union Européenne de 110 par million d’habitants (130 pour la Suisse). Si
le risque lié au terrorisme est sans doute l’un des risques les plus faibles pour les socié-
tés occidentales, il est l’un des plus sur-représentés et médiatisés. Il est intéressant de
noter que c’est le risque qui a induit la plus coûteuse politique de prévention puisque,
par exemple, la seconde guerre d’Irak (mars à avril 2003) qui a été motivée pour préve-
nir le risque terroriste aurait coûté plus de 2000 milliards de dollars (Bilmes & Stiglitz,
2006).

Régulièrement dans les médias, des crimes atroces commis sur des enfants ou des
personnes âgées suscitent toujours un grand émoi. Comme pour le terrorisme, nom-
breux sont ceux qui considèrent que notre société est de plus en plus violente. Pourtant,
en ce qui concerne les violences graves sur les personnes, le nombre de victimes d’homi-
cide a fortement diminué depuis le début de siècle, et la diminution continue mais à un
taux moindre depuis les années 1980 : pour la France ou la Suisse, le taux d’homicides
était de voisin 2 pour 105 habitants au début des années 1980 contre 1 à la fin des an-
nées 2000 (source : Institut national des hautes études de la sécurité et de la justice).
Aux États-Unis, le taux d’homicides varie entre 5 et 10 victimes pour 105 habitants. Si
on compare aux autres causes de décès (voir 1.2), on voit que la criminalité représente
0,1 % des causes de décès en Suisse.

3. Au cours de la décennie 2000–2010, on retient : les attentats du 11 septembre 2001 à New
York et Washington (2976 victimes), ceux du 11 mars 2004 à Madrid (191 victimes), ceux du 7
juillet 2005 à Londres (56 morts) et la double attaque du 22 juillet 2011 à Oslo (77 morts). À ces
attaques dues à des extrémistes s’ajoute une multitude de petits attentats le plus souvent sans
victimes, dus aux séparatistes et à des mouvements anarchistes ou d’extrême droite. On peut
se reporter au rapport annuel du Conseil de l’Europe pour le détail dans l’Union européenne.
Toutefois, à partir des années 2000, les actes terroristes ont été plus nombreux et violents en
Europe : Mohammed Merah tue 7 personnes en 2012 à Toulouse, les attentats de janvier 2015
font 17 morts en région parisienne (dont 12 pour le journal satirique Charlie Hebdo), ceux de
novembre 2015 frappant le cœur de Paris causent la mort de 130 personnes. Puis on déplore
32 morts en mars 2016 à Bruxelles, 86 morts à Nice en juillet 2016 (attentat au camion fou),
12 morts à Berlin en décembre 2016, 5 et 7 morts à Londres en mars et juin 2017, 13 morts à
Barcelone en août 2017.

https://inhesj.fr/sites/default/files/ondrp_files/publications/pdf/flashcrim2.pdf
http://www.consilium.europa.eu/uedocs/cmsUpload/TE-SAT 202010.pdf
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Figure 1.7 – Évolution du nombre de victimes d’actes terroristes dans le monde depuis
1970. Source : ourworldindata.org.

Figure 1.8 – Évolution du nombre de victimes d’homicide (taux d’homicides pour
100 000 habitants en Europe depuis le Moyen Âge. Source : ourworldindata.org.

https://ourworldindata.org/terrorism
https://ourworldindata.org/homicides
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Tableau 1.2 – Taux de mortalité en Suisse (pour cent mille habitants) : cause acciden-
telle et principales maladies en 2015. Les causes criminelles (homicides, actes de ter-
rorisme) ne sont pas reportées. Sources : Office fédéral de la statistique et Bureau de
prévention des accidents.

Causes Hommes Femmes
Maladies infectieuses 6,9 4,4

Tumeurs 163,7 106,4
intestin 10,4 6,8

   poumons 36,3 18,3
   sein 0,1 20,3

Diabète sucré 10,1 6,6
Démence 29,1 35,3

Appareil circulatoire 154,5 103,7
Appareil respiratoire 36,7 22,6
Cirrhose alcoolique 6,5 2,5

Accidents et morts violentes 48,3 33,1
circulation routière 4,2 1,5

sport 3,2 0,6
habitat, loisir 24,3 25,3

   suicides 16,6 5,7

toutes causes 1003 682

1.3.3 Le risque comme construction sociale

Dès les années 1970, anthropologues, historiens, géographes, et sociologues se sont
intéressés à la prise de conscience du risque par les sociétés humaines (Nelkin, 1989;
Jasanoff, 1998; Renn, 1998; Cœur et al., 1998; Pigeon, 2002; Favier, 2007; Granet-Abisset,
2012). Un des points forts est la convergence des analyses pour montrer que la percep-
tion du risque ou sa gestion n’est pas un fait de nos sociétés, mais qu’au contraire toutes
les sociétés ont leur propre représentation du risque. Ces analyses contrastent donc
avec d’autres théories, qui considèrent la perception du risque comme une construc-
tion mentale/comportementale (le risque comme possibilité de perte ou de dommage)
(Tversky & Kahneman, 1991) ou technique (le risque calculable) (Beck, 2008). Pour
reprendre les mots de l’anthropologue américaine Mary Douglas, le risque est une
« construction sociale » (Douglas, 1986).

Les analyses des sociologues cherchent aussi à battre en brèche la dichotomie faite
entre sociétés anciennes et sociétésmodernes : les sociétés anciennes seraientmarquées
par la superstition et la fatalité, ne voyant dans les catastrophes que le signe de la vo-
lonté divine tandis que les sociétés modernes auraient une approche rationnelle déve-

https://www.bfs.admin.ch/bfs/fr/home/statistiques/sante/etat-sante/mortalite-causes-deces/specifiques.html
https://www.bfu.ch/fr/Documents/04_Forschung-und-Statistik/02_Statistik/2018/PDF/F_UNB.T.10.pdf
https://www.bfu.ch/fr/Documents/04_Forschung-und-Statistik/02_Statistik/2018/PDF/F_UNB.T.10.pdf
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loppant des outils scientifiques d’analyse et en mettant en œuvre des techniques de
prévention et de lutte contre les forces naturelles. Selon les sociologues, les anciens
percevaient souvent la survenue d’une catastrophe comme un message divin (une pu-
nition ou un avertissement qu’il convenait de déchiffrer) quand il y avait transgression
de règles morales ou sociales ; la catastrophe est donc une manifestation divine qui
pointe un égarement, un écart de conduite d’individus ou de la collectivité dans son
entier. Les modernes voient la catastrophe naturelle comme un dysfonctionnement,
une erreur humaine, un défaut d’attention, un manque d’anticipation, le non-respect
de normes, mais dans la plupart des cas de figure, il s’agit de la transgression d’une
norme. De ce point de vue, la perception des risques et des causes de catastrophes a
changé de centre de gravité (de l’origine divine à la cause naturelle ou l’erreur humaine),
mais elle repose toujours sur l’idée que c’est une erreur/trangression (plus que de la fa-
talité) qui est la cause des dommages. Dans son étude sur les rapports de l’homme aux
catastrophes, l’historien François Walter notait que « la plupart des auteurs dessinent
une ligne de partage entre le traitement irrationnel des désastres caractéristique des
sociétés anciennes et une gestion mesurée et scientifique dévolue aux modernes. (…)
il convient de réagir à toute forme d’infantilisation généralisée des sociétés du passé »
(Walter, 2008). Il résumait ainsi l’évolution de la construction du risque :

« Ces nombreuses réflexions stimulantes ont permis d’échapper à
l’emprise d’unmodèle téléologique enchaînant des étapes chronologiques
réductionnistes. Celles-ci se contentaient un peu vite du passage d’une
société de la fatalité à une société de la sécurité ; de l’arrachement pro-
gressif au poids de la nature et de la confrontation inéluctable à un autre
danger bien plus grand, l’homme lui-même. Il est parfaitement réduc-
teur de s’en tenir à « trois phases distinctes » qui scanderaient l’histoire.
La première serait celle de la punition et de la vengeance divines ; la se-
conde, de type fataliste, aboutirait avec les Lumières ; la troisième incri-
minerait la responsabilité humaine avec une évolution allant d’explica-
tions univoques (la recherche du bouc émissaire) vers des explications
plurivoques. Pour pédagogique qu’elle soit et si elle n’est pas totalement
fausse, cette chronologie mérite révision et affinement. En réalité, les tem-
poralités sont beaucoup plus imbriquées. Étudier la catastrophe à partir
des catégories construites par chaque société en son temps, déterminer la
pluralité des discours et différencier les types d’acteurs, tels sont dès lors
les prémisses de toute recherche. Auxmultiples calamités, les sociétés ont
surtout tenté de conférer du sens. L’explication scientifique, le recours au
religieux, la sublimation esthétique, les différentes formes de fiction et de
mise en scène graphique sont autant de moyens culturels pour gérer la
catastrophe ou anticiper le risque. »

Certains sociologues et historiens vont encore plus loin dans leur analyse en avan-
çant que le risque sert la structuration sociale d’une société, en particulier pour les
sociétés occidentales modernes en asseyant le rôle de l’État et en assurant un pacte
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social à partir su xixe siècle. Il y a en effet un intérêt pour l’État de s’appuyer sur
une représentation rationnelle du risque, qui permette de promouvoir ou maintenir un
ordre social, notamment en imposant un certain modèle de gestion du territoire ou des
normes sanitaires ou sécuritaires où l’État se porte comme garant de la sécurité collec-
tive (Gros, 2012). Pouvoir expliquer la catastrophe, c’est pouvoir éviter le mouvement
de panique ou la défiance au sein des populations, qui au Moyen Âge a pu conduire à
des courants spontanés de révolte 4. C’est ainsi qu’au milieu du xixe siècle, les inonda-
tions n’étaient plus présentées comme la manifestation de la colère divine, mais comme
la conséquence d’une surexploitation des forêts de montagne (voir § 1.5.4). Il y avait
donc un coupable tout désigné : le paysan de montagne, responsable du surpâturage
et du déboisement des versants, donc responsable des crues. Cela a permis aux états
européens de mettre en place une politique de gestion du territoire et de prévention en
affirmant le rôle central des administrations étatiques et en se substituant aux autorités
locales (Walter, 2008).

Des anthropologues défendent même l’idée que le risque a une fonction sociale en
catégorisant la société en strates selon leur perception du risque (Renn, 1998). Ainsi
pour expliquer la variabilité de la perception du risque selon les individus, Douglas
(1986) développe une théorie culturelle du risque et distingue quatre groupes dans toute
société structurée :

– le premier groupe se caractérise par un fonctionnement hiérarchique et bureau-
cratique. L’appareil administratif en fournit l’image type. Ce groupe a pour but
la survie et stabilité du système social. La lutte contre les risques (lutte contre
les maladies, les catastrophes naturelles, etc.) permet d’imposer un contrôle sur
la société (gestion du territoire, régulation et surveillance des flux de population
ou de marchandises, politiques sanitaires comme les campagnes de vaccination
ou le traitement des eaux usées, etc.) et d’asseoir le rôle de l’État comme garant
de la sécurité des biens et des personnes. Pour les bureaucrates, la promulgation
de normes et règlements est une façon de lutter contre des menaces extérieures
tout en maintenant une cohésion interne ;

– le second valorise l’initiative personnelle, donc la prise de risque à l’échelle de
l’individu comme opportunité. Les entreprises en sont un exemple, mais dans
le domaine privé, les adeptes de sports à risque (alpinisme, navigation, etc.) en

4. Le Moyen Âge fut agité par divers mouvements sociaux : des mouvements religieux
comme le millénarisme qui interprétait les catastrophes comme autant de signes précurseurs
de l’Apocalypse et du retour du Christ, des révoltes paysannes remettant en cause l’ordre public
(révolte des Paysans dans le centre de l’Allemagne, avec le prêtre Thomas Münzer prêchant un
anarchisme chrétien au début du xvie siècle ou révolte des Paysans de John Ball à la fin du
xive siècle dans le sud de l’Angleterre), jacqueries contre les nobles et bourgeois (soulèvement
paysan survenu en 1358 dans le nord de la France ravagé par la Guerre de Cent Ans, « Carnaval
de Romans » de 1580 où un événement festif dégénéra en bain de sang avec pour toile de fond
le ressentiment accumulé entre classes sociales), Croisades d’enfants, des pâtres, et des gueux,
animées par des ermites comme Foulques de Neuilly, souvent partant du nord de l’Europe au
début du xiiie siècle.
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fournissent un autre exemple. Dans le premier cas, il y a opportunité d’un gain
financier ou d’un succès sur un marché compétitif alors que dans le second, il
s’agit plus d’un plaisir, le besoin de défi, ou la recherche d’une reconnaissance.
Dans tous les cas, ce groupe est hostile à une régulation excessive (par l’État ou
les collectivités) car cela réduit leur marge de manœuvre, leur potentiel de gain,
ou leur liberté d’action ;

– le troisième groupe regroupe tous les mouvements qui se définissent par leur
lutte contre quelque chose qui se révèle nuisible sur le long terme, par exemple
les écologistes contre les risques qui pèsent sur l’environnement du fait des acti-
vités humaines. Ce sont souvent des mouvements égalitaristes, qui misent sur la
coopération entre individus et l’équité pour promouvoir une société plus juste et
durable à leurs yeux. Ils s’opposent donc au second groupe, dont les valeurs sont
axées sur la liberté et la compétition entre individus. Ils peuvent aussi s’opposer
au premier groupe en se présentant comme une voie alternative de société. Le
risque est alors la raison d’être d’une association de moyens pour lutter contre
un ordre établi ;

– le quatrième regroupe ceux qui subissent et voient les choses avec fatalité. Le
risque est subi. Le risque est une composante, parmi d’autres, du milieu dans
lequel les gens évoluent. Il s’agit de la grande majorité de la population. Ils font
en général confiance dans la hiérarchie pour assurer leur protection. Ils ont une
vision confuse de la nature des risques et ne réagissent que lorsqu’ils sont concer-
nés directement par une menace particulière.

1.3.4 Risque acceptable, risque accepté

Le risque est dit acceptable quand il a été réduit à un niveau tolérable pour un (ou
des) individu(s) ou une entité. La notion de « tolérable » renvoie ici au fait que le ni-
veau de risque est consistant avec les autres risques auxquels l’individu ou l’entité est
soumis. On parle aussi de risque accepté pour désigner un risque auquel un individu
se soumet en toutes connaissances de cause. Par exemple, un skieur accepte le risque
d’avalanche dans sa pratique du ski hors des pistes, c’est-à-dire qu’il a conscience qu’un
accident d’avalanche peut survenir et que malgré cela, il s’engage dans une pente po-
tentiellement dangereuse.

Un risque peut être acceptable, mais il peut ne pas être accepté. Par exemple, si on
revient sur le cas des accidents d’avalanche impliquant des skieurs, on peut considérer
que le risque est faible par rapport à d’autres activités comme les sports nautiques (voir
tableau 1.3) donc acceptable de ce point de vue, mais il n’est pas accepté par tout un
chacun. En effet, chaque hiver les accidents d’avalanche provoquent des tollés et des
avis très tranchés sont exprimés dans les médias pour interdire ou réglementer le ski
hors-piste.
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Tableau 1.3 –Comparaison entre taux demortalité liés à des risques naturels (a) et ceux
dus à des accidents de la vie quotidienne (b), et à une pratique d’une activité sportive
(c) : nombre de victimes en moyenne par an pour 1 million d’habitants (a, b) ou de
pratiquants (c). Valeurs pour les pays occidentaux sur la période 1980–2008. Sources
diverses.

Nature Taux
(a) risque naturel :
– foudre 0,2
– crue 0,5
– avalanche 0,5− 4
(b) risque domestique :
– noyade 10–16
– overdose (drogue) 50–60
– suicide 100–200
– accident de la circulation 130–150
– accident domestique 110–330
– grippe 300–400
– tabac 3 000–5 000
(c) risque sportif :
– football 60
– ski 410
– alpinisme 600
– plongée 1 260
– nautisme 8 000

1.3.5 Mesures du risque

Toute évaluation objective du risque devrait se fonder sur une mesure du risque.
Une mesure courante du risque est de calculer un taux d’accidents, un nombre de
victimes, un montant de dommages de façon relative ou bien absolue. Si on prend
l’exemple de la sécurité routière, lamesure du risque se fait en comptabilisant le nombre
de victimes (décédées dans un intervalle de 30 jours après l’accident) de façon absolue
ou relativement à une autre grandeur représentative :

– le nombre de morts sur la route ;
– le nombre de morts par rapport à la population du pays ;
– le nombre de morts par rapport au nombre de kilomètres parcourus.

On pourrait tout aussi bien définir le risque « routier » en prenant le nombre d’acci-
dents, le nombre de blessés, ou les coûts humain et matériel. Le choix de la mesure du
risque n’est pas anodin car il conditionne l’interprétation des résultats qu’on en tire.
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Par exemple, une étude suédoise sur le cancer du sein a suivi 280 000 femmes
(Gigerenzer, 2003). Elle a montré que la mortalité des femmes âgées de plus 40 ans
était de 4 ‰sans dépistage du cancer, avec et 3 ‰avec dépistage. Qu’en conclure? Cela
semble militer en faveur d’une campagne massive de dépistage puisqu’elle permet une
réduction relative de 25 % de la mortalité. Toutefois, en chiffres absolus, la baisse n’est
que 1 ‰, et si l’on calcule le gain en termes d’espérance de vie pour une femme, il est
en moyenne de 12 jours, ce qui est équivalent à rouler 450 km en moins chaque année.
Interrogées sur le sujet, les femmes surestiment d’un facteur 60 le nombre de vie sau-
vées et se focalisent sur cette forme de cancer (il y a un risque quasi équiprobable de
cancer des poumons ou colorectal, deux formes plus meurtrières).

1.3.6 Risque et incertitude

Une autre notion intimement liée à la définition et à la mesure du risque est l’incerti-
tude. On dit qu’un phénomène est incertain lorsque :

– on a peu de connaissances sur le phénomène, ce qui empêche de le prévoir/décrire
finement. Par exemple, la quantité de pluie qui a déclenché une crue sur un bas-
sin versant peut être estimée, mais elle n’est pas connue parfaitement car on ne
peut faire des mesures de pluie qu’en nombre très limité de points du bassin-
versant. Incertitude signifie manque de connaissance ;

– le phénomène est aléatoire, c’est-à-dire il varie stochastiquement. La quantité
de pluie cumulée sur une année est une variable aléatoire ; on ne peut pas être
certain à l’avance de la quantité de pluie qu’il va tomber, mais si on dispose de
données suffisantes, on peut décrire les propriétés statistiques comme la pluie
moyenne annuelle ou la variance. Incertitude signifie variabilité ;

– le phénomène pourrait être décrit de façon déterministe, mais la description est
tellement complexe que l’on a intérêt à remplacer une connaissance complexe
par une connaissance incertaine, mais formulée simplement. La physique des
fluides offre de nombreux exemples : le mouvement brownien, la turbulence, etc.

Mesurer un risque lié à processus stochastique est – au moins sur le principe – rela-
tivement simple puisqu’une étude statistique des données permet de caractériser les
variations. L’incertitude porte principalement sur la prévision dans le temps car pour
le reste, on peut décrire plus ou moins finement ce qui peut se passer. Par exemple, le
cancer lié au tabac est un « risque stochastique » : on ne peut être certain qu’un fu-
meur développe un cancer et que le cas échéant, il en meurt, mais à partir d’une étude
médicale, on peut établir la probabilité que tel soit le cas au vu des caractéristiques
de ce fumeur ; renouvelant cette analyse sur l’ensemble de la société, on peut prédire
raisonnablement le nombre de gens qui vont décéder d’un cancer lié au tabagisme.

Mesurer un risque qui n’est pas lié à un phénomène stochastique est bien plus
délicat. Prenons le cas du risque climatique. L’évolution du climat n’est pas certaine,
mais des scénarios élaborés par les scientifiques à l’aide de modèles numériques, il
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apparaît fortement vraisemblable que les températures continuent de monter si rien
n’est fait, ce qui conduirait à un dérèglement climatique. Dans ce cas de figure, on ne
dispose pas de données et de connaissances pour mesurer le risque. Comment répondre
objectivement à la question « quel est le risque que la température moyenne annuelle
de la Terre augmente de 1 ℃ d’ici les dix prochaines années? ». Ici, le risque va traduire
le degré de plausibilité du scénario et il sera en pratique impossible de le confirmer ou
d’infirmer ce scénario même après que l’événement est survenu. Ainsi, toujours avec
notre question du risque climatique, s’il ne se passe rien, que peut-on en conclure?Que
les prévisions étaient fausses?Que l’on est dans la marge d’incertitude du phénomène?
Ou bien la politique de prévention mise en place par les états a été payante?

Une remarque utile concerne la différence entre incertitude et erreur. Là encore,
pas de consensus absolu et universel, mais plutôt une tendance : on parle d’erreur pour
désigner les imperfections/défaillances d’un modèle (erreur de précision numérique,
erreur liée à des hypothèses simplificatrices, etc.), d’un système (erreur de fonctionne-
ment due à une surchauffe), ou d’un protocole (erreur de mesure). L’erreur peut être
systématique et/ou aléatoire.

Un autre problème lié aux incertitudes est la validité du message que l’on souhaite
transmettre. Par exemple, la figure 1.9(a) montre une augmentation de 500 % du nombre
de jeunes filles victimes d’auto-mutilation aux États-Unis sur la période 2007–2020.
Cette augmentation est considérable et elle est bien plus marquée que pour d’autres
classes d’âge, ce qui a laissé penser qu’il y avait un problème spécifique urgent à ré-
gler pour cette catégorie d’adolescentes 5. Toutefois, si on prend en compte l’intervalle
de confiance, la conclusion est un peu moins nette, surtout si on cale un modèle. Par
exemple, un modèle linéaire ajusté sur les données acquises de 2001 à 2013 fournit la
tendance taux = 26,4 + 0,8(an − 2001), et cette tendance est quasiment entièrement
contenue dans l’intervalle de confiance à 95 %. Ce modèle accréditerait l’idée que le
nombre de jeunes victimes d’auto-mutilation n’a que peu varié au cours des dernières
années. En l’absence d’informations supplémentaires, notamment sur le calcul des don-
nées, il est difficile de conclure.

5. Voir par exemple l’exemple de l’analyse de Zach Rausch qui pointe les effets nocifs des
réseaux sociaux.

https://www.afterbabel.com/p/the-girls-are-not-alright-responses
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Figure 1.9 – Taux d’hospitalisation (pour 105 habitants) de jeunes filles âgées de 10
à 14 ans aux États-Unis, qui se seraient auto-mutilées. Source : US Center for Disease
Control and Prevention. (a) Valeurs moyennes. (b) Valeurs moyennes avec intervalle
de confiance à 95 % (bande orange). La courbe tiretée est la tendance linéaire calée sur
les données 2001–2013 : taux = 26,4 + 0,8(an− 2001).

https://www.cdc.gov/nchs/fastats/suicide.htm
https://www.cdc.gov/nchs/fastats/suicide.htm
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1.4 Politiques publiques de prévention

1.4.1 Typologie simplifiée des politiques de prévention

Plusieurs plans d’action peuvent être esquissés :

– la politique de l’interdiction : il s’agit d’une vision extrême, où l’on fait tout pour
réduire le risque à zéro en s’attaquant aux causes (présumées) du risque. Par
exemple, pour réduire le trou d’ozone et le risque climatique induit, les gouver-
nements de l’Union Européenne ont banni l’usage des gaz chlorofluorocarbones
(appelé gaz CFC) utilisés dans les systèmes de refroidissement et de climatisa-
tion (Protocole de Montréal de 1987). L’industrie les a donc substitués par des
gaz hydrochlorofluorocarbones (HCFC) et hydrofluorocarbones (HFC), qui ne
s’attaquent pas à l’ozone atmosphérique ; il s’est malheureusement avéré depuis
que ces gaz participent à l’effet de serre car leurs molécules sont jusqu’à 104 plus
efficaces que le dioxyde de carbone (McNeill, 2010).

– la politique du bon sens : c’est traditionnellement la politique employée le plus
fréquemment. Les risques ne sont pas niés, mais ne sont pas analysés de façon
poussée ; les décisions sont prises en « bon père de famille ». Ainsi, à la fin du
xixe siècle et au début du xxe siècle, on s’est rendu compte que l’ajout de chlore
dans l’eau permettait de la purifier et d’éviter la propagation de maladies in-
fectieuses comme la typhoïde dans les réseaux d’adduction d’eau des grandes
villes. La chlorination a donc été massivement pratiquée jusqu’à ce qu’on se
rende compte des effets induits négatifs (développement de composés cancéri-
gènes). Les études ultérieures menées à la fin du xxe siècle laissent penser que le
bénéfice induit par l’utilisation du chlore reste bien supérieur au risque de can-
cer qu’il induit et l’Organisation mondiale de la santé a préconisé son emploi, ce
qui justifie a posteriori le bien-fondé de cette politique de lutte contre les mala-
dies. Il existe des cas inverses où ce qui semblait être du bon sens à l’époque s’est
révélé être de piètre efficacité. Par exemple, longtemps la forêt a été vue comme
un moyen de protection par les forestiers européens pour lutter contre les crues
et les avalanches. C’est ainsi qu’à la fin du xixe siècle, l’ingénieur du génie ru-
ral Demontzey 6 préconisait l’« extinction des torrents par le reboisement ». Un
siècle plus tard, les études sur les effets globaux de la forêt sur la génération des
crues sur un grand bassin-versant ont montré que le risque n’avait été que fai-
blement atténué, voire parfois augmenté (problème des bois flottants) alors que

6. Prosper Demontzey (1831–1898) était un ingénieur des Eaux et Forêts français. Il a été
un artisan du reboisement comme moyen de lutte contre les crues torrentielles et l’érosion,
suivant en cela Alexandre Surell. Il s’est beaucoup intéressé à différentes techniques associant
génie civil et revégétalisation. Il est l’auteur de plusieurs études sur le reboisement et la sélection
des essences. Il a également l’un des premiers à comprendre la plus-value de la photographie
dans l’étude du paysage.
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le coût de la forêt de protection devenait de plus en plus élevé compte tenu de
sa fragilité et du coût croissant de la main d’œuvre (voir § 1.5.4).

– l’analyse risque-bénéfice et l’analyse multi-critère : c’est la procédure préconisée
par les spécialistes du risque. On cherche à optimiser le niveau de protection par
rapport à un ensemble de critères objectifs (le coût économique par exemple) ou
subjectifs (l’aversion du risque). Elle est pratiquée par les ingénieurs depuis fort
longtemps. Le naturaliste Lenoble (1926) dans son étude sur la prévention des
crues notait :

« Et puis, quand il s’agit de protéger une œuvre matérielle, la
raison commande de supputer le doit et l’avoir. Cette année même,
au cours d’une excursion dans la vallée de Saint-Gervais, mon pre-
mier mouvement fut de m’étonner de l’insouciance des hommes qui
ont installé, sur le Bon-Nant, au confluent du torrent de Bionnassay,
une usine électrique. En cas de renouvellements possible de la catas-
trophe de 1892, elle sera balayée. Et cependant, en réfléchissant, je
dus reconnaître que les ingénieurs ont été de sages calculateurs. En
effet, la probabilité est qu’une nouvelle poche d’eau ne se formera,
si l’on s’en rapporte au passé, que dans les quelques centaines d’an-
nées, dans plusieurs milliers peut-être ; on a donc la quasi-certitude
d’amortir l’usine bien auparavant, et le quantum de la provision à
introduire de ce fait au bilan est insignifiant. La mauvaise affaire se-
rait précisément d’engager, dans la vallée du torrent de Bionnassay,
des dépenses considérables en boisement ou barrages dont l’amor-
tissement et l’entretien annuel dépasseraient de loin la valeur du
risque, sans qu’on soit sûr de le supprimer. »

La difficulté vient de la technicité croissante de l’analyse, qui peut rendre les ré-
sultats difficilement compréhensibles par les décideurs ou les populations, voire
induire de la défiance. Parmi les critères objectifs, l’estimation du coût écono-
mique (coût de la protection et estimation des dommages et des vies humaines
en cas de problème) reste un exercice difficile. Comment évaluer le prix d’une
vie humaine? L’analyse coûts-bénéfices est celle qui est recommandée par le
ministère de l’environnement pour la gestion du risque d’inondations. Ainsi, le
Centre Européen de Prévention et de gestion des Risques d’Inondation indique
(CEPRI, 2011) :

« Les analyses économiques du risque d’inondation sont restées
relativement peu nombreuses en France jusqu’à ces dernières an-
nées. Le manque de méthodologies, de données facilement acces-
sibles, le tout en lien avec une absence d’obligation réglementaire, a
pu en être partiellement la cause et freiner le développement d’une
culture de l’évaluation et la constitution d’un savoir-faire français
en la matière tandis que nos voisins européens (le Royaume-Uni,
la Suisse, l’Allemagne notamment) prenaient vigoureusement cette
voie. Cependant, la nécessité d’éclairer les décisions, d’asseoir les
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argumentaires, de mieux connaître la réalité des impacts des inon-
dations et de hiérarchiser l’action en matière de gestion du risque
d’inondation a, dans un contexte de resserrement budgétaire géné-
ralisé, mis en lumière la nécessité de recourir davantage aux ap-
proches économiques et en particulier aux analyses coût/bénéfice
(ACB). Celles-ci sont désormais de plus en plus incontournables pour
prétendre à l’octroi de subventions de l’État ou de l’Europe (FEDER).
C’est en particulier le cas des projets PAPI (Programme d’action de
prévention des inondations) qui doivent répondre au cahier des char-
ges de février 2011 pour les mesures dites structurelles c’est-à-dire
qui ont un impact sur l’aléa. Ainsi, « les projets candidats à la label-
lisation PAPI devront nécessairement procéder à l’analyse des coûts
du programme au regard de ses bénéfices attendus et fournir les
résultats de cette analyse. Pour les actions d’investissement impor-
tantes (25 % du montant total du programme ou montant global des
travaux ou aménagement supérieur à 2 Me), des analyses coût bé-
néfice sont à réaliser. Le Ministère en charge du Développement du-
rable (MEDDTL) entend induire une évolution notable de la manière
de concevoir et de justifier des mesures de réduction du risque. »

– le principe de précaution : à partir des années 1990, le recours au « principe de pré-
caution » est devenu de plus en plus fréquent dans les politiques publiques, no-
tamment dans la gestion de la crise de la « vache folle » ou d’accidentsmarquants
comme le crash du Concorde en 2000. Au printemps 2010, après l’éruption du
volcan islandais Eyjafjallajöll, les autorités européennes interdirent les vols ci-
vils pendant plusieurs jours en évoquant le principe de précaution, ce qui causa
des pertes évaluées à plus de 4 milliards de francs aux compagnies aériennes.
Défendu par les uns comme un principe de bon sens en l’absence de données,
attaqué par les autres comme une dérobade, un concept plus dangereux que les
risques dont il est censé nous prémunir, ou le « moteur de l’inaction », le prin-
cipe de précaution est devenu l’argument majeur des politiques européennes
chaque fois qu’un risque n’est pas lié à un processus stochastique, mais traduit
l’absence de connaissances. Le 15ième principe de la Déclaration de Rio énonce :

« L’absence de certitudes, compte tenu des connaissances scien-
tifiques et techniques du moment, ne doit pas retarder l’adoption
de mesures effectives et proportionnées visant à prévenir un risque
de dommages graves et irréversibles à l’environnement à un coût
économiquement acceptable. »

Ce principe a été repris en France dans la loi de 1995 relative au renforcement
de la protection de l’environnement. Le principe de précaution s’intercale donc
entre la politique maximaliste du « risque zéro », qui n’est pas tenable en pra-
tique, et la vision minimaliste du risque calculable et prévisible en obligeant à
prendre en considération des risques incertains, mais possibles sur la base des
connaissances actuelles (Montain-Domenach, 2005). La Suisse s’est alignée sur
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la position de l’Union Européenne qui a fixé les critères d’application du prin-
cipe de précaution. Un groupe de travail réuni par l’Office fédéral de la santé
publique énonçait les règles suivantes :

« L’acception suisse du principe de précaution au sens strict est
similaire à celle de l’Union Européenne, telle que définie dans la com-
munication de la Commission du 2.2.2000. Elle peut être résumée
comme suit :

« Si des dommages graves et irréversibles menacent la santé de
l’homme, des animaux ou des plantes ou l’environnement, l’absence
de certitude scientifique quant au rapport de cause à effet d’un pro-
duit ou d’un processus ne doit pas retarder l’adoption de mesures de
protection. Le recours au principe de précaution suppose que deux
critères « si » soient satisfaits (dans quels cas y a-t-il application) :
1. Il s’agit d’un intérêt public prépondérant ;
2. Il existe de premiers indices scientifiques révélant des dommages

graves ou irréversibles ou tout aumoins une hypothèse du risque
scientifiquement plausible.»

Tableau 1.4 – Sommes remboursées par les assurances cantonales suisses pour la dé-
cennie 1999–2008 en millions de CHF (pour les 19 cantons pour lesquels l’assurance
via le VKF est obligatoire). Source : Vereinigung der kantonalen Feuerversicherungen
(www.vkf.ch).

Nature Montant total (MCHF) Part relative (%)
tempête 869,3 26,8
grêle 728,4 22,4
inondation 1474,7 45,4
avalanche 138,9 4,3
éboulement 35,2 1,1

1.4.2 Gestion intégrée des risques

Longtemps la lutte contre les risques s’est faite de façon isolée et dans l’espoir de
supprimer les problèmes. Au fil des années, il est apparu que cette approche pouvait
causer plus de problèmes qu’elle n’en résolvait. Par exemple, la construction des digues
de protection contre les crues a posé des problèmes sur le long terme dans le transfert
des sédiments (causant aggradation et dégradation dans les cours d’eau) ou dans la bio-
diversité. Dans la gestion des risques hydrologiques, il faut souvent travailler à l’échelle
du bassin-versant, et non plus chercher à se protéger localement contre les crues (Lane,

http://www.who.int/entity/ifcs/documents/forums/forum5/synthesepaper_precaution_ch_fr.pdf
http://www.vkf.ch
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2017). Cette gestion globale nécessite une approche multidisciplinaire (écologie, hydro-
logie, hydraulique, urbanisme, aménagement du territoire, alerte et organisation des
secours.

De nos jours, on tend à favoriser une approche globale de la gestion du risque.
Cette approche a notamment mis en avant à travers des conférences internationales
organisées par l’Organisation des Nations Unies pour améliorer la résilience des so-
ciétés humaines (conférence de Sendai au Japon en 2015). En Suisse, la plate-forme
interdisciplinaire Planat définit ainsi la gestion intégrée des risques :

« Les éléments suivants jouent un rôle essentiel dans la gestion inté-
grée des dangers naturels :
«– Recenser et évaluer les risques : les risques liés à tous les processus

naturels dangereux sont recensés et évalués périodiquement.
«– Agir de manière uniforme : les niveaux de sécurité devant être at-

teints sont toujours fixés conjointement en suivant une procédure
homogène.

«– Tenir compte des conditions-cadre : les entités qui portent une res-
ponsabilité ou un risque se réfèrent aux recommandations régissant
le niveau de sécurité devant être atteint. Mais elles considèrent éga-
lement le contexte local et les attentes d’autres domaines.

«– Exploiter les possibilités d’action : toutes les options envisageables
pour améliorer et maintenir la sécurité sont évaluées. Elles com-
prennent des me-sures d’aménagement du territoire ainsi qu’orga-
nisationnelles, biologiques et techniques. Ces mesures sont combi-
nées de manière optimale dans le cadre d’une planification intégrée
et examinées sous les angles de leur effet, de leur utilité, de leur coût
et de leur proportionnalité. Les synergies possibles avec d’autres
tâches et le degré d’acceptabilité des risques résiduels jouent aussi
un rôle décisif dans le choix des variantes et dans la décision d’ap-
pliquer des mesures. Les ouvrages de protection sont entretenus et
leur efficacité est vérifiée périodiquement.

«– Tenir compte des incertitudes : les incertitudes sont nommées, quan-
tifiées autant que possible, signalées et prises en compte dans les
décisions.

«– Peser les intérêts et poser des priorités : les décisions concernant
la réalisation de mesures définissent à quel point les risques seront
évités, atténués ou acceptés. Cela présuppose une pesée des inté-
rêts et des solutions envisageables ainsi qu’une justification fondée
des décisions en découlant, car la solution optimale dans l’ensemble
n’est pas toujours la meilleure vis-à-vis de chacun des aspects.»

http://www.planat.ch/fileadmin/PLANAT/Strategie2018/Strategie_fr.pdf
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1.4.3 Risque et degré de complexité

Les sociétésmodernes ont cherché à améliorer leur résilience, c’est-à-dire leur capa-
cité à surmonter les catastrophes naturelles par des moyens technologiques et des régle-
mentations toujours plus pointues. Cette recherche d’une meilleure résistance entraîne
la mise en place de systèmes de plus en plus complexes et onéreux. Le problème n’est
pas propre à la lutte contre les dangers naturels. Le grand patron américain Norman
Augustine (patron du géant de la défense américaine Lockheed Martin) dénonçait la
montée en spirale des coûts de la défense. Il énonçait sa loi (voir figure 1.10) :

« In the year 2054, the entire defence budget will purchase just one
aircraft. This aircraft will have to be shared by the Air Force and Navy 3.5
days each per week except for leap year, when it will be made available
to the Marines for the extra day. »

Figure 1.10 – Évolution du coût des avions militaires achetés par le Pentagone.

Dans le domaine des dangers naturels, on peut citer l’accroissement considérable
des coûts de la lutte contre les avalanches. Ainsi, en ce qui concerne le déclenchement
préventif, les domaines skiables ont longtemps procédé par des purges à l’explosif. Le
coût était de quelques dizaines de francs (explosif, détonateur, personnel) et ne néces-
sitait aucun investissement. De nos jours, des outils tels que le gazex (détonation d’un
mélange d’oxygène et de propane, voir chap. 3) sont couramment employés. Ils néces-
sitent un investissement conséquent (de l’ordre de 100 kCHF par point de tir au gazex,
50 kCHF au catex) sans compter leur maintenance ultérieure. Leur efficacité n’est guère
meilleure que de l’explosif, mais ils offrent plus de confort, de rapidité, et de sécurité. La
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lutte contre les avalanches dans les stations de ski a connu une augmentation continue
de ses coûts et un degré croissant de complexité.

Cette croissance dans la complexité des techniques se voit également dans le flux
croissant d’informations constant. Par exemple, si l’on reste dans le domaine des ava-
lanches, on voit que la production d’articles scientifiques recensés par l’Institute for
Scientific Information (base de données : web of knowledge) a crû d’un facteur 100
entre 1970 et 2010 (voir figure 1.11), ce qui ne veut pas dire que nos connaissance se
sont accrues dans lesmêmes proportions. La qualité de l’information est inégale, parfois
redondante, parfois contradictoire. Dans tous les cas, un tel flux d’informations rend
difficile tout suivi exhaustif de la production scientifique. Il tend aussi à cloisonner les
scientifiques et les ingénieurs dans des domaines de plus en plus spécialisés.
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Figure 1.11 – Évolution du nombre d’articles référencés dans Web of Science avec le
mot-clé : « snow avalanche ».

1.4.4 Expliciter le risque aux populations et aux décideurs

Expert, public, décideur

Pour analyser le risque, proposer aux décideurs politiques des stratégies de lutte, et
faire accepter ou négocier avec les acteurs locaux impliqués, il y a nécessairement une
base scientifique et technique importante, mais également des aspects sociologiques,
dont l’importance n’est pas moindre. Un biais assez systématique dans notre approche
technique du risque est de considérer que le public est généralement ignorant, mal
informé, ou sous l’emprise de croyances irrationnelles. Le sociologue Claude Gilbert
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dénonçait ainsi le « présupposé de l’irrationalité du public (déterminé par ses percep-
tions, soumis à ses peurs…) et donc celui de la rationalité des décideurs, des experts,
etc. (avec, en arrière-plan, l’opposition entre risques objectifs et risques subjectifs) »
(Gilbert, 2008). Ce clivage entre, d’une part, le cercle des sachants (les experts, les dé-
cideurs) et, d’autre part, le public se retrouve dans la mise en opposition entre anciens
et modernes.

Prenons l’exemple d’un zonage d’un secteur soumis à un risque de crue ; que pen-
ser de la confrontation entre un ingénieur hydraulicien, qui arrive avec ses calculs et
son analyse, et le riverain, qui a accumulé des décennies d’observations et formule éga-
lement un avis sur l’origine et le déroulement des crues? Qui est l’expert ? L’ingénieur
qui calcule la crue ou le riverain qui la vit ? Lorsque les deux arrivent à des vues di-
vergentes, il est commun pour l’ingénieur de balayer les dires de son contradicteur en
mettant en avant le poids de la science.

Le point de vue inverse, à savoir l’excessive défiance vis-à-vis des scientifiques, est
un phénomène inquiétant. Un exemple est fourni par les commentaires d’un profes-
seur de médecine, Claude Got, qui s’est beaucoup investi dans la prévention routière
en France. Il déclare sur son site « la banalité de l’acte de conduire (…) facilite une
prise de parole sans fondement scientifique. Les conducteurs « savent » pourquoi les
accidents se produisent et ils en tirent facilement des certitudes quant aux méthodes à
mettre en œuvre pour les prévenir. » Dans son livre «The Death of Expertise », l’expert
américain en relations internationales Thomas Nichols constate également la défiance
grandissante entre citoyens et experts : « These are dangerous times. Never have so
many people had access to so much knowledge, and yet been so resistant to learning
anything. » Il en pointe les causes variées : (i) une société moderne qui renforce l’ego
des individus, (ii) l’effet Dunning–Kruger (plus on est incompétent, plus on a de certi-
tudes que l’on est compétent), (iii) les travers des universités actuelles, où l’éducation
de masse a produit une marchandisation du savoir, (iv) une information facilement
accessible et en profusion sur internet, sans gage de qualité, (v) l’effondrement du jour-
nalisme d’investigation, surtout dans la presse écrite, et (vi) diatribes contre l’expertise
scientifique relayées médias et des politiciens (Nichols, 2017). Sur le même sujet, Harry
Collins et Dave Levitan montrent comment la sphère politique s’est emparée de cer-
tains sujets techniques, tout en décrédibilisant les scientifiques du domaine (Collins,
2014; Levitan, 2017) ; le réchauffement climatique en offre un example saisissant. Les
sociologues du risque et des mouvements sociaux pointent la maladresse des acteurs
dominants de la scène du risque. Une position que Michel Callon résume ainsi (Callon
et al., 2001, pp. 49–53) :

« les controverses socio-techniques (…) sont fréquemment perçues
comme la conséquence d’un déficit de communication et d’information :
le savant ou le politique n’ont pas voulu (ou ils n’ont pas réussi à) se faire
comprendre du citoyen ordinaire. Au mieux, elles seraient une perte de
temps dont on aurait pu faire l’économie, au pire elles seraient la consé-
quence difficilement évitable de l’état d’arriération intellectuelle d’un peuple

http://www.securite-routiere.org/desinformation/desinformation.htm
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qui a besoin d’être guidé en permanence. (…)
« L’expertise savante comme le volontarisme politique, lorsqu’ils pren-

nent la forme d’un discours d’autorité, échouent aux interrogations des
citoyens concernés. Toute tentative pour ignorer la fécondité des disputes,
pour réduire les débats à de simples formalités ou pour les corseter dans
des procédures aussi stériles qu’obligatoires se retourne tôt ou tard contre
ceux qui prétendent « connaître la chanson » et se vantent de ne rien
ignorer de l’art de « tirer les ficelles ». (…)

« On peut dire que la controverse enrichit le sens d’une situation. En
effet, tous les grands projets d’aménagement ou de réforme sociale pour-
suivent des objectifs précis mais partiels. Ils répondent à des besoins ou
à des demandes, jugés légitimes, qui peuvent être ceux d’une agence ou
d’un organisme publics cherchant à étendre ou à renouveler leur champ
d’action (modernisation des moyens de transport, résolution du problème
des déchets nucléaires ou encore élargissement des politiques de lutte
contre les stupéfiants) (…). La délimitation et la formulation initiales de
ces besoins s’accomplissent généralement dans des cercles fermés (ca-
binets politiques, administrations centrales, directions d’entreprises pu-
bliques, etc.). Mais un tel confinement ne peut être durable. Tout pro-
cessus de décision exige un travail d’ouverture, de décision, ne serait-ce
qu’en raison de la nécessité de mobiliser les acteurs qui permettront de
faire aboutir le projet. »

Pour l’ingénieur, comme pour le médecin ou le décideur politique, il est donc tou-
jours tentant de s’abriter derrière la rationalité de sa démarche et d’arguer de l’irrationa-
lité du public pour imposer ses vues. Il est clair que la pratique expose à la rencontre
d’un grand nombre de personnes, dont le discours est soit très bancal, soit très par-
tial, et qu’en conséquence, le praticien a tendance à balayer toute objection à son ana-
lyse. Cependant, les erreurs d’appréciation des « experts » sont tellement nombreuses
qu’elles ont, dans lemême temps, conduit à décrédibiliser la parole de l’expert auprès du
grand public. Ce fossé entre public et praticiens/décideurs existe et tend à s’accroître ;
pour l’ingénieur en charge de dossier de risque, il faudra composer avec cet aspect
« sociologique » du mieux possible.

En pratique

C’est en grande partie sur l’expérience et le savoir-faire du chargé d’étude que re-
pose cette tâche d’analyse et d’explication du risque aux populations concernées d’une
façon transparente et argumentée. Comment en pratique peut-on faire passer un mes-
sage technique à ceux qui vont prendre une décision ou ceux qui vont bénéficier/subir
la politique de lutte? Vaste débat dont on peut ici apporter quelques pistes de réflexion :

– une façon de mettre en perspective un risque est de le comparer avec d’autres
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risques. Le tableau 1.3 fournit ainsi une liste d’activités et le risque d’accident
mortel lié à ces activités. On note la forte variabilité des taux de mortalité ; pour
une analyse sociologique de la question, on peut également noter le décalage
entre le risque réel et le risque perçu par la population ;

– indiquer la méthodologie choisie, les étapes du raisonnement, les données sélec-
tionnées ou écartées devient de plus en plus fondamentale. Il faut ainsi noter que
si les études de risque faisaient quelques pages il y a une dizaine d’années et se
contentaient le plus souvent d’esquisser la solution, on observe de nos jours une
augmentation sensible du volume des rapports, avec une description de plus en
plus poussée de l’analyse de la problématique ;

– préciser clairement le vocabulaire employé et éviter le jargon technique sont des
recommandations couramment faites et rarement suivies. La multiplication des
termes et leur chevauchement partiel (par exemple, quelle est la différence entre
risque, aléa, danger?) font que des spécialistes ne se comprennent pas toujours.
Comment espérer que le commun des mortels saisisse la subtilité conceptuelle
entre deux mots voisins dans le langage courant (danger et risque par exemple) ?

– le passage de l’analyse scientifico-technique des phénomènes à une définition
des moyens de lutte nécessite également d’être clair tant sur la définition de la
méthode que sur la prise en compte des avantages/inconvénients/répercussions.

1.5 Les controverses dans la gestion du risque

1.5.1 Risque et controverse

De toutes les actions menées par les états dans le domaine public, la gestion des
risques est certainement le point qui provoque le plus de controverses et d’incompréhen-
sion entre les autorités, les techniciens, et les populations, notamment lors des crises à
un point tel que d’un point de vue sociologique, on peut penser que la controverse est
une dimension essentielle de la notion de risque (Borraz, 2007). Les derniers mois ont
été riches en crises qui illustrent les problèmes de gestion des risques :

– Gestion de la grippe H1N1 : en juin 2009, l’Organisation mondiale de la santé
(OMS) lançait une alerte de pandémie concernant la grippe porcine ou grippe
H1N1. Cette grippe était décrite comme d’une très grande virulence et suscep-
tible de causer des millions de morts 7. Plusieurs états européens ont suivi les
recommandations de l’OMS et commandé des doses de vaccin en très grand
nombre (13 millions de doses pour la Suisse, 94 millions pour la France) auprès
de grands groupes pharmaceutiques. À l’été 2010, la pandémie est déclarée finie

7. Le virus souche H1N1 avait causé en 30 et 100 millions de morts en 1918 au lendemain
de la première guerre mondiale. Cette grippe plus connue sous le nom de « grippe espagnole »
fit plus de victimes que la guerre elle-même.
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par l’OMS. Sur le plan sanitaire, on dénombre 20 morts de la grippe H1N1 en
Suisse (contre 400 en moyenne pour la grippe saisonnière), 312 en France, envi-
ron 18 000 dans le monde. Le coût financier de la prévention a été colossal, avec
84 8 millions CHF pour la Suisse et 420 9 millions e pour la France juste pour les
vaccins ; le coût total de la campagne de vaccination en France a été évalué à 2,5
milliards e. Le bilan financier et humain a provoqué un scandale en Europe. Par
sa résolution 1749, l’Assemblée parlementaire du Conseil de l’Europe dénonce la
gabegie financière, le manque de transparence de l’OMS, et la possible collusion
entre experts et groupes pharmaceutiques :

« L’Assemblée parlementaire est alarmée par la façon dont la
grippe pandémique H1N1 a été gérée non seulement par l’Organi-
sation mondiale de la santé (OMS) mais aussi par les autorités de
santé compétentes tant au niveau de l’Union européenne qu’au ni-
veau national. Elle s’inquiète notamment de certaines répercussions
de décisions et d’avis ayant entraîné une distorsion des priorités au
sein des services de santé publique à travers l’Europe, un gaspillage
de fonds publics importants et l’existence de peurs injustifiées rela-
tives aux risques de santé encourus par la population européenne en
général.

« L’Assemblée fait état d’un grave manque de transparence dans
les prises de décisions liées à la pandémie, qui soulève des préoccu-
pations concernant l’influence que l’industrie pharmaceutique a pu
exercer sur certaines décisions parmi les plus importantes concer-
nant la pandémie. L’Assemblée craint que ce manque de transpa-
rence et de responsabilité ne fasse chuter la confiance accordée aux
conseils des grands organismes de santé publique. Cela pourrait se
révéler désastreux en cas d’une nouvelle maladie de nature pandé-
mique qui pourrait être beaucoup plus grave que la grippe H1N1. »

– Tempête Xynthia et crues dans le Var : la France a été touchée par deux événe-
ments de grande ampleur en 2010. Le 28 février, la concomitance d’une forte
marée et du passage d’une dépression rapide et profonde sur l’Europe provoque
des vents tempétueux et des inondations causant un lourd bilan humain : la mort
de 65 personnes, dont 53 sur le littoral atlantique français. Le 15 juin, le sud de
la France, principalement le Var, est touché par des pluies exceptionnelles (400
mm aux Arcs près de Draguignan). On dénombre 25 victimes. Dans les deux cas,
une vive polémique a éclaté à propos du zonage de risque. L’État français est
rapidement intervenu à propos des inondations en Charentes-Martimes et en
Vendée en mettant en œuvre des opérations de secours de grande ampleur et en
évoquant le classement en zone inconstructible d’une partie du littoral concerné
par les inondations, parlant de « zones noires », ce qui provoqua un tollé parmi la

8. D’après un article de Frédéric Vassaux du 12 janvier 2010 dans l’Illustré.
9. Voir l’analyse sur le site actualités news environnement.

http://assembly.coe.int/Mainf.asp?link=/Documents/AdoptedText/ta10/FRES1749.htm
http://www.illustre.ch/le_vrai_bilan_de_la_grippe_a_42350_.html
http://www.actualites-news-environnement.com/23837-Bilan-grippe-A-H1N1.html
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population locale et les élus 10. Le chef de l’État Nicolas Sarkozy reconnaissait 11 :
« La catastrophe du 28 février n’est pas seulement le produit

d’événements climatiques. Je vais prendremes responsabilités. Cette
catastrophe est le résultat d’une cascade de décisions litigieuses ou
contraires au bon sens, de négligences, de prescriptions non respec-
tées, d’expertises négligées sont mises en œuvre pour prévenir ou
garder le contrôle sur des événements redoutés, et que les consé-
quences peuvent être atténuées. (…) J’entends remettre de l’ordre
dans notre politique de prévention et de gestion des risques. »

Les controverses récentes fournissent des éléments intéressants pour appréhender com-
ment est géré le risque dans les sociétés occidentales :

– elles mettent en évidence l’existence d’un paradigme universel – tel que défini
par (Gilbert et al., 2007) (voir § 1.5.3) – du risque pour les autorités ;

– l’existence de controverses permet d’éclairer les rapports entre acteurs, public,
et autorités. La perception des risques et leur traitement illustrent souvent les
clivages et antagonismes qui existent entre ces différents intervenants ;

– il existe un discours étatique qui « continue de revendiquer le monopole de la
sécurité », mais en pratique, l’État devient un acteur parmi d’autres, un « facteur
de risque », perdant son rôle d’ordonnateur au profit d’un rôle de régulateur
(Borraz, 2008) ;

– dans le même temps, les lanceurs d’alerte, les associations et agences non gou-
vernementales, et les privés investissement de plus en plus la place laissée par
l’État, agissant par là en contre-pouvoir face aux groupes industriels, aux états,
etc. (Beck, 2003).

1.5.2 Psychologie du risque d’après Tversky

Si l’on prend un sujet commun comme la sécurité routière, la gestion du risque –
ici la mise en place de politique publique de prévention et de répression des accidents
– peut apparaître bien fondée ou peu adéquate selon la manière dont on présente et
interprète les chiffres. Le débat autour de la sécurité routière se nourrit du clivage net
entre pro- et anti-répression. Les politiques publiques polarisent l’attention sur la vi-
tesse comme facteur premier du risque, et donc la solution est d’imposer un contrôle
des vitesses sur les routes. La stagnation voire l’augmentation du nombre de tués sur
les routes est considérée par les tenants de ces politiques comme le signe d’un relâche-
ment, et donc comme la nécessité de renforcer le système de contrôle des vitesses. Sans
surprise les opposants à ce durcissement voient là le signe d’un échec de la politique
de répression.

10. Voir l’article de Samuel Laurent dans le Monde daté du 19 avril 2010
11. Discours du 16 mars 2010 à la Roche-sur-Yon

http://www.lemonde.fr/politique/article/2010/04/19/xynthia-une-communication-qui-passe-mal_1337353_823448.html
http://www.elysee.fr/president/les-actualites/discours/2010/discours-devant-les-acteurs-de-la-chaine-de.8148.html
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Ce constat avait été fait par un groupe de socio-économistes américains conduits
par Amos Tversky 12, selon qui la perception du risque et l’estimation de la meilleure
façon de s’en protéger dépendent de façon critique de la manière dont la problématique
est posée. La démonstration apportée par Tversky était la suivante. Il posa à des étu-
diants d’une grande université 13 la question « en admettant qu’il y ait un risque d’une
épidémie violente sur le sol américain et que deux stratégies de lutte s’offrent à vous : (i)
avec le programme de lutte A, on peut sauver la vie de deux cents personnes ; (ii) avec
le programme B, il y a 33 % de chances qu’on puisse sauver 600 personnes, mais 66 %
qu’on ne puisse sauver personne, lequel de ces deux programmes vous semble le plus
pertinent? » 72 % des étudiants ont répondu que le programme A était le plus adapté.
Les étudiants préféraient opter pour une stratégie sans surprise que pour une stratégie
où un risque apparaissait, alors qu’au final, les deux programmes offraient des perspec-
tives identiques en valeur moyenne. Les étudiants montraient donc une aversion au
risque.

Tversky posa ensuite la question différemment : « on a maintenant le choix entre
deux autres programmes. Avec le programme C, on est sûr que 400 personnes vont
décéder des suites de l’épidémie, alors que si on adopte le programme D, il y a 33 % de
chances que finalement, personne ne meure, mais 66 % que 600 personnes ne survivent
pas. » Là encore, en termes de valeur moyenne, les deux assertions sont équivalentes et
l’une est exprimée comme une certitude, alors que l’autre prend en compte un risque
d’échec. À cette question, 78 % des étudiants ont répondu par le programme D, mon-
trant qu’ils étaient capables de prendre des risques. Dans la première formulation du
problème, Tversky a présenté les gains escomptés alors que la seconde formulation est
basée sur les pertes possibles.

1.5.3 Remise en question des approches classiques de gestion
du risque

Sur la base d’études menées dans différentes branches (mais principalement le
risque industriel), des sociologues français ont brossé un portrait de ce que l’on pour-

12. Amos Tversky (1937–1996) a été un des pionniers des sciences cognitives. Il s’est notam-
ment intéressé à la perception du risque économique et il a développé avec Daniel Kahneman
(prix Nobel d’économie 2002) la théorie des perspectives (prospect theory) selon laquelle les
personnes réagissent différemment aux perspectives de gain ou de perte en fonction des cir-
constances : si elles ont réalisé des gains, elles souhaitent les consolider et évitent donc les
risques. En cas de pertes financières, surtout si celles-ci sont importantes, elles sont disposées
à prendre des risques d’autant plus importants puisqu’elles estiment qu’elles n’ont plus rien à
perdre. On pourra utilement se rapporter à l’excellent ouvrage de Kahneman (2011), qui offre
une belle perspective sur la prise de décision et tous ses biais.

13. Un aspect intéressant des études de Tversky a été de montrer le caractère quasi-universel
des réponses apportées : il y a une certaine stabilité dans les réponses apportées indépendam-
ment des conditions géographiques/sociales ou de l’époque.
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rait appeler le « modèle dominant » en matière de gestion des risques Gilbert et al.
(2007). Selon ces auteurs, il existe actuellement un paradigme universel employé par les
autorités en charge des dossiers de risque et qui est construit sur 6 prédicats qui s’ar-
ticulent autour des notions de responsabilité, de pouvoir de la technologie, et d’efficacité
des normes :

1. la sécurité des personnes est la priorité absolue ;
2. tous les moyens disponibles doivent être mis en œuvre pour garantir cette sécu-

rité au travers d’actions de prévention ;
3. la maîtrise des risques est rendue possible grâce à la science et la technologie ;
4. la connaissance des risques sert de fondations à l’élaboration de normes, règles,

et procédures, qui peuvent servir à encadrer et gérer les activités à risque ;
5. la sécurité dépend de l’élimination des erreurs et pannes par une stricte applica-

tion des règles et par un suivi de cette application ;
6. la sécurité dépend également de la capacité des acteurs et organisations à ap-

prendre des incidents, dysfonctionnements, accidents, où la sécurité a pu être
sous-estimée à des degrés divers.

Les premier et second prédicats sont sans doute une conséquence de l’évolution de
l’ordre moral au sein des sociétés occidentales, qui depuis deux générations n’ont pas
connu de fléaux tels que guerre, famine, catastrophe naturelle, ou pandémie. L’accident
en général, et l’accident mortel en particulier sont donc de plus en plus rejetés par nos
sociétés. Une conséquence est que les responsabilités sont recherchées dès qu’il y a
accident (voir point 6), ce qui à son tour génère une pression supplémentaire sur les
autorités publiques pour qu’elles mettent tout en œuvre pour lutter contre les risques.
L’affaire du sang contaminé 14 est souvent considérée comme ayant été un tournant
chez les politiques, qui préféreraient lancer des actions coûteuses que de se voir repro-
cher de n’avoir rien fait.

Les troisième et quatrième prédicats affirment qu’une prévention efficace est ren-
due possible de nos jours grâce aux développements technologiques. La technologie
permet d’identifier les dangers, de modéliser les processus, de mesure ou d’évaluer les
paramètres-clés, et de prédire le comportement du système. La gestion moderne du
risque se construit en trois phases : (i) si possible, l’élimination du risque à sa source,

14. Au cours des années 1980, des chercheurs ont mis en évidence la transmission du virus
du SIDA par le sang. Cette découverte a amené à modifier le traitement des prélèvements san-
guins, mais il y a eu un retard conséquent entre le moment où la découverte a été diffusée et le
moment où les autorités sanitaires ont pris leurs décisions. Le scandale est né en France en 1991
lorsqu’une journaliste a révélé que le Centre national de transfusion sanguine avait sciemment
distribué de 1984 à 1985, des produits sanguins dont certains contaminés par le virus du SIDA à
des hémophiles. Le scandale déboucha sur la mise en examen de plusieurs hommes politiques,
dont le premier ministre (Laurent Fabius) et le secrétaire d’état à la santé (Edmond Hervé), et de
plusieurs médecins. Si les décideurs politiques furent reconnus innocents par la Cour de justice
de la république (seule instance qui a le pouvoir de juger des élus en France), le responsable du
CNTS a été lourdement condamné par la justice ordinaire.
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(ii) le suivi des procédures, (iii) la mise en place de barrières pour atténuer le risque
résiduel et tendre vers le risque zéro. Gilbert et al. (2007) résument ainsi la gestion des
risques :

« La maîtrise du risque se rapporte essentiellement à une stratégie
normative qui consiste à modéliser, décrire, et spécifier un monde par-
fait sur le plan opérationnel. Elle implique la prescription d’actions et de
comportements qui sont censés assurer que l’on reste au sein de cet en-
vironnement (règles de bonne conception, procédures opérationnelles),
que des actions sont mises en œuvre pour prévenir ou garder le contrôle
sur des événements redoutés, et que les conséquences peuvent être atté-
nuées. »

Les normes sont par exemple les procédures d’« assurance qualité » ou de « charte
qualité » mises en place par les entreprises et administrations.

Le cinquième et sixième prédicats sous-tendent que dans un système normalisé
(dont le fonctionnement a fait l’objet de normes) la sécurité dépend principalement du
respect des normes, règles, et procédures. Le non-respect de celles-ci, qu’il soit inten-
tionnel ou accidentel, est une menace à la sécurité du système et doit donc être sanc-
tionné. Les politiques publiques s’attachent donc non seulement à éviter que les règles
de sécurité puissent être mal exécutées par les intervenants, mais également à définir
des mesures visant à punir les violations manifestes des règles. Un exemple frappant de
cette évolution des politiques de prévention est donné par les débats autour de l’inter-
diction du ski hors-pistes ou bien les poursuites contre les skieurs qui ne tiennent pas
compte des avertissements et mettent en danger la vie des skieurs sur piste. Ainsi, un
responsable de la police cantonale du Valais déclarait après l’avalanche sur les pistes
de ski d’Anzère : « Il s’agit d’envoyer un message : les skieurs qui ne respectent pas les
autres peuvent être poursuivis ».

Selon Gilbert et al. (2007), ce modèle de gestion du risque est voué à l’échec sur le
long terme car il méconnaît gravement la problématique du risque dans son entier :

– pour la plupart des structures concernées par le risque, le risque est une contrainte
parmi d’autres. Si le risque zéro est un but, il ne constitue pas en soi l’objectif
d’absolue priorité. L’entreprise fait face à unemultitude d’impératifs d’ordre éco-
nomique, social, etc., ce qui nécessite de trouver des « compromis » entre toutes
les contraintes ;

– la nécessaire existence de compromis entre différentes contraintes est souvent
occultée car la reconnaissance d’une certaine tolérance en matière de sécurité
est demoins enmoins bien perçue par l’opinion publique (ou est supposéemoins
bien perçue). Tant que la situation ne conduit pas à des problèmes qui sont mé-
diatisés ou dénoncés par une des parties, l’arbitrage est maintenu de façon tacite
et implicite, loin de tout regard extérieur. Cette occultation conduit donc à un
divorce entre la gestion ordinaire du risque et l’affichage public ;

– la complexité des processus et de leurs interactions ainsi que l’incertitude as-

http://www.swissinfo.ch/fre/societe/Avalanche_de_poursuites_pour_les_fous_du_hors-piste_.html?cid=8016992
http://www.swissinfo.ch/fre/societe/Avalanche_de_poursuites_pour_les_fous_du_hors-piste_.html?cid=8016992
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sociée aux mesures des paramètres sont tellement grandes qu’il est illusoire de
penser qu’on puisse arriver à une description précise des composantes d’un sys-
tème ;

– la sécurité ne se réduit pas à la stricte obéissance aux règles, elle dépend aussi
du degré de développement de la culture de sécurité au sein de l’entreprise et de
l’établissement d’un lien de confiance entre les intervenants ;

– la mise en place de normes a pour conséquence de rigidifier un système. Cela
le rend, certes, plus résistant face à un certain nombre de dangers, mais l’ab-
sence d’adaptation, le manque de souplesse, l’excès d’attention portée à certains
phénomènes peuvent fragiliser le système vis-à-vis de nouveaux dangers ;

– sur le plan neurologique ou moteur, le fonctionnement humain n’opère pas par
élimination des erreurs à leur source, mais par tâtonnement, avec des procédures
de détection et de correction de l’erreur ;

– les accidents ne sont que rarement la conséquence d’une erreur facilement iden-
tifiable, mais au contraire le résultat d’une « chaîne d’événements » ;

– l’analyse de systèmes complexes courants (opération chirurgicale, vol d’un avion,
etc.) montre que les opérateurs commettent une multitude d’erreurs, qui sont
rapidement rattrapées. Il y a donc un ajustement permanent du système pour
éviter une erreur fatale.

Au final, Gilbert et al. (2007) concluent que « le modèle sécuritaire (…) fondé sur un
cadre de référence idéal (risque zéro, qualité absolue) est donc irréaliste. » Selon ces
auteurs, il est nécessaire de ne pas rechercher un fonctionnement optimal d’un système
par rapport aux erreurs et pannes, mais de rechercher une maîtrise dynamique des
risques en offrant un meilleur suivi et une plus grande capacité d’adaptation/réponse.

1.5.4 Exemple du reboisement

Problématique

Au cours du xixe siècle, les pays européens furent frappés par des crues exception-
nelles avec une fréquence telle que les autorités publiques s’interrogèrent sur les causes
de ces catastrophes et les moyens de les prévenir. En particulier, à au moins deux re-
prises au cours du xixe siècle, l’Europe a connu des crues catastrophiques (Cœur, 2004;
Lang & Coeur, 2014; Ford, 2018; Fressoz & Locher, 2020) :

– les inondations de 1840 à 1843 ;
– les crues de 1856 à 1857 (voir figures 1.12 et 1.13).

Ces événements ont poussé les états européens à réagir 15. En Suisse, jusqu’au mi-
lieu du xixe siècle, les communautés villageoises géraient de façon autonome leurs

15. Nous ne parlerons pas ici du Japon, qui est un autre pays pionnier en matière de reboi-
sement. À la suite des conflits incessants entre seigneurs de la guerre, d’un accroissement de la
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Figure 1.12 –Crue catastrophique de la Saône à Lyon (France Rhône) avec le quai Saint-
Antoine le long de la Saône totalement inondé en mai 1856. Source : Louis Froissard
Archives de la ville de Lyon. La crue de 1856 est la première crue qui a été documentée
par des photographies, dont certaines séries furent commandées par le gouvernement.
À partir de là, la photographie deviendra un précieux auxiliaire à la fois pour témoi-
gner de l’ampleur des dommages, mais également comme outil de communication des
collectivités et de l’État (voir figure 1.14).

forêts. Dès 1803, on voit apparaître les premières lois cantonales, notamment dans le
Valais. Dans les années 1850 à 1860, plusieurs hommes politiques et ingénieurs ont tra-
vaillé à ce que la Confédération prît en main la question du reboisement commemoyen
de lutte contre les crues ; deux professeurs de la toute jeune ETHZ, Elias Landolt et
Carl Culmann, remettent plusieurs rapports au Conseil fédéral, suggérant des pistes.
Toutefois, dans la première constitution suisse de 1848, la Confédération n’avait au-
cune compétence en matière de police forestière, qui restait du domaine des cantons

population, d’une surexploitation de la forêt pour le bois de construction et le chauffage, et du
défrichage pour augmenter la surface agricole, la forêt japonaise se trouvait en forte régression.
La mise en place d’un nouveau système politique, très centralisé (shoguns de l’ère Tokugawa)
au début du xviie siècle, changea la donne lorsque les Japonais prirent conscience de l’impact
négatif de la déforestation, notamment en ce qui concerne l’érosion de pentes dominant la zone
côtière. Au début du xviiie siècle, le pays lança des programmes de reboisement et de régulation
stricte des espaces forestiers (production et transport du bois, usage du bois) (Diamond, 2005).

https://www.archives-lyon.fr/documents-remarquables/leau-lyon-catastrophes-naturelles
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Figure 1.13 – Crue catastrophique de l’Isère à Grenoble (Isère) en novembre 1859.

(Schuler, 2004). Il faut attendre 1874 pour voir la révision de la constitution (article 24
relatif à la surveillance des eaux et des forêts de montagne) et la création d’un service
fédéral forestier calqué sur le modèle des Grisons. En 1876, la première loi fédérale
sur la police des forêts entre en vigueur. Elle prévoit l’interdiction des coupes et l’obli-
gation du reboisement dans les forêts de protection. La loi de 1910 complète le cadre
réglementaire en mettant en place des subventions fédérales, qui lancèrent une série
de grands travaux de protection sur tout le territoire national 16.

Pendant environ trois décennies (1830 à 1860), l’État français a été tenaillé entre
d’un côté les tenants de la politique du reboisement prônée par les administrations et
de l’autre les élus locaux soucieux de donner satisfaction aux agriculteurs peu enclins
à l’amputation de leur terrain (Bravard, 2002), ainsi que quelques rares érudits et in-
génieurs comme François Vallès et Maurice Champion, pour qui la forêt ne pouvaient
jouer qu’un rôle secondaire (Ford, 2018; Fressoz & Locher, 2020). Les crues du début des
années 1840 donnèrent l’impulsion à une réflexion plus approfondie sur les moyens de
lutte, avec deux grandes options :

– la correction des rivières, avec par exemple l’endiguement des principaux cours

16. Voir l’article d’Anton Schuler sur la forêt dans le Dictionnaire historique de la Suisse.
Un historique plus complet est donné dans le rapport Wald- und Forstgeschichte par Anton
Schuler, Matthias Bürgi, Wener Fischer, et Katja Hürlimann publié en 2000 par l’ETHZ.

http://www.hls-dhs-dss.ch/textes/f/F7849.php
http://e-collection.ethbib.ethz.ch/view/eth:28539
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d’eau ;
– le traitement des versants, avec principalement le reboisement des versants dé-

nudés, l’interdiction du défrichement, et la limitation du pâturage.

En France, deux lois essentielles ont consacré la forêt comme moyen privilégié de lutte
contre les crues (Besson, 1996; Brugnot, 2002) :

– la loi du 28 juillet 1860 (sous le Second Empire) confia au service des Eaux et
Forêts la mission de corriger les torrents et reboiser les montagnes. Cette loi
faisait suite à d’autres lois promulguées par Napoléon III à la fin des années
1860 pour créer des ouvrages de protection contre les crues ;

– la loi du 4 avril 1882 corrigea le cadre d’intervention du service des Eaux et
Forêts. La forêt ne devenait plus un outil de prévention, mais une technique
curative. On ne parlait plus de reboisement, mais de « restauration des terrains
en montagne », une expression qui a été figée à travers le nom de l’organisme
qui est né à cette occasion.

En Italie, la loi du 20 juin 1877 engagea l’état italien dans une politique active de protec-
tion des forêts, avec à la fois des limitations fortes des coupes forestières et des plans
de reboisement (Bonardi, 2002). Toutefois, compte tenu des difficultés économiques et
du développement industriel dans l’Italie réunifiée, la loi fut marginalement appliquée,
ce qui eut pour conséquence, en particulier, un accroissement des surfaces déboisées
(entre 1870 et 1920, la surface forestière diminua d’environ 15 %). En réaction, le gou-
vernement promulgua la loi du 2 juin 1910 dite Loi Luttazzi, qui a notamment institué
la création d’un Corps royal des forêts regroupant plus de 3000 gardes forestiers.

La forêt comme moyen de prévention

La forêt a été vue dès leMoyen Âge comme une valeur économique, qu’il fallait non
seulement préserver, mais développer (Buridant, 2002). Sous le ministère de Colbert en
France à la fin du xviie siècle, le corps des Eaux et Forêts se voit ainsi considérablement
renforcer. Il faut attendre le début du xixe siècle pour voir un fort regain d’intérêt pour
la forêt en Europe, un intérêt croissant qui s’est traduit en France par la création de
l’école forestière de Nancy en 1824 et la promulgation du Code forestier en 1827. En
Italie, la première école forestière fut créée en 1869 à Vallombrosa (Florence).

La doctrine sur le rôle de protection de la forêt a été élaborée dès le milieu du
xixe siècle, notamment en France avec la publication en 1840 de l’ouvrage d’Alexandre
Surell 17 ouvrage qui eut un retentissement considérable (Surell, 1870). Surell écrivait

17. Alexandre Charles Surell (1813–1887) était un ingénieur français des Ponts et Chaussées.
Il a commencé sa carrière dans les Hautes-Alpes, étape importante de sa carrière où il rédigea
le livre « Étude sur les torrents des Hautes-Alpes » qui le rendit célèbre auprès de plusieurs
générations de forestiers et de géographes. Il poursuivit sa carrière dans la Compagnie des
Chemins de fer du Midi, dont il devint le directeur en 1859.
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ainsi :

« Lorsqu’on examine les terrains au milieu desquels sont jetés les
torrents d’origine récente, on s’aperçoit qu’ils sont toujours dépouillés
d’arbres et de toute espèce de végétation robuste. Lorsqu’on examine
d’une autre part les revers dont les flancs ont été récemment déboisés,
on les voit rongés par une infinité de torrents du troisième genre, qui
n’ont pu évidemment se former que dans ces derniers temps. Voilà un
double fait bien remarquable… On peut appeler en témoignage de ces re-
marques toute la population de ce pays. Il n’y a pas une commune où
l’on n’entende raconter à des vieillards que sur tel coteau, aujourd’hui
nu et dévoré par les eaux, ils ont vu se dresser autrefois de belles forêts,
sans un seul torrent. Considérons donc cette influence comme une chose
démontrée, et résumons-la dans les deux propositions suivantes :

1. la présence d’une forêt sur sol empêche la formation des torrents ;
2. le déboisement d’une forêt livre le sol en proie aux torrents.»

L’ingénieur des Eaux et Forêts Paul Mougin 18 a analysé dans le détail le rôle de la
forêt. Sa description du rôle de la forêt dans le cycle de l’eau est toujours d’actualité.
Selon Mougin (1914, 1931), la forêt a trois rôles majeurs :

– grâce au phénomène d’évapotranspiration, elle permet d’intercepter une partie
des eaux de pluie ;

– elle exerce une résistance au ruissellement, ce qui permet d’étaler les crues et
éviter des pics de crue ;

– elle permet de lutter contre l’érosion en maintenant le sol grâce au réseau de
racines.

Il défendit la thèse selon laquelle la forêt avait un impact profond sur le climat à travers
plusieurs processus :

– la montée des températures ;
– l’augmentation de la pression atmosphérique ;
– une fréquence accrue des orages ;

18. Paul Mougin (1866–1939) était un ingénieur des Eaux et Forêts français. Il commença
sa carrière à Grenoble, mais il fit l’essentiel de sa carrière en Savoie, où il se spécialisa dans la
correction torrentielle. Son premier travail d’importance a été la dérivation (par une galerie) du
torrent de Saint-Julien en Maurienne, qui marqua son intérêt pour les ouvrages de correction
torrentielle (seuils, barrages, galeries). Il a aussi été un ardent artisan du reboisement, s’illus-
trant notamment par des études minutieuses des archives départementales pour prouver sa
théorie du déboisement des Alpes au cours des derniers siècles. Il a été l’un des premiers à
s’intéresser à la collecte de données nivométriques et à l’observation des avalanches, suivant
en cela l’exemple de l’ingénieur forestier suisse Johann Coaz. Il est sans doute l’auteur du pre-
mier modèle de calcul du mouvement d’une avalanche. Il a plusieurs ouvrages et rapports, fruit
d’un travail considérable de collecte et d’analyse des informations sur l’érosion torrentielle, les
forêts, et les avalanches.
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– une fonte des neiges plus rapide ;
– la modification du régime des eaux de surface et des cours d’eau.

À l’époque de Mougin, on ne parlait pas de réchauffement climatique. Mougin igno-
rait donc que la remontée des températures observée depuis la fin du petit âge gla-
ciaire était liée à une modification globale du climat (éventuellement déjà avec une
influence anthropique) et donc pour lui, il ne pouvait y avoir qu’une cause : le déboise-
ment. Mougin (1914) affirme donc que « pendant toute la période où les forêts étaient
détruites on constate une augmentation de la température moyenne annuelle. (…) le
chanoine Vaullet, après 40 ans d’observations, signalait le même fait démontré par la
comparaison des températures depuis le début du siècle. Parmi les causes de la modi-
fication du climat, il place au premier rang, le déboisement. » Il avança également en
comparant le nombre de crues et le nombre d’hectares défrichés qu’il y avait un lien
étroit entre déboisement et nombre de crue : « au xviiie siècle, la Leysse a eu huit crues
dommageables et trente-huit crues au xixe siècle ; les crues sont donc devenues 4,7 fois
plus fréquentes. Or, en 1738, la forêt couvrait 5398 hectares, soit 53,2 % du bassin de ré-
ception ; en 1910, elle ne s’étend plus que sur 3945 hectares, c’est-à-dire qu’elle a perdu
26,9 % de son étendue. » Lutter contre les crues, c’est donc avant tout lutter contre
le déboisement. La doctrine française jusqu’à la seconde guerre mondiale, doctrine en
vigueur dans tous les pays alpins, a été de mettre en avant une politique intensive de
reboisement. Une doctrine qui se résume en la phrase lapidaire de Surell, reprise par
Prosper Demontzey : « la forêt seule peut venir à bout des torrents » (Demontzey, 1894).

Causes du déboisement

Comme le déboisement était considéré être la cause des crues que connaissait l’Eu-
rope en cette fin de xixe siècle, il fallait trouver un responsable de ce déboisement. Le
coupable fut vite trouvé : c’est le paysan et le berger, dont l’incurie était la cause de
tous les malheurs. Écoutons Surell (1870) à ce sujet :

« Dans ce magnifique bassin, la nature avait tout prodigué. Les habi-
tants ont joui aveuglément de ses faveurs ; ils se sont endormis au milieu
de ses dons. Ingrats, ils ont porté inconsidérément la hache et le feu dans
les forêts qui ombrageaient les montagnes escarpées, la source ignorée de
leurs richesses. Bientôt ces pieds décharnés ont été ravagés par les eaux.
Les torrents se sont gonflés… des terrains immenses ont été engravés…
Bientôt Crévoux, Boscodon, Savines et tous les torrents auront anéanti
ce beau bassin qui, naguère, pouvait être comparé à tout ce que les plus
riches contrées possèdent de plus fertile et de mieux cultivé (…) Tous les
hommes qui ne sont pas aveuglés par l’ignorance, ou dont le cœur ne
s’est pas desséché par l’égoïsme, expriment la pensée qu’il serait temps
enfin d’arrêter les progrès toujours croissants d’une si effrayante dévas-
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Figure 1.14 –
Deux clichés de
la série
domaniale de
Saint-Laurent-
en-Beaumont
(France, Isère) :
(a) 1886 ; (b)
1929.
L’utilisation
intense de la
photographie a
permis non
seulement de
livrer un
témoignage de
l’évolution du
paysage, mais
également de
montrer
l’efficacité du
reboisement.
D’après
(Mougin, 1931).



48 Chapitre 1 Aménagement du territoire et risques

tation. Ils gémissent sur les maux sans nombre causés par le déboisement
des montagnes… Entendons les cris de détresse d’une population alarmée
sur son avenir. »

Envoyé par le gouvernement de la Révolution, l’ingénieur Lomet (1795) notait au
cours d’un voyage à Barèges en 1794, que c’est le déboisement qui est à l’origine des
catastrophes récentes :

« Autrefois, toutes les montagnes qui dominent Barèges étaient re-
vêtues de bois de chêne jusque vis-à-vis de la vallée d’Escoubous. Des
hommes actuellement vivants en ont vu les restes et les ont achevés… Les
habitants des plateaux ont tout ravagé eux-mêmes, parce que ces pentes
étant les premières découvertes par leur exposition et par la chute des
avalanches, ils y ont de bonne heure un pâturage pour leurs moutons, et
que, le jour où ils les y conduisent, ils oublient que pendant l’hiver ils ont
frémi dans leurs habitations de la peur d’être emportés avec elle par ces
neiges, dont ils provoquent obstinément la chute. »

La littérature des forestiers et des géographes livre un florilège de clichés. Le géo-
graphe Jean-Yves Puyo livre quelquesmorceaux croustillants (Puyo, 1999) : « Le pasteur
n’a pas le sentiment des égards dus aux forêts », « le fond du caractère du montagnard
est l’imprévoyance absolue, l’inertie systématique opposées à toute idée du progrès, à
toute tentative d’amélioration, l’esprit est encore plus malade que le sol. », « c’est à
l’imprévoyance des habitants, bien plus qu’à la constitution géologique du sol, qu’il
faut attribuer le rapide écroulement des monts. »

Il ne faut toutefois pas croire que ces avis caricaturaux résultaient d’une analyse
sommaire des causes du déboisement. Paul Mougin a entrepris une œuvre gigantesque
de collecte d’informations historiques, d’observations naturalistes, et de données scien-
tifiques sur le problème. Dans sa monographie sur les torrents de Savoie, Mougin (1914)
défendit l’idée que les Alpes étaient à l’époque romaine couvertes de forêts épaisses :
«Que les Alpes aient jadis été plus boisées qu’aujourd’hui, tout le démontre, et d’abord,
la légende et la tradition. ». Le déboisement a commencé être pratiqué massivement au
Moyen-Âge. Il a d’abord été le fait des religieux, pour qui la déforestation était presque
un acte de foi à une époque où les croyances païennes considéraient les forêts comme la
demeure des divinités. Puis, les besoins en pâtures, bois de chauffage, bois de construc-
tion, mais aussi le gaspillage et les guerres ont pendant des siècles amené à la destruc-
tion de la forêt. La forte poussée démographique du xviiie siècle et xixe siècle n’a fait
qu’accroître la pression sur la forêt. Si, à la lumière des avancées de nos connaissances
sur la protohistoire et l’histoire des populations alpines, il paraît exagéré de dire que
les Alpes étaient couvertes d’épaisses forêts, il faut reconnaître que la forêt a connu
une forte régression dans les Alpes entre le xvie siècle et le xixe siècle. Les études
historiques sur les communautés villageoises comme l’étude sur Vallorcine menée par
Gardelle (1988) témoignent des rapports étroits entre l’homme et la forêt. Si la forêt
est perçue à la fois comme une richesse et une protection (contre les avalanches), cela
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n’a pas empêché qu’elle soit surexploitée en dépit des règlements communaux (coupe
affouagère 19, droit de pâture) et des édits/lois de l’administration. En 1860, le syndic
de Vallorcine dressa un tableau très sombre de la forêt communale, qui représente les
trois-quart des espaces boisés : « l’état des forêts communales et les délits multiples qui
s’y commettent les menacent d’une destruction partielle et prochaine ».

Alternatives au reboisement

À la fin du xixe siècle, le reboisement n’a pas été l’unique stratégie de lutte contre
les crues. Les états se sont aussi lancés dans de gigantesques travaux de correction tor-
rentielle et d’endiguement des rivières. Dans un premier temps, les ingénieurs se sont
principalement intéressés aux grands ouvrages de génie civil tels que les digues le long
des rivières et les barrages pour fixer les sédiments. Cependant, assez rapidement, les
dommages substantiels causés aux ouvrages de protection torrentielle posaient le pro-
blème de la rentabilité économique des opérations. Dans le canton de Vaud, l’ingénieur
Alexis Chessex écrivait 20

« On a, pendant vingt ans, construit d’innombrables barrages qui de-
vaient permettre de reboiser les ravins. Nos paysans voulaient s’y op-
poser; ils durent se résigner à payer d’énormes impôts pour solder ces
travaux qu’ils savaient inutiles. Heureusement, la société des forestiers
suisses s’est décidée il y a deux ans, à adresser à toutes les municipalités
du pays une brochure dans laquelle elle déclare enfin que le principe des
grands barrages est économiquement faux ; l’aveu est complet. »

À la fin du xixe siècle, les ingénieurs se sont donc orientés vers des ouvrages de plus
petite taille en complément des opérations de révégétalisation : des seuils pour fixer
le lit d’un torrent, les clayonnages 21 pour limiter l’érosion des berges, les banquettes
pour réduire le ruissellement et l’érosion sur des flancs de montagne, et les galeries de
dérivation.

Résistance au reboisement

Bien avant la mise en place des grandes lois de la fin du xixe siècle, les autorités
locales ont tenté de lutter contre la déforestation en promulguant des édits visant à

19. L’affouage est un droit accordé aux habitants d’une commune de pratiquer certaines
coupes de bois dans les forêts communales pour un usage domestique (chauffage, cuisson).

20. Cité par Félix Briot dans « Nouvelles études sur l’économie alpestre : diverses questions
générales et monographies » (Berger-Levrault & Cie, Paris 1907).

21. Assemblage de pieux et de branchages servant à retenir le sol non ou faiblement végéta-
lisé.
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Figure 1.15 – En haut à gauche, travaux de clayonnage sur des berges ; en haut à droite,
construction d’un barrage sur le Nant Trouble (Savoie) en 1890. En bas, seuils construits
par le service RTM à la fin du xixe siècle sur le Nant Saint-Claude (Savoie). Les deux
photographies d’archive sont tirées du livre de Jeudy (2006).

limiter ou interdire l’exploitation du bois. La « mise à ban 22 » des forêts ayant une
fonction de protection a été mise en œuvre dès le Moyen Âge. Les plus anciens édits
(lettres de ban) créant des « forêts à ban » datent du xive siècle dans les cantons de
Schwytz et d’Uri ; en 1397, la forêt (Bannwald) protégeant Andermatt fut mise en ban :
« le profane qui oserait porter la hache sur celui-ci [la forêt d’Andermatt] serait puni
de mort » (Rabusseau, 2007).

Au xixe siècle, les forestiers se plaignaient que les populations locales étaient ré-
tives. Mougin (1914) dénonçait l’incivisme des populations, la corruption, et le manque
de gardes forestiers : « Malgré cela, combien de délits demeuraient impunis, à cause du

22. La notion de ban renvoie à la double notion d’un droit féodal et d’exclusion. Le mot
« ban » se retrouve en français moderne dans des mots comme forban, verbes comme bannir,
mettre au ban (exclure) ou des expressions publier les bans d’un mariage (proclamation devant
tous), four banal (four à disposition d’une communauté). Au Moyen Âge, le ban désignait sou-
vent le droit d’un seigneur de disposer d’un bien, d’en autoriser ou d’en exclure l’usage. Par ex-
tension, il désigne, principalement en Suisse, mais également dans certaines régions des Alpes
françaises, une forêt servant à protéger un village.
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Figure 1.16 – Forêt en ban d’Andermatt (UR) en 1848. Aquarelle attribuée à J. Bridges
(Hochschulbibliothek Luzern). D’après la thèse de Rabusseau (2007).

nombre insuffisant des préposés et de la trop grande étendue de leur triage. (…) Une
multitude de délinquants mal surveillés ou pactisant avec les gardes avaient dilapidé les
forêts communales. (…) Le nombre du personnel subalterne devrait donc être augmenté
si l’on ne veut pas voir réduire à une simple fiction la surveillance et la protection des
forêts ». Il faut dire que pendant plusieurs décennies, les gardes forestiers étaient assez
complaisants car issus des vallées dont ils avaient la surveillance, ils connaissaient la
pauvreté des gens. L’administration reprochait la connivence entre habitants et gardes.
Ainsi, en 1868 à Vallorcine, le Conservateur des forêts se plaignait que « le garde de
Vallorcine qui est de la commune, éloigné de ses chefs, s’abandonne à toutes les in-
fluences, et principalement à celles des autorités locales qui peuvent en abuser » et il
obligea la commune à engager un garde extérieur à la vallée (Gardelle, 1988).

La mise en place des lois sur la forêt a entraîné une forte réaction des populations
montagnardes, très pauvres. Si les vols de bois sont fréquents, c’est que c’est une condi-
tion de survie pour des populations extrêmement pauvres, ce que Gardelle (1988) résu-
mait de la façon suivante : « l’administration, dont les ingénieurs se recrutent dans la
haute bourgeoisie des plaines, ne peut pas comprendre ces Vallorcins si lointains qui



52 Chapitre 1 Aménagement du territoire et risques

ne survivent qu’en volant du bois pour faire leurs seilles, en raclant la litière 23, en lais-
sant échapper leurs chèvres à travers la forêt. » L’historien Jérôme Buridant concluait
« sur ce plan, l’administration pratique une certaine forme de despotisme éclairé, en
cherchant faire le bonheur des peuples contre leur gré » (Buridant, 2002).Quoique l’ad-
ministration forestière minimisa la résistance vue tout au plus comme « l’expression
d’intérêts personnels isolés 24 », la législation subit plusieurs infléchissements sous les
coups de boutoir des élus locaux (Jeudy, 2006). La loi du 8 juin 1864 autorisa l’engazon-
nement comme alternative au reboisement, ce qui permettait de réintroduire les activi-
tés pastorales. Dès 1876, le gouvernement tenta d’encourager la création de fruitières 25

et le développement de troupeaux bovins au lieu des moutons et chèvres, qui causaient
plus de dommages aux forêts. En France, la loi de 1882 avec l’instauration du service
RTM marque un changement de cap dans la politique nationale sans pour autant chan-
ger l’impopularité auprès des populations locales, une situation que Buridant (2002)
résume ainsi : « pour les populations montagnardes, [la restauration des terrains en
montagne] a été imposée par les gens de la plaine, d’abord et avant tout pour défendre
les villes de piémont des inondations. Défaut de dialogue, incompréhension mutuelle,
errements du législateur, manque de politiques d’accompagnement : sur ce plan, il faut
avouer que le reboisement des montagnes est aussi un échec. »

Avec l’exode rural qui débute à la fin du xixe siècle et s’amplifie au xxe siècle, la
pression sur la forêt diminue fortement. La vive opposition qui existait entre popula-
tions autochtones et administration s’apaisa fortement. La première guerre mondiale
marqua également la fin de la grande ère de la restauration en montagne.

Critique de la doctrine forestière

Dans son étude sur l’effet du reboisement, le botaniste Félix Lenoble, farouche ad-
versaire de Mougin, concluait (Lenoble, 1926) :

« D’ailleurs les travaux de reboisement et de correction de torrents
ont-ils une efficacité bien sérieuse contre ces paroxysmes des forces na-
turelles en montagne? C’est douteux. La grandeur des masses en mouve-
ment, l’influence du relief et l’action de la pesanteur ont ici une prépondé-
rance telle que les obstacles qui leur sont opposés artificiellement figurent
de simples fétus. La prétention de l’homme de maîtriser ces phénomènes,
formidables à l’égard de sa faiblesse, fait penser à celle d’une fourmi qui
croirait en remuant quelques grain de sable consolider les ruines de la
cathédrale de Reims. »

23. Les seilles étaient des seaux en bois de mélèze et servaient au transport de l’eau ou du
lait. Le bois de litière et le bois mort étaient ramassés pour le chauffage.

24. Expression tirée des « Comptes rendus des travaux de 1862 » (Imprimerie Nationale,
Paris) et citée par Buridant (2002).

25. Une fruitière est une coopérative formée pour l’exploitation du lait et la fabrication des
fromage ; c’est un terme employé principalement dans les Alpes.
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Les géographes, plus particulièrement les géographes français, se sont montrés parti-
culièrement critiques (Veyret, 1943).

Aujourd’hui, les études hydrologiques n’ont certes pas permis de trancher de fa-
çon catégorique le débat sur le rôle des forêts sur les crues. Il n’y a pas de réponse
universelle à cette problématique car chaque bassin-versant a ses propres spécificités.
Toutefois, le consensus scientifique est le suivant : s’il est avéré que les forêts ont une
influence positive sur la genèse et la propagation des crues en diminuant et étalant le
volume de crue, elles n’ont qu’un rôle faible à marginal lors des phénomènes de grande
ampleur. Par exemple, en Suisse et en France, les crues d’août 2005 ont montré que les
forêts n’avaient pas empêché la formation de crues torrentielles et inondations impor-
tantes et que, pis encore, elles avaient contribué à augmenter les dommages à cause des
bois flottants (Schwitter & Bucher, 2009). En outre, la comparaison entre des bassins-
versants avec des couvertures végétales différentes ne montre pas systématiquement
une efficacité plus grande de la forêt pour freiner le ruissellement des eaux de surface
(Richard, 2002; Rey et al., 2004; Cosandey et al., 2005) : c’est en général la perméabilité
du sol qui est le facteur clé.

Épilogue

La controverse très vive entre scientifiques et forestiers existe toujours. La forêt
joue un rôle sur le plan hydrologique en interceptant les pluies, en favorisant l’infil-
tration, en maintenant les sols en place grâce au réseau racinaire, et en assurant une
humidité de l’air grâce à l’évapotranspiration et donc des précipitations plus régulières
(Spracklen et al., 2012; Meier et al., 2021).

Si certains considèrent encore que la forêt joue un rôle déterminant dans la pré-
vention des crues (Combes et al., 1995; Laurance, 2007; Alila et al., 2009; Kirchner et al.,
2020), la plupart pensent qu’il s’agit d’un rôle mineur, voire d’un mythe. Calder &
Aylward (2006) résument ainsi la situation :

« Il y a un écart croissant entre la perception du public et les preuves
scientifiques concernant les causes des crues, leurs impacts, et les béné-
fices des mesures de prévention. Pour nous, cet écart résulte de l’intense
promotion de certains types d’utilisation du sol et d’interventions tech-
niques par des groupes d’intérêt particulier en l’absence de toute diffusion
de données scientifiques qui auraient pu permettre de développer une vue
contraire. Pour nous, cet écart a pu aboutir non seulement à gaspiller des
fonds de développement (jusqu’à 10 milliards de dollars par an) pour des
objectifs irréalisables, mais également à blâmer de façon injustifiée des
populations montagnardes de pratiques qui n’ont en général qu’un im-
pact limité sur les crues à l’aval. (…) Ce que l’on peut reconnaître, avec
certitude, c’est que des solutions de gestion simplistes et populistes telles
que les programmes commerciaux de reforestation qui sont souvent mis
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en avant, ne peuvent pas offrir une solution générale et, dans la plupart
des situations, ont un intérêt au mieux marginalement positif et, au pire,
des impacts négatifs. »

Propos exagérés? Examinons ce que disait Yves Cassayre, alors responsable du service
national RTM, devant les sénateurs en 2002 26

« Au milieu du siècle dernier, il n’y avait jamais eu autant de po-
pulation en montagne dans l’histoire. Cette population était essentielle-
ment constituée d’agriculteurs-éleveurs qui avaient entrepris pour leur
subsistance d’importants défrichements, ayant pour conséquences du sur-
pâturage et une accélération de l’érosion en montagne. Des rapports d’in-
génieurs l’avaient déjà relevé dans les années 1840-1850.

« La reprise de l’érosion en montagne a vraiment été constatée dans
la décennie 1850-1860. Cette décennie a en effet été marquée par d’impor-
tantes crues de la Garonne, du Rhône et de la Loire, tous ces fleuves pre-
nant leur source dans les départements de montagne. Les dégâts occasion-
nés par ces inondations étaient intervenus non pas uniquement dans les
régions de montagne, mais aussi vers l’aval des fleuves. Le phénomène
physique était le suivant : la montagne étant déboisée, les sols étaient mis
à nu, entraînant d’une part des crues plus fortes puisque les sols épon-
geaient moins, et d’autre part un entraînement beaucoup plus important
de matériaux solides. Ces phénomènes d’inondations au cours de cette
décennie ont occasionné un grand nombre de victimes et de dégâts.

« L’intervention des pouvoirs publics date de 1860 et du vote de la
première loi, une loi sévère de l’État centralisateur qui avait fait le rai-
sonnement suivant : « les populations de montagnes ont mal géré leur
terrain, on les exproprie, et l’État reboise ». Il est certain que cette me-
sure a engendré des résistances dans bien des campagnes, puisque cette
loi privait certains agriculteurs de pâturages. Cette loi a ensuite été mo-
difiée en 1864, 1880 et 1882, amendée à plusieurs reprises, passant d’un
reboisement unique à un reboisement associé à un ré-engazonnement (à
vocation de pâturage).

« Ce reboisement a commencé à porter ses fruits, mais vers 1890, les
praticiens se sont aperçus qu’il fallait également effectuer des travaux de
génie civil. Ces missions de reboisement ont naturellement été confiées
à l’administration des Eaux et forêts de l’époque. Cette politique volonta-
riste de l’État fut assortie de crédits réguliers et abondants. Les expropria-
tions se sont faites de plus en plus à l’amiable. La réussite des grands reboi-
sements a été patente, surtout dans les Alpes du Nord et les Pyrénées. »

Ce responsable reprend l’antienne du montagnard dont l’irresponsabilité est la cause

26. Audition de M. Yves Cassayre, délégué national aux actions de restauration des terrains
en montagne (RTM) (3 avril 2002). Source senat.fr.

https://extranet.senat.fr/basile/visioPrint.do?id=r812049_4
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des crues majeures du xixe siècle, et de l’action salutaire de l’État. S’ils avaient été
prononcés en 1902, ces propos n’auraient pas choqué, mais en 2002, ils illustrent que
les services de l’État ont du mal à reconnaître leurs erreurs et qu’en dépit de l’évidence
scientifique qui s’accumule, on maintient des fictions et on récrit l’histoire.





CHAPITRE2
Climat et risques hydrologiques

L
objet de ce chapitRe est d’expliquer pourquoi dans une zone à climat tem-
péré comme l’Europe, les conditions météorologiques peuvent donner nais-
sance à des phénomènes naturels catastrophiques tels que les avalanches, les

crues, les coulées de boue. Dans un premier temps, on cherche à expliquer comment
fonctionne l’atmosphère et quelles en sont les conséquences en termes de variabilité
des conditions météorologiques. Enfin, on passera en revue les différents risques hy-
drologiques.

2.1 Variabilité des précipitations

Les risques hydrologiques tirent le plus souvent leur origine d’un comportement
anormal des conditions météorologiques. Ils sont donc intimement liés aux processus
climatiques et aux variations des conditions atmosphériques (vent, humidité, etc.). Il y
a quelques raisons bien simples pour lesquelles l’atmosphère n’est jamais stable, mais
au contraire toujours agitée et parcourue de courants :

– la terre tourne et ce mouvement de rotation entraîne des mouvements d’air qui
sont majoritairement d’ouest en est dans l’hémisphère nord ;

– la terre est chauffée par le soleil, mais les pôles ne reçoivent pas lamême quantité
de chaleur que l’équateur, ce qui crée un flux du sud vers le nord (toujours pour
l’hémisphère nord).

Les conflits de masses d’air entraînent des fluctuations considérables de pression et
d’humidité, dont une conséquence directe est la variabilité des conditions météorolo-
giques sous nos latitudes (climat dit tempéré), avec parfois l’occurrence de conditions
météorologiques particulièrement défavorables.

La durée des périodes où un régimemétéorologique prédomine sur une région don-
née est généralement cyclique (notamment à cause de l’alternance des saisons), mais

57
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n’est pas périodique. La transition d’un régime à un autre reste toujours difficile à pré-
voir pour le météorologiste ; cette transition se fait de façon plus ou moins chaotique 1.
Les caractéristiques (force du vent, intensité des pluies, température, etc.) sont égale-
ment très variables à cause du nombre de processus en interaction.

2.1.1 Comment marche l’atmosphère?

Dans un premier temps, afin de comprendre de façon basique comment marche
l’atmosphère, on peut retenir deux idées force :

– il y a des mouvements d’air dans la couche atmosphérique liés d’une part aux
différences de pression (rappelons le théorème de Bernoulli : il existe un mouve-
ment d’air qui va des hautes vers les basses pressions, les zones de basse pression
étant celles où la vitesse locale est la plus grande) et d’autre part, à la force de
Coriolis (effet centrifuge dû à la rotation de la terre) ;

– il y a des circulations ascendantes et descendantes dues aux différences ther-
miques : l’air chaud est plus léger et donc a tendance à remonter vers les hautes
couches de l’atmosphère (vice versa pour l’air froid).

Ces déplacements d’air à l’échelle atmosphérique peuvent être décrits par le modèle
de Palmén–Newton 2 schématisé sur la figure 2.1. La figure 2.2 montre une perspective
différente des circulations atmosphériques.

Principes généraux de circulation atmosphérique

Le principe général est le suivant : l’air équatorial est fortement chauffé par le soleil
et monte assez rapidement dans les couches supérieures de l’atmosphère jusque vers
la troposphère. L’air se refroidissant avec l’altitude, il a ensuite tendance à redescendre
vers la surface terrestre. Les montée et descente forment une grosse cellule de convec-
tion dite cellule de Hadley, qui prend place au-dessus des océans entre l’équateur et les
tropiques. Un phénomène inverse se produit aux pôles : le faible ensoleillement et le
bilan thermique négative (radiation) provoquent un important refroidissement de l’air,
qui a tendance à s’écouler vers le « bas » (le sud pour l’hémisphère nord). Durant sa des-
cente vers le « bas », l’air froid va rencontrer de l’air plus chaud. Cette rencontre n’est

1. La très grande sensibilité des prévisions météorologiques à la moindre variation des don-
nées prises en compte avait été illustrée dans les années 1970 par un titre de conférence de-
venu célèbre du météorologue américain Edward Lorenz, « Predictability: Does the Flap of a
Butterfly’s Wing in Brazil Set off a Tornado in Texas? », qui donna naissance au fameux « effet
papillon » et impulsion à une importante recherche sur le chaos déterministe.

2. Erik Palmén (1898–1985) était un météorologiste finnois. Son livre coécrit avec Chester
W. Newton, « Atmospheric Circulation Systems: Their Structure and Interpretation » en 1969
présente ses travaux sur les fronts d’air, le jet stream, et de façon générale la circulation atmo-
sphérique.
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Figure 2.1 – Schématisation des circulations atmosphériques selon le modèle de
Palmén-Newton dans un plan vertical.

Figure 2.2 – Schématisation des circulations atmosphériques (modèle de Palmén-
Newton) selon les hémisphères. Source : University of Oregon.

pas progressive, mais assez brutale et donne lieu à la formation d’une discontinuité
appelée front polaire qui s’étend jusqu’à nos latitudes vers environ le 40° parallèle. Ce
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front est instable ; il oscille en permanence en éjectant de l’air en altitude et il est asso-
cié à des vents particulièrement violents au-dessus des océans (les plus connus étant
ceux de l’hémisphère sud, ce qui a valu l’appellation de 40° rugissant). Outre ces mou-
vements dans un plan vertical, il existe des circulations dans un plan transversal, qui
assez étrangement sont confinées dans des couloirs bien délimités appelés les jets (1 km
de haut, 100 km de large) dans lequel le vent s’engouffre et atteint des vitesses élevées
(plus de 250 km/h) ; ce sont ces couloirs qui sont par exemple recherchés par les vols
transatlantiques de retour d’Amérique.

Il s’agit évidemment d’une vision très simplifiée du problème. Bien d’autres para-
mètres vont rendre les processus plus complexes. C’est ce que l’on va examiner mainte-
nant. On s’intéresse ici aux principales sources de fluctuations, qui permettent d’expli-
quer la variabilité et les cycles observés. Il existe d’autres causes de variation climatique
liées à l’occurrence de phénomènes géologiques ou astronomiques, dont nous ne par-
lerons pas ici 3.

Rôle de l’ensoleillement

L’ensoleillement et donc le bilan thermique varient au cours de l’année. Le cycle
saisonnier joue sur l’emplacement privilégié des centres dépressionnaires et anticyclo-
niques comme le montre la figure 2.3.

Rôle des océans

L’océan est un réservoir d’énergie. Les échanges thermiques avec l’océan vont
amortir ou bien alimenter les instabilités atmosphériques. Ainsi, les courants océa-
niques comme le gulf stream jouent un rôle important sur le plan climatique. Des
phénomènes étranges comme El Niño 4 sont dus à un couplage entre courant marin
et circulation atmosphérique sur tout un hémisphère.

3. Par exemple, on rapporte que l’explosion du volcan Tambora (Indonésie) en avril 1815 a
entraîné une modification passagère, mais globale de l’atmosphère (cendres, gaz émis), dont les
conséquences se sont fait sentir jusque dans l’hémisphère nord en 1815 et 1816 par une baisse
spectaculaire des températures (Luterbacher & Pfister, 2015). Plus récemment, en 2023, l’érup-
tion du volcan sous-marin Hunga Tonga-Hunga Ha’apai dans le Pacifique a émis de grandes
quantités de vapeur d’eau, que certains scientifiques considèrent être la cause du fort réchauf-
fement planétaire observé en 2023 (Esper et al., 2024; Jucker et al., 2024).

4. Ce phénomène a été mis en évidence en 1923 par un brillant physicien anglais, Sir Gilbert
Walker (1868–1968), qui cherchait à prévoir la mousson (arrivée et intensité des pluies) qui
s’abat sur les contreforts himalayens chaque année. À partir d’un travail de dépouillement sta-
tistique titanesque (pour les moyens de l’époque),Walker amontré l’existence d’une corrélation
forte entre les pressions de part et d’autre de l’océan Pacifique. Ce qui se passe au large de l’In-
donésie ou au-dessus du sol indien est fortement dépendant des courants marins le long de
la côte péruvienne. Il proposa un index (qui aujourd’hui porte son nom), qui mesure l’écart
de pression entre l’est et l’ouest de l’océan Pacifique. Quand l’indice (et donc la différence de
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Figure 2.3 – Emplacement des principaux centres anticycloniques (high pression) et
dépressionnaires (low pression) sur les deux décennies 1979–98. Source : University of
South California Dornsife.

Effet du relief

Sur la surface solide, le relief montagneux ou les plaines sont également des para-
mètres qui influent sur la circulation atmosphérique. La terre se réchauffe et se refroidit
généralement plus vite que les océans, ce qui provoque des vents plus ou mois forts se-
lon l’écart thermique ainsi généré. L’océan offre également bien moins de résistance au
vent que la terre ferme (en présence de relief).

Durant l’été, lorsque les champs de pression sont plus homogènes sur l’hémisphère

pression) augmente, la pression est élevée le long de la côte américaine, entraînant des vents
forts (alizés). Lorsque l’indice diminue, les alizés sont moins forts, avec pour conséquence des
hivers plus doux sur toute la bordure pacifique du continent nord-américain et une sécheresse
marquée sur une partie de l’Asie, l’Australie, et la côte est de l’Afrique. El Niño apparaît avec
une fréquence irrégulière (une à deux fois par décennie).
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nord, ce sont le plus souvent ces phénomènes convectifs qui prédominent alors et de
ce fait, le relief joue un rôle très important. C’est ainsi que des valeurs record de préci-
pitations lors d’orages sont enregistrées sur le sud-est de la France et certaines parties
des Pyrénées espagnoles. Ainsi en Aragon, à Biescas, un orage dont l’intensité dépassa
les 100 mm de pluie en 10 min provoqua une crue d’un torrent, qui balaya un camping,
tuant 87 personnes.

Oscillations polaires et australes

Les courants atmosphériques appelés courant-jet (jet stream en anglais) oscillent
en permanence au gré des saisons (selon le bilan thermique des régions survolées) et
à cause d’une instabilité mécanique, qui donne naissance à des ondes dites ondes de
Rossby 5. Certains hivers, ces oscillations sont plus marquées et peuvent amener à la
création de cellules de haute et basse pressions, qui peuvent rester stationnaires, avec
pour conséquence directe des situations de blocage météorologique. Ce sont ces situa-
tions qui peuvent générer des conditions météorologiques extrêmes (température très
basse ou bien succession de passages perturbés). Pour l’Europe, ces oscillations donnent
naissance à trois systèmes (voir figure 2.4) :

– l’anticyclone des Açores (hautes pressions) ;
– dépression islandaise (basses pressions) ; et
– l’anticyclone centré sur la Sibérie.

Le mouvement des masses d’air associées conditionnent le temps sur l’Europe. Comme
pour l’indice Walker utilisé pour la mousson, on peut définir un indice d’oscillation po-
laire ou indice NAO (North Atlantic Oscillation index en anglais) comme la différence
de pressions entre la dépression islandaise et l’anticyclone des Açores (en pratique, dif-
férence barométrique entre Reykjavik et Lisbonne ou Gibraltar). L’indice NAO fluctue
d’année en année et montre des cycles, dont la durée moyenne s’étend sur la décennie
comme le montre la figure 2.5 pour la saison hivernale (où les différences sont les plus
marquées par rapport aux autres saisons). On interprète généralement l’indice NAO de
la façon suivante.

– Une valeur positive de l’indice NAO indique l’anticyclone des Açores est plus
fort que d’habitude et/ou que la dépression islandaise est plus creusée. Cette dif-
férence accrue de pression favorise donc les vents forts atlantiques, aboutissant
le plus souvent à des hivers humides et doux sur les Alpes et des temps froids
et secs sur le nord de l’Europe (ainsi qu’au Canada et au Groenland), comme
le montre figure 2.6(a). L’axe des vents forts est également décalé vers le nord.
L’hiver exceptionnel de 1995 ou celui de 2007 en offre un exemple.

5. Carl-Gustaf Arvid Rossby (1898–1957) était un météorologue suédois (qui émigra aux
États-Unis par la suite), dont les travaux ont porté sur le déplacement à grande échelle des
masses d’air. Rossby a expliqué ces phénomènes en se fondant sur la mécanique des fluides.
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– Dans le cas opposé, lorsque l’indice NAO est négatif, le gradient de pression
entre les régions polaires et subtropicales reste faible, entraînant des vents et
des passages perturbés atlantiques de plus faible intensité et moins fréquents
que d’ordinaire, alors que dans le même temps, l’anticyclone centré sur la Sibérie
envoie de l’air polaire froid [voir figure 2.6(b)]. Une grande partie de l’Europe est
alors plongée dans un temps sec et très froid ; les vents d’ouest d’altitude sont
non seulement moins forts, mais également décalés vers le sud. Le terrible hiver
1916-17 pendant la grande Guerre en est un exemple typique.

Outre les oscillations australes (indice ENSO pour El Niño Southern Oscillation) et
nord-atlantiques (indice NAO), il existe des oscillations sur le Pacifique Nord (indice
SPO pour South Pacific Oscillation) ; toutes ces oscillations sont plus ou moins cou-
plées et également liées à des variations des courants marins comme le gulf stream.
L’essentiel de la variabilité météorologique observée à l’échelle d’un pays peut généra-
lement s’expliquer par ces fluctuations des courants atmosphériques et marins.

Notons que la description faite des oscillations nord-atlantiques et de leur influence
sur les conditions météorologiques ne donne que les grandes tendances. Les régimes
de temps à grande échelle se caractérisent par une grande variabilité, qui rend difficile
toute classification. Cette description est, néanmoins, suffisante à camper le décor.

Influence du soleil

Des phénomènes astronomiques interviennent également sur le climat. Par exemple,
le champmagnétique solaire varie de façon assez régulière avec des cycles de 11 ans 6 et
des cycles de plus longue période (de l’ordre de la centaine d’années) (Gray et al., 2010).
L’activité solaire produit une ionisation des couches supérieures de l’atmosphère, ce
qui peut affecter la structure de l’atmosphère, notamment en favorisant une réduction
de la couverture nuageuse et un refroidissement accru de la surface terrestre. Le Petit
âge glaciaire serait en partie dû à une réduction importante de l’activité magnétique
terrestre.

Selon certains auteurs (Hurrell & Van Loon, 1997; Kuroda et al., 2022), l’activité
solaire explique les variations de l’indice NAO et l’existence de cycles. Sur la figure
2.5(a), on a reporté l’évolution de la différence de pression entre Reykjavik et Gilbratar.
Le signal semble très bruité. Si on ne retient que la saison hivernale (voir 2.5(b)), des
cycles de plusieurs années apparaissent. Pour caractériser ces cycles, c’est-à-dire tirer
une tendance non linéaire d’un signal très bruité, on peut employer un filtre passe-
bande comme celui de Lancsoz (Trenberth, 1984). C’est ce que l’on fait sur la 2.5(c) en
appliquant un filtre de Lancsoz avec une fenêtre de 31 années ; la fréquence de coupure
basse est 1/15 an−1 tandis que la fréquence de coupure haute est 1/8 an−1 en sorte que

6. Le phénomène fut mis en évidence par un astronome suisse, Johann Rudolf Wolf (1816–
1893), vers les années 1850. Wolf montra également la corrélation entre champs magnétiques
terrestre et solaire.
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Figure 2.4 – Cheminement du jet stream polaire dans l’hémisphère nord au fil des
saisons. On part d’une situation où le jet stream part du Tibet (air chaud) puis remonte
vers les régions polaires ; c’est la situation classique rencontrée en été (figures a et d).
L’hiver, le courant se met à osciller entre le 60 et le 40° parallèles, avec en général quatre
à cinq ondulations, qui donnent naissance à des centres dépressionnaires (low pressure
= L sur les figures b et c).

l’on retienne principalement les fréquences autour de 1/11 an−1 (puisque 11 ans est la
période attendue de l’activité solaire). Pour l’activité solaire, les mesures d’irradiation
solaire ne sont disponibles que depuis quelques décennies. On peut employer comme
substitut le nombre moyen de taches solaires par mois, une donnée disponible depuis
1749. La figure 2.5(c) compare la valeur filtrée de l’indice NAO pour février et le nombre
de taches solaires. On observe que l’indice NAO et l’activité solaire sont bien corrélés,
même si parfois il y a un décalage d’un an (que les chercheurs attribuent au rôle tampon
de l’océan).
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Figure 2.5 – Variation de l’indice hivernal NAO de 1820 à nos jours. (a) Valeurs men-
suelles pour tous les mois de l’année. (b) Valeurs moyennées sur la saison hivernale
couvrant les mois de décembre à mars (compris). (c) Indice NAO pour le seul mois de
février. L’indice est calculé en faisant la différence entre la pression au niveau de la mer
à Stykkisholmur près de Reykjavik (Islande) et Gilbratar (Espagne). La différence est
ensuite normalisée en prenant l’écart relatif par rapport à la valeur moyenne (sur toute
la série) de telle sorte que les valeurs fluctuent autour de 0. La courbe continue noire
montre la moyenne de l’indice NAO (pour février) calculée à partir d’un filtre passe-
bande de Lancsoz. Les points sont les valeurs de l’indice NAO pour février (en bleu
quand elles sont négatives et rouges dans le cas contraire). La courbe orange montre
l’évolution du nombre moyen de taches solaires (utilisé comme substitut de l’activité
solaire). Source : données NAO East Anglia Climate Research Unit et taches solaires
Source: WDC-SILSO, Royal Observatory of Belgium, Brussels.

https://crudata.uea.ac.uk/cru/data/nao/
https://www.sidc.be/SILSO/datafiles
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(a)

(b)

Figure 2.6 – Conditions climatiques en hiver sur l’Europe. Source : David B.
Stephenson). (a) Indice positif entraînant un hiver humide sur l’Europe et (b) hiver
sec et froid.

http://www1.secam.ex.ac.uk/cat/NAO
http://www1.secam.ex.ac.uk/cat/NAO
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2.1.2 Le passage d’une perturbation

On vient de voir comment à l’échelle de l’atmosphère, le temps s’organise. Il faut
maintenant dire quelques mots sur la façon dont les conditions météorologiques vont
varier à une échelle plus petite (dite synoptique), c’est-à-dire à l’échelle d’un pays comme
la Suisse ou la France. On va principalement s’intéresser ici aux dépressions baroclines
(c’est-à-dire liées aux variations de champ de pression à grande échelle par opposition
aux phénomènes d’origine convective liés à un gradient de température et se produisant
à une échelle généralement bien plus petite), appelées encore dépressions synoptiques.

Tout d’abord, rappelons qu’en raison de la circulation atmosphérique générale, les
masses d’air froid polaire et chaud tropical se côtoient le long des courants jets. Ce
contact ne reste pas longtemps pacifique. Très schématiquement, on peut dire que l’air
froid, dense, a tendance à s’écouler vers le sud et qu’en échange l’air chaud s’efforce
de progresser vers le nord. Ces zones d’échange constituent les dépressions dont le
centre se comporte comme un véritable tourbillon, lui-même entraîné par le flux géné-
ral (en majorité d’ouest à nos latitudes). L’effet d’aspiration vers le centre du tourbillon
(convergence) provoque un enroulement en spirale ou en « coquille d’escargot » si
caractéristique sur les images satellite.

Figure 2.7 – La perturbation née de la zone de contact (rencontre des masses d’air
tropical et polaire) provoque un enroulement en spirale caractéristique sur les vues de
satellite.

Dans le même temps l’air chaud, plus léger que l’air froid environnant, est en per-
manence rejeté en altitude. La zone de contact entre les deux s’établit donc selon des
surfaces (plus ou moins) faiblement inclinées que l’on appelle surfaces frontales dont
l’intersection avec le sol constitue des lignes appelées fronts qui composent la pertur-
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bation proprement dite. On distingue deux types de front :

– Lorsque le déplacement de ces lignes est impulsé par de l’air chaud, celui-ci, au
cours de son effort pour remplacer (littéralement laminer) l’air froid antérieur,
est obligé du fait de sa faible densité de passer au-dessus de ce dernier, de se
soulever : on parle de front chaud (voir figure 2.8).

– Lorsqu’au contraire l’impulsion vient de l’air froid, celui-ci du fait de sa forte
densité se déplace comme un coin qui serait dirigé vers le sol et il soulève devant
lui l’air chaud plus léger : on parle alors de front froid (voir figure 2.9).

Figure 2.8 – Dans le cas d’un front chaud, l’air chaud monte lentement au-dessus
de l’air froid. Comme la surface frontale est faiblement inclinée, le front s’étend sur
plusieurs centaines de kilomètres. Les cartes météorologiques ne peuvent pas rendre
compte de l’étalement de la surface frontale en altitude. Pour le représenter sur une
carte, on trace l’intersection de la surface frontale avec le sol. La frontière ainsi délimi-
tée est appelée front chaud. Source : Météo Suisse.

Figure 2.9 – Dans le cas du front froid, l’air chaud est chassé par l’air froid et rejeté
violemment en altitude. La surface frontale est fortement inclinée, le front s’étend sur
quelques dizaines de kilomètres. Source : Météo Suisse.

https://www.meteosuisse.admin.ch/meteo/meteo-et-climat-de-a-a-z/front-chaud.html
https://www.meteosuisse.admin.ch/meteo/meteo-et-climat-de-a-a-z/front-froid.html
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Dans les deux cas, le soulèvement de l’air chaud en altitude provoque des phéno-
mènes de détente et donc une très forte condensation. En définitive, il y a apparition
le long des lignes frontales de zones nuageuses très étendues et suffisamment épaisses
pour provoquer des précipitations. Enfin, au cours de l’évolution d’une perturbation
(et notamment là où l’air froid se déplace très rapidement) l’air froid rejette tout l’air
chaud en altitude et parvient à rattraper une autremasse d’air froid aux caractéristiques
différentes, puis à entrer en contact avec lui : on parle alors d’occlusion.

Chaque perturbation amène son lot de nuages et de précipitations mais aucune
n’est exactement semblable à l’autre. On peut néanmoins décrire le scénario « type »
du passage d’une perturbation océanique, c’est-à-dire circulant dans un flux général de
sud-ouest à nord-ouest, tel qu’il peut être observé d’un point donné de notre continent.
On peut découper ce scénario en trois phases :

– l’arrivée de l’air chaud (front chaud) ;
– la zone de transition entre le front chaud et le front froid ;
– l’arrivée de l’air froid (front froid).

L’arrivée de l’air chaud (ou si l’on préfère l’approche d’un front chaud) se mani-
feste d’abord à haute altitude par l’apparition de nuages fibreux plus ou moins espacés
(cirrus) qui, si l’aggravation est sérieuse, sont bientôt remplacés par des voiles grisâtres
de plus en plus épais de cirrostratus (halo). La pression atmosphérique peut être déjà
en baisse sensible. Le vent généralement se renforce, au moins sur les hauts sommets
où il s’oriente généralement (tout au moins dans le cas d’une circulation océanique) au
sud-ouest.

Notons que l’apparition de cirrus et de cirrostratus annonce souvent une dégrada-
tion plus ou moins rapide des conditions météorologiques, mais pas toujours. La partie
active du front chaud peut en effet passer nettement plus au nord, cas fréquent dans
les Alpes du Sud dans le cas d’un régime océanique, ou bien ces nuages ne sont pas
associés à une perturbation organisée et ne font que passer, pris dans un rapide cou-
rant général d’altitude qui peut être, lui, franchement anticyclonique sur nos régions
et provenant de « champs de bataille » dépressionnaires très éloignés.

Généralement la concomitance de ces nuages, d’un renforcement du vent et d’une
forte baisse de la pression constitue un indice assez fiable d’aggravation sérieuse qui va
trouver sa confirmation, au fil des heures, par l’arrivée d’altostratus (voile épais mais
encore translucide par endroit) et (ou) d’altocumulus (appellation générique recouvrant
des nuages pouvant avoir des aspects très différents : nappes en galets, rouleaux plus
ou moins soudés ou bancs effilés en forme d’os de seiche). Ces nuages évoluent entre
3000 et 5000 m, de sorte que les hauts sommets sont déjà pris et reçoivent bientôt les
premières précipitations. En région de plaine et de vallée, les conditions sont encore
clémentes malgré la disparition du soleil. La baisse de pression s’accentue.

Lorsque le front lui-même se rapproche (on parle alors de corps perturbé), le plafond
baisse graduellement ou parfois très vite jusqu’à noyer la montagne dans des nuages



70 Chapitre 2 Climat et risques hydrologiques

très sombres et aux contours flous (nimbostratus) que l’on peut éventuellement distin-
guer de la vallée tandis que les sommets sont pris dans le brouillard. Les précipitations
se renforcent. Elles sont souvent plus fortes qu’en plaine. C’est d’ailleurs vrai aussi bien
pour le front froid que pour le front chaud. En effet, à l’effet de soulèvement frontal, se
superpose celui dû à la présence du relief (on parle alors de soulèvement forcé).

À souligner que l’accroissement des précipitations avec l’altitude n’est pas homo-
gène ni d’unmassif à l’autre, ni même à l’échelle d’un seul massif. La position de celui-ci
par rapport au flux général mais aussi la topographie locale jouent un rôle important.
Les ascendances (et donc l’instabilité) sont renforcées en des endroits privilégiés : par-
ties concaves, resserrements des vallées, cirques, etc.

Du côté des températures, la masse d’air s’est globalement radoucie même si l’im-
pression ressentie est parfois tout autre. Ce radoucissement peut entraîner, au-dessous
d’une certaine altitude, la transformation de la neige en pluiemais, pour unemasse d’air
donnée, ce niveau d’altitude pourra être très variable d’un massif à l’autre. En hiver
dans le nord des Alpes, les massifs préalpins sont soumis de plein fouet au redoux. En
revanche, dans les massifs situés plus à l’intérieur, l’air froid antérieur reste longtemps
prisonnier des vallées et l’air chaud a bien du mal à le remplacer.

Une fois le front chaud passé, on entre dans ce que les météorologistes appellent
le secteur chaud. Les précipitations s’arrêtent ou deviennent très faibles voire spora-
diques. L’air est nettement plus doux. La couche nuageuse se fractionne et des éclaircies
peuvent apparaître entre des bancs nuageux persistant à plusieurs niveaux.

En fait, la physionomie du secteur chaud va beaucoup dépendre de la position
exacte où l’on se trouve par rapport au centre de la dépression ou plutôt par rapport à
ce que l’on appelle le point triple de la perturbation et qui n’est que la projection sur
un plan horizontal de l’intersection des fronts chaud et froid avec l’occlusion. Si l’on
s’en trouve assez prés, le secteur chaud ne verra que très peu d’amélioration sensible
du temps. Seule une légère et temporaire atténuation des précipitations sera observée
avant l’arrivée, souvent rapide, du front froid. Au contraire, plus on est loin du point
triple et plus l’amélioration peut être belle. Dans certains cas, la masse d’air s’assèche
considérablement surtout dans sa partie supérieure tandis que l’humidité reste impor-
tante dans les basses couches : brumes et nuages de type stratus (sorte de brouillard
décollé du sol) ou stratocumulus (d’aspect voisin de certains altocumulus mais d’alti-
tude nettement plus basse) persistent en plaine et vallée alors qu’il fait assez beau en
montagne, tout au moins à partir d’une certaine altitude, avec des voiles nuageux très
élevés plus ou moins denses.

Dans tous les cas de figure, la pression atmosphérique se stabilise. Le vent général
souffle maintenant de l’ouest. Il reste souvent fort à très fort dans les secteurs chauds
actifs mais autrement, il a tendance à faiblir.

L’irruption de l’air froid provoque un nouveau soulèvement de l’air chaud qui s’ac-
compagne d’une aggravation nuageuse et pluvieuse souvent brusque, beaucoup plus
rapide en tout cas que celle due au passage du front chaud (la pente du front froid est
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Figure 2.10 – Passage d’une dépression polaire, avec passage dans un premier temps
d’un front chaud, puis d’un front froid. Si ce dernier rattrape le front chaud, il y a
occlusion : l’air chaud se retrouve entièrement rejeté en altitude.

en effet plus forte). Le vent a tendance à revenir temporairement au secteur sud et la
pression recommence à baisser. Au passage du front froid proprement dit, les préci-
pitations sont intenses, accompagnées souvent de manifestations orageuses durant le
printemps et l’été, parfois même en plein hiver lorsque la poussée froide est suffisam-
ment vigoureuse pour entraîner de rapides ascendances turbulentes qui donnent lieu à
la formation de ces fameux cumulonimbus (nuages très sombres et très développés ver-
ticalement, en forme de tours finissant par une enclume, particulièrement redoutables
pour l’alpiniste).

Dans le cas d’un secteur chaud actif, l’arrivée du front froid ne constitue pas à pro-
prement parler une surprise puisque l’on est déjà dans le mauvais temps. En revanche,
si le secteur chaud a été peu actif ou carrément inexistant (puisque certaines pertur-
bations se présentent privées en quelque sorte de leur front chaud), le front froid peut
arriver sans signe annonciateur dans le ciel.

Puis, tout aussi brusquement qu’elle avait commencé, la pluie cesse et un coin de
ciel bleu apparaît. L’atmosphère est plus fraîche. La pression connaît une hausse, elle
aussi brutale. Le vent s’oriente franchement nord-ouest à nord. Le front froid est passé.
On est déjà dans ce que les météorologistes appellent la traîne, appellation générique
qui, en région de plaine, se traduit souvent par un temps incertain avec alternance de
belles éclaircies et de passages nuageux plus ou moins denses et parfois accompagnés
d’averses ou bien par un ciel le plus souvent gris et bas. Mais en montagne, surtout
l’hiver, les temps de traîne sont ressentis bien différemment. En gros, deux schémas sont
possibles tout en admettant, surtout à partir du printemps, de nombreuses variantes :

– Soit les masses d’air froid postérieures sont relativement homogènes avec leur
humidité concentrée essentiellement en basse couche. Dans ce cas, même si la
masse d’air est potentiellement instable, les phénomènes de convection (liés à
l’échauffement par le bas) sont insignifiants en région de montagne (tempéra-
tures trop froides, sol enneigé) et les nuages s’étalent en stratocumulus consti-
tuant ainsi les fameuses mers de nuages qui, si elles persistent, constituent un
cauchemar pour ceux qui vivent au-dessous, et… un paradis pour les monta-
gnards qui bénéficient d’un ciel bien dégagé et généralement très limpide. Suivant
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les cas, le sommet de cesmers de nuages se situe entre 1000 et 2000m.Au-dessus,
il n’y a que le vent, qui peut rester fort au moins sur les crêtes, et les avalanches
dues aux récentes chutes de neige pour poser problème.

– Soit l’air froid postérieur comporte des limites secondaires surtout marquées en
altitude et qui correspondent à des discontinuités d’épaisseur de la couche d’air
froid instable. Alors, dans ce cas, celles-ci vont se comporter en région de mon-
tagne comme de véritables fronts, le vent et le relief provoquant de nouveaux
soulèvements. Ainsi, après les quelques éclaircies qui ont suivi immédiatement
le passage du front, le mauvais temps affecte à nouveau le relief qui reste alors
dans le brouillard et soumis à des précipitations quasiment continues sous forme
de neige jusqu’à des altitudes de plus en plus basses. Ces chutes de neige se pré-
sentent souvent sous forme de neige roulée en raison du caractère instable de la
masse d’air. En résumé, le front froid est passé depuis longtemps et pourtant on
a l’impression que rien n’a vraiment changé.

Les successions de perturbation/traîne active (fréquentes dans les régimes d’ouest
à nord-ouest) apportent des précipitations neigeuses souvent importantes sur le nord
des Alpes. Ce sont surtout elles qui favorisent un bon enneigement à basse et moyenne
altitude durant la saison hivernale.

Par ailleurs, bien plus qu’au passage des fronts eux-mêmes, les traînes donnent lieu
à des effets de foehn assez spectaculaires entre le sud et le nord des Alpes, voire entre
des massifs relativement proches. Par régime de nord-ouest par exemple, on observe
souvent un dégradé du mauvais vers le beau entre les Préalpes du Nord et les massifs
plus intérieurs comme le Valais et plus encore derrière la ligne de foehn, vers le Tessin,
où la masse d’air, après avoir en quelque sorte déversé son humidité sur les massifs
situés en amont du flux, continue son voyage sous une forme nettement asséchée qui
entraîne souvent du grand beau temps.

Nous venons de voir le scénario-type d’une perturbation océanique c’est-à-dire
correspondant à une circulation zonale (de secteur ouest au sens large) qui est généra-
lement la plus fréquente sur les Alpes d’octobre à avril. D’autres sont possibles : méri-
diennes (Sud ou Nord), elles apportent dans le premier cas d’importantes précipitations
limitées au sud des Alpes soit, dans l’autre, du froid bien sûr mais généralement peu
d’humidité. Enfin, du fait de creusements dépressionnaires importants dans le golfe de
Gênes, certaines perturbations océaniques se réactivent en Méditerranée et reviennent
en quelque sorte vers les Alpes où elles peuvent provoquer en quelques heures d’abon-
dantes chutes de neige sur la chaîne frontalière avec l’Italie). Ce sont les situations dites
de retour d’est.

Demai à septembre, les pulsations d’air froid polaire deviennentmoins vigoureuses
et le temps sur les Alpes est plus souvent commandé par des situations moins bien orga-
nisées où les évolutions convectives prennent le dessus sur celles purement dynamiques.
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2.2 Changement climatique

2.2.1 Aperçu sur l’histoire de la théorie du climat

Au xixe siècle, les scientifiques prirent conscience que l’histoire de la Terre était
beaucoup plus ancienne que ce que le récit de la Bible – le seul qui jusqu’alors faisait
mention de la formation de la Terre – laissait croire, et que le climat variait. La preuve
la plus évidente des variations climatiques était les glaciers. Dès la fin du xviiie siècle,
l’existence demoraines en Écosse ou la présence de roches polies et de blocs erratiques 7

qui semblaient avoir été transportés par des forces mystérieuses amenèrent à l’idée que
les glaciers avaient autrefois eu une extension bien supérieure à ce que l’on pouvait ob-
server de nos jours (Krüger, 2013). Les glaciers, en voie de disparition dans de nombreux
massifs montagneux à travers le monde, restent la figure emblématique de changement
du climat. La figure 2.11 montre l’exemple du glacier de Schaltenkees au Tyrol, dont la
perte de masse a été spectaculaire en seulement quelques années. La figure 2.12 montre
une série de photographies du glacier du Rhône (VS) sur quelques décennies. Sa proxi-
mité de la route en a fait une attraction touristique depuis le xviiie siècle et a facilité
les relevés topographiques, ce qui a permis de suivre son évolution depuis la fin du
xixe siècle (voir figure 2.13).

À la même époque naissait aussi l’hypothèse que l’homme pouvait influer sur le
climat. Selon certains, la déforestation avait un effet positif sur le climat, tandis que
d’autres supposaient exactement l’inverse : c’est le défrichement qui conduit à la ruine
de la civilisation (Fressoz & Locher, 2020). En l’absence de mesures fiables des tem-
pératures 8 et de la pluviométrie, il était difficile de prouver cette action de l’homme
sur le climat et de savoir dans quel sens cette action se faisait. En 1821, le gouverne-
ment français lançait une enquête auprès des préfets pour collecter les preuves d’un
changement climatique (Bainville & P., 1995), mais aucune tendance claire n’en fut ti-
rée ; le consensus penchait plutôt vers un effet néfaste du déboisement (voir § 1.5.4).
Au xxe siècle, ce n’est plus le déboisement causé par l’agriculture extensive et l’éle-
vage qui a semblé être le problème, mais l’industrie qui en polluant villes et milieux
naturels était accusée de modifier le climat (McNeill, 2010; Fressoz, 2012). C’est ainsi
qu’à la toute fin du xixe siècle, Svante Arrhenius entrevoit le rôle joué par le dioxyde
de carbone dans l’interception du rayonnement terrestre, et que son ami Nils Ekholm

7. En Suisse, notamment, ce fut un berger de Bagnes, Jean-Pierre Perraudin, qui attira l’inté-
rêt scientifique du géologue cantonal, Ignace Venetz, puis du directeur des Salines de Bex, Jean
de Charpentier, et finalement du professeur d’histoire naturelle Louis Agassiz, alors en poste à
Neuchâtel. Les blocs erratiques étaient alors souvent perçus comme la preuve de l’existence du
déluge, mais pour Perraudin, ils pouvaient s’expliquer par la poussée glaciaire dans des temps
anciens.

8. Le thermomètre a été créé par le médecin italien Sanctorius en 1608 et a été progressive-
ment perfectionné (Beaurepaire, 1995), mais jusqu’au xixe siècle, le protocole de mesure a varié
fortement, et un doute subsistait quant à la possibilité d’interpréter les séries de mesures.
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Figure 2.11 – Le glacier de Schaltenkees dans l’est du Tyrol (Autriche) entre 2020
et 2024. Voir l’évolution depuis 1974 sur le site glacierchange.com. Source : Ingemar
Wibmer.

détaille le rôle des couches atmosphériques dans le bilan radiatif et son influence sur
le climat (Arrhenius, 1896; Ekholm, 1901). Pour les deux savants suédois, l’accumula-
tion de dioxyde de carbone dans l’atmosphère pourrait amener à un adoucissement du
rude climat suédois, mais dès 1914, l’ingénieur français Louis de Launay se montrait
plus pessimiste sur cette accumulation. Il concluait ainsi son article sur la finitude des
ressources minières :

« Pour produire quelque 8000 milliards de combustibles minéraux,
combien n’a-t-il pas fallu de végétaux accumulés et très accidentellement
préservés de la combustion dans la durée des temps géologiques ; donc
quelle absorption d’acide carbonique emprunté à l’air ? Et, le jour où cet
acide carbonique aura été restitué aux couches inférieures de l’air par
nos cheminées d’usines, quels changements (dont nous avons déjà le pro-
drome sur les grandes villes industrielles) ne manqueront pas d’être réa-
lisés peu à peu dans nos climats? »

https://glacierchange.com/en/schlatenkees/
https://www.instagram.com/p/C-TBy6CtHgA/?img_index=1
https://www.instagram.com/p/C-TBy6CtHgA/?img_index=1
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Au xxe siècle, l’intérêt pour l’histoire du climat et la recherche de ses mécanismes
sont allés en grandissant (Weart, 2008). L’hypothèse d’Arrhenius sur le rôle des gaz à
effet de serre dans le climat est en passe d’être oubliée, voire considérée comme une
fausse piste dans la première moitié du xxe siècle (Weart, 2008). La découverte de la
dérive des continents et de cycles astronomiques paraît à beaucoup l’explication la plus
raisonnable pour expliquer la variation du climat à l’échelle géologiques (Weart, 2008).
La vision sur le climat et ses mécanismes change dans la seconde moitié du xxe siècle.
Les études historiques et les analyses de reconstitution des climats passés montrent
que même à une échelle de temps courte (celle du siècle), le climat subit des cycles et
des variations parfois brutales (Le Roy Ladurie, 1967; Casty et al., 2005; Glaser et al.,
2010; Mediero et al., 2015; Ljungqvist et al., 2016; Hanel et al., 2018; Fressoz & Locher,
2020; Ménégoz et al., 2020; Pfister & Wanner, 2021; Renard et al., 2023). Par exemple,
pour le seul xxe siècle et la Suisse, l’intensité et la fréquence des fortes pluies a varié
au fil des décennies quelle que soit la durée de précipitation considérée (Scherrer et al.,
2016; Bauer & Scherrer, 2024). Si l’on reprend l’exemple des glaciers comme indicateur
climatique, il est manifeste que l’évolution n’est pas régulière ; ainsi, pour le glacier
du Rhône (voir figure 2.13), le glacier a avancé à quelques reprises (durant la décennie
1910, puis entre 1960 et 1980), ou a pu régresser fortement (comme au début des années
1940). De même pour les températures, si consensus actuel est qu’à partir du milieu du
xixe siècle, la Terre a commencé à se réchauffer, l’accroissement de températures n’est
pas régulier, mais a connu des cycles de hausse, de baisse et de stagnation (voir figure
2.14).

La tendance globale est qu’à l’échelle de la planète, le réchauffement a dépassé 1 ℃
depuis 1900, tandis qu’à l’échelle de la Suisse, le réchauffement a été plus marqué, avec
en général un accroissement supérieur à 2 ℃ (Rebetez & Reinhard, 2008; Rebetez, 2011)
(voir figure 2.15). Dans les Alpes, ce réchauffement est encore plus marqué et dépasse
souvent 3 ℃ en moyenne annuelle (Beniston, 2009; Beniston et al., 2018). Le consen-
sus actuel est que pour l’essentiel, l’augmentation de température résulte de l’activité
humaine, principalement l’émission de gaz à effet de serre (vapeur d’eau, dioxyde de
carbone, méthane, etc.), et que les autres causes naturelles ont joué un rôle moindre.
Pour arriver à cette conclusion, les scientifiques ont utilisé des modèles numériques
pour reconstituer le climat passé (Jouzel et al., 2018). L’incertitude dans la reconstitu-
tion des conditions climatiques passées et dans la projection des conditions futures
reste grande (Koonin, 2021) ; un point sensible reste le calage des paramètres modèles
et le passage de l’échelle globale (les conditions à l’échelle de la planète) à une échelle
régionale (Hourdin et al., 2017). Un gros travail est actuellement réalisé pour affiner les
scénarios de changement de climat.
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Figure 2.12 – Le glacier du Rhône (VS) depuis le xviiie siècle. (a) Aquarelle et encre
de chine par William Pars, 1771. Source : British Museum. (b) Le glacier du Rhône en
août 1849. Daguerréotype de Jean-Gustave Dardel. Cette photographie est sans doute le
premier cliché d’un glacier en Suisse. Source : UNIL. (c) Le glacier et la source du Rhône
en 1855 près du village de Gletsch (1757m) dans les Conches. Photographie de Friedrich
von Martens. Source : Alpine Club Collection . (d) Carte postale datée de 1903. Source :
éditions Brennenstuhl, Meyringen et accessible depuis notrehistoire.ch. (e) Le glacier
du Rhône, Gletsch, et la route du col de la Furka.Source : Albert Emonet et accessible
depuis notrehistoire.ch. (f) La source du Rhône de nos jours. Source : Dumoulin et al.
(2010).

https://www.britishmuseum.org/collection/object/P_1870-0514-1219
https://www2.unil.ch/viatimages/index.php?projet=viaticalpes&module=image&action=detail&IDImage=3744&lang=fr
https://notrehistoire.ch/entries/V3Yyw69z84o
https://notrehistoire.ch/entries/gNBpNlp5W2Z
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Figure 2.13 – Variation de la longueur du glacier du Rhône (VS) depuis 1880. Source :
Glamos ; GLAMOS 1881–2023, The Swiss Glaciers 1880-2022/23, Glaciological Reports
No 1–142, Yearbooks of the Cryospheric Commission of the Swiss Academy of Sciences
(SCNAT), ETHZ/VAW, doi:10.18752/glrep_series.

https://www.glamos.ch
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Figure 2.14 – Indicateurs complémentaires de l’évolution du climat mondial. Source :
figure TS.1 in (GIEC, 2013).
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Figure 2.15 – Évolution de la température dans trois grandes villes suisses et au col
du Grand Saint-Bernard depuis 1860. On a indiqué la température moyenne mensuelle
(points bleus), la moyenne glissante sur 10 ans, et les bornes supérieures et inférieures
des températures mensuelles. (a) Grand Saint-Bernard à 2472 m d’altitude ; (b) Genève
à 412 m; (c) Berne à 553 m; (d) Sion à 482 m. Données : Météo-Suisse.

https://www.meteosuisse.admin.ch/home/climat/le-climat-suisse-en-detail/donnees-homogeneisees-depuis-1864.html?region=Tableau
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2.2.2 Scénarios de changement climatique

Scénarios considérés par le GIEC

Le climat évolue sous l’effet de nombreux agents dont les plus importants sont :

– le rayonnement solaire (en moyenne 340 W·m−2) ;
– le rayonnement infrarouge émis par la Terre (en moyenne 350 W·m−2) ; et
– l’effet de serre dû à la vapeur d’eau et aux gaz dans l’atmosphère, qui interceptent

une partie du rayonnement traversant l’atmosphère.

Selon le Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC), la tem-
pérature a augmenté depuis 1750 (avant la Révolution industrielle) du fait de l’émission
de gaz à effet de serre, dont le plus emblématique est le CO2 ; cette augmentation de
température serait équivalente à un « forçage radiatif » (une augmentation du flux
d’énergie entrant dans l’atmosphère) de 2,3 W·m−2. La figure 2.16 montre l’évolution
des températures depuis 1850 et les causes probables de cette évolution. Le consensus
actuel est que cette évolution, très rapide à l’échelle géologique, est liée aux activités
humaines.

La complexité des processus atmosphériques a conduit le GIEC à formuler des scé-
narios.

– Dans son cinquième rapport (2013), le GIEC a décrit trois scénarios majeurs ap-
pelés « profils représentatifs d’évolution de concentration » – ou representative
concentration pathway (RCP) en anglais – qui sont fonction du « forçage radia-
tif », c’est-à-dire le rayonnement supplémentaire à l’horizon 2100 dans la tro-
posphère par rapport à la situation prévalant durant la période pré-industrielle
(avant 1860). Ces scénarios associent forçage radiatif, concentration en dioxyde
de carbone et élévation de température 9 :

forçage radiatif CO2 ∆T
W·m−2 ppm ℃

RCP 2,6 2,6 400 1,0
RCP 4,5 4,5 550 1,8
RCP 8,5 8,5 1200 3,7

– Dans son sixième rapport (2019), le GIEC a revu sa grille de scénarios et a pro-
posé à la place des scénarios RCP des scénarios SSP (shared socio-economic pa-
thways en anglais) qui prennent en compte à la fois l’évolution des émissions
des gaz à effet de serre à travers des scénarios socio-économiques et le forçage
radiatif. La figure 2.17 montre l’emboîtement des différents scénarios, et la rela-

9. On parle de températures moyennes à l’échelle du globe. Comme l’essentiel de la surface
terrestre est composé d’étendues océaniques, qui se réchauffent moins que la terre ferme, une
augmentation de +1 ℃ de la température moyenne à l’échelle du globe entraîne des augmenta-
tions locales de température bien supérieures sur la terre ferme.
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Figure 2.16 – (a) Variations de la température de surface du globe reconstituées à
partir des archives paléoclimatiques (ligne grise continue, années 1-–2000) et d’obser-
vations directes (ligne noire continue, 1850-–2020), à la fois par rapport à 185-0–1900 et
moyennées sur une base décennale. La barre verticale à gauche montre la température
estimée (intervalle très probable) sur la période multiséculaire la plus chaude depuis
au moins 100 000 ans, qui a eu lieu il y a environ 6500 ans durant la période intergla-
ciaire actuelle (Holocène). Le dernier âge interglaciaire, il y a environ 125 000 ans, est
la seconde période le plus récente où les températures furent élevées. Ces périodes de
chaleur passées ont été causées par de lentes variations orbitales (multi-millénaires).
La bande grise avec des lignes diagonales blanches montre les intervalles de confiance
pour les reconstructions de température. (b) Évolution de la température à la surface
du globe au cours des 170 dernières années (ligne noire) par rapport aux années 1850–
1900 et moyenne annuelle, par rapport aux simulations de modèles climatiques de la
phase 6 du projet de comparaison des modèles couplés (CMIP6), de la réponse clima-
tique (en température) aux facteurs humains et naturels (brun) et aux facteurs naturels
seulement (activité solaire et volcanique, en vert). Les lignes de couleur unie indiquent
la moyenne sur plusieurs modèles, et les nuances de couleur indiquent la plage de varia-
tion des simulations. Source : Masson-Delmotte et al., GIEC Report AR6, figure SPM.1,
2021.

tion entre température moyenne à l’échelle de la Terre et concentration en CO2

(Masson-Delmotte et al., 2021).

Pour connaître ce qu’impliquent localement ces scénarios climatiques, il faut utiliser
des modèles numériques :

– Une première couche de modèle est constituée des modèles de circulation géné-
rale (global circulation model ou GCM en anglais), dont la maille de calcul est
grande (typiquement 100 à 200 km).

– Les calculs sont ensuite affinés pour prendre les effets locaux tels que le relief ;

https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers/figure-spm-1
https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers/figure-spm-1
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on emploie des modèles de circulation régionale (regional circulation model ou
RCM en anglais) avec des mailles de calcul dont la longueur typique est 10 km.

Chaque pays a donc décliné les scénarios globaux du GIEC en scénarios locaux ; on
verra ci-après les exemples de la Suisse et de la France.

On notera au passage que le GIEC a fait des efforts substantiels de communication
vers les décideurs et le grand public en offrant une synthèse accessible des travaux
de recherche du consortium, mais le choix d’appeler les scénarios RCP, puis SSP, et
le recours au forçage radiatif n’est pas très heureux. En Suisse et en France, les ser-
vices nationaux ont souvent préféré mettre l’accent sur les horizons temporels dans la
terminologie des scénarios.
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Figure 2.17 – Relation (quasi linéaire) entre les émissions cumulées de CO2 et l’aug-
mentation de la température à la surface du globe Les données historiques (ligne noire
mince) montrent l’augmentation de la température à la surface de la planète observée
en ℃ depuis 1850–1900 en fonction des émissions cumulées de dioxyde de carbone
(CO2) en milliard de tonnes [Gt] de CO2 de 1850 à 2019. La plage grise avec sa ligne
centrale montre une estimation correspondante du réchauffement de la surface causé
par l’homme dans le passé. Les zones colorées montrent l’intervalle très probable des
projections de la température à la surface du globe, et les lignes centrales colorées
épaisses montrent l’estimation médiane en fonction des émissions cumulées de CO2

de 2020 à 2050 pour l’ensemble des scénarios pris en compte (SSP1-1,9, SSP1-2,6, SSP2-
4,5, SSP3-7,0 et SSP5-8,5). Les projections reposent sur les émissions cumulées de CO2

de chacun des scénarios respectifs, et le réchauffement planétaire prévu tient compte
de la contribution de tous les facteurs de forçage anthropiques. La relation est illus-
trée pour le domaine des émissions cumulées de CO2 pour lequel il y a une grande
confiance que la réaction transitoire du climat aux émissions cumulées de CO2 (TCRE)
demeure constante, et pour la période allant de 1850 à 2050 au cours de laquelle les
émissions mondiales de CO2 demeurent positives dans tous les scénarios représentatifs,
car il existe peu d’éléments qui appuient l’application quantitative de TCRE pour esti-
mer l’évolution de la température en cas d’émissions nettes négatives de CO2. Source :
Masson-Delmotte et al., GIEC Report AR6, figure SPM.10, 2021.

https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers/figure-spm-10
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Déclinaison des scénarios pour la Suisse

En 2011, la Confédération a mandaté Météo-Suisse pour élaborer des scénarios
d’évolution climatique valables pour la Suisse sur la base de 21 simulations de circula-
tion régionale conduites par le consortium Euro-Cordex 10, ce qui permet d’aboutir à
la fois à une tendance moyenne et à une estimation des incertitudes associées à cette
tendance en comparant les résultats des différentes simulations (Croci-Maspoli et al.,
20018; Schmocker-Fackel et al., 2021).

Les scénarios actuels désignés sous le nom de CH2018 11 prennent les trois décen-
nies 1981–2010 comme période de référence et point de départ des simulations numé-
riques. Les scénarios permettent de prospecter ce qui peut se passer à trois horizons
différents :

– avenir proche (horizon 2035), c’est-à-dire la période 2020–2049 ;
– milieu du siècle (horizon 2060), c’est-à-dire la période 2045-2074 ;
– fin du siècle (horizon 2085), c’est-à-dire les trois dernières décennies 2070-2099.

Les scénarios fournissent différents indicateurs (nombre de jours de gel, de canicule,
etc.) et l’évolution de la température et des précipitations sur une grille de maille fine
2 × 2 km2. Les données sont accessibles en ligne 12. La figure 2.18 montre une série
chronologique de la température

Déclinaison des scénarios pour la France

En 2023, le ministère en charge de l’environnement a choisi de simplifier la présen-
tation de ces scénarios en adoptant des « trajectoires de référence pour l’adaptation au
changement climatique » (TRACC 13) et a pris comme période de référence soit les trois
décennies 1976–2005, soit les trois décennies 1900–1930 (au lieu de 1850–1900 pour le
GIEC). Ces scénarios TRACC sont plus ou moins une adaptation des scénarios RCP 2,6,
RCP 4,5 et RCP 8,5 :

période Scénario 1 Scénario 2 Scénario 3
Monde 1850–1900 +1,5 ℃ +2,0 ℃ +3,0 ℃
France 1900–1930 +2,0 ℃ +2,7 ℃ +4,0 ℃
France 1976–2005 +1,4 ℃ +2,1 ℃ +3,4 ℃

10. Acronyme de Coordinated Regional Climate Downscaling Experiment – European
Domain.

11. Cet ensemble de scénarios est en cours de mise à jour et sera appelé CH2025 à partir de
2025. Voir le site climat CH2025.

12. Voir le site dédié : National Centre for Climate Services et son atlas web.
13. Voir le site DRIAS Les futurs du climat du ministère de la transition écologique :

https://www.drias-climat.fr/accompagnement/sections/402.

https://www.euro-cordex.net/
https://www.euro-cordex.net/
https://www.meteosuisse.admin.ch/portrait/recherche-et-collaboration/projets/2023/climat-ch2025.html
https://www.nccs.admin.ch/nccs/fr/home/changement-climatique-et-impacts/scenarios-climatiques-suisses/CH2018---scenarios-climatiques-pour-la-suisse.html
https://www.nccs.admin.ch/nccs/fr/home/changement-climatique-et-impacts/scenarios-climatiques-suisses/ch2018-webatlas.html
https://www.drias-climat.fr/accompagnement/sections/402
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Figure 2.18 – Évolution de la température moyenne en Suisse avec la période his-
torique 1860–2018 et les projections suivant les scénarios RCP globaux adaptés dans
les modèles régionaux CH2018. Données : Atlas web CH2018 – Climate Scenarios for
Switzerland. National Centre for Climate Services, Zurich..

Le jeu de données TRACC 2023 comporte plusieurs modèles de circulation générale et
de circulation régionale développés par différents centres de recherche en Europe. Par
exemple, Météo-France a développé :

– un modèle de circulation générale CNRM-CERFACS-CNRM-CM5 ; et

– un modèle de circulation régionale CNRM-ALADIN63,

Ces simulations considèrent une dégradation climatique, avec :

– à l’horizon 2030, une augmentation de +2,0℃ en Francemétropolitaine (scénario-
type RCP 2,6),

– à l’horizon 2050, une augmentation de +2,7℃ en Francemétropolitaine (scénario-
type RCP 4,5),

– à l’horizon 2100, une augmentation de +4,0℃ en Francemétropolitaine (scénario-
type RCP 8,5),

par rapport à la période de référence 1900–1930.

https://www.nccs.admin.ch/nccs/fr/home/changement-climatique-et-impacts/scenarios-climatiques-suisses/ch2018-webatlas/zeitreihen.html
https://www.nccs.admin.ch/nccs/fr/home/changement-climatique-et-impacts/scenarios-climatiques-suisses/ch2018-webatlas/zeitreihen.html
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2.2.3 Conséquences hydrologiques

Le changement climatique est attendu à avoir d’importantes répercussions sur le
plan hydrologique :

– augmentation des températures à la surface, avec pour conséquence :
– des étés plus chauds et des sécheresses plus longues et fréquentes (voir

figure 2.19), et
– un accroissement de l’évapotranspiration (Boucher et al., 2015; Patterson,

2023; Russo & Domeisen, 2023) (voir figure 2.20) ;
– humidité accrue de l’atmosphère : la seuil de saturation de l’air en vapeur d’eau

s’accroît d’environ 7 % par degré de réchauffement, avec pour conséquence des
précipitations bien plus intenses sur les courtes durées (à l’échelle horaire) (Kunkel
et al., 2013; Westra et al., 2014; Giorgi et al., 2016; Scherrer et al., 2016; Lehmann
et al., 2018; Papalexiou & Montanari, 2019; Estrada et al., 2023) ;

– un changement dans la dynamique des pluies. Il est probable que les cellules
orageuses puissent rester en position stationnaire plus longtemps, ce qui devrait
augmenter le caractère tropical des précipitations en Europe (Kahraman et al.,
2021), et que les situations météorologiques favorables à de fortes précipitations
soient plus fréquentes (Blanchet et al., 2021, 2023; André et al., 2024) ;

– augmentation du niveau des mers, acidification et accroissement de la tempé-
rature de la masse d’eau, avec un accroissement de la vulnérabilité des zones
côtières avec pour conséquence un risque de subsidence et d’inondation accru
pour les grandes cités en bord de mer Wu et al. (2022) ;

– une modification des courants marins, notamment la circulation dans l’Atlan-
tique nord qui conditionne les conditions climatiques en Europe occidentale (van
Westen et al., 2024) ;

– disparition possible de la calotte glaciaire, disparition de la banquise, fonte du
pergélisol, et retrait glaciaire ;

– diminution de 30 % des chutes de neige journalières par degré de réchauffement
pour les Alpes (de Vries et al., 2014; Gobiet et al., 2014; Frei et al., 2018). Seul le
domaine de la haute altitude devrait voir le volume de précipitations neigeuses
augmenter (Le Roux et al., 2023) ;

– une fonte précoce du manteau neigeux, ce qui aura un impact sur le régime des
débits dans les rivières (Musselman et al., 2017; Wang et al., 2024) ;

– un lien peu évident entre accroissement des précipitations extrêmes (en fré-
quence et intensité) et crues que cela soit en Europe ou aux États-Unis (Andersen
&Marshall Shepherd, 2013; Slater &Villarini, 2016; Sharma et al., 2018; Berghuijs
et al., 2019b,a; Brunner et al., 2019a,b). Les raisons en sont diverses (Horton et al.,
2006; Slater et al., 2015; Sharma et al., 2018) :

– moindre saturation des sols à cause des périodes sèches,
– modification de la capacité des cours d’eau à laisser transiter des débits

importants,
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– fonte prématurée et plus rapide du manteau neigeux,
– extension moindre des tempêtes.

Certaines régions en Europe devraient être soumises à un risque accru de crue
(c’est le cas de l’Europe sous influence atlantique) tandis que d’autres devraient
voir le risque baisser (ceintureméditerranéenne) (Alfieri et al., 2015; Blöschl et al.,
2015). Pour la Suisse, les projections laissent entrevoir des débits plus importants
en hiver et bien moindre en été (Addor et al., 2014). Des études pointent une aug-
mentation de la fréquence et de l’intensité des crues en Europe (Berghuijs et al.,
2017; Wang et al., 2023). L’existence de cycles pluridécennales peut également
rendre la détection de la tendance de fond plus difficile. L’augmentation de la
fréquence d’occurrence des pluies intenses de courte durée laisse penser qu’on
pourrait avoir, sur les petits bassins-versants concernés, des crues plus intenses
et fréquentes qu’actuellement (Westra et al., 2014) ;

– une modification de la couverture végétale, notamment avec une remontée de
la limite supérieure des arbres (Körner & Hiltbrunner, 2024).

– enmontagne, le réchauffement climatique a modifié l’activité avalanche et accru
la fréquence des éboulements, mais il ne semble que l’activité torrentielle sous
forme de lave torrentielle ait augmenté (Jacquemart et al., 2024; Qie et al., 2024;
Eckert et al., 2024).

Figure 2.19 – (a) Lac de Klontal en avril 2023. Les faibles précipitations hivernales et la
sécheresse du printemps 2023 n’ont pas permis le remplissage du lac de Klontal (Glaris).
Source : Tages Anzeiger ; Gian Ehrenzeller. (b) Lac de Sau en avril 2023 (Espagne,
Catalogne). La Catalogne est frappée par une sécheresse historique. Source : Le Temps ;
Emiliano Morenatti. L’image de lacs à sec préfigure des scénarios qui risquent de deve-
nir plus fréquents en Europe dans les années à venir.

https://www.tagesanzeiger.ch/der-regen-vom-maerz-bringt-keine-entspannung-340861280629
https://www.letemps.ch/sciences/environnement/secheresse-sabat-deja-certaines-regions-deurope
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Figure 2.20 – Écart à la normale calculée sur la période 1981-2010 de la moyenne
globale des températures de surface (℃) représentatif du climat à la fin du xxe siècle
(zone grisée), des scénarios du GIEC RCP2,6 (en vert) et RCP8,5 (en orange). Les ob-
servations historiques HadCRUT4 sont indiquées avec un trait noir. Des résultats de
simulations particulières des modèles du CNRM et de l’IPSL réalisées dans le cadre du
scénario RCP8,5 sont reportés avec des traits bleu et rouge. Les enveloppes tracées cor-
respondent à un intervalle de confiance de 95 % pour l’ensemble des modèles de climat
ayant participé aux simulations du GIEC. Source : Boucher et al. (2015).
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2.3 Les dangers hydrologiques

On désigne par danger ou risque hydrologique les risques induits par l’eau lors-
qu’elle tombe sous forme de précipitations liquides ou solides. Cette classe de dan-
gers/risques est donc relative à des phénomènes variés tels que :

– les débordements de cours d’eau (crue, inondation) et certains écoulements sou-
terrains (remontée de nappe) ;

– les crues torrentielles (lave torrentielle, crue avec charriage, lahar, débâcle gla-
ciaire) ;

– les avalanches de neige.

Les risques hydrologiques font partie des risques dits naturels comme les risques mé-
téorologiques (tempête, grêle) et les risques géologiques/géotechniques (écroulement,
chute de pierres, mouvement de terrain, tremblement de terre, éruption volcanique) ;
il existe d’autres risques naturels (feu de forêt, tsunami) qui n’entrent pas dans des
grandes classes de risques.

Dans cette section, nous allons décrire rapidement les différents phénomènes natu-
rels classés dans la catégorie des risques hydrologiques. Une particularité des risques
hydrologiques est que par définition, ils tirent leur origine des précipitations de pluie
ou de neige, éventuellement en concomitance avec d’autres phénomènes. Cela rend ce
type de risque reproductible – jusqu’à un certain degré – puisque si les mêmes condi-
tions météorologiques à l’origine de l’événement à risque se reproduisent, on peut re-
douter que le même événement vienne à se produire de nouveau.

Cela rend aussi les phénomènes induits par les précipitations d’une très grande
variabilité car comme on vient de le voir dans la section précédente, les conditions
météorologiques fluctuent considérablement au cours du temps. C’est cette variabilité
statistique qui va particulièrement nous intéresser dans ce cours en nous permettant
d’utiliser un cadre statistique pour construire une approche cohérente d’étude et de
prise de décision. C’est également cette variabilité statistique qui distingue les risques
hydrologiques d’autres risques comme les risques géologiques, pour lesquels la défini-
tion du risque en termes de probabilité d’occurrence pose plus de problèmes en pra-
tique.

Les événements catastrophiques pour l’homme ou le milieu naturel peuvent être
classés en deux catégories :

Certains événements sont dus à des précipitations extrêmes. La plupart des
inondations sont dues à des précipitations très importantes. Quelques exemples :

– en Suisse, les quatre dernières décennies ont vu plusieurs épisodes catastro-
phiques ainsi que sont dus à des pluies soutenues durant plusieurs jours, avec
parfois des cumuls journaliers très importants :

– les crues de juillet et août 1987 (Spreafico & Petrascheck, 1991) (voir figure
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2.22),
– la crue de la Saltina à Brigue en septembre 1993 (Röthlisberger, 1994) (voir

figure 2.23),
– les inondations d’octobre 2000 en Valais après la rupture d’une du Rhône

(Hegg & Petrascheck, 2002) (voir figure 2.23),
– les inondations d’août 2005 en Suisse centrale (voir figure 2.24) (Bezzola

& Hegg, 2007) ;
– la région de la Méditerranée occidentale connaît des pluies intenses (plus de 200

mm en 24 h) capables de générer des crues-éclair (Llasat, 2004; Boudou et al.,
2016). Pour le sud de la France :

– la crue du Tech en octobre 1940 survint après des précipitations diluviennes
(840 mm à Llau), qui générèrent des débits très importants (de l’ordre de
3000m3/s) et un fort transport solide (Pardé, 1941; Jacob, 1997). On compta
47 victimes en France dans le département des Pyrénées-Orientales ;

– en septembre 1992, la crue de l’Ouvèze est consécutive à de fortes pluies
sur le nord du Vaucluse, de l’ordre de 200 mm à 350 mm en 24 h (Piégay &
Bravard, 1997). Elle fit 47 victimes, principalement des campeurs, à Vaison-
la-Romaine (voir figure 2.25) ;

– en novembre 1999, la crue de l’Aude et de plusieurs cours d’eau du Roussillon
est due à des trombes d’eau : à Lézignan, on mesura ainsi 106,6 mm en une
heure, 192 mm en 2 heures, et 551,2 mm en 24 heures. (Vinet, 2003). La
crue fit 26 morts ;

– le passage de la tempête Alex dans le sud de la France et le nord de l’Italie
entraîne de très fortes pluies, avec localement plus de 600 mm de pluie en
24 h. Ces pluies diluviennes entraînent des crues de tous les cours d’eaux
de la Tinée et de la Vésubie (Payrastre et al., 2022; Liébault et al., 2024; Pons
et al., 2024). On dénombre au moins 21 victimes (dont 11 en France et 8 en
Italie) et 1,7 milliard de dommages ;

Pour le sud de l’Espagne :
– crue de la Turia le 13 octobre 1957, qui inonde Valence (361 mm de pluie

en 24 h mesurés à Beijis) ;
– épisode du 20 octobre 1982 : les fortes pluies (1121 mm de pluie em 24

mesurés à Cortes de Pallás) provoquent de graves inondations et la rupture
du barrage de Tous au sud de Valence, provoquant lamort de 40 personnes ;

– crues éclair du 3 novembre 1987 : une goutte froide sur l’Espagne pro-
voque de nouveau de fortes pluies (817 mm mesurés à Gandie à 70 km
de Valence) ;

– épisodes méditerranéens de 1996 : le 9 août, un camping est balayé par
une crue torrentielle à Biescas (Pyrénées centrales) après de fortes pluies,
faisant plus de 60 victimes (White et al., 1998). Un mois plus tard, un nou-
vel épisode touche la région de Valence (520 mm mesurés à La Vall le 11
septembre 1996, 60 km au sud de Valence) ;
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– crues éclair du 29 octobre 2024 : de fortes pluies touchent les régions de
Valence et Málaga (772 mm de pluie en 24 mesurés à Turís, 30 km à l’ouest
de Valence, dont 184 mm en 1 h). On dénombre plus de 220 victimes (voir
figure 2.21).

Figure 2.21 – (a), (b) Verger dévasté dans la région de Málaga. (b) Services de secours
à l’œuvre dans le village de Letur. (c) La garde civile évacue des sinistrés par les airs à
Álora. (d) Amoncellement de voitures à La Torre. Source : 20 minutos.

– dans les régions tropicales, les cumuls de pluie et les crues-éclair peuvent prendre
une ampleur spectaculaire. Ainsi, lors du cyclone Denise en janvier 1966, il est
tombé 1144 mm de pluie en 12 h (ce qui semble être le record mondial) à Foc-Foc
sur l’île de la Réunion. Et toujours sur l’île de la Réunion, le cyclone Hyacinthe
s’est maintenu sur l’île en janvier 1980, amenant 5678 mm de pluie en 10 jours
à Commerson (Rogers et al., 2009).

La fonte rapide du manteau neigeux peut également causer des crues et inonda-
tions :

– février 1990 est assez caractéristique de ce type de crise : il tomba près de 3mètres
de neige vers 2000 m dans les Alpes françaises, ce qui causa d’importantes ava-

https://www.20minutos.es/imagenes/nacional/5649180-impactantes-imagenes-dana-espana/6/
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Figure 2.22 – (a), (b) Arrivée de l’onde de crue dans la rivière Zavragia (Grisons) le
18 juillet 1987 ; le débit a été estimé à 600 m3/s. Source : Toni Venzin. (c) Plaine de la
Reuss dans le canton d’Uri le 18 juillet 1987. (d) Le village de Poschiavo dans les Grisons
inondé par la rivière Poschiavino. (e) Gurtnellen dans la haute vallée de la Reuss (UR).
(f) Münster dans les Conches (VS), touché par une crue du Minstigerbach. Source : NZZ
et Swiss Info.

lanches (principalement en Tarentaise) ; dans les vallées, les précipitations (en-
viron 200 mm d’équivalent en eau pour les Préalpes) et le redoux furent respon-

https://www.nzz.ch/schweiz/vor-30-jahren-die-schweiz-erlebt-einen-katastrophen-sommer-ld.1312661
https://www.swissinfo.ch/eng/life-aging/30-years-ago_severe-storms-cause-scenes-of-destruction/43465650
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Figure 2.23 – (a) Brigue (VS) après la crue de la Saltina, qui fit deux victimes et 900
millions de dégâts. Source : Swiss Info. (b) Saillon inondé après la rupture d’une digue
en rive droite du Rhône au niveau de Chamoson. Source : NZZ et P.-A. Bertholet Le
Nouvelliste.

sables de la crue de plusieurs rivières. La crue du Rhône (à Lyon) et celle de l’Isère
avaient une période de retour de l’ordre de 30 ans. Dans le nord de la France et
en Europe du Nord, les tempêtes (fin janvier et du début février) se succédèrent
et causèrent des dommages conséquents (plusieurs dizaines de victimes).

– en juin 2024, les pluies soutenues de la fin juin et la fonte rapide du manteau nei-
geux font monter fortement le débit des cours d’eau dans les Alpes. Plusieurs tor-
rents débordent, c’est le cas de la Navisence ou de la Borgne en Valais. Plusieurs
laves torrentielles touchent les routes et les habitations dans les cantons du
Valais et des Grisons (voir figure 2.26).

https://www.swissinfo.ch/fre/il-y-a-25-ans-la-saltine-débordait-tragiquement-à-brigue/44377330
https://www.nzz.ch/schweiz/vor-30-jahren-die-schweiz-erlebt-einen-katastrophen-sommer-ld.1312661
https://www.lenouvelliste.ch/valais/bas-valais/martigny-district/saxon/dangers-naturels-accrus-587349
https://www.lenouvelliste.ch/valais/bas-valais/martigny-district/saxon/dangers-naturels-accrus-587349
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Figure 2.24 – Les crues de 2005 ont occasionné des dommages importants en Suisse
centrale, dont le coût a excédé 3milliards de francs. (a) Brienz (BE), avec des dépôts de la
lave torrentielle du Glyssibach qui tua deux personnes. (b) Débouché de la Reuss dans le
lac des Quatre-Cantons (UR). (c) Route de Wolhusen à Lucerne (LU). (d) Ennetbürgen
(NW). (e) Bristen dévasté par la crue du Chärstelenbach (UR). (f) Le vieux Lucerne
inondé. Source : Luzerner Zeitung et P.-A. Bertholet Le Nouvelliste.

https://www.luzernerzeitung.ch/zentralschweiz/luzern/hochwasser-als-das-wasser-kam-und-siegte-ld.93066?reduced=true
https://www.lenouvelliste.ch/valais/bas-valais/martigny-district/saxon/dangers-naturels-accrus-587349
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Figure 2.25 – Le pont romain de Vaison-la-Romaine (Vaucluse, France) lors de la crue
de l’Ouvèze le 22 septembre 1992. Source : J.-M. Tricart.

http://1dedou84.centerblog.net/5354505-VAISON-LA-ROMAINE-5
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Figure 2.26 – Inondations et crues de la fin juin 2024. (a) Zone industrielle de Chippis
noyée sous les eaux de la Navisence le 30 juin 2024. Source : Olivier Maire, Le Temps.
(b) Saas Grund (VS) touché par une lave torrentielle, qui fait un mort. Source : RTS. (c)
La haute vallée de Bagnes coupée du reste du Valais par une lave torrentielle le 6 juillet
2024. Source : RTS. (d) Val Mesolcina (GR) touché par des coulées torrentielles. Source :
Swiss Info.

https://www.letemps.ch/suisse/valais/en-images-sierre-et-sa-region-sous-les-eaux-du-rhone
https://www.rts.ch/info/regions/valais/2024/minute-par-minute/un-mort-dans-une-lave-torrentielle-a-saas-grund-le-niveau-du-rhone-en-baisse-apres-une-crue-historique-28555099.html
https://www.rts.ch/info/regions/valais/2024/article/de-fortes-pluies-mettent-le-valais-en-alerte-apres-de-nouvelles-laves-torrentielles-dans-la-nuit-28561658.html
https://www.swissinfo.ch/fre/deux-personnes-toujours-portées-disparues-dans-les-grisons/81627548
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D’autres événements résultent d’un concours de circonstances défavorables.
Pris séparément, chaque processus ne revêt pas de caractère extrême, mais la combi-
naison de ces processus est exceptionnelle. En matière de crue, l’état hydrique du sol
est très important. Si le sol est saturé, toute nouvelle pluie peut conduire à une forte
crue. Quelques exemples :

– la plus forte crue de la Seine au xxe siècle est la crue de janvier 1910 : après
un hiver très humide, puis rigoureux (sol gelé), deux rapides courants de sud-
ouest causèrent un redoux significatif et de fortes précipitations sur les bassins-
versants de l’Yonne, de la Seine, et de la Marne (voir figure 2.27) : la fonte rapide
du manteau neigeux et le ruissellement de l’eau expliquent le caractère excep-
tionnel de la crue de la Seine. Une telle combinaison de facteurs n’a pas été re-
vue depuis ; la période de retour est de l’ordre de 100 ans pour le débit de pointe,
mais la durée de la crue 14 (environ 6 semaines) a été exceptionnelle et explique
l’étendue des dommages (15 % des immeubles touchés, une telle crue causerait
aujourd’hui des dommages estimés à 1 Ge) (Gache, 2013; Lang & Coeur, 2014) ;

– la crue du Tarn et de la Garonne de mars 1930 qui fit plus de 200 victimes sur-
vint après de fortes pluies, dont la lame d’eau s’ajouta à la fonte d’un manteau
neigeux important. À Marmande, la Garonne monta de 11 m. À Moissac, à la
confluence du Tarn et de la Garonne, les digues lâchèrent durant la nuit, et la
vague qui balaya le village tua 120 personnes (Pardé, 1930). Pour la crue histo-
rique du Tarn de mars 1930, on estima le débit à 6000 m3/s contre 160 m3/s pour
le débit de pointe annual ;

– un autre exemple est l’avalanche de Péclerey en février 1999 qui fit 12 morts à
Montroc (commune de Chamonix-Mont-Blanc) ; la chute de neige à l’origine de
l’avalanche avait une période de retour estimée à 5 ans, mais elle intervint à une
époque où le manteau neigeux était particulièrement instable à cause du froid et
de sa faible épaisseur (faibles chutes de neige jusqu’à la fin janvier 1999) (Ancey
et al., 2000) ;

– dans le Chablais vaudois, le village de Roche a connu à la fin des années 2000
et au début des années 2010 un très fort regain de l’activité torrentielle (l’Eau
Froide), avec une « crue centennale chaque année » comme titrent les média…
C’est le résultat d’une déstabilisation du lit du torrent plus que d’épisodes plu-
vieux intenses sur le Chablais ;

– la tempête atlantique Xynthia a entraîné la mort de 47 personnes et 2,3 milliards
d’euros de dommage en Vendée et Charente-Maritime en février 2010 (Przyluski
& Hallegatte, 2012; Gerard & Lang, 2019). L’effet destructeur est en partie lié à
la concomitance de forts vents et d’une marée importante qui sont responsables
de submersions sur plusieurs communes du littoral atlantique (voir figure 2.28) ;
toutefois, qu’on les prenne séparément ou conjointement, ces facteurs ne sont
pas rares (une dizaine d’occurrences depuis le xixe siècle). Les causes de la ca-
tastrophes sont à rechercher dans le changement d’occupation du sol depuis les

14. C’est un paramètre qui n’est pas pris en compte dans le calcul de la période de retour.



98 Chapitre 2 Climat et risques hydrologiques

années 1970, l’absence de plans d’alerte fiables, et des décisions d’urbanisation
hasardeuses ;

– le hameau de la Bérarde (France, Isère) a été dévasté par la crue du torrent des
Étançons en juin 2024. La crue est due à la combinaison de plusieurs facteurs : des
pluies soutenues (de l’ordre de 100 mm en 34 h), un manteau neigeux abondant
en altitude après un printemps arrosé, la subite remontée de l’isotherme 0 ℃ à
haute altitude entraînant une fonte massive du manteau neigeux, et la possible
débâcle glaciaire du lac du glacier de Bonnepierre. La crue a entraîné un volume
impressionnant de sédiment, qui a comblé le lit des Étançons et permis à l’eau
et au sédiment d’envahir le village (voir figure 2.29).

Figure 2.27 – La crue de la Seine de 1910. Source : Paris Match.

Enfin, des événements sont provoqués par des ouvrages de génie civil. La dé-
faillance ou la rupture de tels ouvrages peut libérer des volumes importants d’eau et
créer des crues ou des laves torrentielles. Quelques exemples :

– le 9 octobre 1963 un glissement de terrain a mobilisé 260 Mm3 de terres et de
roches dans la retenue du Vajont barrée par un barrage-voûte achevé en 1959
(Panizzo et al., 2005). Deux vagues d’une hauteur prodigieuse (150–200 m) se
sont engouffrées dans l’étroit ravin à l’aval du barrage et ont dévasté les villages
Longarone, Pirago, Rivalta, Villanova et Faè (voir figure 2.30), causant la mort
de 1909 personnes ;

https://www.parismatch.com/Actu/Environnement/A-quoi-ressemblait-la-crue-du-siecle-a-Paris-en-1910-1723237
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Figure 2.28 – La Faute-sur-Mer (France, Vendée) noyée par les eaux le 28 février 2010.
Source : Ouest France.

– le 15 octobre 2000, les eaux des lacs de Fully et Sorniot débordent et empruntent
la galerie qui mène à la vallée. Ces eaux se déversent sur le cône d’éboulis au pied
de la paroi pendant plusieurs et forment plusieurs vagues de lave torrentielle, qui
s’écoulent jusqu’à Fully (Hegg & Petrascheck, 2002).

https://www.ouest-france.fr/environnement/xynthia/xynthia-dix-ans-apres-recit-en-images-du-drame-de-la-tempete-en-vendee-6750841
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Figure 2.29 – Le hameau de la Bérarde (France, Isère) après la crue des Étançons (un
affluent du Vénéon) le 21 juin 2024. Source : Benoît Lagneux Dauphiné Libéré.

Figure 2.30 – (a) Barrage-voûte du Vajont (Italie, Dolomites) après la catastrophe. (b)
Village de Longarone.

https://www.ledauphine.com/societe/2024/06/25/julian-assange-libere-quelle-suite-pour-la-berarde-le-suicide-simule-de-kendji-girac-classe-sans-suite-l-essentiel-de-l-actu-de-ce-mardi-25-juin
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Figure 2.31 – (a) Fully après le passage de la lave torrentielle du 15 octobre 2000. (b)
Vue du dépôt.
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Dans le cadre de ce cours, nous étudierons principalement la première caté-
gorie de phénomènes pour laquelle on peut employer la théorie classique des
valeurs extrêmes et s’appuyer sur des concepts tels que la période de retour
pour caractériser et prédire des phénomènes hydrologiques extrêmes ; il suffit
en général d’une seule variable pour caractériser le phénomène et on peut alors utiliser
les données obtenues dans le passé pour inférer ce qui peut se produire par extrapola-
tion statistique. Par exemple, une crue est souvent caractérisée par le débit de pointe,
c’est-à-dire la valeur maximale du débit ; à partir des mesures de débit sur les rivières,
on peut faire des études statistiques en un point donné et estimer ce qui peut potentiel-
lement se produire. On peut déterminer ce qui se passe autour de ce point (l’étendue
des zones inondées, la vitesse de l’eau) en utilisant des outils classiques d’hydraulique.

En revanche, nous n’aborderons pas ici la seconde catégorie car celle nécessite des
outils de calcul plus complexes :

– il existe des généralisations de la théorie des valeurs extrêmes pour traiter des
phénomènes où plusieurs paramètres sont nécessaires pour caractériser le phé-
nomène. Par exemple pour une inondation comme celle causée par la crue de la
Seine de 1910, ce n’est pas uniquement le débit de pointe (2400 m3/s, période de
retour autour de 100 ans) qui importe, mais également le volume de la crue et sa
durée (6 semaines). Mathématiquement, il faut chercher à estimer la probabilité
d’occurrence simultanée de plusieurs facteurs. Le problème pourrait s’apparen-
ter à une analyse statistique multivariée et à la recherche de corrélation, mais
cela n’est pas le cas. Fondamentalement, quand on fait une corrélation entre
deux variables, on recherche une tendance moyenne entre ces variables et on a
tendance à ignorer les points qui s’éloignent de cette tendance. Ce sont précisé-
ment ces couples de points, qui sont hors tendance, qui nous intéressent ici. En
statistique des valeurs extrêmes, on parle de copule pour désigner les relations
(probabilistes) entre la probabilité d’observer simultanément plusieurs facteurs
et leur probabilité (dite marginale) de les observer individuellement. Pour une
inondation, on va ainsi chercher à comprendre quel lien il existe entre la pro-
babilité jointe d’observer une crue avec un certain débit de pointe et un certain
volume, la probabilité marginale d’observer un débit de pointe, et la probabilité
marginale d’observer un volume de crue.

– s’il faut plusieurs critères pour définir une inondation, comment déterminer ce
qui se passe aux alentours de mon point de mesure? Il n’existe vraisemblable-
ment pas une réponse, mais une multitude de possibilités qui sont conditionnées
par d’autres paramètres (état du sol, remontée de nappe, etc.)…

Les catastrophes par concours de circonstances offrent toujours un champ considé-
rable de recherche en statistique et en hydrologie. En pratique, les ingénieurs se sont
souvent tournés vers des méthodes ou des directives, qui fixent des scénarios :

– ainsi, en Suisse, les directives du SLF définissent la façon de calculer une ava-
lanche centennale : des règles précises sont préconisées pour déterminer le vo-
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lume de neige et les paramètres de frottement à appliquer dans le modèle dyna-
mique ;

– en France, la méthode « inondabilité » du Cemagref (devenu INRAE) vise à offrir
un cadre pratique de calcul des zones inondables en fonction de la période de
retour.
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2.3.1 Inondation et crue

Une inondation peut être définie selon les auteurs comme une « irruption d’eau
sur un terrain normalement sec » comme une « submersion par l’eau débordant du
lit normal d’un cours d’eau », ou comme « une accumulation d’eau provenant de drai-
nages, sur des zones qui ne sont pas normalement submergées ». Il s’agit d’une situation
temporaire qui peut être dommageable (destruction d’habitations, par exemple) ou bé-
néfique (apport d’alluvions fertilisants, par exemple). Les causes des inondations sont
multiples et peuvent être classifiées comme on le montre ci-après.

Inondation fluviales et crues

On fait la distinction entre crue et inondation :

– Les inondations fluviales sont les plus fréquentes et également les plus domma-
geables. Elles surviennent suite à de longues périodes de pluie ou de la com-
binaison des pluies avec la fonte des neiges et glaces. Elles peuvent concerner
des surfaces très importantes (plusieurs centaines à milliers de km2). Quelques
exemples :

– la crue de l’Elbe en Tchéquie et en Allemagne en août 2002 est un exemple
récent d’inondation sur une vaste échelle,

– plus récemment l’Allemagne a connu des inondations importantes en juin
2021 après des pluies intenses et un printemps copieusement arrosé. On
dénombre 135 victimes dans le Palatinat et des dommages importants (voir
Wüthrich et al. (2024)). La figure 2.32 montre les inondations causées par
l’Ahr à Altenburg ;

– Les crues sont des phénomènes brutaux qui surviennent à la suite de violentes
précipitations sur un périmètre limité et souvent dans un contexte montagneux,
de piémont, ou de collines. Elles sont soudaines, de courte durée et ont un dé-
bit de pointe relativement élevé. Pour souligner leur caractère brutal, on parle
souvent de « crue éclair » (flash flood en anglais). En zone de montagne, elles
peuvent être extrêmement dévastatrices, d’autant plus qu’elles ont une capacité
de charriage très importante, pouvant conduire aux laves torrentielles.Quelques
exemples :

– L’été 1987 a été globalement humide, avec des périodes orageuses accom-
pagnées de pluies intenses. Plusieurs crues-éclair dévastent des vallées al-
pines :

– le 14 juillet 1987, le Borne entre en crue et emporte 23 campeurs au
Grand Bornand (Meunier, 1990),

– deux dépressions balaient la suisse en juillet et août 1987. L’épisode
du 18–19 juillet se caractérise par des pluies intenses sur de longues
durées (de 30 h dans le Tessin à 84 h dans la vallée du Rhin) amenant
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à de nombreuses crues et laves torrentielles (Zeller & Röthlisberger,
1988; Spreafico & Petrascheck, 1991; Rickenmann & Zimmermann,
1993). Une seconde dépression touche les vallées méridionales de
Suisse : les Conches (VS) – oùMünster est sévèrement touché –, et les
vallées d’Urseren et de Göschenen dans le canton d’Uri. Les cumuls
de pluie dépassent souvent 200 mm en 48 h. La figure 2.22 montre
quelques images des événements de l’été 1987. Les dommages ont
été évalués à 1,3 milliard de francs ;

– Les crues de l’automne 2000 sur le Val d’Aoste, la haute Maurienne, et le
Valais (Gondo, Fully pour le Valais) sont des exemples de crues quasi conco-
mitantes sur une période de temps courte (Hegg & Petrascheck, 2002).

– Les crues du sud-est de la France offrent des exemples dramatiques de
crues éclair sur de grands bassins-versants dans un contexte de colline :

– la crue du Tarn de mars 1930 fit environ 220 victimes,
– la crue d’octobre 1988 à Nîmes fit 10 morts dans le département du

Gard,
– la crue de l’Ouvèze à Vaison-la-Romaine fit 41 morts en 1992,
– la crue de l’Aude fit 35 victimes en 1999,
– la tempête Alex en octobre 2020 a causé la mort d’au moins 21 per-

sonnes et 1,7 milliard de dommages dans les Alpes-Maritimes (voir
figure 2.33).

Ces crues font souvent des victimes compte tenu de leur soudaineté et de
la force du courant (Gaume et al., 2009).

Figure 2.32 – Altenburg avant et pendant les inondations de l’Ahr le 14 juin 2021
(Rhénanie-Palatinat, Allemagne). Source : Bild.

https://www.bild.de/news/inland/news-inland/hochwasser-in-der-eifel-altenburg-von-der-idylle-zum-wasser-hoelle-77093154.bild.html
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Figure 2.33 – La situation avant/aprrès la tempête Alex dans la ville de Roquebillière
(Alpes-Maritimes, France) frappée le 4 octobre 2020. Images pré-catastrophe (Esri
World Imagery, 2016), images post-catastrophe (Pléiades, CNES 2020, distribution
Airbus DS), images post-catastrophe au format carte (Sertit 2020). Source : France 3.

On peut relier les inondations à des scénarios météorologiques, qui sur l’Europe
sont bien établis :

– les inondations hivernales, causées par des dépressions d’ouest associées à un
front chaud, qui apportent des précipitations pouvant être longues, continues et
intenses. Le sol se sature et de grands volumes d’eau ruissellent ;

– les inondations dues à la fonte des neiges se produisent lorsque le stock neigeux
est encore important au printemps et lorsque du vent chaud provenant du sud
traverse les Alpes. Si des précipitations accompagnent ce vent, les volumes d’eau
ruisselée sont également importants ;

– les inondations dues aux précipitations convectives d’été peuvent avoir des ef-
fets catastrophiques sur des régions fortement urbanisées. Elles sont de type
« crue-éclair » (voir les exemples ci-dessus dans le sud de la France et en Espagne) ;

– les inondations dues aux grandes marées, qui affectent principalement les Pays-
Bas (tempête de janvier 1953).

Remontées de nappe et ruissellement en zone urbanisée

Les remontées de nappe surviennent à la suite de la saturation du sol en eau soit
par un apport direct (pluie), soit par un apport indirect (écoulement souterrain, ruissel-
lement à partir des versants). Le sol n’est alors plus en mesure d’absorber de nouvelles
quantités d’eau et l’eau reste en surface (voir figure 2.34). Quelques exemples :

– dans les zones urbanisées (l’Oise en France) ou certaines régions géologique-
ment favorables (avec des terrains aquifères calcaires ou crayeux comme dans
la Somme), ces remontées de nappe causent des inondations assez fréquentes. Au
printemps 2001, après un hiver très humide, plus de 3000 personnes sont sinis-

https://france3-regions.francetvinfo.fr/occitanie/haute-garonne/toulouse/photos-tempete-alex-ampleur-inondations-alpes-maritimes-photographiees-satellites-pleiades-du-cnes-1881818.html
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trées dans la région d’Abbeville (Somme), leur maison restant inondée pendant
deux à trois mois.

– en janvier 2024, les pluies sont incessantes sur le nord de la France. La ville
d’Arques (France, Pas-de-Calais) reste inondée pendant plus d’une semaine (voir
figure 2.35). L’eau provient à la fois du fleuve Aa, qui s’écoulent nonchalam-
ment à cause des faibles pentes, mais également du plateau de la forêt Rihoult-
Clairmarais. Le secteur est voisin du marais audomarois. La nappe est donc af-
fleurante en de nombreux endroits. La forte urbanisation de la vallée de l’Aa a
entraîné l’imperméabilisation de la surface et imposé un gabarit trop limité au
fleuve (canalisé) et aux canaux de dérivation.

Figure 2.34 – L’eau de pluie s’infiltre dans le sol et ruisselle à sa surface. Elle peut
s’accumuler dans des dépressions soit parce que la nappe d’eau est affleurante, soit
parce que de l’eau ruisselle des versants. Source : DREAL Basse-Normandie .

Dans les zones urbanisées, le ruissellement sur les chaussées lors de violents orages
peut provoquer des inondations dans les maisons attenantes. Ces problèmes sont sou-
vent associés à un dysfonctionnement ou une insuffisance du réseau d’évacuation des
eaux pluviales, à des obstructions de cours d’eau ou de drain, ou à des orages particu-
lièrement intenses. Quelques exemples :

– un violent orage s’abat sur le Morclan (Chablais) en juin 2000. Les eaux d’un
petit cours d’eau drainant le versant sud du Morclan transportent sédiments et
débris végétaux, ce qui provoque l’obstruction d’un passage busé. Les eaux du
torrent quittent alors le lit et ruissellent le long des chaussées goudronnées de
Châtel et inondent plusieurs chalets (voir figure 2.36) ;

– en septembre 2014, le Genevois est touché par un violent orage et des pluies
diluviennes. Dans ce secteur fortement urbanisé, le réseau d’eaux pluviales ne
parvient à évacuer les eaux, et celles-ci ruissellent sur les chaussées et sont re-
foulées du réseau d’évacuation (voir figure 2.37).

https://sigessn.brgm.fr/spip.php?article164
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Figure 2.35 – Inondations de janvier 2024 à Arques (France, Pas-de-Calais). Source :
AFP .

Figure 2.36 – Inondations lors de l’orage du 5 juin 2000 à Châtel (Haute-Savoie).
Source : Thierry Hauteville.

Débordement de lac

Les lacs, lorsque leur exutoire a une capacité d’évacuation (naturelle ou artificielle)
limitée, peuvent voir leur niveau d’eau augmenter de plusieursmètres.Quelques exemples :

– l’inondation historique est celle de 1868 pour la région du lac Majeur (voir figure
2.38), causant la mort de mort d’environ 50 personnes (Brönnimann et al., 2018).

– le lacMajeur déborde de nouveau en 1993 ou plus récemment en novembre 2014 ;

https://www.youtube.com/watch?v=mfJMCD8uJrU&ab_channel=AFP
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Figure 2.37 – Inondations lors de l’orage du 10 septembre 2014 à Saint-Julien-en-
Genevois (Haute-Savoie). Source : Dauphiné Libéré.

– en juillet 2021, les pluies persistantes et la fonte des neiges font monter les eaux
dans plusieurs lacs suisses dont le lac des Quatre Cantons et le lac de Neuchâtel
(Bezzola & InderWili, 2023). Quoique les grands lacs soient régulés depuis la fin
du xixe siècle, la montée de quelques dizaines de centimètres a été suffisante
pour inonder des berges (voir figure 2.39).

Rupture de barrage et de digue

Les ruptures de barrage sont également des accidents exceptionnellement rares.
Leurs effets peuvent se révéler conséquents lorsque le lac d’accumulation est d’une
grande contenance. C’est le cas notamment des barrages pour la production hydro-
électrique ; quelques catastrophes ont causé des dommages considérables et fait des
centaines ou des milliers de victimes :

– Malpasset (Var, France) : le 2 décembre 1959, le barrage-voûte barrant la rivière
Reyran cède à cause d’un défaut géologique dans le massif où s’ancrait la voûte
(Carrère, 2010; Duffaut, 2010). C’est le seul barrage-voûte qui a cédé sous la pres-
sion de l’eau. Une vague de 40 mètres déferle sur la vallée et atteint la ville de
Fréjus. Des blocs rocheux (jusqu’à 600 t !) sont entraînés et détruisent le quartier
de Malpasset. En tout, ce sont 423 victimes qui sont déplorées (voir figure 2.40).

– Vajont (Italie) : le 9 octobre 1963 un glissement de terrain a mobilisé 260 Mm3 de
terres et de roches dans la retenue du Vajont barrée par un barrage-voûte achevé
en 1959 et haut de 150 mètres (Crosta et al., 2016). La vague d’impulsion passe

https://www.ledauphine.com/haute-savoie/2014/09/10/30-minutes-de-deluge
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Figure 2.38 – La Piazza Grande de Locarno, pendant l’inondation de 1868. Source :
archives de MétéoSuisse.

au-dessus de la voûte du barrage et suit la gorge qui mène jusqu’à Longarone. La
masse d’eau dévaste de nombreux petits villages en aval du barrage (voir figure
2.30). On estime à 1909 le nombre de personnes tuées. Le barrage n’a subi que
de très légers dommages.

– Le barrage de Molare (bordure sud des Alpes italiennes au nord-est de Gênes)
céda en août 1935 après des pluies diluviennes. Les évacuateurs de crue furent
dans l’impossibilité d’évacuer le débit de crue généré par des pluies d’une in-
tensité exceptionnelle (environ 500 mm dans la journée du 13 août 1935), ce qui
entraîna la rupture de la digue de Zerbino. Une vague d’une hauteur de 20mètres
dévasta la vallée de l’Orba, causant environ la mort de 100 personnes (Visentini,
1936).

Si la plupart des barrages cèdent par accident, ils peuvent être aussi la cible d’at-
taques lors de conflit. Quelques exemples :

– durant la guerre de Hollande (1672–1678) opposant la France de Louis Xiv aux
Provinces-Unies de Guillaume d’Orange, les troupes hollandaises étaient bous-
culées par les troupes du Roi Soleil. Les Hollandais rompirent les écluses de
Muyden et provoquèrent l’inondation de leur pays pour arrêter la progression
des armées françaises ;

– En 1943, durant la Seconde Guerre mondiale, les Alliés bombardèrent les bar-
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Figure 2.39 – Le Kappelbrück à Lucerne le 15 juillet 2021, lors du débordement du
lac des Quatre Cantons. Source : archives de MétéoSuisse et Le Temps (cliché Arnd
Wiegmann/Reuters).

rages deMöhne et d’Edersee situés dans la Ruhr. Ils pensaient limiter le potentiel
industriel allemand ;

– plus récemment, en juin 2023 les troupes russes ontminé le barrage de Kakhovka
sur le Dniepr en Ukraine afin d’inonder la vallée du Dniper jusqu’à Kherson et
ainsi couvrir leur retraite. Lors de la montée des eaux, le Dniepr a non seulement
inondé son lit majeur et une partie de Kherson, mais également refoulé les eaux
de ses affluents, qui ont inondé à leur tour leur lit majeur (voir figure 2.41)

Certains phénomènes assimilés à des ruptures de barrage concernent des ruptures
de terrils miniers :

– catastrophe de l’usine d’Ajka (Hongrie) : le 4 octobre 2010, une digue haute de
30 m s’effondre et laisse s’échapper environ 1 Mm3 de boues contenant des mé-
taux lourds et résultant du traitement de l’uranium. La crue a dévasté Kolontar,
le village le plus proche, et plus en aval Devecser et Somlóvásárhely. En tout,
9 personnes sont tuées, plusieurs sont brûlées par les boues toxiques, des bâti-
ments sont endommagés sur plusieurs hectares pour un coût estimé entre 5 et 10
Me (voir figure 2.42). Le sol et les eaux sont gravement pollués pour plusieurs
années ;

https://www.letemps.ch/monde/lac-bienne-un-niveau-historique-lucerne-yverdon-inondees-enorme-glissement-terrain-allemagne
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Figure 2.40 – Le quartier des Arènes à Fréjus (France, Var), le 3 décembre 1959, après
que les eaux du barrage de Malpasset ont dévasté la zone. Source : IRMA.

– catastrophe d’Aznalcóllar (Andoulousie, Espagne) : le 25 avril 1998, la rupture
d’une digue libère un volume considérable (8 km3) d’eau contaminée par des
métaux lourds et de résidus miniers. La rupture a généré une onde de crue dans
les rivières Guadiamar et Guadalquivir et a pollué le parc naturel de Doñana ;

– catastrophe du Val de Stava (Trentin-Haut-Adige, Italie) : le 19 juillet 1985, un
barrage retenant les boues de décantation d’une mine cède sous la pression de
l’eau après qu’un drain vétuste s’est bouché. En environ une trentaine de se-
condes, ce sont quelque 200 000 m3 de boue qui sont libérés et s’écoulent dans
le Rio di Stava. La coulée de boue a tué 268 personnes et détruit 62 bâtiments
dans le village de Stava, près de Tesero ;

– catastrophe de Bento Rodrigues (Minas Gerais, Brésil) : le 5 novembre 2015, deux
digues en remblai ont cédé pour une raison inconnue, libérant 60 millions de
tonnes de débris miniers. Le fleuve Rio Doce a été contaminé. La vague de boue
toxique a balayé une partie du village de Bento Rodrigues et a causé la mort
d’environ 20 personnes.

Il existe de nombreux ouvrages de génie civil de type digue qui sert à contenir les
eaux d’une rivière ou d’une mer. Dès le Moyen Âge, on construisit des ouvrages d’endi-
guement des rivières et des canaux pour amener de l’eau auxmoulins à roue, tandis que
sur le front, on érigea des digues pour gagner de la terre sur la mer et créer des polders.

https://www.irma-grenoble.com/01actualite/01articles_afficher.php?id_actualite=713
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Figure 2.41 – Lors de la guerre entre la Russie et l’Ukraine, les Russes ont partielle-
ment détruit le barrage de Kakhovka sur le Dniepr afin de couvrir leur repli sur la rive
gauche du fleuve le 6 juin 2023. Les images (a)–(c) montrent des vues en infrarouge du
satellite Sentinel-3 le 5, 6 et 7 juin 2023. La photographie (d) est une capture d’écran
montrant l’eau s’engouffrer dans la brèche. La rupture du barrage a entraîné une inon-
dation conséquente du lit majeur du Dniepr. Les eaux de la rivière Inhoulets, affluent
en rive droite du Dniepr, ont reflué et provoqué également une inondation de son lit
majeur. Source : Copernicus et Le Monde. Voir aussi la page de Simon Gascoin sur le
sujet.

C’est le cas dans le nord de la France, la Belgique, et les Pays-Bas (Van Koningsveld et al.,
2008) ; au xive siècle, les Hollandais construisent ainsi la Westfriese Omringdijk (litté-
ralement, digue circulaire de Frise occidentale), ouvrage monumental pour l’époque
qui permit de gagner 800 km2 de terrain. Au xixe siècle, on a construit de nombreux
barrages pour le stockage de l’eau et des systèmes de digues pour contenir les rivières.
Lors de fortes marées et/ou de grandes tempêtes en mer du Nord, les digues peuvent
céder et l’eau qui s’engouffre dans les brèches peut inonder durablement les zones dont
l’altitude est inférieure au niveau de la mer. Des inondations de la Toussaint 1170 au raz-
de-marée de 1953, l’histoire des Pays-Bas est une récit d’une lutte de l’homme contre
la mer.

https://browser.dataspace.copernicus.eu/?zoom=13&lat=46.76884&lng=33.3744
https://www.lemonde.fr/international/article/2023/06/06/barrage-de-kakhovka-ce-que-l-on-sait-apres-sa-destruction-partielle_6176448_3210.html
https://labo.obs-mip.fr/multitemp/suivi-du-reservoir-de-kakhovka-par-satellite/
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Figure 2.42 – Zones inondées par la rupture du bassin de décantation de l’usine d’Akja
en Hongrie. Photographie satellitaire prise le 9 octobre 2010. Source : NASA.

Sur le continent, la rupture de digue peut avoir des conséquences dramatiques.
Quelques exemples récents :

– le 15 octobre 2000, une digue de contention du Rhône rompt à l’aval de Chamoson,
entraînant des inondations de la rive droite du fleuve jusqu’à Fully (Hegg &
Petrascheck, 2002) ;

– le 29 décembre 2001, une digue du système de protection des crues de la Savoureuse
(France, Territoire-de-Belfort) constitué d’une série de neuf bassins de stockage
cède et inonde la région avoisinante 15. Si la hauteur d’eau dans les bassins était
faible (de l’ordre du mètre), les volumes stockés étaient importants (voir figure
2.43) (Huet et al., 2002).

Autres phénomènes

D’autres types d’inondations, plus anecdotiques pour nos contrées, sont également
possibles. Parmi ceux-ci, mentionnons :

– le phénomène de seiche, due à des phénomènes oscillatoires dans les grandes
étendues d’eau fermées (par exemple les grands lacs aux États-Unis) ;

– les tsunamis affectant fréquemment les côtes japonaises (voir figure 2.44) et les
pays bordant l’océan Indien ;

15. Le procès qui s’ensuivit montra que la rupture était la conséquence d’une série d’erreurs
tant dans la conception de l’ouvrage que dans sa réalisation.

http://earthobservatory.nasa.gov/IOTD/view.php?id=46360
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Figure 2.43 – La rupture d’une digue sur le système de bassins d’écrêtement des crues
de la Savoureuse en décembre 2001. Source : L’Est Républicain.

– les marées à fort coefficient associées à des tempêtes ;
– les cyclones tropicaux, les pluies abondantes accompagnées de vents tempé-

tueux et de vagues de grande ampleur frappant, par exemple, les États-Unis ou
le Japon (voir figure 2.45)

https://www.estrepublicain.fr/justice/2012/10/01/digues-l-heure-des-comptes
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Figure 2.44 – Tsunami du 11 mars 2011 frappant la ville de Shinkawa (Miyako, pré-
fecture d’Iwate). Un séisme d’une magnitude de 8,8 sur l’échelle de Richter a créé une
vague, qui s’est abattue sur les côtes du nord-est du Japon, dans la région industrielle
de Sendai. Source : Shinya Kumagai.

Figure 2.45 – Le typhon Jebi classé « très puissant » a balayé une partie du Japon en
septembre 2018, causant la mort de 11 personnes. Source : Keystone (Le Nouvelliste).

https://www.lenouvelliste.ch/photos/monde/japon-le-plus-puissant-typhon-jamais-vu-depuis-25-ans-en-images-781968?image=2
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2.3.2 Crues torrentielles

Les crues torrentielles sont des écoulements d’eau avec un fort transport solide, qui
se produisent dans les torrents et les rivières de montagne ou de piémont. On distingue :

– les crues avec charriage : le cours d’eau transporte du sédiment grossier par roule-
ment, glissement, saltation le long du lit (processus appelé charriage). Ce type de
crue se produit dans les cours d’eau dès que le débit est suffisamment fort pour
mettre enmouvement lesmatériaux composant le lit de la rivière. Contrairement
aux rivières de plaine, où le sédiment est relativement fin et transporté en sus-
pension dans l’eau, les rivières torrentielles et les torrents peuvent transporter
des volumes importants de matériaux, avec une échelle granulométrique éten-
due (du micromètre à plusieurs décimètres). Des crues comme celle de Brigue en
septembre 1993 (Valais) peuvent provoquer des dommages importants en provo-
quant l’obstruction des ponts, l’exhaussement du lit, l’inondation des berges, et
un important dépôt solide (voir figure 2.23) ;

– les laves torrentielles : lorsque la pente est forte, le transport par charriage est in-
stable. La gravité est en effet suffisante à maintenir les particules en mouvement
une fois qu’elles ont été érodées. Une lave torrentielle est donc un transport en
masse d’un mélange de blocs, de terre, et d’eau ; la concentration solide est très
importante (de l’ordre de 70–80 %). Le mélange prend alors souvent l’apparence
d’une boue ou d’un béton. Les laves torrentielles ont donc un comportement mé-
canique très différent des crues liquides avec charriage et, d’une certaine façon,
elles sont plus proches d’une avalanche que d’une crue. La plupart des torrents
peuvent produire avec une fréquence plus ou moins importante des laves torren-
tielles. Certains torrents comme le Pissot au-dessus de Villeneuve (voir fig. 2.46)
ne fournissent des laves qu’en moyenne une fois par siècle ; ce sont souvent des
torrents à clappiers : le matériau mobilisé par les laves torrentielles provient de
l’éboulement de falaises (les éboulis sont les « clappiers » ou clappes) et il faut
plusieurs années à décennies pour former un stock suffisant de matériau mo-
bilisable. D’autres torrents sont plus actifs car le terrain présente souvent une
instabilité à un niveau local (berges) ou étendu (mouvement de terrain affectant
une grande partie du bassin-versant). C’est le cas par exemple de l’Illgraben, qui
peut produire plusieurs laves torrentielles chaque année.

Signalons que certains écoulements naturels sont très proches des laves torren-
tielles que nous rencontrons dans les Alpes :

– les lahars sont des écoulements d’un mélange d’eau et de cendres, que l’on ren-
contre dans les régions volcaniques. Les éruptions volcaniques peuvent en effet
déposer des quantités colossales de cendres, qui sont ensuite très facilement éro-
dables. Parmi les catastrophes récentes :

– Aux Philippines, les fortes pluies entraînèrent des dépôts de cendres du
volcan Pinatubo en octobre 1991,
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Figure 2.46 – Lave torrentielle du Pissot le 14 août 1995 avec ses dépôts sur le vignoble
de Villeneuve (VD) et l’autoroute A9 entre Lausanne et Martigny. Source : canton de
Vaud.

– en Europe, la catastrophe de Sarno et Quindici (Italie) en mai 1998 est due
à un mouvement de terrain affectant des sols volcaniques formés par le
Vésuve ; elle fit 137 morts et environ 300 Me de dommages ;

– au cours des éruptions volcaniques, le mélange de cendres et d’eau (par exemple
résultant de la fusion d’un manteau neigeux ou d’un glacier) peut provoquer des
coulées froides de cendres, semblables aux lahars. Quelques exemples :

– en novembre 1985, le volcan Nevado del Ruiz en Colombie entra en érup-
tion ; la fusion de la glace forma une coulée de cendres, qui engloutit la
ville d’Armero et d’autres villages (23 000 morts environ),

– en mai 1980, l’éruption du volcan Mount Saint Helens aux États-Unis pro-
voqua un affaissement complet du versant nord du volcan et causa la for-
mation de lahars dévastateurs ; la vallée de la rivière North Fork Toutle
fut comblée de sédiments sur une longueur d’environ 22 km et sur une
épaisseur moyenne de 45 m (épaisseur pouvant localement atteindre les
200 m.

– certains mouvements de terrain ou écroulements peuvent se mettre à accélérer
brutalement et causer des écoulements proches des laves torrentielles lorsque la
teneur en eau est suffisante. En juillet 1965, le glissement de terrain de la Ravoire
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Figure 2.47 – (a), (b) LaNavisence en crue avec un fort charriage le 21 juin 2024. Source :
Bob de Graffenried (EPFL/LHE). (c) Lave torrentielle dans l’Illgraben (VS). Source :WSL.
(d) Lave torrentielle de Chamoson le 7 août 2018 dans le torrent du Saint-André. Source :
Le Nouvelliste.

de Pontamafrey (France) accéléra soudainement après un printemps humide et
forma une lave torrentielle de plusieurs centaines de milliers de m3, qui coupa la
route nationale et la ligne de chemin de fer, isolant toute la vallée de Maurienne.

https://www.lenouvelliste.ch/photos/valais/valais-coulee-de-boue-monstre-a-chamoson-775383
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2.3.3 Débâcle glaciaire

Les lacs glaciaires se forment généralement lors d’un retrait glaciaire (on a alors
le plus souvent affaire à des lacs morainiques), lorsqu’un glacier ou un écroulement
de glace barre une vallée drainée par un cours d’eau, ou bien lorsqu’une éruption vol-
canique touche une zone glaciaire (on parle de jökulhlaup). Comme les barrages na-
turels sont formés de matériaux grossiers, perméables et de masse volumique très va-
riable (glace oumélange glace/rocher), leur stabilité est relativement médiocre. Tous les
lacs glaciaires ne connaissant pas nécessairement une rupture ; pour plusieurs lacs gla-
ciaires, on a en effet observé des vidanges partielles (avec souvent une périodicité des
vidanges) sans destruction du barrage (Costa, 1988; Walder & Costa, 1996). Lorsqu’il y
a rupture, celle-ci résulte

– soit de l’érosion interne par la création de tunnels drainant le lac (en hydraulique
on parle de « renard » car on a longtemps cru que les trous observés étaient le
fait de mammifères),

– soit sous l’effet d’érosion externe en cas d’une surverse ou à cause de la poussée
des eaux, avec pour conséquence la création d’une brèche qui entaille progres-
sivement le remblai glaciaire.

Pays de montagne avec encore une large couverture glaciaire, la Suisse est par-
ticulièrement concernée par les débâcles glaciaires et, de façon plus générale, les acci-
dents liés aux glaciers (effondrement de glacier, poche glaciaire). Le tableau 2.1 recense
quelques-unes des catastrophes les plus marquantes des deux derniers siècles. Avec le
réchauffement climatique, la fréquence des débâcles a augmenté, les régions les plus
touchées et documentées sont l’Alaska, l’Europe, et l’Islande (Carrivick & Tweed, 2016;
Harrison et al., 2018), mais naturellement toutes les montagnes glaciaires du monde
sont concernées. Le problème des débâcles glaciaires reste donc d’une grande actua-
lité.

Les ruptures de poche glaciaire peuvent provoquer des dommages importants en
zone de montagne à cause des fortes vitesses, mais également des nombreux débris et
sédiments charriés par l’onde de crue. Quelques exemples :

– en Suisse, le glacier Giétro 16, dominant aujourd’hui le barrage de Mauvoisin
dans le val de Bagnes (Valais), a connu plusieurs débâcles meurtrières (1595 et
1818) (Gard, 1988; Payot & Meilland, 2018; Ancey et al., 2019) (voir figure 2.48) ;

16. La catastrophe de Giétro en 1818 a endeuillé le Valais : en plein petit âge glaciaire, des
blocs de glace se détachent continuellement du glacier du Giétro et s’accumulent dans le lit de
la Dranse de Bagnes jusqu’à faire obstacle à l’écoulement de la Dranse (au niveau actuel occupé
par le barrage deMauvoisin). C’est ainsi qu’entre 1806 et 1818, un lac de 3,5 km de long se forme
à l’amont de ce cône. Malgré le percement d’une galerie pour drainer le lac, le barrage naturel
cède sous la pression de l’eau, provoquant la vidange rapide du lac et causant la mort d’environ
40 personnes.
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Tableau 2.1 – Quelques événements de débâcle glaciaire survenus en Suisse au cours
des deux derniers siècles. Les volumes drainés V sont exprimés en millions de m3 et
les débits de pointe en m3/s. Source : (Haeberli, 1983; Raymond et al., 2003; Walder &
Costa, 1996; Worni et al., 2014).

Date Lieu V Qp
1818 Glacier du Giétro (VS) 20 8000 à 20 000
1878 Lac de Märjelen, glacier d’Aletsch (VS) 10,7 300
1913 Lac de Märjelen, glacier d’Aletsch (VS) 4,5 195
1943 Glacier de Ferpècle (VS) 1,6 400
1944 Lac de Gorner, glacier du Gorner (VS) 6 200
1951 Lac de Grindelwald (BE) 0,135 74,6
1952 Glacier de Ferpècle (VS) 0,25 230
1968 Lac de Gorner, glacier du Gorner (VS) 2,9 29
2008 Lac de Grindelwald (BE) 0,57 111
2018 Lac des Faverges, glacier de la Plaine Morte (BE, VS) 2 80

– en France, en 1898, la débâcle du glacier de Tête-Rousse a entraîné un mélange
d’environ 300 000 m3 d’eau, de glace ainsi que 800 000 m3 de matériaux sur son
parcours ; 175 personnes furent tuées à Saint-Gervais-les-Bains ;

– plus récemment, en juin 2001, le petit lac du Weingarten a rompu sa digue mo-
rainique et s’est déversé dans un torrent dominant le village de Täsch (Valais),
remobilisant les laisses de crues (dépôts de lave de l’automne 2000) et causant
d’importants dommages au village (voir figure 2.49).

2.3.4 Débâcle due à des écroulements

Les ruptures de barrage non glaciaire (naturel) sont aussi des causes de crue tor-
rentielle dévastatrice. Quelques exemples :

– en 1191, un écroulement rocheux dans le défilé de la Vaudaine (France) barra
la Romanche entre Bourg-d’Oisans et Grenoble ; un lac se forma, mais la digue
naturelle se rompit en 1219 et la vidange du lac entraîna une crue torrentielle
d’ampleur exceptionnelle, qui détruisit en partie Grenoble (à l’époque une petite
bourgade) (Berlioz, 1998) ;

– en 563, un écroulement du Grammont dans le Chablais (Valais) a causé une
vague, dont les effets dévastateurs se firent sentir jusqu’à Genève (Frei &Marongiu,
2019). Certains pensent que l’écroulement aurait obstrué le Rhône à hauteur des
Évouettes (voir figure 2.50). Après quelques mois, le barrage aurait cédé, causant
une crue gigantesque du Rhône et un tsunami sur le Léman. D’autres auteurs
indiquent que l’éboulement serait parti des Dents du Midi et non du Grammont
(Mariétan, 1925; Montandon, 1925, 1931), ce qui semblerait plus logique compte
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Figure 2.48 – Eau-forte attribuée à Théophile Steinlen montrant le lac sous le glacier
du Giétro le 16 mai 1818. Source : Médiathèque du Valais.

tenu de la configuration de la vallée du Rhône entre Martigny et Noville. Très
récemment, la discussion autour de l’emplacement exact du mont Tauredunum
(Grammont? Dents du Midi ?) a été relancée avec l’exploration des fonds du
Léman (Kremer et al., 2012; Frei & Marongiu, 2019).
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Figure 2.49 – Le village de Täsch après la crue du Täschbach en juin 2001. Source :
Crealp.
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Figure 2.50 – Quelle est l’origine du tsunami qui balaya les rives du Léman en 563?
D’aucuns pensent qu’il s’agit de l’écroulement du versant oriental du Grammont qui
est la cause de la catastrophe. Source : Justin Favrod (Favrod, 2009, 2011).
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2.3.5 Avalanches

Les avalanches sont des écoulements rapides de neige. Elles surviennent en géné-
ral après des chutes de neige plus ou moins intenses ou bien lors d’un redoux ; elles
peuvent être aussi déclenchées accidentellement par des skieurs ou d’autres causes
(engins motorisés, animaux, etc.). Au cours du xxe siècle, plusieurs avalanches de très
grande ampleur ont rappelé que bien des villages étaient soumis à un risque peu fré-
quent, mais fort d’avalanche. Quelques exemples :

– en 1951, une crue avalancheuse d’ampleur exceptionnelle sur deux jours (20 et
21 janvier) endeuille de nombreuses vallées dans le haut Valais, la Valteline, le
Tyrol, la Carinthie, et l’Engadine, causant la mort de 231 personnes dont 75 en
Suisse (Vaudaux, 1951) ;

– le village d’Airolo (Tessin) est fortement endommagé en février de la même
année (10 morts). Plus récemment, Evolène (Valais), Galtür (Tyrol autrichien),
Chamonix ont été endeuillés par des avalanches dévastant des habitations ; en-
viron 60 personnes trouvèrent la mort dans leur habitation en février 1999 sur
l’ensemble des Alpes (voir figure 2.51) (Ammann, 2000).

Les avalanches causent de temps à autre des dommages aux infrastructures. Les remon-
tées mécaniques et les chalets d’alpage sont particulièrement concernés (voir figure
2.51).
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Figure 2.51 – (a) Avalanche de la montagne de Péclerey qui a dévasté le hameau de
Montroc dans la commune de Chamonix-Mont-Blanc le 9 février 1999, faisant 12 vic-
times dans les chalets. Source : Philippe Revol (Cemagref). (b) Avalanche d’Évolène le
21 février 1999, qui fit 12 victimes. Source Fabrice Coffrini, RTS. (c) Avalanche du Van-
d’En-Haut (commune de Salvan, VS) en mars 2017. Source : Sensefly. (d) Avalanche
du télésiège de l’Arcelle le 15 avril 2024 à Valcenis (France, Savoie). Source : archives
Toraval.

https://www.rts.ch/info/regions/valais/2024/article/il-y-a-25-ans-deux-avalanches-meurtrieres-s-abattaient-sur-evolene-tuant-12-personnes-28411899.html
http://www.sensefly.com
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2.4 Coût des dommages

2.4.1 Inondations

Tableau 2.2 – Nombre annuel moyen de morts dus aux inondations en fonction des
continents et des décennies depuis 1980 ; le nombre en parenthèses indique le nombre
relatif de morts par rapport à toutes les victimes de catastrophes naturelles. Coût an-
nuel moyen en milliards de dollars (G$) des inondations en fonction des continents et
des décennies depuis 1980 ; le nombre entre parenthèses représente le coût relatif des
inondations par rapport au coût des dommages causés par des événements naturels.
Les événements naturels considérés sont : inondation, sécheresse, activité volcanique,
séisme, et mouvement de terrain. Source : Our World in Data.

Nombre annuel de morts
continents 1980–89 1990–99 2000–09 2010–19 2020-
Europe 80 (3 %) 96 (22 %) 96 (64 %) 89 (68 %) 74 (78 %)
Asie 4194 (75 %) 5293 (34 %) 3709 (8 %) 3723 (43 %) 3513 (20 %)
Afrique 165 (0 %) 732 (86 %) 795 (63 %) 723 (24 %) 1811 (74 %)
Océanie 16 (82 %) 4 (2 %) 9 (22 %) 12 (20 %) 15 (59 %)
Amérique du Sud 397 (12 %) 3158 (89 %) 308 (66 %) 389 (63 %) 374 (78 %)
Amérique du Nord 248 (18 %) 257 (81 %) 471 (74 %) 130 (1 %) 99 (12 %)

Coût économique annuel en G$
Europe 1,0 (18 %) 2,8 (53 %) 5,4 (86 %) 4,8 (61 %) 13,1 (75 %)
Asie 2,0 (85 %) 14,3 (46 %) 7,7 (31 %) 26,4 (44 %) 23,7 (55 %)
Afrique 0,1 (14 %) 0,1 (17 %) 0,3 (35 %) 0,4 (49 %) 2,1 (82 %)
Océanie 0,0 (2 %) 0,1 (33 %) 0,5 (69 %) 1,1 (26 %) 3,6 (99 %)
Amérique du Sud 0,8 (55 %) 0,7 (64 %) 0,7 (69 %) 1,4 (24 %) 0,9 (27 %)
Amérique du Nord 0,2 (12 %) 3,1 (47 %) 2,0 (67 %) 5,1 (45 %) 2,8 (22 %)

Le tableau 2.4.1 fournit le nombre moyen annuel de personnes tuées par des inon-
dations pour chaque continent. Nous donnons des valeurs moyennées à l’échelle de
la décennie. Nous indiquons également le coût économique des dommages dus aux
inondations. Quelques commentaires :

– les inondations représentent chaque année un pourcentage important des pertes
économiques dues aux catastrophes naturelles (56 % du totalmondial enmoyenne
depuis 2020) ;

– depuis 2020, elles représentent en moyenne 27 % du nombre de morts à des ca-
tastrophes naturelles à l’échelle de la planète dues ;

– parmi l’ensemble des continents, l’Asie est celui qui paie le plus lourd tribut aux
inondations : cette situation est évidemment à mettre en relation avec les grands

https://ourworldindata.org/natural-disasters
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fleuves chinois 17 et le rôle particulier joué par la mousson ;
– depuis les années 2020, l’Afrique paye un tribut encore plus lourd aux inon-

dations que l’Asie quand on rapporte le nombre de victimes à sa population
(l’Afrique est quatre fois moins peuplée que l’Asie).

2.4.2 Avalanches

Risque mineur en termes de dommages à l’échelle d’un pays, les avalanches repré-
sentent une contrainte certaine pour les vallées alpines dès lors qu’on souhaite assurer :

– la sécurité des personnes dans les habitations ;
– la mobilité des personnes et des biens par la route et le rail ;
– le développement des activités touristiques.

Sur l’ensemble de l’arc alpin ce sont quelque onze millions de personnes qui vivent de
manière permanente. Durant la saison hivernale, ce nombre est plus que doublé. Le
trafic automobile ne cesse d’y croître : 150 millions de personnes franchissent chaque
année les Alpes. Pour garantir la plus grande sécurité possible, les autorités publiques
ont largement promu des politiques de prévention du risque.

Les avalanches sont emblématiques pour le grand public de l’Alpe homicide. La
menace représentée par les avalanches en quelques chiffres :

– Historiquement en France et en Suisse, comme pour les autres pays alpins, les
avalanches ont constitué l’une des principalesmenaces naturelles pour les hommes
et les activités humaines. Elles ont profondément marqué la vie et l’architecture
des villages alpins.

– Chaque année, en moyenne, 30 personnes en France et 23 en Suisse périssent
par avalanche, mais le plus souvent lors d’une pratique de loisir (en moyenne, il
y a 1 mort par an dans une habitation au cours des 20 dernières années). Dans
les pays alpins, elles constituent le plus souvent l’un des risques naturels les plus
dangereux avec les crues et les inondations (voir tableau 1.3).

– Les assurances cantonales suisses ont remboursé quelque 140 millions de francs
(voir tableau 1.4) pour les dommages au bâti consécutifs à des avalanches sur la
décennie 1999–2008. L’année 1999 reste l’année noire pour les assureurs, avec 50
millions d’euros de remboursements. Le coût total des dommages sur la Suisse
a été estimé à 585 millions de francs, dont 180 de pertes indirectes (annulation
de réservation, baisse de fréquentation touristique, etc.). Pour fixer un ordre de
grandeur, les assurances versent sur l’ensemble de la planète en moyenne envi-

17. En Chine, les plaines inondables ne représentent qu’une partie infime du territoire, mais
elles concentrent la population et l’activité agricole. Par exemple, pour le Yangtse, elle repré-
sente 1,5 % de la surface du pays, mais elle est habitée par 250 millions d’habitants ; 45 % de la
production du riz et des autres céréales y est produite.
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ron 17 milliards de francs par an de dommages à la suite de catastrophes natu-
relles.

– En France, il existe 400 communes soumises à un risque d’avalanche 18. 52 com-
munes en France ont bénéficié depuis 1982 d’un arrêté de catastrophe natu-
relle 19. En Suisse, 312 communes sont concernées par les avalanches.

18. 23 500 communes sont menacées par un risque naturel en France.
19. Cet arrêté permet le remboursement par l’État de dommages subis sur des biens lorsque

de vastes zones du territoire national ont été soumises à une calamité naturelle.





CHAPITRE3
Gestion du risque

D
ans ce chapitRe, on s’intéresse à la gestion des dangers hydrologiques dans
l’aménagement du territoire. On présente tout d’abord le principe général de
l’analyse des dangers hydrologiques.Quoique les méthodes différent signifi-

cativement selon les pays et les praticiens, il existe un ensemble de concepts qui sont à
peu près partagés par l’ensemble de la communauté. On découpe cette analyse en trois
phases : une première phase de caractérisation des phénomènes, qui permet d’arriver –
en fonction des enjeux sur le territoire étudié – à formaliser une crue (ou une avalanche)
de projet. À partir de là, on peut arrêter une stratégie de protection ; c’est l’objet de la
seconde phase. Enfin, dans la troisième phase, le détail des techniques de protection à
mettre en œuvre est défini en fonction des contraintes du projet. Parmi les stratégies
de protection, une gestion raisonnée de l’occupation du sol est de première importance
et justifie l’emploi d’un zonage, qui permet à la fois de présenter une cartographie syn-
thétique des dangers et des risques, mais également d’imposer des prescriptions selon
les contraintes du milieu naturel. Dans la dernière partie du chapitre, on passe en revue
les principales stratégies de protection paravalanche et contre les crues.

3.1 Démarche générale

La lutte moderne contre les dangers hydrologiques emprunte son vocabulaire au
domaine militaire. Il est commode de distinguer trois grands processus à mettre succes-
sivement en œuvre dans cette lutte :

1. Il faut tout d’abord savoir contre quel ennemi on cherche à se défendre. Les dan-
gers hydrologiques se caractérisant par une intensité variant selon la fréquence
d’occurrence, la première étape est de chercher à définir les caractéristiques du
danger contre lequel on cherche à se prémunir. Cette recherche aboutit à la for-
malisation d’un phénomène de référence ; on introduit la notion de crue de projet
ou d’avalanche de référence (ou de projet). Se protéger contre le phénomène de
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référence nécessite d’évaluer la liste des enjeux que l’on souhaite protéger et de
définir l’objectif de protection, c’est-à-dire le niveau de protection souhaité pour
les enjeux identifiés.

2. Quand on connaît le danger, on peut arrêter une stratégie qui permet de définir
un angle d’attaque du problème. La sélection d’une stratégie répond à une mul-
titude de critères assez éloignés tels que la vulnérabilité des enjeux, le degré de
risque accepté, les normes et autres dispositions réglementaires, les contraintes
spécifiques (politiques, du milieu naturel, architectural, etc.), le coût financier, la
planification de l’occupation du sol, etc. La sélection d’une stratégie doit donc
concerner une multitude d’acteurs.

3. À chaque stratégie on peut associer des tactiques différentes de lutte ; on parle
le plus souvent de techniques de protection. Pour répondre à un objectif de pro-
tection, on peut faire appel à un catalogue relativement vaste d’outils, qu’il
faut choisir et assortir en fonction du problème à traiter, des contraintes éco-
nomiques, des choix du maître d’ouvrage, et des différentes contraintes régle-
mentaires.

3.1.1 Phénomène de référence

La première phase du diagnostic des dangers consiste à étudier les phénomènes
sur un territoire donné. Le plus souvent, cette étude est de nature qualitative. En effet,
l’analyse des crues/avalanches est réalisée à partir

– d’un recensement des phénomènes historiquesmajeurs, principalement au cours
du xxe siècle, mais également au xixe siècle quand les données sont disponibles.
Il s’agit principalement d’évaluer les emprises maximales connues et les dom-
mages subis ;

– une analyse naturaliste du bassin-versant afin de se faire une analyse qualita-
tive du mode de fonctionnement (nature des crues/avalanches, emprises, effets
prévisibles, fréquence) (Delgado, 2006; Ancey, 2006).

Cette analyse qualitative peut être complétée par des analyses quantitatives telles que
des simulations numériques (propagation d’une crue ou d’une avalanche), des essais
sur modèles réduits, des tests statistiques.

L’objectif final est d’arriver à une estimation entre intensité et fréquence des phé-
nomènes sur le territoire étudié. Si en théorie, cette relation est une équation liant un
paramètre d’intensité i et une période de retour T (voir § 4.1.6), en pratique on se
contente de catégoriser la relation intensité-fréquence compte tenu

– d’une part du nombre de paramètres nécessaires à décrire finement l’intensité
d’un phénomène. Par exemple, pour caractériser l’intensité d’une crue, il faut au
moins trois paramètres : vitesse, durée, et hauteur de submersion ;
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– d’autre part de l’incertitude assez conséquente dans toute évaluation de la pé-
riode de retour d’un phénomène, incertitude qui résulte du manque de don-
nées et d’une connaissance imparfaite des phénomènes (physique des processus,
conditions initiales, etc.)

Il est donc plus commode d’introduire des classes d’intensité et de fréquence. Le ta-
bleau 3.1 fournit les catégories considérées. La classe i−f comporte un premier indice
spécifiant l’intensité du phénomène (i) et un second se référant à la fréquence d’occur-
rence (f ). On note tout de suite que le choix des bornes des classes et leur désignation
ne sont pas innocents ou sans conséquence. Ils sous-tendent en fait que l’intensité et
la fréquence sont considérées relativement à un enjeu à protéger. Par exemple, une
crue centennale est un phénomène extrême si l’enjeu est un champ à vocation pure-
ment agricole, mais c’est une crue ordinaire pour un barrage hydroélectrique de grand
volume. Dans le tableau 3.1, l’élément de référence est une habitation.

Assez rapidement dans l’évaluation pratique de la relation intensité-fréquence, ap-
paraît donc la notion d’enjeu à protéger. Cela peut sembler quelque peu contradictoire
avec ce que l’on a énoncé plus haut puisque la théorie veut que cette relation soit in-
dépendante de tout enjeu. C’est toutefois à ce prix que la méthode est applicable et
compréhensible par le plus grand nombre.

Le choix des catégories dans la typologie donnée ci-dessus est fortement dépen-
dant de l’objectif de protection assigné à chaque type d’enjeu, que celui-ci concerne un
espace naturel (ou agricole) ou un espace urbanisé. On peut définir l’objectif de protec-
tion comme une description de la relation entre l’intensitémaximale admissible pour un
enjeu et la période de retour (Borter, 1999) ; cette relation n’est pertinente que pour une
catégorie donnée d’enjeux ou d’occupation du sol. Le tableau 3.2 suggère des valeurs
guides pour des enjeux placés en zone urbaine ou péri-urbaine et soumis à des crues.
Ces valeurs sont définies dans la méthode inondabilité développée par le l’INRAE (ex.
Cemagref) en France ; l’intensité est traduite à travers le triplet durée, vitesse, hauteur
de submersion. La figure 3.1 fournit les objectifs de protection préconisés par l’OFEG en
Suisse. Ils se présentent sous la forme d’une matrice liant débit de projet et nature des
enjeux ; dans ce cas-là, le paramètre d’intensité est fixé par le débit de pointe de la crue.
Comme on le voit à travers ces deux exemples, il n’y a pas encore de méthode claire-
ment établie et universellement appliquée, mais plusieurs méthodes selon les écoles de
pensée, les pays, les domaines techniques. Ici, plus qu’une méthode bien précise qu’il
faudrait apprendre, c’est l’esprit de la méthode qu’il convient d’appréhender.

http://www.irstea.fr/


Tableau 3.1 – Diagramme intensité/fréquence quand l’enjeu à protéger est une maison.

période de retour T > 300 ans T : 80–300 ans T : 30–80 ans T : 10–30 ans
fréquence potentiel : 1 exceptionnel à rare : 2 peu fréquent : 3 moyennement fréquent : 4

intensité
faiblement intense : 1 i1–f1 i1–f2 i1–f3 i1–f4
moyennement intense : 2 i2–f1 i2–f2 i2–f3 i2–f4
très intense : 3 i3–f1 i3–f2 i3–f3 i3–f4
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Tableau 3.2 – Valeur typique d’objectif de protection en zone urbaine. Adapté de la
méthode inondabilité, voir (Gilard, 1998). Sont indiquées : la nature de l’occupation du
sol, la durée au-delà de laquelle des dommages sont probables (instant = instantané), la
hauteur et la vitesse de submersion.

Occupation du sol durée hauteur vitesse période de retour
m m/s ans

Service névralgique :
service de secours instant 0 0 1000
centre de communication instant 0 0 1000
Résidence :
cave instant −2 0,5 10
rez-de-chaussée instant 0,5 0,5 100
étage instant 3 0,5 1000
Activité :
commerce instant 0,6 5
industrie instant 0,6 1− 100
camping instant 0,5 0,5 10
Voies de communication :
route > 1 h 0,1− 0,2 0,5 1
autoroute instant 0,1 1 10
voie ferrée instant 0,3 5

On note que parmi les différences qui apparaissent entre la définition employée par
l’INRAE (ex. Cemagref) et celle de l’OFEG, il y a le nombre et la nature des paramètres
décrivant l’intensité de la crue. Il s’agit là d’une question a priori difficile à trancher. Par
exemple, qu’est-ce qui est le plus contraignant ou dommageable : une crue décennale,
avec une hauteur de 1 m et une vitesse de 1 m/s ou bien une crue trentennale, avec
une hauteur de 1,5 m et une vitesse de 80 cm/s? Doit-on chercher à se protéger contre
des crues fréquentes et peu intenses? La réponse adoptée par beaucoup de réglemen-
tations en Europe est que parmi les différentes combinaisons du triplet (durée, vitesse,
hauteur), il faut retenir la combinaison la plus défavorable en termes de dommages et
lui attribuer une période de retour. Cela revient à dire qu’on peut synthétiser toutes
les variables d’intensité sous la forme d’une variable équivalente. C’est par exemple ce
qu’on appelle la variable Top dans la méthode inondabilité : T pour période de retour et
Op pour objectif de protection (Gilard, 1998). En général, les méthodes hydrologiques
permettent d’aboutir à une relation entre variables (durée, vitesse, hauteur) puisque ce
sont des variables hydrologiques classiques ; la variable équivalente est alors le débit
de pointe puisque lorsqu’on a cette information, on peut calculer la durée de submer-
sion à l’aide d’un hydrogramme synthétique – défini dans la plupart des méthodes de
type SCS, QdF, etc. – ainsi que la vitesse et hauteur de submersion à l’aide d’un jeu
d’équations de type Saint-Venant (calcul hydraulique) ; se reporter au chapitre 5. C’est
pour cette raison que pour les crues, la variable la plus souvent utilisée est le
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Figure 3.1 – Objectifs de protection selon les enjeux. D’après (Willi et al., 2001).

débit de pointe. Il faut noter que cette façon de faire n’est pas unique ; certaines mé-
thodes sont ainsi fondées sur une évaluation monétaire des dommages pour définir ce
qui est économiquement acceptable. Dans ce cas particulier, la principale difficulté est
liée à l’estimation des biens fonciers (qui varie au cours du temps) et du prix de la vie
humaine.

Pour les dangers hydrologiques autres que les crues liquides, la situation est un peu
plus délicate car contrairement aux écoulements d’eau, il n’y a pas de relation simple
et systématique entre variables ; c’est le cas des écoulements avec transport solide ou
bien des avalanches. Ainsi pour les avalanches, les directives du Schnee- und Lawinen
Forschung considèrent que la période de retour de l’avalanche équivaut à celle des
chutes de neige sur les trois derniers jours (plus exactement, l’accroissement du man-
teau neigeux durant les 3 jours précédant l’avalanche) (Salm, 1993) alors que certains
auteurs préconisent de faire des statistiques sur les distances d’arrêt (Keylock, 2005;
Meunier & Ancey, 2004). Pour les crues torrentielles avec transport solide (dont les
laves torrentielles), c’est principalement le volume de sédiment qui sera le paramètre
physique pertinent.
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3.1.2 Stratégies de protection

Il existe plusieurs stratégies de protection contre les dangers hydrologiques. Ici
nous proposons les deux critères de classification suivants :

– existence ou non d’une intervention humaine :
– défense permanente réalisée sans intervention humaine,
– défense temporaire fondée sur une prise de décision et une intervention ;

– point d’intervention :
– défense active dans la zone de formation des phénomènes,
– défense passive dans la zone de propagation (ou d’arrêt) des phénomènes.

On peut synthétiser les grandes stratégies de protection comme suit :

1. empêcher les phénomènes de se produire. Par exemple dans le cas des ava-
lanches, on peut chercher à stabiliser le manteau neigeux par des ouvrages de
retenue dans les zones de départ (paravalanche de type claies, rateliers, filets). La
forêt a également longtemps été vue comme un moyen d’empêcher la formation
des crues ;

2. arrêter les phénomènes en cours d’écoulement. En construisant des digues
d’arrêt, on peut forcer les avalanches ou les laves torrentielles à s’immobiliser
dans un périmètre donné. Un barrage peut également recueillir tout un volume
de crue et annuler le danger à l’aval ;

3. arrêter/freiner localement les écoulements à proximité de l’enjeu à sécuri-
ser . Une étrave permet de protéger un équipement contre un écoulement. Le
laminage des crues par une succession de barrages et de champs d’expansion
entre aussi dans cette catégorie ;

4. forcer le déclenchement des écoulements en espérant qu’ils restent de taille
modeste. C’est typiquement ce que l’on fait dans le déclenchement préventif des
avalanches, par exemple pour protéger un domaine skiable ;

5. dévier/contenir les écoulement en modifiant/maîtrisant leur trajectoire et
emprise par des digues. C’est la défense classique contre les crues où, pour
éviter la divagation et le débordement, on construit des digues le long des cours
d’eau. On peut faire de même pour se prémunir contre les laves torrentielles et
les avalanches ;

6. adapter et renforcer les équipements à protéger , de manière à établir leur
auto-protection. Par exemple, pour se protéger des crues, on peut monter les
maisons sur pilotis ou bien n’aménager que les étages ;

7. engager des mesures réglementaires temporaires (interdiction momentanée
d’occupation ou de circulation, procédure d’évacuation et plans de secours, etc.). ;

8. placer les enjeux menacés hors de la zone menacée. C’est tout l’enjeu du zo-
nage du risque.
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Chacune de ces actions est caractérisée par

– un degré de fiabilité et de sécurité ;
– un domaine et des limites d’utilisation ;
– d’une manière générale, des avantages et des inconvénients, dont l’appréciation

varie selon les acteurs concernés par le problème.

3.2 Zonage des risques

Dans cette section, on passe en revue les grands notions utilisées dans la réalisation
de plans de zonage. Compte tenu de la diversité des conditions de réalisation d’un
zonage (en fonction de la réglementation, du contexte, de l’objet à protéger, etc.), nous
n’irons pas plus loin dans la description des techniques de zonage.

3.2.1 Aléa, danger, vulnérabilité, et risque : vocabulaire em-
ployé

Le zonage fait appel à un certain nombre de notions qu’il est utile de rappeler
(Wilson & Crouch, 2001; Wilhelm, 1998; Borter, 1999). Ces notions sont reconnues sur
l’ensemble des pays occidentaux puisque la plupart de ces pays ont adopté la même
démarche. Au passage, il faut noter que les principes employés aujourd’hui ont été
définis et mis en pratique par les Suisses au cours des années 1960 dans le cas particulier
des avalanches (Salm, 2004), puis étendus aux autres dangers. Nous renvoyons sur les
recommandations formulées par l’office fédéral de l’environnement (Bundesamt für
Umwelt, BAFU) pour la pratique en Suisse et le guide méthodologique générale des
plans de préventions des risques (MATE, 1997) pour la pratique en France.

Risque. – Le risque représente la probabilité de dommages matériels, de blessures,
et/ou de décès liée à l’occurrence d’un phénomène naturel. En zonage de risque hydro-
logique, le risque se caractérise par trois composantes :

– la fréquence d’occurrence du phénomène naturel en un lieu donné ;
– l’intensité du phénomène en termes d’effets potentiels sur des hommes, des ani-

maux, ou tout autre enjeu ;
– le degré d’exposition, c’est-à-dire la proportion de temps durant lequel l’enjeu est

exposé 1.

Le risque estimé est souvent mis en relation avec le risque accepté (voir tableau 3.3).

1. Le degré d’exposition d’une maison dans une zone menacée par une crue ou une ava-
lanche est 1 ; le degré d’exposition d’une route est la proportion de temps durant lequel il y a
au moins un véhicule sur un tronçon menacé.

http://www.bafu.admin.ch/publikationen/index.html?lang=fr&action=show_publ&id_thema=24&nr_publ=7516&series=VU
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Tableau 3.3 – Risque accepté selon la nature de l’enjeu.

Nature de l’enjeu Risque accepté R Période de retour T
Équipement a < 3 % T ≤ 30 ans
Habitation permanente < 1− 3 % T ≤ 30− 100 ans
Grandes retenues b < 0,1− 0,01 % T ≤ 1000− 104 ans

a Sans vocation à habitation permanente.
b Selon la jurisprudence actuelle, il s’agit des barrages intéressant la sécurité publique.

Pour quantifier le risque, on écrit souvent la relation (Wilson & Crouch, 2001) :

risque = probabilité d’occurrence× intensité.

Dans un contexte socio-économique, on peut étendre cette notion en prenant en compte
d’autres paramètres comme la vulnérabilité ou le degré d’exposition :

risque = probabilité d’occurrence× intensité× exposition× vulnérabilité.

Risque résiduel. – Le risque résiduel représente le risque subsistant une fois qu’un
système de protection a été mis en place.

Fréquence d’occurrence. – La fréquence d’occurrence est souvent introduite à
travers la notion de période de retour. La période de retour est le temps moyen entre
deux événements dont l’intensité est supérieure ou égale à un certain seuil 2 ; elle est
généralement exprimée en années. La fréquence est le nombre d’événements d’intensité
donnée (ou supérieure à un certain seuil) par unité de temps. Ainsi une crue centennale
est une crue dont la période de retour est T = 100 ans, c’est-à-dire dont la fréquence
moyenne d’occurrence est de 1/T = 0,01 chaque année.

Intensité. – L’intensité d’une crue (ou d’une avalanche) est généralement caracté-
risée à travers un, deux, ou trois paramètres qui permettent de quantifier la capacité de
dommage :

– pour les crues, les paramètres importants sont : la hauteur de submersion (voir
tableau 3.4) et la vitesse/débit de l’eau. D’autres paramètres peuvent être des
facteurs aggravants, mais ils ne sont pas souvent pris en considération : la charge
sédimentaire (risque d’exhaussement du lit et d’obstruction des ponts, risque
d’érosion des berges), transport de flottants, la contamination de l’eau par des
polluants, etc. ;

– pour les inondations, outre la hauteur de submersion, la durée de submersion
peut être un critère important à considérer ;

2. Cette notion peut être définie rigoureusement sur le planmathématique, mais son emploi
pratique est souvent difficile.
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– en zonage d’avalanche ou de lave torrentielle, ce sont surtout la distance d’arrêt
(ou plus généralement l’extension) et la poussée/pression d’impact qui servent à
spécifier l’intensité de l’écoulement et ses conséquences potentielles (cf. tableau
3.5 pour les avalanches).

D’une façon générale, on postule qu’il existe une relation entre intensité I et période de
retour T d’un phénomène hydrologique : plus le phénomène est rare (T grande), plus
son intensité I(T ) est potentiellement grande.

Tableau 3.4 – Capacité de dommage d’une crue en fonction de la hauteur de submer-
sion d’après l’OFEG (Loat & Petrascheck, 1997).

hauteur d’eau h (m) Potentiel de dommage
h < 0,5 m peu de danger pour les personnes (adultes),

caves inondées
0,5 ≤ h < 2 m des personnes non abritées peuvent être em-

portées ou se noyer, dommage au bâti
h ≥ 2 m la sécurité des personnes n’est plus assurée

dans les bâtiments, ruine possible du bâti

Tableau 3.5 – Capacité de dommage d’une avalanche en fonction de la pression exer-
cée. D’après (McClung & Schaerer, 1993).

Pression d’impact Pdyn (kPa) Potentiel de dommage
1 brise une vitre
5 défonce une porte
30 détruit des structures en bois
100 déracine de vieux arbres
1000 déplace une structure en béton

armé

Vulnérabilité. – La vulnérabilité représente le degré de dommage d’un enjeu sou-
mis à une crue ou une avalanche d’intensité donnée. Pour traduire cette notion, on
peut introduire un nombre v compris entre 0 et 1. Une vulnérabilité v = 1 pour une
crue (ou une avalanche) d’intensité I signifie la ruine de l’aménagement ou la mort
des personnes concernées si la crue (ou l’avalanche) d’intensité égale ou supérieure à
I se produisait. La vulnérabilité est donc étroitement liée à l’intensité du phénomène :
v = v(I).

Aléa. – L’aléa d’inondation, l’aléa torrentiel, et l’aléa d’avalanche représentent les
phénomènes physiques indépendamment de ses effets potentiels sur l’environnement
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et les activités humaines. On associe à l’aléa une probabilité d’occurrence (par le biais
de la période de retour). C’est un terme employé essentiellement en France.

Phénomènemaximal. –Certains pensent qu’il existe une borne supérieure à l’in-
tensité d’un phénomène physique et donc que la relation intensité/fréquence ne peut
pas croître indéfiniment quand la période de retour devient très grande ; il doit exis-
ter des limitations d’ordre physique qui contraignent l’intensité à tendre vers une va-
leur limite. On introduit ainsi la crue maximale probable (en anglais PMF pour probable
maximum flood) qui est la plus forte crue extrême que peut connaître un bassin-versant
(Dumas, 2006; ICOLD, 1998). En France, le projet de guide PPR avalanche a introduit la
notion d’avalanche maximale vraisemblable (Liévois, 2006).

Phénomène de référence. – La crue de référence (appelée encore crue de projet)
est la crue retenue pour le dimensionnement d’un ouvrage, le plus souvent un ouvrage
de protection. L’ouvrage doit pouvoir résister et protéger contre toutes les crues dont
l’intensité est inférieure ou égale à celle du phénomène de référence. Pour des crues
d’intensité supérieure, on tolère des dommages partiels ou complets (ruine de l’ouvrage
et dommages sur les enjeux à protéger). Pour les avalanches et les laves torrentielles,
on parle parfois aussi d’avalanche (ou de lave torrentielle) de référence.

Magnitude. –Comme pour les tremblements de terre ou les ouragans, on peut qua-
lifier les effets destructeurs d’un phénomène hydrologique et certaines caractéristiques
physiques à l’aide d’une échelle de magnitude. Ainsi pour les avalanches, McClung et
Schaerer en ont proposé une, reproduite au tableau 3.6.

Cartes de phénomènes et de risque (danger). – Dans les études modernes du
danger hydrologique sur un secteur donné, on procède de la façon suivante :

1. calcul/estimation du danger naturel, c’est-à-dire recherche des caractéristiques
des crues/avalanches sur un bassin-versant en fonction de la période de retour ;

2. détermination des effets potentiels de la crue/avalanche, dommages possibles
sur des aménagements existants ou pouvant exister ;

3. prescription des règles d’urbanisme s’il s’agit d’un dossier d’urbanisme.

Chacune de ces étapes peut être traduite sous forme de cartes.

– Pour l’étape (1), on produit des cartes inventaires de phénomènes ou des « ca-
dastres » où sont recensés les principaux événements historiques connus. Ces
cartes servent ensuite à établir des cartes d’intensité où sont reportées les em-
prises des crues/avalanches et la distribution du paramètre d’intensité pour une
période de retour donnée (ou les phénomènes exceptionnels et extrêmes connus).
Ces cartes peuvent synthétiser l’information historique connue ou des résultats
de calculs numériques ; elles peuvent également combiner différentes sources
d’information. La figure 3.3(a) fournit un exemple de carte de danger pour des
avalanches (menaçant un hameau en Haute-Savoie) obtenue à partir de simula-
tions numériques ; les codes de couleur renseignent sur la pression cinétique au
sein de l’avalanche. On peut également synthétiser l’information en fournissant
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Tableau 3.6 – Échelle de magnitude des avalanches. M masse de l’avalanche, L lon-
gueur parcourue par l’avalanche depuis la zone de départ, et P ordre de grandeur de
la pression d’impact. D’après (McClung & Schaerer, 1993).

Magnitude Capacité de dommage M (t) L (m) P
(kPa)

1 généralement inoffensive < 10 10 1
2 peut ensevelir, tuer ou

blesser une personne
102 100 10

3 peut ensevelir une voi-
ture, détruire un petit bâ-
timent a, ou casser des
arbres

103 1000 100

4 peut détruire un wagon,
un grand camion, plu-
sieurs bâtiments, ou jus-
qu’à 4 ha de forêt

104 2000 500

5 plus grandes avalanches
connues, peut détruire un
village, raser une forêt de
40 ha

105 3000 1000

a par exemple, un chalet en bois.

un zonage des phénomènes, où l’on se contente d’un découpage en quelques
zones (par exemple danger négligeable/nul, faible, moyen, fort dans le cas d’un
zonage d’avalanche). Les cartes sont généralement à une échelle allant du 1 :
1000 au 1 : 25 000.

– Pour l’étape (2), on produit une carte de danger ou carte de risque (selon le pays),
où les enveloppes des zones de risque sont schématisées à l’aide d’un code de
couleur. La figure 3.3(b) fournit un exemple de carte de danger, où le découpage
en zones fait appel à quatre codes de couleur selon l’effet des avalanches (pres-
sion, hauteur de sollicitation, type d’effort, etc.) sur le bâti et la fréquence des
avalanches. L’usage international est d’utiliser un code de trois ou quatre cou-
leurs : zones blanche, jaune, bleue, et rouge. La figure 3.2 propose une définition
des zones de risque en usage dans la plupart des pays occidentaux.

– L’étape (3) concerne uniquement les cartes établies à des fins réglementaires
(zonage réglementaire par exemple). Le document final doit inclure une carto-
graphie synthétique du risque selon le code de couleur blanc/jaune/bleu/rouge
et un règlement fixant les prescriptions d’occupation du sol.

Des bases de données à accès gratuit ou sécurisé existent en Suisse et en France et
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permettent d’accéder à différentes sources d’information, notamment le cadastre des
événements. Pour la Suisse, la base de données StorMe recense les événements domma-
geables documentés. En France, il existe plusieurs initiatives. L’INRAE de Grenoble met
à disposition les carnets d’avalanche de l’Enquête Permanente des avalanches, les fiches
de renseignement et les cartes d’inventaire des avalanches (CLPA). Certains départe-
ments français comme l’Isère fournissent également des informations via le site des
préfectures ou bien des instituts spécialisés (Institut des risques majeurs pour l’Isère).
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Figure 3.2 – Définition des zones de risque en fonction de l’échelle d’intensité i et de
la fréquence d’occurrence f . Adapté de (Salm et al., 1990).

En Suisse et en France, les autorités nationales ont lancé de grands programmes de
révision et/ou d’établissement de plans de zonage pour chaque commune du territoire
national. En Suisse, le Bundesamt für Umwelt (BAFU) fournit un état d’avancement ré-
gulier du zonage dans les différents cantons. En France, le ministère en charge de l’envi-
ronnement publie une information sur les plans de prévention sur le site www.gouver-
nement.fr/risques. Une information plus complète est généralement disponible sur le
site de chaque préfecture.

Zone blanche. – Dans les cartes de risque, la zone blanche regroupe les lieux
pour lequel le risque est nul ou très faible, c’est-à-dire la période de retour d’éventuels
phénomènes est très grande (100–300 ans, voire plus, selon les pays) et/ou le niveau
d’intensité très faible. Il n’y a pas de contre-indication à la construction de bâtiments
liée au risque.

Zone jaune. – Il s’agit d’une zone à risque résiduel (effet de souffle, par exemple,
dans le cas d’une avalanche) ou bien potentiellement concernée par des phénomènes
extrêmes (par exemple, la crue maximale probable). Le risque y est faible, mais des
mesures de consignation/évacuation peuvent concerner de telles zones en cas de situa-
tions météorologiques critiques. Ces mesures d’ordre temporaire ne sont en général
pas doublées de mesures permanentes comme des prescriptions architecturales.

http://www.bafu.admin.ch/naturgefahren/01922/01926/01927/index.html?lang=fr
http://www.avalanches.fr
www.irma-grenoble.com
https://www.bafu.admin.ch/bafu/fr/home/themes/dangers-naturels/info-specialistes/situation-de-danger-et-utilisation-du-territoire/donnees-de-base-sur-les-dangers/cartes-de-dangers--cartes-d-intensite-et-cartes-indicatives-des-.html
https://www.gouvernement.fr/risques/risques-naturels
https://www.gouvernement.fr/risques/risques-naturels
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Figure 3.3 – (a) Exemple de simulation d’une avalanche coulante centennale sur le
couloir de la Villette (Saint-Gervais-les-Bains, Haute-Savoie) par le modèle AVAC 2. (b)
Carte de phénomènes (aléas). Source : Toraval.

Zone bleue. – Il s’agit d’une zone à risque moyen. La construction de nouveau
bâtiment (accueil permanent ou temporaire de personnes) y est réglementée (renforce-
ment du bâti, ouvrage de protection, etc.) ; des mesures temporaires (plan de secours,
d’évacuation, de consignation) sont généralement prévues.

Zone rouge. – La zone rouge est l’enveloppe des secteurs à fort risque. La zone
rouge est généralement inconstructible.

L’inconvénient de cette classification du risque est que la zone bleue va en fait du
« bleu très foncé » – c’est-à-dire des zones à fort risque – au « bleu très clair » – où
l’effet de la crue ou de l’avalanche peut se traduire par des effets secondaires causant
des dommages légers –. Il est alors indispensable de subdiviser la zone bleue en secteurs
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où les moyens de protection (tels que les prescriptions architecturales) sont adaptés à
la menace réelle.

3.2.2 Des cartes de phénomènes aux plans de zonage

Lorsqu’on fait du zonage, on cherche à traduire sous des formes simples les consé-
quences des crues ou de l’activité avalancheuse sur l’occupation des sols et le dévelop-
pement d’activités humaines. L’idée est :

– de dresser des cartes inventaires des phénomènes qui synthétisent sous une
forme condensée et cohérente les résultats des différentes analyses de la phase
de diagnostic. Ces cartes inventaires sont appelés également « carte d’aléa » ou
« carte de danger », mais cette terminologie est ambiguë car le sens d’aléa ou de
danger varie selon les personnes et les pays ;

– d’établir des cartes de zonage où est classifié le risque encouru.

Dans le tableau 3.4, on a transformé le tableau 3.1 en transcrivant les caractéris-
tiques intensité-fréquence en termes de risque (classement en zone rouge/bleue/jaune).
On va ici considérer les règles suivantes :

– zone rouge : phénomènes de forte intensité et phénomènes d’intensité modérée,
mais de fréquence élevée (i3f1, i3f2, i3f3, et i2f3) ;

– zone bleue : phénomènes d’intensité modérée et de fréquence basse à moyenne
(i2f1 et i2f2) ;

– zone jaune ou bleu clair : phénomènes d’intensité faible (i1f1 et i1f2).

Les phénomènes fréquents d’intensité faible i1f3 seront classés soit en zone bleue, soit
en zone rouge.

  fréquence 

intensité basse (1) moyenne (2) élevée (3) 

Faible (1)  
1 1i f  

1 2i f  
1 3i f  

Modérée (2)  
2 1i f  

2 2i f  
2 3i f  

Forte (3)  
3 1i f  

3 2i f  
3 3i f  

Figure 3.4 – Définition schématique des zones de risque en fonction de la pression
d’impact et de la période de retour.
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3.3 Stratégies de protection

Nous allons maintenant passer en revue les principales stratégiques et voir com-
ment elles peuvent être déclinées en différentes techniques de protection.

3.3.1 Empêcher les phénomènes de se produire

Une façon de se protéger est d’attaquer le problème à sa source. Une stratégie de
défense permanente active est d’empêcher le phénomène de se produire dans la zone
de départ. En pratique, cela peut se faire :

– en reboisant des versants dénudés pour protéger contre les crues et les
avalanches. C’est une des premières stratégies à avoir été mise en place. En
Suisse, mais aussi dans le duché (puis royaume) de Savoie, l’administration avait
mis à ban des forêts, qui assuraient un rôle de protection de village contre les ava-
lanches (voir § 1.5.4). La figure 3.5(a) montre le village d’Argentière (vallée du
Mont-Blanc) protégé des avalanches en rive droite de l’Arve par une forêt de
résineux ; la forêt est aussi rayée par des couloirs d’avalanches, où seule une
végétation arbustive pousse. Au cours du xxe siècle, la doctrine prônant la fo-
rêt comme principal moyen de lutte contre les dangers hydrologiques trouva de
plus en plus de détracteurs. Si la forêt a un rôle indéniable sur certains bassins-
versants (par exemple, sol marneux dénudé du sud de la France), elle peut aussi
n’avoir qu’un rôle modeste pour d’autres configurations de terrain (terrain per-
méable) (Rey et al., 2004). En effet, une fois que la capacité d’interception par
la végétation est saturée et dans le cas de sols peu perméables, la forêt n’a plus
aucun effet sur les pluies soutenues. Dans le cas des avalanches, des départs sont
possibles si la forêt n’est pas suffisamment dense. Lorsqu’une forêt de protection
peut également être exploitée pour la production du bois, les coûts d’entretien
sont diminués ; dans le cas contraire, une forêt de protection demande un entre-
tien permanent, qui peut être coûteux. La modification du climat amènera aussi
un changement dans les populations d’arbres. Une forêt de protection peut égale-
ment subir des dommages importants à cause d’une tempête (la tempête Lothar
en décembre 1999 causa de nombreux chablis dans les forêts alpines) ou bien de
maladies 3.

– en construisant des ouvrages de génie civil pour soutenir le sol ou le
manteau neigeux. L’idée de base est de fixer le sol ou le manteau neigeux. Le
procédé a été expérimenté très tôt. On rapporte ainsi qu’après la terrible ava-
lanche de 1784, les habitants de Bonneval-sur-Arc (Maurienne) ont creusé des

3. Les forêts demélèzes et d’épicéas dans les Alpes sont très sensibles à desmaladies comme
la tordeuse grise (papillon dont la larve cause une défoliation du mélèze) généralement non
mortelle, de champignons parasitaires (parfois mortels), d’insectes (des coléoptères comme le
bostryche), et d’attaques bactériennes.
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terrasses et construit des murets de pierres sur les pentes de la Grande Feiche.
À Barèges, le Génie militaire disposa des murets et une forêt de pieux métal-
liques… sans grande efficacité sur le départ des avalanches. Pour empêcher le
creusement des torrents, des seuils maçonnés étaient placés dans le lit torrentiel
à distance régulière [voir figure 3.5(d)]. De nos jours, ces techniques existent tou-
jours : pour empêcher le départ des avalanches, on peut disposer des ouvrages
charpentés (claies, râteliers) ou souples (filets) [voir figure 3.5(c)] ou bien des
panneaux vire-vent pour éviter les accumulations de neige par le vent et favo-
riser des répartitions hétérogènes de neige au sol afin d’éviter les ruptures sur
de grandes distances [voir figure 3.5(b)] ; les banquettes larges ont été abandon-
nées car sans efficacité. Pour fixer le lit d’un torrent, la construction de seuil en
béton est toujours d’un emploi courant. La principale difficulté de cette straté-
gie est son coût devenu très important (le coût de la main d’œuvre n’a plus rien
de commun avec ce qui était pratiqué au xixe siècle) et la nécessité d’entretenir
les ouvrages (ce qui demande un budget de fonctionnement). L’efficacité des ou-
vrages de soutien n’est pas complète ; des départs d’avalanche ont été observés
dans des lignes de râteliers ou de filets, notamment pour des manteaux neigeux
sans cohésion.

(a) (b)

(c) (d)

Figure 3.5 – (a) Forêt de résineux protégeant le village d’Argentière (Haute-Savoie) ; (b)
panneaux vire-vent au milieu d’une pessière au-dessus des Marécottes (VS) ; (c) réseaux
de râteliers et de filets protégeant Belle-Plagne (Savoie) ; (d) seuils en cascade fixant le
lit torrentiel à Schlans (Grisons).
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3.3.2 Arrêter les écoulements

Une parade classique en défense passive consiste à arrêter les écoulements. Cela
se fait classiquement à l’aide de digue offrant un obstacle suffisant pour casser la dy-
namique de l’écoulement et stocker son volume une fois arrêté. Un grand barrage de
montagne comme Cleuson–Dixence dans le Valais a un volume d’accumulation suffi-
sant pour stocker le volume de crue de tous les torrents s’y déversant ; c’est pour cette
raison qu’il ne dispose pas d’un évacuateur de crue, qui est un organe obligatoire pour
les barrages situés plus en aval.

Pour les avalanches, il est parfois possible de construire des digues qui peuvent
briser l’énergie des avalanches et stocker le volume déposé. Taconnaz dans la vallée
de Chamonix est l’un des plus grands paravalanches au monde et fonctionne selon ce
principe ; la digue haute de 15 m est précédée à l’amont d’une série de terrasses, de
dents déflectrices, de tas freineurs. L’idée est de forcer l’étalement de l’avalanche confi-
née dans une gorge (torrent de Taconnaz), pour favoriser la dissipation d’énergie [voir
figure 3.6(a)]. La digue frontale doit en principe arrêter complètement le flux de neige
sous réserve que l’avalanche soit coulante (pas de composante aérosol significative) et
que son volume ne soit pas trop important (moins de quelques centaines de milliers de
m3).

Pour les crues torrentielles, en particulier les laves torrentielles, on peut construire
des plages de dépôt fermées à l’aval (et souvent latéralement) par des digues filtrantes
(l’eau peut passer, mais pas la charge solide). La plage de dépôt de Tours-en-Savoie est
ainsi constituée d’une digue à travers laquelle une ouverture munie d’une rangée de
poutrelles a été aménagée [voir figure 3.6(b)]. L’idée est d’arrêter le volume de lave
torrentielle tout en permettant à l’eau de s’écouler librement. Sur le torrent du Pissot
au-dessus de Villeneuve (Vaud), un principe similaire a été suivi, mais la digue est un
barrage-fente en béton armé [voir figure 3.6(c)]. Pour des crues avec charriage, l’idée
est similaire : on piège les sédiments et les flottants dans des plages de dépôt fermées
par des digues ou seuils plus ou moins perméables (grille, fente, déversoir). D’autres
techniques ont été employées pour séparer le sédiment de l’eau. Ainsi, au Japon, cer-
tains torrents sont équipés de grilles placées le long du lit torrentiel ; au moment où
le front de la lave torrentielle passe au-dessus de la grille, l’eau est essorée et le front
s’arrête.

Un problème commun à tous ces ouvrages est le coût de construction souvent
conséquent. La maîtrise du foncier et l’insertion dans le paysage (place disponible)
peuvent poser problème dans les zones de montagne, en particulier pour des ouvrages
de grande taille où la capacité de stockage doit être importante. Le curage des volumes
déposés est également coûteux et difficile techniquement si l’accès à la plage est pé-
nible. Enfin, une fois remplies, les plages de dépôt n’offrent plus de réelle protection en
cas de nouvel événement. Pour certains événements (lave torrentielle de la Ravoire-de-
Pontamafrey en Savoie en 1965, les avalanches de l’hiver 1999 dans les Alpes comme
à Geschinen dans le Valais), plusieurs phénomènes peuvent se produire dans un court
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intervalle de temps, ce qui rend les ouvrages inefficaces.

(a) (b)

(c) (d)

Figure 3.6 – (a) Plage de dépôt du torrent de Saint-Clément à Tours-en-Savoie (Savoie) ;
(b) dispositif paravalanche de Taconnaz entre les Houches et Chamonix-Mont-Blanc
(Haute-Savoie) ; (c) construction du barrage de rétention sur le torrent du Pissot (Vaud)
au-dessus de Villeneuve après la crue de 1995 ; (d) barrage-grille format un « dépotoir »
à sédiment à Sachseln (Obwald) cliché Andreas Götz (OFEG).



150 Chapitre 3 Gestion du risque

3.3.3 Dévier localement les écoulements

Une stratégie fréquemment mise en œuvre en défense passive est la protection
rapprochée des enjeux. Il est en effet délicat d’arrêter ou de dévier complètement un
écoulement, alors qu’une action locale est souvent plus facile techniquement et moins
onéreuse à mettre en place. Dans cette stratégie, on compte

– les étraves et les tournes, placées à l’amont immédiat des enjeux, qui permettent
de dévier de façon très localisée le flux des avalanches [voir figure 3.7(a, b)]. C’est
une technique ancienne, qui a été utilisée pour protéger des chalets d’alpage. Elle
est de nos jours encore couramment employée pour protéger des pylônes élec-
triques ou de remontée mécanique, des habitations isolées, etc. Si les ouvrages
sont constitués de terre compactée, le coût est relativement modéré, mais dès
qu’on emploie des techniques spécifiques (terre armée, pneusols, enrochements,
etc.) pour raidir la face amont et qu’on accroît la hauteur, le coût croît très rapi-
dement ;

– les galeries, qui coiffent les tronçons routiers exposés à des avalanches ou des
crues torrentielles [voir figure 3.7(c)]. La protection est souvent très efficace,
mais le coût est également considérable, notamment si la galerie doit être fer-
mée latéralement par un mur ou des claustras. L’ancrage de la galerie, le vieillis-
sement, l’impact possible de blocs peuvent également poser problème. Certains
équipements sont conçus de telle sorte que les écoulements passent par des-
sus, comme à Lanslevillard où la piscine construite dans une zone de souffle de
l’avalanche est protégée puisque les écoulements peuvent transiter par dessus
la toiture [voir figure 3.7(d)].
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(a) (b)

(c) (d)

Figure 3.7 – (a) Étrave devant l’église de Vallorcine (Haute-Savoie) construite au début
du xviiie siècle pour protéger l’église et le presbytère ; (b) étrave accolée au bâtiment
à protéger (Bessans, Savoie) ; (c) galerie protégeant la route de Mieussy (Haute-Savoie)
contre les avalanches et les chutes de blocs ; (d) à Lanslevillard (Savoie), la piscine est
protégée des avalanches par sa toiture.



152 Chapitre 3 Gestion du risque

3.3.4 Modifier la trajectoire des écoulements

Plutôt que de modifier la trajectoire au niveau d’un enjeu particulier à l’aide d’une
protection rapprochée, une stratégie plus globale consiste à dévier l’écoulement à l’aide
d’une digue de déviation, appelée également tourne. Pour infléchir la trajectoire d’écou-
lements, il faut que l’ouvrage soit de longueur suffisante et que l’angle d’incidence
entre l’écoulement et la digue ne soit pas trop fort. C’est une stratégie assez couram-
ment mise en œuvre pour se prémunir contre des avalanches et des laves torrentielles
[voir figure 3.8(a, b)]. La stratégie de déviation a fréquemment été employée pour les
cours d’eau où l’on a déplacé parfois le lit de la rivière de façon très conséquente. Par
exemple, après la crue du Dorfbach à Sachseln (Obwald) en août 1997, la communauté
de communes a décidé de déplacer le lit du torrent entre la sortie de la gorge torrentielle
et son débouché dans le lac de Sarnen afin que le torrent ne traverse plus le village. C’est
la solution classique de creusement d’un nouveau lit, conforté par un endiguement, qui
a été mise en œuvre. D’autres solutions existent, comme au Tour dans la haute vallée
de l’Arve (Haute-Savoie), où le torrent a été dévié en creusant une galerie souterraine
[voir figure 3.8(c, d)] (Lefebvre & Demmerle, 2004).

Quand on dispose de suffisamment de place, cette stratégie a généralement une
bonne efficacité. Son inconvénient majeur est le coût parfois conséquent quand la digue
est longue et que le parement amont doit être raidi et armé. Face à des écoulements
à répétition ou bien rapides, la digue peut être de moindre efficacité car il y a un fort
risque de surverse ; c’est par exemple ce qui s’est passé en décembre 1991 à Belle-Plagne,
où une partie de l’avalanche est passée au-dessus de la digue de déviation, qui était
d’une hauteur insuffisante sur toute sa portion amont.
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(a) (b)

(c) (d)

Figure 3.8 – (a) Tourne de Belle-Plagne (Savoie) après sa rénovation en 2002 ; les ava-
lanches partent de la zone équipée de râteliers, située plus haut. (b) tourne du Saint-
Antoine à Bourg-d’Oisans (Isère) ; la tourne sert à dévier des laves torrentielles (issues
des clappiers sous les falaises dominant le torrent du Saint-Antoine) des zones urbani-
sées du Bourg-d’Oisans, en particulier un collège. (c, d) dérivation de l’Arve au niveau
du glissement des Posettes au-dessus du Tour (commune de Chamonix-Mont-Blanc,
Haute-Savoie) : quasiment à sa source, l’Arve traversait le pied du mouvement de ter-
rain des Posettes, sapait le versant, et entraînait de grandes quantités de matériaux fins.
Pour empêcher ce processus, le maître d’ouvrage a opté pour une solution originale :
le torrent est dévie de son lit en empruntant un syphon (cliché c), puis en suivant une
galerie qui conduit les eaux plusieurs centaines de mètres plus en aval.
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3.3.5 Freiner localement les écoulements

S’il est rarement possible d’arrêter un écoulement quand celui-ci est puissant et/ou
volumineux, il est parfois possible de le freiner ou d’amoindrir son intensité. L’exemple
typique est fourni par le laminage de crue, qui consiste à réduire le débit de pointe d’une
crue en stockant une partie de l’eau dans des lacs d’accumulations, des bassins de réten-
tion, des bassins d’écrêtement, ou en la versant dans des champs d’inondation, c’est-à-
dire en permettant l’expansion de l’eau dans des zones jugées d’un intérêt économique
moindre en cas d’inondation (typiquement des zones agricoles) [voir figure 3.9(a)]. Il
est parfois nécessaire de freiner localement un écoulement pour éviter des problèmes
tels que l’érosion des berges ; par exemple, dans l’extrados d’une courbe d’un lit fluvial
ou torrentiel, l’eau est accélérée et peut éroder les berges, favorisant leur rupture et
une inondation des terrains. Pour éviter cela, une solution consiste à placer des ran-
gées d’épis, le plus souvent en enrochements maçonnés, qui recentrent l’écoulement et
le freinent tout en évitant une érosion des berges. Le cliché (b) de la figure 3.9 montre
une série d’épis parallèles placés dans le lit de l’Arve au niveau des Houches (Haute-
Savoie).

Pour les avalanches et les laves torrentielles, il est également parfois possible de
freiner les écoulements en dissipant une partie de leur énergie. Dans le cas des ava-
lanches, l’objectif est de dissiper le plus possible d’énergie afin de réduire la hauteur
de la digue frontale servant à arrêter l’écoulement car le coût d’une digue s’élève très
rapidement avec sa hauteur (grosso modo le coût croît comme le carré de la hauteur).
Les tas freineurs placés à Taconnaz [voir figure 3.9(c)] remplissent cette fonction.

À elle seule, cette stratégie ne permet que rarement d’offrir un niveau de sécurité
suffisant, mais elle est très utile en complément d’autres stratégies. Par exemple, le la-
minage de crue par des champs d’inondation est souvent un complément de mesures
d’endiguement du lit d’une rivière. De ce point de vue, cette stratégie est utile car elle
permet de gagner en sécurité et d’amoindrir le coût des protections (voir l’exemple de
Taconnaz plus haut). Toutefois, comme toute solution où des ouvrages de génie civil
sont disposés dans l’écoulement, le vieillissement prématuré de la protection peut être
un problème. Pour les épis, l’érosion peut amener rapidement à la ruine de la protec-
tion au cours d’une seule crue ; à Taconnaz, en moins de 15 ans, deux avalanches ont
provoqué des dommages significatifs à la structure en terre armée des tas freineurs.
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(a)

(b)

(c)

Figure 3.9 – (a) Principe des champs d’inondation (source : www.symbhi.fr). (b) Série
d’épis dans l’extrados de l’Arve aux Houches (Haute-Savoie) ; on note aussi le viaduc
permettant au torrent de la Griaz de franchir la voie expresse reliant Chamonix-Mont-
Blanc au Fayet. (c) Tas freineur du dispositif de Taconnaz (Haute-Savoie) après l’ava-
lanche du 5 avril 2006 ; voir cliché (b) de la figure 3.6 pour avoir une vue d’ensemble du
dispositif.

http://www.symbhi.fr
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3.3.6 Forcer le déclenchement des écoulements

Le déclenchement préventif concerne uniquement les avalanches, qui se prêtent
assez bien à ce type d’action. En défense active, le déclenchement préventif est une
stratégie opposée à la stratégie vue précédemment de confortement du manteau nei-
geux. L’idée est de déclencher de petites avalanches à l’aide d’explosifs ou de mélanges
détonants (gazex) pour provoquer artificiellement le départ de l’avalanche. On espère
ainsi pouvoir éviter le déclenchement inopiné d’avalanches ou bien le départ d’une ava-
lanche de grande taille. Lorsqu’on emploie de l’explosif et qu’on tire à la main, le coût
d’utilisation est modique, mais il y a toujours des problèmes de sécurité du personnel
et des difficultés de mise en œuvre des tirs lorsque les conditions nivo-météorologiques
ne sont pas favorables. Ces problèmes sont nettement amoindris si on met en place des
dispositifs automatiques (de type catex ou gazex), qui déclenchent l’avalanche à dis-
tance ; l’inconvénient est alors le coût d’investissement et d’entretien. C’est une tech-
nique d’un emploi très courant pour la sécurisation des pistes de ski et de certains
accès routiers d’altitude. Des procédures de gestion temporaire (fermeture de la route
au moment du tir par exemple) sont obligatoires.

L’efficacité de cette stratégie n’est pas totale, notamment au printemps pour des
neiges humides, mais dans l’ensemble, les résultats sont satisfaisants pour des routes
et des domaines skiables. Cette stratégie est à éviter lorsque l’enjeu est constitué d’ha-
bitations compte tenu des risques ou bien si des bâtiments peuvent être concernés par
l’avalanche. Ainsi, en février 1999 à Loèche-les-Bains (Valais), une erreur de tir lors
d’un déclenchement depuis un hélicoptère provoqua une avalanche qui endommagea
fortement un bâtiment et coupa la route, heureusement sans faire de victimes.

(a) (b)

Figure 3.10 – (a) Tube déclencheur appelé Gazex : un mélange détonant d’hydrogène
et d’oxygène est réalisé dans une chambre souterraine, puis un arc électrique provoque
une explosion. Le tube – appelé dragon – guide l’onde de choc vers la surface du man-
teau neigeux. L’onde de surpression est généralement suffisante à déclencher l’ava-
lanche quand le manteau neigeux est instable. (b) Déclenchement d’un pain d’explosif
lancé à la main.
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3.3.7 Contraindre la trajectoire : contenir les écoulements

Parmi les stratégies de défense passive, la stratégie d’endiguement est l’une des plus
anciennes pour se prémunir contre les crues. Il s’agit de contenir le flux à travers deux
digues parallèles, appelées digue de contention.

La correction du Rhône dans le Valais au xixe siècle offre un exemple historique
d’endiguement d’une rivière pour protéger contre les crues et certains autres problèmes
liés aux bras morts (eaux stagnantes, maladies, moustiques). La plupart des grandes
villes en Europe sont traversées par des rivières endiguées par des levées de terre, des
enrochements, ou des perrés maçonnés. Le cliché (a) de la figure 3.11 montre une por-
tion de la digue qui protège l’agglomération grenobloise contre les crues de l’Isère ;
on note l’existence d’un enrochement en rive gauche, dans l’extrados pour protéger
la digue en terre de l’action érosive du courant. L’endiguement des cours d’eau sur de
longues distances est aujourd’hui considéré comme une stratégie de défense probléma-
tique compte tenu des nombreux problèmes qu’elle induit :

– modification du transport solide, avec localement des exhaussements ou des en-
foncements du lit qui peuvent poser problème ;

– impact écologique assez fort ;
– accélération des crues (par exemple, les crues du Rhin se propagent de nos jours

beaucoup plus vite compte tenu des travaux d’endiguement sur le Rhin suisse
et ses tributaires dont la Thur) ;

– vieillissement ou faiblesse structurelle des digues en terre, avec des accidents
nombreux comme la crue de la Savoureuse (Territoire de Belfort) – qui inonda
les communes d’Eloie et de Valdoie après la rupture d’une digue en décembre
2001 – ou la crue du Rhône – qui inonda de 1000 ha de plaine dans la région de
Saillon (Valais) après la rupture ou la submersion de digues en octobre 2000 ;

– coût des ouvrages, notamment lorsque la digue doit être surélevée ou bien pro-
tégée par des enrochements.

Les travaux actuels visent à redonner aux rivières une certaine largeur et un degré
de liberté qu’elles avaient perdue avec les travaux d’endiguement du xixe siècle et
xxe siècle : on parle de restauration des rivières (Wohl et al., 2005).

Les digues de contention peuvent être utilisées pour endiguer des avalanches ou des
laves torrentielles. Le cliché (b) de la figure 3.11 montre deux digues de contention per-
mettant de concentrer le flux des avalanches menaçant la route départementale reliant
Clavans àMizoën (Isère) ; le dispositif est complété par un détecteur routier d’avalanche
(DRA), dont le bon fonctionnement nécessite que la largeur de l’avalanche soit à peu
près fixe. Le cliché (c) de la figure 3.11 montre le système de contention placé sur le
torrent traversant le village de Schlans (Grisons) après la lave torrentielle de 2002. On
cherche là à éviter les divagations des laves torrentielles sur le cône de déjection. Le
cliché (d) de la figure 3.11 montre un viaduc endiguant le torrent de Saint-Bernard et
enjambant l’autoroute A43 en Maurienne (Savoie) ; un système similaire avait été ex-
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périmenté sur le torrent de la Griaz aux Houches [Haute-Savoie, voir cliché (b) de la
figure 3.9].

(a) (b)

(c) (d)

Figure 3.11 – (a) Digue de l’Isère (ici, vers Grenoble) ; (b) digue de contention de
la route de Clavans (Isère) ; (c) digue de contention à Schlans (Grisons) ; (d) digue de
contention et viaduc du torrent du Saint-Bernard (Savoie) enjambant l’autoroute de la
Maurienne.
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3.3.8 Renforcer les équipements

Il n’est pas toujours possible d’assurer la protection désirée d’équipements ou bien
la mise en sécurité à l’aide de stratégies globales n’est économiquement pas réaliste.
Il est parfois possible d’assurer la protection grâce à une conception appropriée de
l’équipement. Par exemple, pour se protéger contre les avalanches, il est possible de
prévoir des murs sans ouverture, en béton armé, capables de résister à des pressions
de quelques dizaines de kPa ; on parle de murs aveugles. Le cliché (a) de la figure 3.12
montre des façades d’immeubles résidentiels à Lanslevillard (Savoie), rendues aveugles
et renforcées pour résister au souffle de l’avalanche.

Le plus souvent, le renforcement des équipements passe par un dimensionnement
et une conception appropriés de telle sorte que l’équipement puisse résister à l’écoule-
ment sans dommage significatif. Une maison sur pilotis est un exemple d’équipement
auto-protégé que l’on peut construire dans les zones inondables. D’autres solutions
ont été mises au point pour assurer une protection contre les crues : ainsi, le pont au-
dessus de la Saltina à Brigue (Valais) est maintenant un pont levant : le tablier s’élève
automatiquement lors d’une crue, évitant l’obstruction du canal [voir cliché (b) de la
figure 3.12].

Le coût est nettement réduit en comparaison des ouvrages de génie civil (de type
digue), mais la charge financière reste conséquente pour le maître d’ouvrage, le plus
souvent des particuliers, lorsque celui-ci se trouve dans l’obligation (légale) de mettre
en place une telle protection. Ce type de protection peut également poser des problèmes
architecturaux, notamment à cause de l’absence d’ouverture sur une ou plusieurs fa-
çades.

(a) (b)

Figure 3.12 – (a) Murs aveugles d’une résidence menacée par le souffle de l’avalanche
(commune de Lanslevillard, Savoie) ; (b) le pont auto-levant de Brigue (Valais) au-dessus
de la Saltina ; après la crue de septembre 1993 [voir cliché (a) de la figure 2.23], où
la Saltina avait débordé au niveau d’un pont, les ingénieurs ont conçu un ingénieux
dispositif de pont auto-levant : c’est la force hydraulique induite par la rivière en crue
qui assure la levée du pont (source : OFEG).
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3.4 Mesures réglementaires

Les mesures réglementaires sont de deux natures :

– les mesures permanentes qui fixent l’occupation du sol (voir § 3.2) ;
– les mesures temporaires qui visent à interdire l’accès à une zone pour une durée

finie (généralement courte) ou à interdire les déplacements en dehors des zones
jugées sûres (consignation).

On ne parle ici que du second type de mesure réglementaire. Si le principe est simple
et l’usage courant (par exemple, gestion des pistes de ski ou des routes de montagne
par ouverture/fermeture), la mise en œuvre est délicate et, en pratique, seuls quelques
enjeux bien précis peuvent être protégés ainsi : il s’agit principalement d’enjeux sans
risque majeur sur les biens, mais où la sécurité des personnes n’est pas assurée com-
plètement. Pour assurer cette sécurité, on interdit l’accès ou le déplacement au sein du
secteur concerné. Cette stratégie dépend donc d’une décision humaine, qui elle-même
doit s’appuyer sur un certain nombre d’éléments qui permettent de prévoir l’occurrence
d’une période à risque. L’exemple typique est donc la piste de ski, où selon les prévi-
sions météorologiques du risque d’avalanche, le responsable de la sécurité des pistes
peut fermer une partie d’un domaine skiable. Dans certains cas, la décision peut être au-
tomatisée. Par exemple, les détecteurs routiers d’avalanche (DRA) ou de lave torrentielle
(DLT) sont des systèmes mécaniques (câble tendu à travers un couloir d’avalanche) ou
sonores (géophone mesurant les ondes sonores à travers le sol ou Arfang détectant
les infrasons dans l’air) qui permettent de détecter l’occurrence d’un événement, puis
de transmettre un signal à un feu de signalisation placé en contrebas sur la route à
protéger. La circulation est alors bloquée pendant un certain laps de temps.

En pratique, cette solution est bien adaptée aux domaines skiables et parfois aux
routes secondaires. Elle a l’avantage du coût puisque hormis le système de détection
ou de prévision, elle ne requiert aucun moyen lourd de génie civil. Reposant sur une
décision humaine, elle n’offre pas de garantie totale de sécurité comme l’ont montré de
nombreux accidents d’avalanche survenus sur des pistes de ski.
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Figure 3.13 – Feu de signalisation d’un détecteur routier d’avalanche (ici sur la route
départementale menant à Clavans, Isère).





CHAPITRE4
Introduction à la théorie des

valeurs extrêmes

T
RÈs gÉnÉRalement, dans l’étude des risques, on souhaite déterminer les pré-
cipitations ou les crues extrêmes, or cette détermination est difficile car :

– par définition, les extrêmes sont rares, donc on possède peu de données obser-
vées ;

– on dispose souvent d’une série limitée de données (20–50 ans dans la plupart
des cas) et on souhaite déterminer des phénomènes très rares, dont l’intensité
peut dépasser très largement le maximum observé ;

– si on dispose de distributions de probabilité qui interpolent les données obser-
vées, il est difficile d’accorder crédit aux valeurs extrapolées. En effet, en pra-
tique, il est souvent possible de caler plusieurs lois de probabilités sur un même
échantillon mais comment déterminer la loi la plus crédible ?

La théorie des valeurs extrêmes (cf. § 4.1.3) nous fournit une indication précieuse :
quelle que soit la distribution de la population originelle, dès lors que les événements
sont tirés d’une même population, la distribution des maxima d’un échantillon de va-
leurs observées appartient à la classe des familles des lois de valeur extrême, qui com-
prend trois lois : lois de Gumbel, de Fréchet, ou de Weibull. Ce résultat est essentiel
car il va nous permettre de caler une loi et de l’extrapoler pour déduire les quantiles
extrêmes. Reste à savoir comment ajuster les paramètres d’une distribution de valeurs
extrêmes à partir d’un échantillon de données. Nous verrons plusieurs méthodes à cet
effet. La plus employée en ingénierie est la méthode des maxima annuels, mais c’est
assurément la moins précise. Nous verrons que la méthode du maximum de vraisem-
blance ou l’inférence bayésienne lui sont préférables.

Il faut d’ores et déjà insister sur l’importance de l’hypothèse initiale : il faut que
les événements soient tirés d’une même population pour que la théorie des valeurs
extrêmes s’applique. En pratique, on observe que pour certaines régions, le compor-
tement des pluies (ou des débits) est plus complexe, et il faut alors considérer que les
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événements ne sont pas décrits par une unique loi de probabilité. C’est en particulier
le cas en Suisse de la région sous influence méditerranéenne (en particulier, le Tessin),
et de façon plus générale du pourtour méditerranéen ; dans de tels cas, des lois comme
la loi de log-Pearson III ou à deux exponentielles peuvent sont mieux adaptées à dé-
crire le comportement des événements extrêmes (Bois et al., 2007; Gado et al., 2021;
Montes-Pajuelo et al., 2024). On ne peut donc pas se contenter de voir la détermina-
tion des événements extrêmes comme un simple exercice de calage. Il existe un gros
travail préparatoire d’analyse des données, qui vise notamment à vérifier le caractère
stationnaire de la série et le comportement statistique des événements.

L’accent sera mis sur la théorie des valeurs extrêmes dans ce chapitre, mais les
méthodes de calage que l’on va voir sont générales et s’appliquent à tout ajustement
d’une loi de probabilité sur un jeu de données observées.

4.1 Maximad’une série temporelle et théorie des
valeurs extrêmes

▶ Voir l’annexe A pour un rappel des principales notions en probabilité.

4.1.1 Objectif du chapitre

Dans ce chapitre, on s’intéresse aux valeurs extrêmes d’un processus hydrologique.
Par exemple, si on étudie les crues sur une rivière comme l’Areuse à Boudry (BE), on
dispose en général d’une chronique quotidienne de débits telle que celle reportée sur la
figure 4.1. À partir de l’information observée, on veut estimer les débits extrêmes que
peut connaître le cours d’eau, par exemple le débit de pointe de la crue centennale.

Nous allons donc voir ici :

1. la théorie des valeurs extrêmes, avec des extrêmes définis sur un bloc temporel
(en général une année) ou à partir d’un critère de dépassement de seuil ;

2. le travail préparatoire d’analyse de la série temporelle ;
3. les méthodes d’ajustement des paramètres d’une loi de probabilité sur des don-

nées ;
4. les alternatives à la théorie des valeurs extrêmes ;
5. des problèmes pratiques rencontrés en inférence bayésienne et dans l’estimation

des intervalles de confiance.



4.1 Maxima d’une série temporelle et théorie des valeurs extrêmes 165

Figure 4.1 – Exemple de série temporelle : débits journaliers de l’Areuse à Boudry
(Neuchâtel), période couverte : 1924–2024). Source : OFEV.

4.1.2 Rapide aperçu historique de la recherche sur les ex-
trêmes

La théorie des valeurs extrêmes a pour objet l’étude des valeurs extrêmes à partir
de l’information observée. Malgré les résultats obtenus au cours des dernières décen-
nies, il s’agit toujours d’un domaine de recherche très actif. Voici quelques dates qui
permettent de mettre en perspective les développements antérieurs :

– années 1920 : fondation des arguments asymptotiques par Ronald Fisher et Leonard
Tippett, deux mathématiciens anglais ;

– années 1940 : théorie asymptotique développée par Boris Gnedenko, un étudiant
de Andrei Kolmogorov, puis Richard von Mises ;

– années 1950 : Emil Gumbel, un mathématicien allemand émigré aux États-unis,
unifia les approches en montrant notamment que toutes les lois utilisées jusque
lors pour décrire des valeurs extrêmes constituaient des cas particuliers d’une
loi générale ;

– années 1970 : travaux de James Pickands sur les lois limites ;
– années 1980 : travaux de Leadbetter (entre autres) avec l’extension de la théorie

aux processus aléatoires stationnaires ;
– années 1990 : extension de la théorie des valeurs extrêmes aux processus à plu-

sieurs variables aléatoires notamment en statistique financière, développement
et application des techniques d’inférence (maximumde vraisemblance, inférence
bayésienne) ;

– années 2000 : développement de nouveaux champs tels que l’interpolation spa-
tiale des valeurs extrêmes, la prise en compte de la non-stationnarité, etc.

https://www.hydrodaten.admin.ch/fr/seen-und-fluesse/stationen-und-daten/2480
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4.1.3 Loi de valeurs extrêmes (Gumbel, Fréchet, Weibull)

Problématique

Dans un grand nombre de situations, on ne s’intéresse pas à toute la distribution
de probabilité d’une variabilité mais seulement à une partie. Ainsi, pour étudier des
situations de crise (fortes précipitations, crues de grande ampleur), on s’intéresse aux
fortes valeurs. La théorie des valeurs extrêmes est une théorie qui s’intéresse à ce point
particulier. Elle fournit un résultat d’une très grande utilité en pratique.

Considérons une variable aléatoire X distribuée selon une loi P (X). Supposons
que l’on ait un échantillon de n valeurs indépendantes de X et on introduit Mn la
valeur maximale de cet échantillon :Mn = max{Xi}1≤i≤N . On s’intéresse à la manière
dont est distribuée cette nouvelle variable. La distribution deMn est donnée par

Prob(Mn ≤ x) = [Prob{Xi < x}]n = P (x)n.

Si P est connu, alors on peut calculer la distribution de Mn. Le problème est qu’en
pratique P n’est pas connu. On peut certes supposer qu’il soit possible de trouver une
distribution empirique P̂ qui approcheP raisonnablement bien,mais comme on calcule
Pn pour déterminer la distribution deMn, les erreurs s’additionnent de telle sorte que
l’erreur d’estimation commise en substituant Pn par P̂n est généralement grande.

Une démonstration peu rigoureuse est la suivante : on a P̂ = P (1 + ϵ) avec
ϵ ≪ 1 l’erreur d’estimation que l’on suppose ici fixe. On a donc P̂n = Pn(1 + ϵ)n =
Pn(1+nϵ+O(ϵ)), ce qui montre que l’erreur dans l’estimation de Pn est nϵ. Comme
n est généralement grand, nϵ n’est pas petit. Par exemple pour une chronique de débits
journaliers, si l’estimation de P est précise à ϵ = 0,1% près, alors l’erreur sur le débit
maximal annuel est précis à nϵ = 36%!

Lois des valeurs extrêmes

♦Théorème. – La théorie des valeurs extrêmes démontre que, sous réserve que
X vérifie quelques conditions, cette loi tend vers une loi de forme générique quand
N →∞, dont la fonction de répartition s’écrit 1 (Coles, 2001) :

P (x ; µ, σ, ξ) = Prob(X ≤ x) = exp
[
−
(
1 + ξ

x− µ
σ

)−1/ξ
]
, (4.1)

dont le support est l’ensemble z : 1 + ξ(x− µ)/σ > 0. On l’appelle la distribution gé-
néralisée des valeurs extrêmes, notée souvent GEV dans la littérature technique pour

1. On prendra garde qu’il n’y a pas de convention unanimement appliquée quant à la dé-
finition de ces lois. Par exemple, le logiciel Mathematica et la bibliothèque Scipy de Python
adoptent des formes qui s’éloignent un peu de la présentation adoptée ici.
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Generalized Extreme Value. Attention, le terme élevé à la puissance −1/ξ et le para- �
mètre ξ peuvent être négatifs, donc le support varie selon le signe de ξ. La densité de
probabilité est

f(x ; µ, σ, ξ) =
dP
dx =

e
−
(

ξ(x−µ)
σ

+1
)−1/ξ (

ξ(x−µ)
σ + 1

)− ξ+1
ξ

σ
(4.2)

La distribution généralisée des valeurs extrêmes dépend de trois paramètres :

– un paramètre de position µ (µ > 0 en hydrologie),
– un paramètre de forme ξ, et
– un paramètre d’échelle σ (σ > 0 en hydrologie).

En fait, cette forme générique synthétise trois distributions élémentaires :

1. la loi de Gumbel est une loi à deux paramètres définie surR 2, obtenue en prenant
la limite de l’équation (4.1) quand ξ → 0 :

Gu(x ; µ, σ) = exp
[
− exp

(
−x− µ

σ

)]
. (4.3)

La densité de probabilité prend une forme plus simple que la formulation géné-
rale (4.2) :

f(x ; µ, σ) =
e−

x−µ
σ

−e−
x−µ
σ

σ
(4.4)

La moyenne est : E(X) = µ+ σγ avec γ la constante d’Euler 3 ; la variance est :
Var(X) = σ2π2/6.

2. la loi de Fréchet est une loi à trois paramètres définie sur ]µ−σ/ξ,+∞[, obtenue
en prenant ξ > 0 :

Fr(x ; µ, σ, ξ) = exp
(
− 1

(1 + ξ(x− µ)/σ)1/ξ

)
. (4.5)

3. la loi de Weibull 4 est une loi à trois paramètres définie sur ] − ∞, µ + σ/|ξ|[,
obtenue en prenant ξ < 0. On peut utiliser la même fonction de répartition que

2. même si le plus souvent dans les applications pratiques, on suppose que la variable X
varie sur R+

3. Appelée encore constante d’Euler–Mascheroni, la constante d’Euler est définie comme
la limite de γ =

∑∞
k=1

[
1
k − ln

(
1 + 1

k

)]
≈ 0,5772.

4. Attention, il existe aussi dans la littérature technique des lois de distribution dite de
Weibull mais qui se présentent sous une forme canonique d’une loi à deux paramètres (il
manque un paramètre dit de positionnement, ici µ) qu’il ne faut pas confondre avec la forme
générale donnée par la théorie des valeurs extrêmes présentée ici. Il faut également prêter une
attention particulière à la définition utilisée dans les bibliothèques de calcul et les langages de
programmation. Ainsi dans la bibliothèque Scipy de python, le signe de ξ difère de ce qui est
employé ici.
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précédemment ou bien l’arranger un peu :

We(x ; µ, σ, ξ) = exp
(
−
(
|ξ|µ+ σ/|ξ| − x

σ

)1/|ξ|
)
. (4.6)

Les moments des lois de Weibull et Fréchet sont indiqués au § 4.1.4.

Figure 4.2 – Fonction de répartition (prob) et densité de probabilité (ddp) de (a) la loi
de Gumbel de paramètres µ = −1 et σ = 0,5, (b) la loi de Fréchet de paramètres
µ = −1, σ = 0,5 et ξ = 0,5 et (c) la loi de Weibull de paramètres µ = −1, σ = 0,5
et ξ = −0,5. (d) Relation entre quantiles et période de retour T = (1− P )−1 pour les
trois lois montrées précédemment.
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Sur la figure 4.2, les densités de probabilité des trois distributions sont reportées. À
noter les points suivants :

– La figure 4.2(a) montre une distribution particulière de la loi de Gumbel. Par
rapport à la loi de Gauss-Laplace, on notera la forme dissymétrique de la courbe
puisque la queue vers les grandes valeurs est épaisse : il y a une convergence
lente vers 0 de Gu(x) pour x→∞. Cela a des répercussions très importantes car
cela veut dire que des fluctuations de grande amplitude par rapport aux valeurs
les plus fréquentes ne sont pas rares.

– La figure 4.2(b) montre que la convergence de la densité de la loi de Fréchet vers
0 – quand x croît – est encore plus lente que celle de Gumbel, ce qui implique
que la fonction de répartition tend lentement vers 1. En pratique, cela signifie
que pour des événements distribués selon une telle loi, des phénomènes rares
peuvent être observés avec une amplitude sans commune mesure avec ce qui est
observé ordinairement.

– La loi deWeibull tend vers une valeur limite, puisqu’en x∞ = µ+σ/|ξ| [x∞ = 4
sur la figure 4.2(c)], on a We(x∞) = 1 et la densité de probabilité nulle. En
pratique, la loi de Weibull peut servir à décrire des phénomènes qui tendent
vers un palier (en l’atteignant pour les quantiles au-delà de x∞).

Remarque. Un point que nous n’abordons pas ici mais qui a son importance : la
théorie des valeurs extrêmes garantit que les valeurs maximales d’un échantillon de va-
leurs indépendantes et identiquement distribuées sont distribuées par une loi de forme
générique donnée par l’équation (4.1), mais nous n’avons pas précisé ici la vitesse de
convergence. Celle-ci peut être assez lente, ce qui a une conséquence pratique impor-
tante : pour un échantillon de valeurs empiriques de taille réduite, une partie des valeurs
sera effectivement bien distribuée selon une loi de valeurs extrêmes, mais les valeurs
les plus fréquentes peuvent s’éloigner très sensiblement de cette loi asymptotique.

4.1.4 Moments centrés de la loi généralisée de valeurs extrêmes

On peut obtenir une expression analytique des trois premiers moments centrés µi
d’une loi de valeurs extrêmes x ∼ f(x ; µ, σ, ξ) avec f donnée par l’équation (4.1) :
espérance (ou moyenne) E[X], variance VarX , et coefficient d’asymétrie SkewX .
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Ces moments se calculent par simple intégration sur le support de f :

µ1 = E[X] =

∫
R+

xf(x, µ, σ, ξ)dx = µ+
σ

ξ
(Γ(1− ξ)− 1) , (4.7)

µ2 = VarX =

∫
R+

(x− X̄)2f(x, µ, σ, ξ)dx =
σ2

ξ2
(
Γ(1− 2ξ)− Γ2(1− ξ)

)
, (4.8)

µ3 = SkewX =

∫
R+

(x− X̄)3f(x, µ, σ, ξ)dx
(VarX)3/2

=
−Γ(1− 3ξ) + 3Γ(1− 2ξ)Γ(1− ξ)− 2Γ3(1− ξ)

(Γ(1− 2ξ)− Γ2(1− ξ))3/2
, (4.9)

où Γ(x) =
∫∞
0 tx−1e−tdt la fonction gamma.

Remarque. Ces moments ne sont définis que pour ξ < 1/3. C’est une condition
le plus souvent vérifiée en pratique 5.

On trouve que pour la loi de Gumbel, la moyenne et la variance théoriques sont
données par :

X̄ = µ+ σγ et VarX =
σ2π2

6
,

avec γ ≈ 0,577 la constante d’Euler ; on a en effet Γ(1 − ξ) = 1 + γξ + O(ξ) quand
ξ → 0. ⊓⊔

4.1.5 Quantile

On peut inverser la loi généralisée des valeurs extrêmes (4.1) pour obtenir les quan-
tiles en fonction des probabilité de non-dépassement P = Prob(X ≤ x) :

X =

{
µ− σ

ξ

(
1− (− lnP )−ξ

)
pour ξ ̸= 0,

µ− σ ln (− lnP ) pour ξ = 0,
(4.10)

ce qui s’avère très pratique dans les applications en ingénierie. Toutefois, ce n’est pas
cette forme qui est la plus usitée. Plutôt que de parler de probabilité de non-dépassement,
on préfère introduire le concept de période de retour.

4.1.6 Période de retour

Définition pragmatique

Jusqu’à présent on a considéré des suites d’événements sans se soucier de la période
sur laquelle ils s’étendaient. Il est intéressant d’introduire un temps caractéristique afin

5. Plus précisément : comme Γ(x) diverge en x = 0, −1, −2, etc., la moyenne n’existe que
si |ξ| < 1, la variance que si |ξ| < 1/2, le coefficient d’asymétrie |ξ| < 1/3, ainsi de suite.
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de rendre l’analyse statistique plus parlante. On définit la période de retour Ts comme
étant l’intervalle de temps moyen entre deux événements, dont l’intensité atteint ou
dépasse un certain seuil s (voir figure 4.3). Cela veut dire que sur un intervalle de temps
Ts, il y a en moyenne un événement d’intensité supérieure ou égale à s. Ts est comptée
dans une unité de temps arbitraire ; en hydrologie c’est le plus souvent l’année.

Figure 4.3 – Définition de la notion de période de retour. On sélectionne toutes les
observations au-dessus d’un seuil s. On mesure le temps Ti entre l’événement i et
l’événement i−1. La moyenne de ces temps entre deux événements au-dessus du seuil
s est la période de retour.

Un événement de période de retour T a en moyenne une probabilité 1/T de se
produire chaque année. Ainsi la crue centennale 6 sur une rivière donnée est :

– une crue qui se produit en moyenne tous les cent ans ;
– il y a en moyenne chaque année une probabilité de 1 % qu’une crue centennale

ou plus rare se produise.

On relie la période de retour à la probabilité de dépassement P (x) = Prob[X > x]
ou de non-dépassement P ′ = 1− P = Prob[X < x] de la façon suivante :

T =
1

P
=

1

1− P ′ .

L’avantage de la période de retour est de rendre plus « parlante » la notion de
probabilité d’occurrence. Les phénomènes extrêmes sont en effet associés à des proba-
bilités d’occurrence très petites et pour le commun des mortels, il y a peu de différence
entre 0,01 et 0,001, alors qu’en termes de probabilité des phénomènes extrêmes, c’est
une différence colossale. Le tableau 4.1 donne les correspondances entre périodes de
retour et probabilité de dépassement et non-dépassement.

6. L’adjectif numéraire traduisant une idée de fréquence se termine toujours en al/-ale. Un
phénomène centenaire est un phénomène dont l’âge est de 100 ans, alors qu’un phénomène
centennal est un phénomène qui se produit tous les cent ans en moyenne.
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Tableau 4.1 – Relation entre période de retour T (en années), probabilité de dépasse-
ment P = 1/T , et de non-dépassement P ′ = 1− P .

T (ans) P P ′

1 1 0
10 0,1 0,9
100 0,01 0,99
1000 0,001 0,999

Par la suite, on cherchera à exprimer le quantile C en fonction de la période de
retour Ts sous la forme d’une loi C = F (1− T−1), avec F l’inverse de G : F = G−1.

♣ Exemple. – Par exemple pour la loi de Gumbel :F (T ) = a−b ln(− ln(1−T−1)).
Asymptotiquement (c’est-à-dire pour les grandes périodes de retour) la loi de Gumbel
est proche d’une loi exponentielle. En effet, on a 1 − T−1 qui est très petit devant 1,
donc ln(− ln(1− T−1)) ≈ − lnT , d’où C ≈ a+ b lnT quand T ≫ 1.

♣ Exemple. – La figure 4.4 montre un exemple de relation entre quantiles et pé-
riodes de retour pour les débits de l’Areuse à Boudry.

Figure 4.4 – Relation entre maxima annuels des débits journaliers de l’Areuse à Boudry
en fonction de la période de retour (points bleus). On a aussi calé une loi de Gumbel et
une loi de Fréchet sur ces données. Les données sources sont celles montrées à la figure
4.1.
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Définition statistique de la période de retour †

Considérons une série temporelle de données, par exempleN précipitations (Pi)1≤i≤N
observées pendantn années. Pour simplifier le problème, on va considérer, pour chaque
année civile, la chute de pluiemaximale observée que l’on notera (Ci)1≤i≤n. Considérons
également une période de retour de Ts années associée à un seuil s ; en moyenne sur
une durée Ts on a une valeur Ci ⩾ s et toutes les autres Cj ̸=i < s. La probabilité
d’observer une telle période de retour est :

Prob(Ts) =
∏
j ̸=i

Prob(Cj < s)× Prob(Ci > s) = (Prob(C < s))n−1 Prob(C ≥ s).

On reconnaît une suite géométrique 7. Il s’ensuit que la moyenne E[Ts] vaut :

E[Ts] =
1

Prob(C ≥ s) .

La période de retour est donc définie comme l’inverse de la probabilité de dépassement
du seuil s. D’après la théorie des valeurs extrêmes, Prob(C) est distribué selon une loi
de valeurs extrêmes (Gumbel, Fréchet, ouWeibull) que l’on note iciG(C). On tire donc :

E[Ts] =
1

1−G(C)
,

qui est généralement écrit sous une forme plus explicite « quantile en fonction de la
période de retour » :

C = F

(
1− 1

Ts

)
,

où l’on a substitué par commodité d’écriture Ts à E[Ts] et avec F = G−1. On notera le
problème de dimension : P est sans dimension (c’est une probabilité 8, donc un nombre
compris entre 0 et 1) alors que T est en années.

4.2 Travail préparatoire

Avant de s’intéresser à l’ajustement d’une loi de valeurs extrêmes sur des données,
on va examiner un problème général où l’on cherche à déterminer la loi de probabi-
lité qui décrit au mieux un échantillon de N valeurs (xi)1≤i≤N , c’est-à-dire que l’on

7. Dans un modèle d’urne, où l’on possède une proportion p de boules blanches et 1 − p
boules noires, la probabilité de tirer une boule blanche est p ; la probabilité de tirer une boule
noire est 1 − p. La probabilité de tirer une boule blanche après n − 1 tirages (avec remise) de
boules noires est P (n) = (1− p)n−1p.

8. Attention cela n’est pas vraie pour la densité de probabilité qui peut avoir une dimension
physique puisque f(x) = dP/dx.
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cherche si l’échantillon est issu d’une loi de Gauss–Laplace, de Gumbel, etc. La procé-
dure générale consiste souvent à faire une hypothèse sur la forme de la loi, puis à tenter
de caler les paramètres de cette loi sur l’échantillon, enfin à vérifier, quand cela est pos-
sible, la pertinence de l’hypothèse en traçant la loi théorique ajustée et les données
sous la forme d’histogrammes ou de fonctions de répartition empiriques.

Les histogrammes sont utiles en ce qu’ils donnent une idée de la densité de probabi-
lité (voir § 4.2.1), mais quand on travaille avec des séries courtes, déterminer le type de
loi de probabilité sur cette seule base est délicat. Les fonctions de répartition empirique
peuvent être plus utiles à cet effet (voir § 4.2.2).

Il existe des tests statistiques qui permettent de vérifier si l’échantillon de données
est bien issu de la loi de probabilité ajustée, ou plus précisément de déterminer la proba-
bilité que l’échantillon soit bien tiré de la loi considérée. Les plus connus sont les tests
du χ2 (voir A.7.1) et de Kolmogorv–Smirnov (voir A.7.2). Ici, on va donner la préférence
à des examens visuels qui permettent de mettre en évidence les éventuels problèmes
dans l’adéquation entre loi considérée et échantillon observé. L’examen visuel proposé
ici est constitué des diagrammes quantiles–quantiles et probabilités–probabilités (voir
§ 4.2.3).

Une fois qu’onmaîtrise tous ces outils, on peut s’attaquer au problème principal qui
nous occupe ici : quand on dispose d’une série temporelles, comment s’assurer que cette
série est stationnaire et qu’elle est composée de valeurs indépendantes toutes issues de
la même loi de probabilité ? On verra au § 4.2.4 qu’il existe une multitude de tests à cet
effet. Il s’agit de voir cela comme une boîte à outils plutôt que comme un cadre fixe
d’analyse critique des données observées.

Cette section sera illustrée par un cas traité au § 4.2.5 : les précipitations sur Lausanne.

4.2.1 Histogramme

Construction

Si l’on possède un nombre suffisant de données, une technique possible pour dé-
terminer la forme générique de la distribution de probabilité est de faire des histo-
grammes :

– On considère un échantillon de N événements (xi)1≤i≤N , que l’on a classés
par ordre croissant. On considère une partition de l’intervalle [x1, xN ] en n
intervalles 9 égaux de longueur δ = (xN − x1)/n et on note les bornes de ces
intervalles yk = x1 + (k − 1)δ (1 ≤ k ≤ n+ 1).

9. Le choix de n est délicat ; il convient en général de choisir n de telle sorte qu’il y ait
suffisamment d’éléments dans chaque intervalle.
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– On compte le nombre d’événements dans chaque intervalle :

mj = nombre de xi compris dans [yj , yj+1[.

– La densité de probabilité empirique peut alors se définir comme :

pj =
mj

δN
.

Pour les échantillons de petite taille, on se reportera utilement au § A.5, où la mé-
thode des champs de probabilité est présentée (Holy, 1997). Les langages de programma-
tion proposent souvent de tracer des courbes qui approchent l’histogramme empirique
à l’aide de fonctions continues appelées noyaux de densité 10 (Reiss & Thomas, 2001).

Exemple

On tire 100 valeurs de la loi exponentielle E(1). On forme un échantillon de N =
100 valeurs ici compris dans l’intervalle 0,012 à 4,12. On forme l’histogramme en fai-
sant un décompte des valeurs parmi des sous-intervalles de largeur identique δ = 0,25.
L’histogramme unitaire qui donne une idée grossière de la forme de la distribution de
probabilité. On voit clairement sur cet exemple que même avec 100 valeurs, il est dif-
ficile de se faire une idée de la forme de la loi de probabilité sur la seule base d’un
histogramme.

Figure 4.5 – Histogramme des cent valeurs simulées ; la courbe continue représente la
loi théorique E(1) simulée.

10. En anglais, les noyaux de densité sont appelés kernel density estimates (kde). Par exemple,
la function kdeplot de la bibliothèque seaborn de python permet de tracer le noyau de densité
d’un échantillon de données.

https://seaborn.pydata.org/generated/seaborn.kdeplot.html
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4.2.2 Fonction de répartition empirique

Définition

Outre la densité de probabilité (sous forme d’histogramme), on peut tracer la fonc-
tion de répartition empirique. En pratique, si l’on dispose d’un échantillon x de N
événements, on procède comme suit :

– On considère un échantillon deN événements (xi)1≤i≤N , que l’on a classés par
ordre croissant : x1 ≤ x2 ≤ . . . ≤ xN . À chaque élément ordonné, on affecte
une probabilité de non-dépassement empirique égale à

P ′
i =

i

N + 1
. (4.11)

– La fonction de répartition empirique (de non-dépassement) peut alors se définir
comme :

P (x) =


0 si x < x1
i− 1

N + 1
si xi−1 ≤ x < xi

1 si x > xN

(4.12)

On pourrait tout aussi bien travailler avec la probabilité de dépassement en
définissant la probabilité empirique comme P = 1 − i/(N + 1) au lieu de
l’expression (4.11).
Il est souvent commode de travailler dans un diagramme semi-logarithmique
(probabilité en coordonnées logarithmiques) pour mettre en évidence les parti-
cularités de la distribution empirique.

Exemple

On reprend l’exemple précédent. On trace la fonction de répartition empirique de
dépassement P = Prob(X ≥ x) dans un diagramme semi-logarithmique [voir figure
4.6(a)] et dans un diagramme linéaire, on reporte la variation de la probabilité empirique
de non-dépassement P ′ = Prob(X ≤ x) = 1 − P [voir figure 4.6(b)]. Sur les deux
diagrammes, on reporte la loi théorique simulée (courbe à trait continu).

Variantes

Quand la loi de probabilité est connue à l’avance, il est plus intéressant de travailler
avec une fonction de répartition empirique modifiée afin d’améliorer la robustesse et
réduire le biais. La procédure est alors la suivante :

– On considère un échantillon deN événements (xi)1≤i≤N , que l’on a classés par
ordre croissant.
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Figure 4.6 – (a) Fonctions de répartition empirique et théorique. On a reporté ici la
probabilité de dépassement dans un diagramme semi-logarithmique. (b) Fonctions de
répartition de non-dépassement P ′ dans un diagramme linéaire.

– On a précédemment défini la fonction empirique comme :

P (x) =


0 si x < x1
i− 1

N + 1
si xi−1 ≤ x < xi

1 si x > xN

Il s’agit d’une définition générale, qui se justifie théoriquement quand on a beau-
coup de données (Davison, 2003). D’autres définitions peuvent être utilisées si
on a une idée de la forme de la distribution de probabilité et que l’on a peu de
données. Elles sont généralement de la forme : P (xi) = (i − a)/(N + b), où a
et b sont choisis selon la loi (Rao & Hamed, 2000) :

– a = −0,28 et b = 0,28 pour une loi de Gumbel (De, 2000),

– a = 0,375 et b = 0,25 pour une loi de Gauss-Laplace.

De plus si on préfère travailler avec des probabilités de dépassement, il suffit de
définir P comme P = 1− (i− a)/(N + b).

– On reporte la distribution empirique. Pour un certain nombre de lois, il existe
une forme spécifique de présentation. Par exemple, pour une loi de Gumbel on
trace la distribution dans un diagramme semi-logarithmique et pour une loi
puissance, on trace la distribution dans un diagramme logarithmique.
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4.2.3 Diagrammes de quantile et de probabilité

Les diagrammes quantile–quantile (QQ) et probabilité–probabilité (PP) sont des
méthodes graphiques utiles pour vérifier l’adéquation d’une loi de probabilité ajustée
sur un jeu de données.

Définitions

On considère un échantillon de N événements (xi)1≤i≤N , que l’on a classés par
ordre croissant. Admettons que l’on ait une idée de la fonction de distribution. On
appelle f sa densité de probabilité et F sa fonction de répartition. On définit :

– un diagramme de probabilité comme le tracé des points dans un diagramme
(i/(N+1), F (xi)) pour i = 1 · · ·N . SiF est unmodèle adéquat, alors les points
doivent se trouver alignés sur une droite diagonale (première bissectrice) ;

– un diagramme de quantile comme le tracé des points dans un diagramme (xi, F−1[i/(N+
1)]) pour i = 1 · · ·N . Si F est un modèle adéquat, alors les points doivent se
trouver alignés sur une droite diagonale (première bissectrice) comme précédem-
ment.

Le principe de deux constructions graphiques est identique, mais l’information fournie
est différente.

Exemple

On reprend encore l’exemple précédent. La figure 4.7 montre le diagramme de pro-
babilité (a) et de quantile (b) pour l’échantillon des 100 valeurs simulées selon une loi
exponentielle. Le diagramme de probabilité reporte des couples de points (Pemp., i =
i/(n+1),Pemp., i = 1−exp(−λxi)) avec ici λ = 1, tandis que le diagramme de quantile
reporte les couples (xi, − ln(1−Pemp.,i)/λ) puisque le quantile de la loi exponentielle
est la valeur x solution de P = 1− exp(−λx). ⊓⊔

4.2.4 Échantillon indépendant et identiquement distribué

Une hypothèse fondamentale dans l’ajustement d’une loi de probabilité est que
l’échantillon de données soit une collection d’événements qui appartiennent bien à
la même population d’événements et que les événements soient indépendants les uns
des autres. Les statisticiens introduisent souvent l’abréviation iid pour qualifier un tel
échantillon (indépendant et identiquement distribué).

Qu’est-ce qu’un échantillon identiquement distribué? Il s’agit d’un échantillon
d’événements appartenant à la même population et qui peuvent être décrits à l’aide de
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Figure 4.7 – (a) Diagramme de probabilité et (b) diagramme de quantile ; la courbe à
trait continu représente la première bissectrice (parfait accord).

la même loi de probabilité. Mathématiquement, cela implique que pour un échantillon
(xi)1≤i≤n, il existe une loi f paramétrée par θ telle que xi ∼ f(θ).

Qu’est-ce qu’un échantillon d’événements indépendants? Par définition, c’est une
collection d’événements qui, pris deux à deux, vérifient :

Prob(xi, xj) = Prob(xi)Prob(xj).

Cela signifie qu’il n’existe aucune corrélation entre deux événements distincts.

♣ Exemple. – Admettons que l’on cherche à faire une statistique des débit de crue
d’un cours d’eau. On recueille pour cela dans les archives une série de débits mesurés,
mais les événements ne sont pas bien documentés. Les débits reportés peuvent corres-
pondre à des crues très différentes du point de vue de leur genèse (forte pluie suite à un
orage, fonte du manteau neigeux, etc.). A-t-on le droit de faire une étude statistique?
A priori, non car les crues n’appartiennent pas à la même population et il est vraisem-
blable qu’il faille considérer différents sous-échantillons ; en pratique, cela n’est pas fait,
faute de données suffisantes. ⊓⊔

♣ Exemple. –Certains cours d’eau sont aménagés (barrage, dérivation, etc.), et ces
aménagements peuvent modifier le débit du cours d’eau, ce qui peut rendre caduque
l’exploitation statistique des données de tout l’échantillon. On verra à travers l’exemple
du Rhône à la figure 4.27 que même dans ces cas, il est souvent possible d’ajuster une
loi de probabilité, mais que cette loi a une pertinence toute relative et l’estimation des
quantiles rares est vraisemblablement fortement biaisée. ⊓⊔
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En pratique, il n’existe pas une méthode standard pour tester si un échantillon est
composé d’événements indépendants et identiquement distribués, mais il existe une
multitude de tests qui servent à examiner à quel point l’hypothèse de stationnarité ou
d’homogénéité statistique est pertinente. Voici quelques-uns des tests les plus courants :

– test de Student : il permet de vérifier si deux populations d’événements sont bien
issus de la même loi de probabilité de moyenne m et variance σ2. On calcule
la moyenne et la variance empiriques de chaque échantillon et on examine la
probabilité d’occurrence d’une combinaison de ces moments à l’aide de la loi de
Student ;

– recherche de corrélation : on trace la fonction d’autocorrélation de la série tem-
porelle. Cette fonction donne accès à un temps de corrélation. Si les valeurs sont
mesurées à des dates d’occurrence séparées par des temps plus grands que le
temps de corrélation, les données sont le plus souvent indépendantes ;

– calage d’un modèle AR ou ARMA (voir A.4.6 et A.4.7) : si on peut caler un pro-
cessus de type AR ou ARMA, on peut étudier l’existence d’un état stationnaire
et les caractéristiques autour de cet état stationnaire. Des tests comme celui de
Dickey–Fuller permettent d’estimer la vraisemblance d’un état stationnaire pour
un processus AR (Box et al., 2015). Des tests comme ceux de Durbin–Watson ou
Ljung–Box vérifient que les résidus (différences entre modèle et observation)
sont bien du bruit blanc (Bras & Rodríguez-Iturbe, 1993; Box et al., 2015).

On va ici voir des tests graphiques qui permettent de fournir rapidement une informa-
tion visuelle sur la stationnarité et les corrélations au sein d’une série temporelle.

Stationnarité

On reporte ici un test pratique qui consiste à :

– classer chronologiquement la série d’événements ;
– reporter sur un graphe les points correspondent à cette série, avec en abscisse la

date (en jours) et en ordonnée le rang (chaque événement étant ordonné chro-
nologiquement) de l’événement.

Si tous les événements étaient régulièrement distribués dans le temps, alors les points
devraient s’aligner sur une droite dont la pente correspondrait au nombre d’événe-
ments par unité de temps. Il peut y avoir une variabilité statistique et, dans ce cas, la
courbe des événements doit serpenter autour de la droite théorique. En pratique, si
l’on dispose d’un échantillon de N événements (datek)1≤k≤N ordonnés chronologi-
quement sur une durée T , on procédera ainsi :

– on reporte sur un graphe le ième point (datei, i) ;
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– on trace la droite théorique y = xN/T (le point (0, 0) doit correspondre au
1er événement). Si l’échantillon est stationnaire, alors la courbe des dates d’oc-
currence doit serpenter autour de la droite théorique ;

– on peut également tracer le résidu εi = i − y (distance entre le ième point et
la droite théorique) en fonction de i. Si on a E[εi] = 0, alors l’échantillon est
stationnaire.

Comportement poissonien

Il est intéressant d’examiner la distribution du nombre de précipitations sur une
période donnée (typiquement une saison ou une année). Si cette distribution est sta-
tionnaire, on s’attend à ce qu’elle constitue un processus de Poisson homogène dont
le paramètre λ est égal au nombre moyen de précipitations sur la période considérée.
Comme assez souvent pour des processus légèrement non stationnaires, on trouve que
la loi binomiale négative donne de bons résultats (Cunnane, 1979). En pratique, on pro-
cédera ainsi :

– pour chaque année on comptera le nombre ni d’événements pour lesN années
de la série. On peut se fixer éventuellement un seuil ;

– on trie la suite ni par ordre décroissant : (mi)1≤i≤N = tri[(ni)1≤i≤N ] et à
chaque valeurmi on attribue la probabilité empirique (de dépassement) i/(N +
1) ;

– on reporte sur un diagramme (mi, i/(N + 1)) ou bien (i/(N + 1), mi) ;
– on trace sur le même diagramme la loi de PoissonP(λ) de paramètre λ = m̄ (on

égale la moyenne empirique de l’échantillon et celle de la loi) et la loi binomiale
négative N eg(n, p), avec (n, p) (où n ∈ N et p ∈ R+) solution approchée du
système n(1− p)/p = m̄ et n(1− p)/p2 =

∑
i(mi − m̄)2/N ;

– on peut de là conclure, en général, quelle est la loi la mieux adaptée à décrire
l’échantillon.

Autocorrélation

L’autocorrélation empirique d’une série temporelle est définie à partir de la défini-
tion de la fonction d’autocorrélation (voir § A.4.2) :

ρ(i) =

N∑
k=i+1

(xk − x̄)(xN−k − x̄)⟩

N∑
k=1

(xk − x̄)2
pour i ∈ N, (4.13)

avec ρ(0) = 1 (Brockwell & Davis, 1991; Box et al., 2015). Elle mesure le degré de
corrélation entre deux valeurs dont les occurrences sont espacées de i. Si les données
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observées ne sont pas corrélées, alors ρ(i)→ 0 de façon exponentielle pour i > 0. En
règle générale, l’autocorrélation au pas i n’est pas nulle, mais petite ; il faut donc se
fixer un seuil à partir duquel on considère que l’autocorrélation n’est pas significative.
Dans les langages de calcul, on fait souvent l’hypothèse que la série temporelle peut
être décrite par un modèle ARMA, et dans ce cas-là le seuil est de l’ordre de ±1/

√
N

(Box et al., 2015, voir § 2.1.6).

Il peut être intéressant de regarder également l’autocorrélation partielle de la série
temporelle (voir § A.4.3) afin de voir si la série temporelle peut être vue comme la
réalisation d’un processus autorégressif AR(p) ou ARMA (p, q), ce qui permet à la fois
d’étudier la corrélation temporelle et la stationnarité de la série.

4.2.5 Exemple traité : précipitations sur Lausanne

La figure 4.8 montre un exemple de test conduit sur les précipitations journalières à
Lausanne (VD) sur la période longue 1900–2024, et répété sur une courte période 2020–
2024 pour voir les effets de taille de l’échantillon sur l’allure de la courbe. Lorsque la
pente locale de la courbe (datei, i) est inférieure à la pente moyenne, cela indique qu’il
y a eu moins de précipitations que ce qui est observé en moyenne. Inversement, si la
pente locale est plus grande que la pente de la tendance moyenne, alors on a plus de
précipitations que ce qui a été observé enmoyenne sur la période étudiée. À l’échelle du
siècle, la figure 4.8(a) montre que l’occurrence des précipitations est stationnaire, mais
à l’échelle de quelques années, la figure 4.8(b) montre une légèrement instationnarité.

On peut étudier la distribution du nombre annuel de précipitations et voir s’il a
un comportement poissonien. Naturellement, il faut prendre des précipitations au-delà
d’un certain seuil car la loi de Poisson décrit la distribution des événements rares, donc
avec une intensité suffisamment grande. La figure 4.9 montre la distribution du nombre
annuels de précipitations à Lausanne selon que l’on prend un seuil de 1 mm (donc
presque tous les événements) ou 20 mm (les événements rares).

La figure 4.10 montre la fonction de répartition empirique et l’histogramme des
pluies sur Lausanne. Afin d’examiner si les précipitations sont distribuées selon une
loi exponentielle, on a adopté une échelle logarithmique en ordonnée pour tracer l’his-
togramme des précipitations. L’histogramme de la figure 4.10(b) semble donner crédit
à l’hypothèse d’un comportement exponentiel des précipitations ; on note que dans la
queue de distribution (pour les précipitations P > 70 mm), on semble s’éloigner d’un
comportement exponentiel, mais cela peut être dû à un effet de taille finie. La figure
4.10(a) montre en fait que l’on est assez loin d’un comportement exponentiel quand on
examine la fonction de répartition.

Quand on a un nombre suffisant de données, on peut examiner le comportement
statistique en prenant des valeurs issues de différentes périodes afin de tester l’hypo-
thèse de stationnarité de la série temporelle. Par exemple, la figure 4.11(b) montre la
fonction de répartition empirique des précipitations à Lausanne pour trois périodes
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Figure 4.8 – Test de stationnarité de la série temporelle composée des pluies journa-
lières P > 1 mm à Lausanne (601 m) (a) depuis le 1er janvier 1900 ou (b) depuis le
1er janvier 2020 (jusqu’à octobre 2024). En moyenne, il y a eu 119 chutes de pluie jour-
nalières P > 1 mm par an à Lausanne sur la période 1900–2024 contre 116 sur la
période récente 2020–2024. Source : données Météo Suisse.

de quarante années : 1900–1939, 1940–1979, et 1980–2019. On a également reporté la
fonction de répartition empirique d’une série temporelle plus courte (2020–2024). Il ap-
paraît qu’il y a très peu de différences entre les séries 1900–1939 et 1940–1979 alors que
pour la période récente, on a des différences significatives pour les précipitations com-
prises entre 4 mm et 20 mm. Dit autrement, il y a un peu plus de pluies dans la tranche
4–20 mm qu’auparavant. Pour les précipitations rares (P ≥ 50 mm), il est difficile de
se prononcer car il y a peu d’événements, mais un simple examen visuel montre que la
densité de points au-dessus de 50 mm augmente à partir des années 1990.

Un autre regard peut être apporté en examinant le comportement statistique des
cumuls annuels de pluie. La figure 4.12(a) montre la variation du cumul annuel depuis
1900. Les figures 4.12(b, c) montrent l’autocorrélation ρ et l’autocorrélation partielle
ϕ. La figure 4.12(b) tend à montrer que la corrélation chute vers zéro (ρ est contenu
dans l’intervalle de confiance à 95 %), donc les cumuls annuels ne sont pas corrélés
et l’échantillon peut être considéré comme un jeu de valeurs indépendantes. La figure
4.12(c) montre que pour k = 7 et k = 17, l’autocorrélation partielle ϕ est à la limite
ou juste au-dessus de l’intervalle de confiance, ce qui semble accréditer l’idée que des
corrélations existent ou plus précisément que deux cycles de 7 et 17 ans peuvent affecter
la série temporelle.

Pour visualiser ces deux cycles, on peut appliquer des filtres de Lanczos avec une
composante passe-bas et une composante passe-haut (Duchon, 1979). La figure 4.13
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Figure 4.9 – Distribution du nombre annuel de pluies d’intensité (a) P > 1 mm et (b)
P > 20 mm à Lausanne (601 m). On trace la fonction de répartition empirique et les
lois de Poisson et binomiale négative (ajustées par la méthode des moments). Source :
données Météo Suisse.

montre qu’il est en effet tentant de considérer que la série temporelle comprend deux
cycles (un court de 7 ans et un plus long de 17 ans) qui se superposent, et auxquels
s’ajoutent des fluctuations.
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Figure 4.10 – (a) Fonction de répartition empirique (probabilité de dépassement) des
précipitations P > s mm avec s = 1 mm et (b) histogramme des précipitations en
échelle semi-logarithmique à Lausanne. On a également reporté une loi exponentielle
(ajustée par la méthode des moments). Pour la loi exponentielle, il faut prendre garde
au fait que les précipitations étant non nulles et supérieures à s, il faut définir la densité
de probabilité de la loi exponentielle de la façon suivante : f(p) = exp(−(p−s)/P̄ )/P̄
avec P̄ = 9,14 mm la pluie journalière moyenne. Source : données Météo Suisse.

Figure 4.11 – (a) Série temporelle des précipitations P ≥ 1 mm sur Lausanne. (b)
Fonction de répartition empirique (probabilité de dépassement) des précipitations pour
des périodes différentes depuis 1900. Source : données Météo Suisse.
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Figure 4.12 – (a) Série temporelle des cumuls de précipitations Pan mm sur Lausanne.
(b) Autocorrélation et intervalle de confiance à 95 %. (c) Autocorrélation partielle et
intervalle de confiance à 95 %. Source : données Météo Suisse.

Figure 4.13 – Série temporelle des cumuls de précipitations Pan mm sur Lausanne
avec superposition des deux cycles : un cycle court de 7 ans et un cycle plus long de 17
ans.
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4.3 Ajustement de lois

Un problème pratique courant est le suivant : on dispose d’un échantillon de don-
nées et on aimerait bien connaître la loi de probabilité de la population dont sont issues
les données. Mathématiquement, cela peut se formuler de la façon suivante. Soit une loi
de distribution f(x ; θ) où θ représente le ou les paramètre(s) à déterminer. On note p
le nombre de paramètres : p = dim θ et [a, b] = supp f le support de f (a ou b pouvant
prendre des valeurs infinies). On désigne par F la fonction de répartition de cette loi.
On dispose d’un jeu de n données x = (xi)1≤i≤n. De ce jeu, on cherche à obtenir une
estimation des paramètres θ ; on note ici θ̂ cette estimation de θ.

Il existe plusieurs méthodes qui permettent d’ajuster les paramètres d’une loi. On
va en voir :

– la méthode des moments (voir § 4.3.1),
– la méthode du maximum de vraisemblance (voir § 4.3.2), et
– l’inférence bayésienne (voir § 4.3.3).

Notons que des méthodes de calage telles que la méthode des moindres carrés ne sont
jamais utilisées en statistique, surtout pour les valeurs extrêmes tant le biais introduit
par ces méthodes important. On donnera également quelques indications sur des alter-
natives comme :

– la méthode de maximisation des espacements (voir § 4.4.1), et
– la méthode des L-moments (voir § 4.4.2).

Rappel. Il y a encore quelques années, un tel ajustement se faisait à l’aide de
papiers spéciaux (feuille de Gauss, de Gumbel, etc.). Aujourd’hui, les moyens infor-
matiques permettent de faire des ajustements en quelques secondes. Cette facilité et
l’abondance de routines disponibles sur les ordinateurs ne doivent pas enlever toute
réflexion à ce travail. On a vu au § 4.2 qu’avant d’ajuster une loi, nous devons mener
un travail critique les données :

– les données sont-elles indépendantes et distribuées selon la même loi ?
– quelle forme de loi puis-je a priori utiliser ?
– comment ajuster les paramètres de cette loi (problème d’inférence) ?
– comment vérifier la pertinence du choix d’une forme particulière de loi de pro-

babilité ?
– quelle incertitude ou quelle confiance ai-je dans l’ajustement des paramètres?

Une fois que l’on a répondu à ces cinq points, on a en principe en main une loi de
probabilité qui permet de représenter sous forme synthétique les données existantes
(interpolation) et de faire des prévisions du comportement du phénomène étudié (ex-
trapolation).
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4.3.1 Méthode des moments

C’est une méthode qui est couramment employée car très simple dans son principe.
Pour la plupart des lois d’intérêt pratique, les moments de la loi existent et on sait les
calculer analytiquement. On détermine les p premiers moments de la loi ; on a déjà
introduit les deux premiers moments : la moyenneM1 = E[f ] et le moment d’ordre 2
M2 = Var[f ] + E2[f ]. Les autres momentsMk se définissent de la même manière :

Mk =

b∫
a

xkf(x)dx.

On peut également raisonner à partir des moments centrés :

mk =

∫ b

a
(x−m)kf(x)dx,

avecm = E[f ].

Pour déterminer une estimation des p paramètres θ, il suffit d’égaler les moments
théoriques Mk et les moments empiriques M̂k (1 ≤ k ≤ p). On aboutit alors à p
équations (linéaires ou non) liant les p paramètres θ.

♣ Exemple. – En utilisant la méthode des moments, calculer l’estimateur λ̂ du
paramètre λ d’une loi exponentielle.

La densité de probabilité de cette loi s’écrit :

E(x;λ) = λe−λx,

donc la moyenne théorique (espérance) est :

E(X) =

∫
R+

λxe−λxdx =

[
−e

−xλ(xλ+ 1)

λ

]∞
0

=
1

λ
.

L’estimateur de λ est obtenu en égalant moments théorique et empirique d’ordre 1 :

λ̂ =
n∑
xi

=
1

x̄
.

⊓⊔

4.3.2 Maximum de vraisemblance

La notion de vraisemblance est un concept-clé en statistique, qui peut se présenter
de différentes façons (Bernier et al., 2000; Tanner, 1996; Sornette, 2000). Nous l’introdui-
sons de la manière suivante. Considérons la probabilité jointe d’observer un échantillon
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de n valeurs tirées selon la loi f(x ; θ) ; nous avons d’après les propriétés des probabi-
lités conditionnelles (cf. chapitre A) :

Prob(x1, x2, · · ·xn|θ) = Prob(x2, x3, · · ·xn|x1 ; θ)Prob(x1 ; θ),

or si les valeurs x2, x3, · · ·xn sont indépendantes de x1 alors on peut écrire

Prob(x2, x3, · · ·xn|x1 ; θ) = Prob(x2, x3, · · ·xn ; θ).

En itérant, on trouve :

Prob(x|θ) =
n∏
k=1

f(xk ; θ).

Si au lieu de regarder cette expression comme une fonction de x, mais comme une
fonction de θ, on peut définir une fonction L(θ) que l’on appelle la vraisemblance de
l’échantillon x :

L(θ) =

n∏
k=1

f(xk ; θ).

Le principe de maximum de vraisemblance affirme que les valeurs de θ ajustées à
l’échantillon sont celles qui maximalisent la fonction L(θ). Si θ̂ est un maximum de
L, alors on a :

∂L(θ)

∂θi

∣∣∣∣
θ=θ̂

= 0 pour 1 ≤ i ≤ p.

En résolvant ce système, on trouve les valeurs estimées de θ. Pour certaines lois, une
solution analytique générale existe ; dans la plupart des cas, il faut procéder à une réso-
lution numérique pour déterminer le maximum de L.

Notons qu’en pratique il est plus agréable de travailler avec la log-vraisemblance :

ℓ(θ) = lnL =
n∑
k=1

ln f(xk ; θ),

principalement pour travailler avec des nombres qui ne sont pas des infiniment petits
et éviter les erreurs numériques de troncature.

Quelques commentaires supplémentaires :

– l’estimateur du maximum de la vraisemblance θ̂ peut ne pas exister ou quand il
existe, peut ne pas être unique ;

– la vraisemblance n’est pas la densité de probabilité de θ ;
– la méthode du maximum de vraisemblance est intéressante car elle est rapide

(par rapport à l’inférence bayésienne) et permet également de calculer des inter-
valles de confiance (cf. § 4.3.4) ;

– attention la méthode du maximum de la vraisemblance ne marche pas pour ξ <
−1 dans le cas de la loi des valeurs extrêmes, mais ce cas ne se rencontre pas en
hydrologie.
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Localement autour du pic de vraisemblance, la courbe a généralement une forme
parabolique (voir figure 4.14) ; un développement limité à l’ordre 2 donne en effet :

ℓ(θ) ≈ ℓ(θ̂) + 1

2
ℓ′′(θ̂)(θ − θ̂)2,

puisque ℓ′(θ̂) = 0. Plus il y a de données, plus le pic sera effilé (car plus la courbure ℓ′′
sera grande), plus « certaine » sera la détermination du bon paramètre θ. On va le voir
un peu plus loin avec l’intervalle de confiance (cf. 4.3.4), que la courbure de la para-
bole – c’est-à-dire le terme dérivée d’ordre 2, noté ici ℓ′′(θ̂) – joue un grand rôle dans
la précision de l’estimation. La courbure va croître (la précision également) quand le
nombre n de données est augmenté (voir figure 4.15). On lui donne un nom spécifique :
l’information observée. Notons que la valeur du pic (le maximum de vraisemblance)
n’est en elle-même pas importante tant qu’on cherche à déterminer le paramètre θ
d’une loi, mais que si on souhaite comparer la pertinence de différentes lois f sur un
jeu de données, la valeur du maximum peut servir à cet effet.
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Figure 4.14 – Approximation locale de la courbe de log-vraisemblance (courbe à trait
discontinu) par une fonction quadratique (parabole : courbe à tiret).

♣ Exemple. – En utilisant la méthode du maximum de vraisemblance, calculer
l’estimateur λ̂ du paramètre λ d’une loi exponentielle.

Cette loi s’écrit :
E(x ; λ) = λe−λx,

donc la log-vraisemblance d’un échantillon x est :

ℓ(λ) = n lnλ− λ
∑

xi.
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L’estimateur de λ est obtenu en recherchant ℓ′(λ) = 0, soit encore :

λ̂ =
n∑
xi

=
1

x̄
.

Dans ce cas particulier, méthodes des moments et du maximum de vraisemblance
donnent la même chose. ⊓⊔

♣ Exemple no 1 (suite) – On trace la log-vraisemblance de l’échantillon de 100 va-
leurs tirées selon la loi E(1). On trouve x̄ ≈ 0,07. L’estimateur de λ est λ̂ = 1/x̄ ≈ 0,93.
Notons que la forme de la courbe va fortement dépendre de la taille de l’échantillon :
plus il y a de données, plus la courbe prend la forme d’un pic (et parfois plusieurs pics).
Voir figure 4.15. ⊓⊔

Figure 4.15 – (a) Log-vraisemblance d’un échantillon de cent valeurs tirées selon une
loi exponentielle. La barre à trait discontinu localise l’estimation λ̂ = 1/x̄ ≈ 0,93
du paramètre λ par la méthode du maximum de vraisemblance. (b) log-vraisemblance
d’échantillons de n = 10 valeurs, n = 100, et n = 1000 valeurs tirées selon une loi
exponentielle.

4.3.3 Inférence bayésienne

En général, on introduit dans un cours de probabilité la seconde relation ou théo-
rème de Bayes, qui énonce l’égalité que nous écrivons ici pour des densités de probabilité
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(Robert, 2001; Ulrych et al., 2001; Davison, 2003) (voir chap. A, § A.1.2) :

π(θ|x) = f(x|θ)π(θ)
b∫
a
dθf(x|θ)π(θ)

. (4.14)

Une interprétation est la suivante : admettons qu’avant de faire n observations, on ait
déjà une petite idée de la forme de la loi f selon laquelle x est distribué et même une
idée sur la valeur des paramètres de f . Dans le cas contraire, on peut toujours faire
une hypothèse sur la forme de f et supposer que les paramètres θ peuvent prendre
n’importe quelle valeur sur un intervalle donné ; dans ce cas, on supposera que ces
valeurs de θ sont distribuées selon une loi de probabilité uniforme π(θ) = U(θ).

Dans tous les cas de figure, on est capable de faire une hypothèse sur la forme de f
et sur la densité de probabilité de ses paramètres θ ; on appelle prior ou loi de probabilité
a priori la loi π(θ). On fait maintenant n observations x. Le théorème de Bayes dit que
cet apport d’information va modifier notre connaissance a priori (fût-elle très grossière)
de la valeur possible de θ. La distribution a posteriori de θ connaissant l’information x
est notée π(θ|x) ; elle est proportionnelle au prior π(θ) et à la fonction f(x|θ), or on
a vu juste avant (méthode du maximum de vraisemblance) que cette probabilité jointe
d’observer x (sachant θ) pouvait s’interpréter comme une fonction L de θ que l’on
appelle la vraisemblance :

L(θ) = f(x ; θ) =

n∏
i=1

f(xi ; θ).

On a donc en résumé :
π(θ|x) ∝ L(θ)π(θ).

La seule différence entre cette expression et l’équation (4.14) est le terme intégral au
dénominateur qui sert à normaliser et à s’assurer que la probabilité calculée est bien
une probabilité (donc que son intégrale vaut 1).

Notons ici que nous avons en quelque sorte utilisé un raccourci dans les notations :
chaque observation est supposée être distribuée selon une loi de probabilité f , ce que
l’on écrira de façon synthétique par x ∼ f(x ; θ). La notation f(x ; θ) signifie la pro-
babilité d’observer l’échantillon x = (xi)1≤i≤n, ce qui n’est rien d’autre que la vrai-
semblance de l’échantillon x. On a également utilisé f(x ; θ) = f(x|θ) pour souligner
le caractère « conditionnel ».

On pourra en fin de compte retenir 11 comme paramètre la valeur θ̂ :

– celle qui maximise π(θ|x), c’est-à-dire son ou ses mode(s). À noter que dans ce
cas précis, il n’est pas nécessaire de calculer le terme intégral au dénominateur

11. On ne présente pas ici toute la démarche de l’approche bayésienne. Le choix de la valeur
θ̂ se fait à partir d’un critère dit de perte ou d’utilité (voir des ouvrages spécialisés comme celui
de Robert (2001)). Nous donnons ici les deux alternatives les plus fréquentes.



4.3 Ajustement de lois 193

de l’équation (4.14) car c’est une constante de normalisation. Les calculs sont
alors plus simples. Cette façon de faire peut s’apparenter à une pondération de
la méthode du maximum de vraisemblance puisqu’au lieu de minimiser la vrai-
semblance L, on minimise la vraisemblance L et une contrainte représentée à
travers π(θ) (Coles & Dixon, 1999) ;

– ou bien la valeur moyenne obtenue en calculant E[π(θ|x)]. C’est le choix (pari)
souvent fait par la plupart des bayésiens, mais les calculs sont plus longs et il
faut alors souvent faire appel à des algorithmes spécifiques (Metropolis, échan-
tillonnage de Gibbs) (Robert, 1996).

4.3.4 Intervalles de confiance et de crédibilité

Les méthodes d’inférence vues précédemment ont permis d’arriver à une estima-
tion θ̂ des paramètres θ de la loi f(x ; θ) à partir de la connaissance d’un échantillon
x. Plutôt que de se contenter d’une valeur, il peut être plus intéressant de fournir un
intervalle [θ1, θ2] entourant θ̂, qui permette se faire une idée sur l’estimation de θ̂. Cela
a une grande importance dès lors qu’on souhaite extrapoler la loi ajustée. Comme pour
les tests d’ajustement, l’idée est de se fixer un intervalle de probabilité 1 − α, puis de
rechercher θ1 et θ2 tels que Prob(θ1 ≤ θ̂ ≤ θ2) = 1 − α. En pratique, toutefois, la
détermination de l’intervalle [θ1, θ2] dépend foncièrement du cadre conceptuel dans
lequel on s’est placé.

Dans le cadre de l’inférence dite classique, le point de départ est le suivant : l’échan-
tillon x dont on dispose est aléatoire et tiré d’une population de loi f(x ; θ), mais on
ne connaît pas θ. Si on disposait d’un grand nombre N d’échantillons similaires à x(i)

(1 ≤ i ≤ N ) et d’un estimateur robuste de θ, alors on serait en mesure de procéder à un
ajustement de f pour chacun de ces échantillons. À la fin, on disposerait d’un échan-
tillon θ̂(i) (1 ≤ i ≤ N ). Le théorème de la limite centrale nous garantit que la moyenne
arithmétique θ̄ de cet échantillon θ̂(i) tend vers la valeur exacte θ et, de plus, elle précise
que la variable réduite

√
N(θ̄−θ)/σθ , avec σ2θ la variance de la population θ̂, converge

vers la loi de Gauss-Laplace N (0,1). De là, on déduit que θ1 = θ̄ − zα/2SN/
√
N et

θ2 = θ̄ + zα/2SN/
√
N , avec S2

N la variance empirique de θ̂(i) et zα/2 le quantile 12

de la loi N (0,1) associé à la probabilité 1 − α/2. Le nœud du problème est qu’on ne
possède pas N échantillons similaires ; il faut donc étudier théoriquement comment
seraient distribués θ̄ et SN , ce qui constitue un problème ardu dès que la loi f n’est
pas une distribution standard. On se reportera à (Saporta, 1990; Davison, 2003) pour
une définition des intervalles de confiance des distributions classiques. Pour la loi de
Gumbel, on peut se reporter, par exemple, à l’abaque donné dans (Miquel, 1984).

Dans le cadre de l’inférence bayésienne, le raisonnement est très différent car on
suppose que l’échantillonx est fixemais que θ est une variable aléatoire, dont la densité

12. La notation zβ comme β-quantile de la loi normale doit être examinée avec attention
selon le contexte. En effet, selon la définition employée, zβ peut le quantile de β ou 1− β.
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de probabilité a posteriori est conditionnelle à x, comme le montre l’équation (4.14). Le
théorème de Bayes nous fournit directement cette densité de probabilité a posteriori et
donc les moyens de calculer θ1 et θ2 : ils vérifient Π(θ1 ≤ θ̂ ≤ θ2) = 1 − α, avec Π la
fonction de répartition a posteriori associée à la densité π(θ|x). Pour distinguer cette
procédure, on parle d’intervalle de crédibilité ; on renvoie à (Bernier et al., 2000) pour une
plus ample discussion sur les différences entre points de vue classique et bayésien. La
grande force de l’inférence bayésienne est son universalité ; toutefois, si pour calculer
θ̂, on peut se contenter de rechercher le mode de π(θ|x) sans réellement calculer cette
dernière (voir l’exemple donné au § 4.3), il faut calculer π(θ|x) pour déterminer les
deux quantiles θ1 et θ2, ce qui peut être, dans certains cas, assez coûteux en calcul et
requérir des méthodes numériques spécifiques (Robert, 2001).

Ici, on propose une méthode de construction de l’intervalle de confiance lorsqu’on
emploie la méthode du maximum de vraisemblance. Il y a en fait plusieurs méthodes,
que l’on va décrire succinctement juste après ; les deux premières sont les plus recom-
mandables. Si l’on emploie la méthode d’inférence bayésienne, il faut le plus souvent
procéder à des simulations de type Monte Carlo pour déterminer la distribution a pos-
teriori de θ ; l’intervalle de confiance peut donc être estimé directement à partir de
l’échantillon simulé.

On se reportera au § 4.9 pour des estimations de l’intervalle de confiance pour les
quantiles.

Approximation de l’estimateur θ̂ par une loi normale

Admettons qu’on possède un échantillon de n valeurs observées xi tirées selon une
loi f(x; θ0). En utilisant la méthode du maximum de vraisemblance, on peut obtenir
une estimation du bon paramètre θ0 : on note θ̂ cette estimation. On souhaite détermi-
ner l’intervalle de confiance (de niveau 1 − α) dans lequel se situe la bonne valeur θ0.
Cet intervalle peut être déterminé en se servant du théorème central limite.

Nous commençons par le cas où la densité de probabilité ne dépend que d’un para-
mètre θ, puis nous généraliserons le résultat aux lois à d paramètres. Nous cherchons à
avoir une estimation de l’intervalle de confiance associé à la valeur observée θ̂ du maxi-
mum de vraisemblance d’un échantillon ; cet intervalle de confiance nous permet de
déterminer dans quel intervalle doit se trouver la bonne valeur du paramètre θ, bonne
valeur qui sera notée ici θ0.

♦Théorème. – Soit un échantillon de n valeurs x = x1, . . . xn représentant des
réalisations indépendantes d’une distribution f(· ; θ0) où θ0 est la bonne valeur que
l’on cherche à cerner. ℓ est la log-vraisemblance de l’échantillon et θ̂ est l’estimateur
du maximum de vraisemblance. Alors pour n suffisamment grand, on a :√

IA(θ0)(θ̂ − θ0) ∼ N (0, 1),
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soit encore :
θ̂ − θ0

1/
√
IA(θ0)

∼ N (0, 1), (4.15)

avec

IA(θ
0) = E

(
− ∂2

∂θ2
ℓ(θ0|x)

)
,

l’information attendue (ou encore information de Fisher) 13. On peut écrire cette rela-
tion sous la forme équivalente :

θ̂ ∼ N (θ0, IA(θ
0)−1).

Ce résultat montre que l’estimateur θ̂ se comporte comme une variable aléatoire
normale (ou gaussienne) centrée sur le « bonne » valeur θ0, avec une variance donnée
par le paramètre I−1

A . Ce théorème peut être démontré assez facilement à l’aide du
théorème central limite [voir § B.1 ainsi que (Davison, 2003, pp. 124–125)]. On peut en
déduire un intervalle de confiance pour θ0. On a vu précédemment qu’un intervalle de
confiance de niveau 1− α se définissait comme l’intervalle de quantiles vérifiant

1− α = Prob
[
zα/2 ≤

√
IA(θ0)(θ̂ − θ0) ≤ z1−α/2

]
,

où zβ est le β-quantile de la loi normale (c’est-à-dire Prob(zβ) = β). Des manipulations
algébriques simples montrent que

1− α = Prob
[
θ̂ − z1−α/2I

−1/2
A (θ0) ≤ θ0 ≤ θ̂ − zα/2I

−1/2
A (θ0)

]
,

qui est donc un intervalle de confiance pour θ0. Notons au passage que la loi normale
N (0,1) étant symétrique, on a zα/2 = −z1−α/2, ce qui montre que l’intervalle de
confiance de θ0 est symétrique par rapport à θ̂ :

[θ̂ − z1−α/2I
−1/2
A (θ0), θ̂ + z1−α/2I

−1/2
A (θ0)].

En pratique, toutefois, on ne connaît pas IA(θ0), mais on peut remplacer ce coefficient
par l’information observée IO(θ̂) = −ℓ′′(θ̂) quand n → ∞. Le plus souvent on consi-
dère un intervalle de confiance à 95 % (soit α = 0,05 et z0,975 = 1,96), ce qui donne

θ0 ∈ [θ̂ − 1,96I
−1/2
O (θ̂), θ̂ + 1,96I

−1/2
O (θ̂)].

13. L’information de Fisher est le pendant théorique de la notion d’information observée
abordée à la p. 190. Les statisticiens l’interprètent comme la quantité d’information que trans-
porte une variable aléatoire à propos de θ. En pratique, il faut retenir que la valeur attendue de
la courbure et que plus la valeur est grande, plus étroit sera le pic autour de la bonne valeur.
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♦ Théorème. – Soient x1 . . . xn des réalisations indépendantes d’une distribu-
tion f(· ; θ) où θ = (θi)1≤i≤d désigne l’ensemble des d paramètres de f , ℓ la log-
vraisemblance, et θ̂ l’estimateur du maximum de vraisemblance. Alors pour n suffi-
samment grand, on a :

θ̂ ∼ Nd(θ0, IA(θ0)−1),

où l’on introduit la matrice d’information attendue (ou de Fisher)

IA(θ) =

 e1,1 · · · e1,d
... ei,j

...
ed,1 · · · ed,d

 ,
avec

ei,j = −E
(
∂2ℓ(θ)

∂θi∂θj

)
.

La matrice IA mesure la courbure de la surface « log-vraisemblance ».

Conséquence. – Ce théorème peut servir à obtenir un intervalle de confiance pour
θ0. On introduit pour cela l’inverse de la matrice (ou du scalaire IA si d = 1) IA

MA = I−1
A ,

dont les composantes sont notéesmij . D’après le théorème précédent, on a

θ̂i ∼ N (θi,mii).

Il s’ensuit que simii était connu, un intervalle de confiance à 1− α pour θ̂i serait

θ̂i ± zα/2
√
mij , (4.16)

avec zα/2 le quantile de 1 − α/2 pour la loi de Laplace-Gauss centrée (moyenne 0,
variance 1). En général, comme on ne connaît pas IA(θ), on la remplace par la matrice
d’information observée IO(θ), c’est-à-dire la matrice IA(θ) évaluée empiriquement
pour θ = θ̂.

Deux points importants à noter :

– par construction, l’intervalle de confiance est symétrique par rapport à la va-
leur estimée θ̂ comme le montre l’équation (4.16). Certaines courbes de vraisem-
blance montrent une asymétrie autour du maximum et il est alors judicieux de
disposer d’une approximation moins rudimentaire ; c’est ce que permettent de
faire les théorèmes suivants.

– en théorie, il faudrait calculer lamoyenne des dérivées d’ordre 2 de la log-vraisem-
blance, ce qui impliquerait en pratique d’avoir un grand nombre d’échantillons,
ce qui est rarement (voire jamais) le cas. En pratique donc, on substitue la ma-
trice d’information IA par l’information observée IO , qui est une réalisation
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particulière

IO(θ̂) =


∂2ℓ(θ)
∂θ21

· · · ∂2ℓ(θ)
∂θ1∂θd

... ∂2ℓ(θ)
∂θi∂θj

...
∂2ℓ(θ)
∂θd∂θ1

· · · ∂2ℓ(θ)
∂θ2d

 .

♣ Exemple. – On trace la log-vraisemblance pour plusieurs échantillons de 100
valeurs tirées selon la loi E(1). L’estimation de λ pour le premier échantillon est λ̂1 =
x̄−1 ≈ 1,00563 et l’information observée est ℓ′′(λ̂1) = 101,12. Sur la figure 4.16(a), on
trace dix courbes de log-vraisemblance correspondant à dix échantillons différents tirés
selon la loi E(1). On note que les courbes sont très similaires, mais décalées légèrement
le long de l’axe λ. Sur la figure 4.16(b), on reporte l’histogramme d’un échantillon de
10 000 valeurs de λ̂ estimées à partir de 10’000 échantillons de 100 valeurs. On reporte
sur cet histogramme la gaussienne N (λ̂1, |ℓ′′(λ̂1)|−1/2). Le relativement bon accord
entre la densité de probabilité empirique et la densité théorique est conforme au résultat
du théorème énoncé plus haut. Ce dernier montre bien qu’avec un seul échantillon, on
peut obtenir une estimation de λ et un intervalle de confiance. Par exemple, l’intervalle
de confiance à 95 % est :

λ̂1±z0,025|ℓ′′(λ̂1)|−1/2 = λ̂

(
1± 1,95996

1√
n

)
= 1,00563(1±0,1959) = [0,808, 1,202],

car Prob(z = ±1,959) = 0,025 si z ∼ N [0, 1], ℓ′′(λ) = −n/λ2, et −ℓ′′(λ)−1/2 =
λ/
√
n.

⊓⊔

Approximation à l’aide de la fonction déviance

Une approche fondée sur l’exploitation du maximum de vraisemblance permet
d’aboutir à une estimation fiable et plus universelle des intervalles de confiance. Le
théorème suivant établit que si l’on a obtenu une estimation θ̂ à partir d’un échantillon
de n éléments, alors la quantité D(θ0) = 2(ℓ(θ̂) − ℓ(θ0)), où ℓ = logL est la log-
vraisemblance et θ0 la « bonne » valeur, est une variable aléatoire distribuée selon la
loi χ2

1 quand n→∞.

♦Théorème. – Soient x1 . . . xn des réalisations indépendantes d’une distribution
f(· ; θ) où θ désigne le paramètre de f , ℓ la log-vraisemblance, et θ̂ l’estimateur du
maximum de vraisemblance. Alors pour n suffisamment grand, on a :

D(θ0) ∼ χ2
1.
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Figure 4.16 – (a) Log-vraisemblance de 10 échantillons de cent valeurs tirées selon
une loi exponentielle. (b) Histogramme des estimations λ̂ obtenu en simulant 10 000
échantillons de 100 valeurs selon la loi E(1) ; la courbe à trait continu est la densité de
probabilité N (λ̂1, ℓ

′′(λ̂1)
−1/2) où λ̂1 et ℓ′′(λ̂1) représentent l’estimation et l’informa-

tion observée pour l’un des 10 000 échantillons. (c) Diagramme probabilité–probabilité.
(d) Diagramme quantile–quantile. La loi exponentielle a pour paramètre λ0 = 1.

Ce théorème peut être démontré à partir des résultats précédents [voir § B.2 ainsi que
(Davison, 2003, pp. 126–127)]. Ce théorème se généralise à des fonctions à d paramètres.

♦ Théorème. – Soient x1 . . . xn des réalisations indépendantes d’une distribu-
tion f(· ; θ) où θ = (θi)1≤i≤d désigne l’ensemble des d paramètres de f , ℓ la log-
vraisemblance, θ̂ l’estimateur du maximum de vraisemblance, et θ0 la « bonne » valeur.
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Alors pour n suffisamment grand, on a :

D(θ0) ∼ χ2
d.

Conséquence. – Il s’ensuit que si l’on définit cβ le β-quantile, c’est-à-dire la va-
leur vérifiant Prob[Z ≤ cβ ] = β (avec Z ∼ χ2

d), alors on a asymptotiquement Iα =
{θ tel que D(θ) ≤ c1−2α} qui est un (1− 2α) intervalle de confiance (β = 1− 2α). En
effet, puisque D ∼ χ2

d, on a par définition du quantile

Prob(D ≤ cβ) = β,

donc D ≤ cβ peut être interprété comme l’intervalle où il est plausible de trouver θ0,
avec un niveau de confiance de β, ce qui veut également dire que

θ tel que ℓ(θ) ≥ ℓ(θ̂)− 1

2
cβ

est le β intervalle de confiance pour le paramètre recherché θ0. Par exemple, pour un
intervalle de confiance à 95 %, on a β = 0,95, soit cβ = 3,84 ; il suffit alors de tracer la
log-vraisemblance et de rechercher les valeurs de θ telles queD(θ) = 3,84, ce qui four-
nit deux valeurs de part et d’autre de θ̂ (pas nécessairement symétriques) qui constitue
la valeur maximale.

♣ Exemple. – Si l’on trace le diagramme de quantile de la loi de Gauss ajustée sur
les données de la figure 4.16(b), on note que la loi de Gauss est une approximation cor-
recte, mais pas parfaite puisqu’aux extrémités du domaine, des écarts significatifs entre
quantiles théorique et empirique apparaissent [voir figure 4.16(d)]. L’idée est alors de
faire une statistique sur la déviance, qui d’après le théorème ci-dessus doit être distri-
buée selon une loi duχ2

1. Dans le cas de la loi exponentielle, la déviance d’un échantillon
est :

D(λ0) = 2(ℓ(λ̂)− ℓ(λ0)) = 2n

(
ln λ0

x̄
− 1 + λ0x̄

)
,

avec x̄ la moyenne empirique de l’échantillon. La figure 4.17(a) montre que la déviance
est effectivement bien distribuée selon la loi du χ2

1 et que l’accord entre quantiles théo-
rique et empirique est meilleur que pour la figure 4.16(a) pour laquelle on avait supposé
que λ̂ suivait une loi normale N (λ̂1, ℓ

′′(λ̂1)
−1/2). ⊓⊔

♣ Exemple. – On reprend l’exemple d’un échantillon de n = 100 valeurs tirées
selon la loi E(1). On a tracé sur la figure 4.18 la log-vraisemblance. Pour cet échan-
tillon particulier, on avait trouvé que la moyenne empirique valait x̄ = 0,993, soit une
estimation du paramètre λ̂ = 1/x̄ ≈ 1,007 ; l’information observée Io = −ℓ′′(λ̂) =
n/λ̂2 ≈ 98,6. On cherche à déterminer un intervalle à 95 % de la bonne valeur λ du
paramètre de la loi exponentielle utilisée pour la simulation. Cet intervalle est obtenu
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Figure 4.17 – (a) Histogramme d’un échantillon de 10 000 valeurs de déviance. On a
également reporté la loi du χ2

1. (b) Diagramme probabilité–probabilité pour la déviance
supposée varier selon la loi du χ2

1. La première bissectrice indique le parfait accord. (c)
Diagramme de quantile–quantile.

graphiquement en traçant une ligne horizontale à une distance de 1
2c0,95 = 1,92 du

maximum (c0,95 = 3,84 correspondant au quantile de 0,95 pour la loi du χ2
1) ; l’in-

tersection de cette droite avec la courbe de log-vraisemblance fournit les bornes de
l’intervalle de confiance. Cela peut ici se calculer également de façon analytique ; la
log-vraisemblance s’écrit :

ℓ(λ) = n(logλ− x̄λ),

avec une valeur maximale obtenue pour λ = λ̂ = 1/x̄

ℓmax = n(log λ̂− x̄λ̂) = −n(1 + log x̄).
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Les bornes de l’intervalle de confiance sont donc solution de

−n(1 + log x̄)− 1

2
c0,95 = n(logλ− x̄λ),

soit encore
x̄λ− logλ = 1 + log x̄+

c0,95
2n

.

La résolution numérique de cette équation fournit deux racines : λinf = 0,822 et
λsup = 1,217, ce qui fournit un intervalle de confiance assez proche de l’intervalle
trouvé précédemment avec le premier théorème. Notons que grosso modo, la précision
va croître ici en puissance de 1/n (un développement limité à l’ordre deux montre que
la taille de l’intervalle de confiance varie comme 1/

√
n). ⊓⊔

Figure 4.18 – Détermination graphique de l’intervalle de confiance.

Approximation de la vraisemblance par la fonction profil de
vraisemblance

À la section 4.3.4, nous avons vu que l’on peut approcher localement l’allure de la
courbe θi, un des paramètres du jeu θ à l’aide d’une loi de Laplace-Gauss. L’inconvénient
de cetteméthode est due à la symétrie de la Laplace-Gauss autour de la valeur moyenne.
Si la fonction log-vraisemblance est dissymétrique autour de θ0, alors cette méthode est
peu précise. On peut alors lui substituer la méthode dite du profil de vraisemblance.

L’idée de base est de séparer les effets de différentes composantes θi dans la log-
vraisemblance ℓ(θ). On écrit formellement

ℓ(θ) = ℓ(θi, θk ̸=i).
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Le profil de vraisemblance est la fonction du paramètre θi définie par

ℓp(θi) = max
k ̸=i

ℓ(θi, θk ̸=i).

La fonction ℓp(θi) définit une courbe qui est le profil de la surface de log-vraisemblance
vu depuis l’axe θi.

4.4 Autres méthodes de calage

Laméthode des moments, la méthode dumaximum de vraisemblance et l’inférence
bayésienne sont les méthodes les plus couramment employées, mais il existe d’autres
méthodes qui peuvent s’avérer intéressantes pour le calage des lois de valeurs extrêmes
ou d’autres lois à une variable aléatoire.

4.4.1 Maximisation des espacements

Principe. La méthode de maximisation des espaces est une généralisation de la mé-
thode du maximum de vraisemblance proposée entre autres par Cheng & Amin (1983)
et Ranneby (1984). On considère une loi de probabilité de densité f (fonction de répar-
tition F ) à une variable aléatoire X ; on suppose ici que le support de f est R+. Les
paramètres de la loi de probabilité sont notés θ (prenant ses valeurs dans un espace Θ
). On a un échantillon de n valeurs xi tirée de cette loi. On classe par ordre croissant
cet échantillon et on obtient un nouvel échantillon (appelé statistique d’ordre) x(i) pour
1 ≤ i ≤ n :

x(1) ≤ x(2) ≤ · · · ≤ x(n−1) ≤ x(n).

On pose également :
x(0) = 0 et x(n+1) =∞.

On appelle espacement d’ordre i la différence di entre deux valeurs de la fonction de
répartition (voir figure 4.19) :

di = F (x(i))− F (x(i−1)) pour 1 ≤ i ≤ n+ 1. (4.17)

On noteMn(θ) le logarithme de la moyenne géométrique des espacements :

Mn = ln n+1
√
d1d2 · · · dn+1 =

1

n+ 1

n∑
i=1

ln di. (4.18)

L’estimateur θ̂ de θ est celui qui maximiseMn :

θ̂ = argmax
θ∈Θ

Mn(θ) (4.19)
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Figure 4.19 – Fonction de répartition F (x). On considère un échantillon que l’on a
ordonné par ordre croissant et que l’on note x(i).

La méthode de maximisation des espacements est le plus souvent plus performante
que la méthode dumaximum de vraisemblance lorsqu’on s’intéresse aux lois de valeurs
extrêmes, surtout si elles sont appliquées à des échantillons de petite taille (Abdulali
et al., 2022). Elle peut être plus difficile à mettre en œuvre quand l’échantillon de don-
nées a plusieurs valeurs identiques (x(k) = x(k−1) = . . .) puisque dans ce cas-là, l’es-
pacement est nul (dk = F (x(k))− F (x(k−1)) = 0).

Idée de démonstration. Pour comparer à quel point une densité de probabilité g
est proche ou éloignée d’une densité-cible f , on peut se servir de l’entropie relative – ap-
pelée encore « divergence 14 de Kullback–Leibler » – qui est une extension du concept
d’entropie de Gibbs ou de Shannon pour des lois de probabilité (MacKay, 2003) :

D(f, g) =

∫
f(x) ln f(x)

g(x)
dx. (4.20)

Si les deux distributions sont identiques alors D = 0 et quand elles sont raisonnable-
ment proches alors D tend vers 0. L’idée est donc de minimiser D.

Dans les problèmes d’inférence, on ne connaît pas f (plus précisément on ne connaît
pas son jeu de paramètres θ) et on peut estimer une densité empirique de probabilité g

14. On parle de divergence car la quantité D sert à mesurer à quel point deux distributions
sont dissemblables. Il ne s’agit pas d’une distance entre deux fonctions puisque généralement
la relation n’est pas symétrique : D(f, g) ̸= D(g, f).
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à partir d’un échantillon x de n valeurs. Notons que

D(f, g) =

∫
f(x) ln f(x)

g(x)
dx

=

∫
f(x) ln f(x)dx−

∫
f(x) ln g(x)dx

= ⟨ln f⟩ − ⟨ln g⟩ (4.21)

où on a introduit l’opérateur moyenne (par rapport à la mesure f(x)) :

⟨h⟩ =
∫
h(x)f(x)dx

pour toute fonction h. Comme un estimateur de la moyenne est la moyenne arithmé-
tique :

⟨h⟩ ≈ 1

m

m∑
j=1

h(ξj)

où ξj est un échantillon de m valeurs tirées de la loi f , on peut proposer l’estimateur
suivant pour l’entropie relative D :

D̂(θ) =
1

n

n∑
i=1

ln f(xi)−
1

n

n∑
i=1

ln f(xi) ln g(xi|θ). (4.22)

Si on minimise D̂(θ), cela veut dire que l’on recherche la maximum de :

1

n
ln g(xi|θ) = ln

n∏
i=1

ln g(xi|θ) = lnL(θ),

c’est-à-dire on recherche le maximum de vraisemblance. De ce point de vue-là, on peut
considérer que la méthode maximum de vraisemblance est une méthode qui vise à
chercher l’entropie minimale.

Ranneby (1984) propose d’aller plus loin dans la recherche d’un bon estimateur D̂.
Si on fait un développement de Taylor à l’ordre 1 de F (x(j+1)) et G(x(j+1))

F (x(j+1)) = F (x(j)) + (x(j+1) − x(j))f(x(j)) +O(∆x2),

G(x(j+1)) = G(x(j)) + (x(j+1) − x(j))g(x(j)) +O(∆x2),
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alors on peut transformer l’équation (4.22) :

D̂(θ) =
1

n

n∑
i=1

(
ln f(x(i))− ln g(x(i)|θ)

)
,

=
1

n

n∑
i=1

(
ln
F (x(i+1))− F (x(i))

x(i+1) − x(i)
− ln

G(x(i+1)|θ)−G(xi|θ)
x(i+1) − x(i)

)
+O(∆x2),

=
1

n

n∑
i=1

ln
F (x(i+1))− F (x(i))

G(x(i+1)|θ)−G(x(i)|θ)
+O(∆x2),

=
1

n+ 1

n+1∑
i=1

ln
F (x(i))− F (xi−1)

G(x(i)|θ)−G(xi−1|θ)
+O(∆x2, n−1).

Il est alors clair que minimiser D̂(θ) revient à maximiser :

Mn(θ) = ln n+1
√
d1d2 · · · dn+1 =

1

n+ 1

n+1∑
i=1

ln di(θ), (4.23)

avec di(θ) = G(ξi|θ)−G(ξi−1|θ).

♣ Exemple. – Considérons un échantillon x de n = 10 valeurs tirées selon la loi
exponentielle de paramètre λ = 2, et trions le par ordre croissant :

x = {0,0122 ; 0,09598 ; 0,1293 ; 0,1538 ; 0,1886 ; 0,3346 ; 0,3621 ; 0,5529 ; 0,6692 ; 1,097}.

Les espacements sont définis par l’équation (4.17) :

di = F (x(i))−F (x(i−1)) = 1−exp−λx(i) −
(
1− exp−λx(i−1)

)
= exp−λx(i−1) − exp−λx(i) .

On calcule le logarithme de la moyenne géométrique des espacements :

M10 = ln 11
√
d1d2 · · · dn+1 =

1

n+ 1

11∑
i=1

ln di.

Pour trouver le maximum, il suffit de différentier par rapport à λ :

dM10

dλ =
1

n+ 1

11∑
i=1

d ln di
dλ =

1

11

11∑
i=1

x(i−1) exp−λx(i−1) −x(i) exp−λx(i)

exp−λx(i−1) − exp−λx(i)
.

On recherche pour quelle valeur de λ la dérivée est nulle. On trouve ici :

λ̂ = −2,443.

On a donc approché la valeur théorique λ = 2 à 21 %. la À titre de comparaison, la
méthode du maximum de vraisemblance ou la méthode des moments aurait fourni :

λ̂ = x̄−1 =
1

0,359696
= 2,780.

Cela montre que la méthode de maximisation des espacements permet d’obtenir un
estimateur plus précis du paramètre λ.
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4.4.2 Méthode des L-moments

Un des problèmes avec la méthode des moments est qu’elle nécessite que les mo-
ments existent, ce qui n’est pas assuré pour toutes les distributions. Ainsi pour la loi
de valeurs extrêmes, si on veut appliquer la méthode des moments avec les trois pre-
miers moments, il faut que |ξ| < 1/3. De plus, lorsqu’on travaille avec de petites séries
temporelles, la méthode des moments est imprécise (Coles & Dixon, 1999; Katz et al.,
2002). Il existe des variantes telles que la méthode des L-moments 15 et la méthode des
moments pondérés 16 Nous présentons ici la méthode des L-moments.

Statistique d’ordre

Pour bien comprendre le principe, il faut donner quelques indications sur les statis-
tiques d’ordre et leurs propriétés statistiques. Considérons une variable aléatoire conti-
nue X distribuée selon une loi de densité f(x) et de fonction de répartition F . On
considère un échantillon de n valeurs Xi (1 ≤ i ≤ n). On appelle statistique d’ordre
l’échantillon des valeurs classées dans un ordre croissante de Xi (David & Nagaraja,
2003; Casella & Berger, 2001) :

X(1) ≤ X(2) ≤ · · · ≤ X(n).

On veut calculer la densité de probabilité que la ième valeur X(i) soit égale à x. On
commence par calculer la probabilité Prob(X(i) ≤ x). On définit l’événement « succès »
parX(i) ≤ x, et faisons un tirage d’urne (Casella & Berger, 2001, p. 186). La probabilité
p de succès est p = F (x) = Prob(X ≤ x). Le nombre de fois que l’on a un succès lors
d’un tirage de n valeurs est une variable aléatoire U distribuée selon la loi binomiale
B(n, p). La probabilité qu’on ait X(i) ≤ x équivaut à la probabilité à ce qu’on ait au
moins i succès dans le tirage d’urne :

F(i) = Prob(X(i) ≤ x) = Prob(U ≥ i) =
n∑
k=1

(
n

k

)
F k(x)(1− F (x))n−k. (4.24)

Pour calculer la densité de probabilité f(i), il suffit de différencier l’équation (4.24) par
rapport à x. Pour éviter un calcul fastidieux, on peut utiliser la relation entre loi bino-
miale et fonction bête incomplète définie par (David & Nagaraja, 2003) :

B(x ; a, b) =

∫ x

0
ta−1(1− t)b−1dt. (4.25)

L’équation (4.24) peut alors s’écrire :

F(i)(x) =
B(F (x), i, n− i+ 1)

B(1, i, n− i) , (4.26)

15. Le L dans L-moment signifie qu’on travaille avec des combinaisons linéaires demoments.
16. Cette méthode est dans le principe similaire à celle des L-moments. On peut se référer à

Greenwood et al. (1979).
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dont la dérivée est la densité de probabilité recherchée :

f(i)(x) = f(x)
F (x)i−1(1− F (x))n−i

B(1, i, n− i) = f(x)F (x)i−1(1−F (x))n−i n!

(i− 1)!(n− i)!
,,

(4.27)
Ce résultat peut se retrouver en faisant une analyse combinatoire (David & Nagaraja,
2003, p. 38).

On peut calculer la moyenne E(X(i)) :

E(X(i)) =

∫
supp f

xf(x)F (x)i−1(1− F (x))n−i n!

(i− 1)!(n− i)!
dx,

et si on fait le changement de variable p = F (x) et qu’on introduit la fonction quantile
Q = F (−1), alors on peut reformuler cette équation :

E(X(i)) =
n!

(i− 1)!(n− i)!

∫ 1

p=0
Q(p)pi−1(1− p)n−idp.

Définition des L-moments

On peut combiner les moments de statistique d’ordre pour obtenir des quantités
qui nous renseignement sur la forme de la loi étudiée. On définit le L-moments d’ordre
r comme étant la combinaison linéaire des moyennes des statistiques d’ordre d’échan-
tillons de taille r (Hosking & Wallis, 1997) :

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E(Xr−k:r), (4.28)

oùXr−k:r désigne le (r−k)ième élément d’une statistique d’ordre d’un échantillon de
r valeurs.

On observe que les L-moments existent dès lors que la moyenne E(X) existe et est
finie. On perçoit donc ici l’intérêt de la méthode des L-moments puisque contrairement
à la méthode des moments qui requiert que les moments soient finis jusqu’à un certain
ordre, la méthode des L-moments n’exige que l’existence du premier moment de X .

Les trois premiers L-moments sont :

λ1 = E(X1:1) =

∫ 1

0
Q(p)dp = E(X), (4.29)

λ2 =
E(X2:2)− E(X1:2)

2
=

∫ 1

0
Q(p)(2p− 1)dp, (4.30)

λ3 =
E(X3:3)− 2E(X2:3) + E(X1:3)

3
=

∫ 1

0
Q(p)(6p2 − 6p+ 1)dp. (4.31)
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Ces trois L-moments jouent le même rôle que les moments classiques : λ1 fournit la
moyenne de la distribution, λ2 est la L-échelle, qui renseigne sur l’écart moyenne entre
deux valeurs, et λ3 est la L-forme, qui donne une indication sur la distribution des
valeurs d’un échantillon.

♣ Exemple. – Les trois L-moments de la loi généralisée des valeurs extrêmes de
paramètres (µ, σ, ξ ̸= 0) sont (Hosking, 1990) :

λ1 = µ− σ

ξ
(1− Γ(1− ξ)) , (4.32)

λ2 =
σ

ξ
(1− Γ(1− ξ)(2ξ − 1), (4.33)

λ3 =

(
2
3ξ − 1

2ξ − 1
− 3

)
λ2, (4.34)

tandis que pour la loi de Gumbel de paramètres (µ, σ), on a :

λ1 = µ− γσ, (4.35)
λ2 = ln 2σ, (4.36)

(4.37)

avec γ ≈ 0,5772 la constante d’Euler.

L-moments empiriques

On dispose d’estimateurs des L-moments empiriques d’un échantillon de n valeurs
(Hosking & Wallis, 1997) :

ℓr =

(
n

r

)−1 ∑
1≤i1≤···≤ir

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
Xir−k:n (4.38)

Certains langages ont des bibliothèques calculant les L-moments d’un échantillon ; par
exemple, la bibliothèque lmoments3. Dans les autres cas, il faut programmer l’équation
(4.38).

Méthode des L-moments

Quand on cherche à ajuster lesm paramètres d’une loi de probabilité à partir d’un
échantillon de n valeurs, la méthode des L-moments consiste à constituer un jeu dem
équations où l’on égale L-moments théoriques (4.28).

♣ Exemple. – Considérons une série courte de 14 valeurs des maxima des débits
journaliers sur l’Areuse à BoudryQ = 53,9m3/s; 68,3 m3/s ; 80,8 m3/s ; 53,8 m3/s ; 75,6

https://lmoments3.readthedocs.io/stable/index.html
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Figure 4.20 – Comparaison de la méthode, la méthode de maximisation des espace-
ments, et la méthode des L-moments sur une série courte de données (14 valeurs) issue
de la série temporelle des débits journaliers de l’Areuse à Boudry (voir figure 4.1).

m3/s ; 68,2 m3/s ; 56,5 m3/s ; 90,5 m3/s ; 63,7 m3/s ; 60,9 m3/s ; 80,4 m3/s ; 72,5 m3/s ; 98,3
m3/s ; 54,8 m3/s (série 2011–2024). On a calé une loi de Gumbel de paramètres (µ, σ)
sur ces données en utilisant la méthode du maximum de vraisemblance, la méthode des
moments, celle de maximisation des espacements et celle des L-moments :

µ σ ℓ

méthode du maximum de vraisemblance 63,1 10,2 –55,456
méthode des moments 63,8 10,5 –55,463
maximisation des espacements 63,3 12,5 –55,450
méthode des L-moments 63,1 11,7 –55,455

Quoique les paramètres soient différents et l’estimation des quantiles difère (voir
figure 4.20), la comparaison de la performance des différentes à l’aide de la log-vraisemblance
ℓ montre que les méthodes aboutissement à la même valeur de ℓ jusqu’à la deuxième
décimale après la virgule. Il faut aller au troisième chiffre après la virgule pour les dé-
partager.
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4.5 Maxima sur des blocs de valeurs

4.5.1 Problématique

En hydrologie statistique, on cherche à ajuster des lois de valeurs extrêmes sur des
données. Le plus souvent, on cherche à exprimer les lois de probabilité sous la forme

C︸︷︷︸
quantile

= f( T︸︷︷︸
période de retour

),

avec T la période de retour exprimée en années etC le quantile étant la variable étudiée
(chute de pluie, débit de pointe, etc.). On trace cette relation dans un diagramme de
période de retour, où est reporté le quantile (en ordonnée) en fonction de la période de
retour (en abscisse). Lorsqu’on travaille avec des lois de valeurs extrêmes, il est plus
agréable de travailler dans un diagramme semi-logarithmique. Dans un tel système de
représentation (voir figure 4.23)

– la loi de Gumbel (ξ = 0) apparaît alors comme une droite ;
– la loi de Fréchet (ξ > 0) comme une courbe convexe (orientée vers le haut) ;
– la loi de Weibull (ξ < 0) comme une courbe concave (orientée vers le bas).

Le tableau 4.2 recense l’ensemble des distributions de loi de valeurs extrêmes.

Tableau 4.2 –Densité de probabilité, fonction de répartition P (dépassement), et quan-
tiles C pour les lois de valeurs extrêmes. On introduit la période de retour comme
T = P−1.

fonction ξ ̸= 0 ξ = 0

densité de probabilité 1
σe

−
(

(c−µ)ξ
σ

+1
)−1/ξ (

(c−µ)ξ
σ + 1

)− ξ+1
ξ 1

σe
µ−c
σ

−e
µ−c
σ

fonction de répartition P = e
−
(

(c−µ)ξ
σ

+1
)−1/ξ

P = e−e
µ−c
σ

quantile (C(P )) C = µ− σ
ξ

(
1− (− ln(1− P ))−ξ

)
C = µ− σ ln(− ln(1− P ))

quantile (C(T )) C = µ− σ
ξ

(
1−

(
− ln

(
1− 1

T

))−ξ)
C = µ− σ ln

(
− ln

(
1− 1

T

))
En pratique, quand on veut appliquer la théorie des valeurs extrêmes à un échan-

tillon de données, il faut sélectionner les maxima. Il existe deux classes de méthodes :

– on prend les r plus grandes valeurs d’un bloc (voir figure 4.22). En général,
comme on utilise la période de retour (comptée en années), un bloc unitaire
représente une année de mesures. La méthode des maxima consiste à prendre la
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valeur maximale observée chaque année (r = 1) ; on peut prendre les maxima
mensuels (r ≤ 12) également (sous certaines conditions) ;

– on se fixe un seuil s suffisamment élevé et on prend toutes les valeurs au-dessus
de ce seuil. On désigne ces méthodes par les méthodes de seuil (voir figure 4.21).

t

C
année i année i+1 année i+2 Figure 4.21 –

Sélection des
données par
blocs de valeur
sur une
période.

t

C

s

Figure 4.22 –
Sélection des
données par
dépassement
d’un seuil s.

On détaille la méthode des maxima dans cette section pour la loi de Gumbel pour
laquelle les moments sont assez simples à calculer, puis au § 4.6 la méthode de seuil de
façon générale pour toute loi de valeurs extrêmes.

Le rôle de l’exposant ξ est capital car il conditionne le comportement des valeurs
extrêmes comme le montre le schéma de la figure 4.23. Très souvent, on possède des
données et on cherche à caler une loi de la forme donnée ci-dessus mais la moindre
erreur sur le calcul de l’exposant ξ entraîne des valeurs significativement différentes
dès que l’on va chercher à extrapoler la courbe pour déterminer les valeurs extrêmes.

Notamment le cas ξ > 0 est très critique car il implique une forte augmentation
des valeurs extrêmes pour les phénomènes les plus rares. La figure 4.23 schématise la
difficulté de l’extrapolation en dehors d’un domaine d’interpolation (l’intervalle pen-
dant lequel on a fait des observations). Ainsi, si on a 30 ans de données, on considère
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Figure 4.23 –
Comportement

de la loi de
probabilité G
en fonction de

ξ (ξ =
−0,2 ; 0 ; 0,2).
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représente le
domaine où
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mesures.

qu’approximativement le domaine d’interpolation correspond à 1–30 ans (en termes
de période de retour) et que, pour des périodes de retour plus grandes que 30 ans, on
entre dans le domaine de l’extrapolation.

4.5.2 Méthode des maxima annuels

La méthode des maxima annuels consiste à :

– Dans un échantillon x de n valeurs couvrant na années, retenir les plus fortes
valeurs annuelles (pour chaque année civile). On obtient un nouvel échantillon
de valeurs notées (Yi)1≤i≤na .

– On classe les valeurs par ordre croissant que l’on note (Ci)1≤i≤na . On note C̄
la moyenne empirique de cet échantillon et VarC sa variance.

– À chaque valeur de rang i, on affecte la probabilité empirique d’occurrence et
la période de retour :

Pi =
i− 0,28

na + 0,28
et Ti =

1

1− Pi
=

na + 0,28

na − i+ 0,56
.

– On calcule par la méthode des moments les paramètres de la loi de Gumbel
Gu[µ, σ] :

σ =

√
6

π

√
VarC ≈ 0,7796

√
VarC,

µ = C̄ − γσ ≈ C̄ − 0,45
√
VarC,

avec γ ≈ 0,577 la constante d’Euler .
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– On reporte dans un diagramme (T , C) la variation du quantile C en fonction
de la période de retour. On peut reporter à la fois les données (Ti, Ci)1≤i≤na et
la loi de Gumbel ajustée Gu[T ; µ, σ] afin de vérifier visuellement l’adéquation
de l’ajustement.

Remarque : la méthode des moments s’applique aussi avec des lois de type Fréchet
ou Weibull, mais la détermination des coefficients µ, σ, et ξ n’est pas directe ; elle né-
cessite de résoudre numériquement les équations (4.7), (4.8), et (4.9).

4.5.3 Méthode des maxima mensuels

Le problème des maxima annuels est que l’on a souvent peu de données, les sé-
ries étant courtes, ce qui conduit à des erreurs d’estimation parfois importantes. Pour
améliorer la précision, on peut considérer les maxima mensuels au lieu des maximal
annuels. La seule difficulté est que l’on raisonne en années et non en mois. Il faut donc
pour passer de probabilités exprimées en mois à des probabilités en années, il faut
connaître le lien entre probabilités mensuelle et annuelle. Le cas le plus simple se ren-
contre quand il y a équidistribution des précipitations, c’est-à-dire la probabilité que
le maximum soit en janvier est identique à la probabilité qu’il soit observé en février,
mars, etc. En termes de probabilité, la loi de composition des probabilités nous donne

Pan(C) = Prob[X < C sur une année] = Prob[X < C en janvier, X < C en février, . . .],

Pan(C) =

12∏
i=1

Prob[X < C sur le mois i] = P 12
mois(C).

Considérons maintenant une loi de Gumbel (exprimée en non-dépassement) que l’on
ajusterait sur les maxima mensuels

C = µ− σ ln(− lnPmois).

Pour repasser à une relation exprimées en années, on utilise la relation Pan(C) =
P 12
mois(C) et Pan = 1− 1/T ; on déduit

C = µ− σ ln(− ln(Pmois)) = µ− σ ln(− ln(1− T−1)1/12) ≈ µ+ σ ln 12 + σ lnT.

La méthode des maxima mensuels consiste à :

– Dans un échantillon x de n valeurs couvrant na années, retenir les plus fortes
valeurs mensuelles (pour chaque année civile). On obtient un nouvel échantillon
de valeurs notées (Yi)1≤i≤nm , avec nm = 12na.

– On classe les valeurs par ordre croissant que l’on note (Ci)1≤i≤nm . On note C̄
la moyenne empirique de cet échantillon et VarC sa variance.
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– À chaque valeur de rang i, on affecte la probabilité empirique d’occurrence et
la période de retour :

Pi =
i− 0,28

nm + 0,28
et T̂i =

1

1− Pi
=

nm + 0,28

nm − i+ 0,56
.

La période de retour T̂ ainsi introduite est comptée en mois.
– On calcule par la méthode des moments les paramètres de la loi de Gumbel
Gu[µ, σ] :

σ =

√
6

π

√
VarC ≈ 0,7796

√
VarC,

µ = C̄ − γσ ≈ C̄ −
√

0,45VarC.

– On reporte dans un diagramme (T̂ , C) la variation du quantile C en fonction
de la période de retour. On peut reporter à la fois les données (T̂i, Ci)1≤i≤nm et
la loi de Gumbel ajustée Gu[T ; µ, σ] afin de vérifier visuellement l’adéquation
de l’ajustement. On peut repasser à une période de retour exprimée en années
en faisant une translation dans le sens vertical de valeur +σ ln 12.

Lorsque le principe d’équidistribution n’est pas vérifié, la statistique sur les r plus�
grandes valeurs est bien plus complexe à mettre en œuvre (voir Coles, 2001, pp. 66–68).

4.6 Modèles à seuil

Par modèles à seuil, nous entendons un ensemble de méthodes (renouvellement,
modèle POT 17, etc.) qui ont pour élément commun 18 de se fonder sur un échantillon
de valeurs xi dépassant un certain seuil s. Nous considérons tout d’abord la méthode
du renouvellement qui est la plus connue et si elle n’est pas la plus performante, elle
fournit généralement de meilleurs résultats que la méthode des maxima annuels pour
les échantillons de petite taille. Nous continuerons avec des résultats plus généraux
basés sur la loi de Pareto.

Un défaut majeur des modèles à blocs est qu’ils n’exploitent qu’une partie des va-
leurs extrêmes disponibles et comme en hydrologie, on travaille souvent avec des séries
relativement courtes, la précision des estimations n’est pas très bonne. Les modèles à
seuil permettent d’utiliser un plus grand nombre de données (toutes les données supé-
rieures à un seuil), mais c’est au prix de calculs un peu plus complexes à mener (Lang
et al., 1999).

17. Abréviation pour Peak Over Threshold.
18. Le statut des modèles difère par construction. La méthode du renouvellement est une

construction a priori où l’on fait une hypothèse sur la distribution de la fréquence des événe-
ments et une autre sur leur intensité (Cox &Miller, 1965; Miquel, 1984). La méthode POT résulte
de l’application du théorème de Pickands, qui donne la distribution de probabilité de xi − u.
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4.6.1 Méthode du renouvellement

Processus de Poisson et de processus de Poisson composé

On appelle processus de Poisson est un processus de comptage où l’on compte le
nombre N d’éléments ou d’événements 19 au cours t. On suppose que :

1. N ne peut croître que de 1 à chaque événement. La probabilité qu’il y ait deux
événement dans un laps de temps court δt tend vers 0 quand δt→ 0 ;

2. l’occurrence d’un événement au temps t donné ne dépend pas de l’historique
des événements passés. Autrement dit, les occurrences des événements sont in-
dépendantes ;

3. en moyenne, le nombre d’événements sur une période ∆t est égale λ∆t, où
λ > 0 est un réel positif appelé coefficient (ou taux) de Poisson.

La figure 4.24 montre un exemple de processus de Poisson.
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Figure 4.24 – Exemple de processus de Poisson. Calcul effectué avec λ = 1,5.

Le processus de Poisson jouit des propriétés suivantes :

– le nombre d’événements d’événements sur une période ∆t > 0 est décrit par
une loi de Poisson de paramètre λ. Autrement dit :

Prob(N(t+∆t)−N(t) = k) = P(λ∆t)(k) = e−λ∆t(λ∆t)k

k!
.

– le temps T entre deux événements survenus aux temps tk et tk−1 est distribué
selon une loi exponentielle de paramètre λ :

Prob(T ≤ t) = 1− e−λt.
19. Cela peut être le nombre de photos touchant une surface, le nombre de clients passant

par une porte, le nombre d’impressions lancées sur une imprimante, etc.
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Par extension, on introduit la notion de processus de Poisson composé lorsque l’in-
crément entre deux événements ne vaut plus 1, mais peut prendre une valeur aléatoire
distribuée selon une densité de probabilité g. On suppose que cette loi g décrit l’ampli-
tude des sauts et qu’elle est indépendante du nombre d’événementsN . Les sauts deN
peuvent donc être positifs ou négatifs selon la loi g. La figure 4.25 montre un exemple
de processus de Poisson.
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Figure 4.25 – Exemple de processus de Poisson. Calcul effectué avec λ = 1,5 et une
loi de Laplace Gauss N (2,4) pour les sauts.

Si on suppose que chaque année, le nombre annuelN de précipitations ou de crues
est distribué selon une loi de Poisson (de paramètre λ) dès que l’intensitéX du phéno-
mène est suffisamment grande (c’est-à-dire dépasse un certain seuil s) et que l’intensité
du phénomène est décrite par une loi de probabilité g (et de fonction de répartition G)
à une seule variable positive (indépendante de N ), alors le maximum annuel défini
comme

C = max
1≤i≤n

Xi (4.39)

est distribué selon une loi (Todorovic & Zelenhasic, 1970) :

Prob(C ≤ c) = exp (−λ(1−G(c))) pour c ≥ 0. (4.40)

Supposons par exemple que g soit une loi exponentielle de paramètre θ, alors :

G(c) = 1− e−θc,

et donc
Prob(C ≤ c) = exp

(
−λe−θc

)
, (4.41)

Si l’on rapproche cette forme avec loi de Gumbel (4.3) de paramètres µ et σ, cela revient
à montrer que les deux formes sont identiques asymptotiquement (pour c suffisamment
grand) si l’on pose :

µ = 0 et σ = θ lnλ.
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De ce point de vue-là, on voit qu’il existe un lien fort entre théorie des valeurs extrêmes
et processus de Poisson composé, un lien que l’on va éclairer plus complètement par la
suite.

On peut encore étendre le concept de processus de Poisson en supposant non seule-
ment que l’amplitude des sauts de N es distribuée selon une loi de probabilité g, mais
également le nombre d’événements suit une loi de probabilité f (à une seule variable
discrète positive), qui n’est pas nécessairement une loi de Poisson. On parle alors de pro-
cessus de renouvellement. Nous allons voir comment les processus de renouvellement
sont une boîte à outils commode pour dériver des lois de probabilité à partir d’une
connaissance de la dynamique des événements.

Processus de renouvellement

Quand on examine la distribution statique de la variable aléatoireC au-dessus d’un
seuil s (cf. figure 4.3), il y a deux éléments à prendre en compte :

– la fréquence d’occurrence f(k) ou le temps Ti entre deux événements. Si le
processus est stationnaire, alors le processus de Poisson P(λ) est souvent bien
adapté à décrire le nombre d’événements par unité de temps et la loi exponen-
tielle E(1/λ) traduit la distribution des temps entre événements (cf. § A.2.4). On
appelle ci-après f(k) la probabilité d’observer k événements dépassant le seuil
s. Quand la loi de Poisson ne marche pas bien, la loi binomiale négative est une
alternative souvent efficace (voir ci-après) ;

– l’intensité des phénomènes G(c|s) conditionnée par l’existence du seuil. G(c|s)
désigne la probabilité que la variable aléatoire C soit supérieure au seuil s mais
ne dépasse pas une valeur C (C > s). Une loi de valeurs extrêmes est généra-
lement bien adaptée à décrire les valeurs fortes observées. En pratique, on peut
souvent tenter d’abord d’utiliser une loi simple de type loi exponentielle car pour
les précipitations en climat tempéré, l’approximation par une loi exponentielle
marche assez souvent (rappelons que la loi exponentielle est une approximation
de la loi de Gumbel pour les grandes périodes de retour).

Quand on applique les règles de composition des probabilités d’événements indé-
pendants, on peut écrire (Cox & Miller, 1965) :

Prob[C ≤ c|C > s] =Prob[au cours de l’année, il y a 0 chute C > s]+

Prob[au cours de l’année, il y a 1 chute telle que C > s et C ≤ c]+
...
Prob[au cours de l’année, il y a k chutes telles que C > s et C ≤ c]+
...

(4.42)
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ce qui sous forme condensée s’écrit :

Prob[C ≤ c|C > s] =

∞∑
k=0

Prob[au cours de l’année, il y a

k chutes d’intensité C telles que C > s et C ≤ c].
(4.43)

Comme les événements sont indépendants, on déduit alors :

P (c|s) = Prob[C ≤ c|C > s] =
∞∑
k=0

f(k)G(c|s)k.

À noter que derrière cette formule complexe se cache un comportement bien plus
simple et compatible avec les résultats de la théorie des valeurs extrêmes. En effet quand
G(c|s) est proche de 1, alors 20 G(c|s)k ≈ 1− k(1−G(c|s)). On en déduit par somma-
tion que :

Prob[C ≤ c|C > s] ≈ 1− λ (1−G(c|s)) , (4.44)

car λ =
∑
kf(k) (λ est le nombre moyen d’événements par unité de temps qui dé-

passent le seuil s) On retrouve donc, à des constantes près, un lien simple (linéarité)
entre la loi de renouvellement Prob[C ≤ c|C > s] et la loi G(c|s).

La question est maintenant d’ajuster f etG sur des données. On considère que l’on
a un jeu de nd données couvrant na années ; parmi ces nd données, il y a ns valeurs qui
dépassent le seuil s. Si comme on l’a suggéré plus haut, on choisit f(k) = P(k;λ) =
λke−λ/k! et G(C|s) = E(x − s;µ) = 1 − exp[−µ(C − s)], alors on montre par la
méthode du maximum de vraisemblance que :

λ =
ns
na

et µ =
1

C̄ − s
,

avec C̄ =
∑ns

i=1 ci/ns la moyenne des ns valeurs de C dépassant s (Miquel, 1984).

⇝Démonstration. –Notons tout d’abord qu’avec le choix de f etG, il est possible
de calculer la probabilité conditionnelle P (c|s)

P (c|s) = Prob[C ≤ c|C > s] = exp
[(

1− e−(c−s)µ
)
λ− λ

]
. (4.45)

Il ne s’agit toutefois pas de la fonction de répartition et on ne connaît pas la densité de
probabilité pour les valeurs au-dessous du seuil s, ce qui rend délicate l’application de
la méthode du maximum de vraisemblance. On peut toutefois construire une fonction
de vraisemblance de l’échantillon en se servant des hypothèses à la base du modèle. La

20. Rappel : au premier ordre, on a (1 + ϵ)k = 1 + kϵ + O(ϵ) lorsque ϵ ≪ 1. En posant ici
ϵ = G−1, on trouve le résultat recherché :Gk = (1+G−1)k ≈ 1+k(G−1) = 1−k(1−G).
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fonction de vraisemblance d’un échantillon de ns valeurs ci observées sur na années
et dépassant le seuil s peut se décomposer en deux contributions :

– la probabilité que sur na années, on observe ns événements au-dessus du seuil
s : f(ns;λna) = Prob(k = ns) = (λna)

ns exp(−λna)/ns! ;
– la probabilité que les ns valeurs C = (ci) soient distribuées selon la densité g

g(C;µ|s) =
ns∏
i=1

g(ci,µ|s) = µns exp
[
−µ(

∑
ci − s)

]
.

La log-vraisemblance est donc

ℓ = ln[f(ns;λna)g(C;µ|s)] = ns ln(λna)−λna− ln(ns!)+ns lnµ−µ(
∑

ci−nss),

ce qui permet de déduire les estimateurs de λ et µ

∂ℓ

∂λ
=
ns
λ
− na = 0⇒ λ =

ns
na
, (4.46)

∂ℓ

∂µ
=
ns
µ
−
∑

ci + nss = 0⇒ µ =
ns∑
ci − nss

=
1

C̄ − s
. (4.47)

⊓⊔

En se servant de la relation (4.45), on peut calculer la relation entre quantile et
période de retour

C = s− 1

µ
ln
(
− 1

λ
ln
(
1− 1

T

))
, (4.48)

ce qui permet d’aboutir à une loi approchée de la forme (pour T assez grand) :

C = s+
lnλ
µ

+
1

µ
lnT − 1

2µT
+O(T−2). (4.49)

Il faut remarquer qu’en pratique, on se limite souvent à un développement au premier
ordre ce qui permet d’aboutir à une loi approchée de la forme (pour T très grand) :

C = s+
lnλ
µ

+
1

µ
lnT +O(T−1), (4.50)

qui est également la relation trouvée en faisant un développement limité de la relation
(4.44). On note par ailleurs que le modèle de renouvellement dérivé ici (4.48) est struc-
turellement identique à une loi de Gumbel, ce qui montre le lien fort entre modèles à
seuil et à blocs.
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Figure 4.26 – Variation de C en fonction de T d’après la relation (4.48) (courbe conti-
nue) et approximation à l’ordre 2 (courbe à tiret) donnée par l’équation (4.49) et à l’ordre
1 (courbe pointillée) donnée par l’équation (4.50). Calcul effectué avec s = 1, µ = 1, et
λ = 1.

Application avec une loi binomiale négative

Au lieu d’une loi de Poisson, on peut choisir une loi binomiale négative pour f
(celle-ci donne des résultats un peu meilleurs que la distribution de Poisson lorsqu’il
y a peu de données) : f(i; k, p) = Ck−1

i−1 p
k(1 − p)i−k. En prenant toujours une loi

exponentielle pour G, on trouve alors

P (c|s) = Prob[C ≤ c|C > s] =

∞∑
i=0

f(i; k, p)G(c|s)i = pk
(
e(s−x)µ

(
e(x−s)µp− p+ 1

))−k
.

La relation quantile/période de retour est obtenue en inversant cette équation et en
posant T = 1/(1− P )

C = s− 1

µ
ln
(
p− p

(
1− 1

T

)−1/k

p− 1

)
,

qui peut être approchée par l’expression suivante au second ordre :

C = s+
ln
(
k(1−p)
p

)
µ

+
1

µ
lnT − k + 1

2kTµ
+O(T−2). (4.51)

On note qu’avec la distribution binomiale négative, la distribution conditionnelleP (c|s)
n’est plus de type Gumbel, mais elle ne s’en éloigne pas trop.
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Mise en pratique

En pratique :

– Dans un échantillon x couvrant na années, dont ns valeurs dépassent un seuil
s, on retient les valeurs dépassant ce seuil. On obtient un nouvel échantillon de
valeurs notées (Yi)1≤i≤ns .

– On classe les valeurs par ordre décroissant que l’on note (Ci)1≤i≤ns . On note
C̄ la moyenne empirique de cet échantillon.

– À chaque valeur de rang i, on affecte la probabilité empirique d’occurrence et
la période de retour :

Pi =
i

ns + 1
et Ti =

na
ns

ns + 1

ns + 1− i
.

– On calcule le nombre moyen d’événements dépassant s et le coefficient µ :

λ =
ns
na

et µ =
1

C̄ − s
.

– On reporte dans un diagramme (T ,C) la variation du quantileC en fonction de
la période de retour. On peut reporter à la fois les données (Ti, Ci)1≤i≤na et la loi
du renouvellement ajustée (Eq. 4.50) ou bien (4.51) afin de vérifier visuellement
l’adéquation de l’ajustement.

– L’incertitude d’échantillonnage est (Miquel, 1984) :

Var[C] = 1

ns

(
(C̄ − s)2 + (C − s)2

)
.

4.6.2 Loi généralisée de Pareto

Définition

Il existe un pendant au théorème des valeurs extrêmes pour les maxima. Ce nou-
veau théorème fait appel à la distribution de Pareto. Ce type de méthode est souvent
désigné par le terme Peak Over Threshold (POT).

On considère une série de données X1, X2, etc., indépendantes et identiquement
distribuées, dont la fonction de répartition marginale est F . Sélectionner des événe-
ments extrêmes revient à se fixer un seuil s assez élevé et à retenir toutes les valeurs
de X qui dépassent s. La probabilité conditionnelle est alors pour y > 0

H(y) = Prob[X > s+ y|X > s] =
1− F (s+ y)

1− F (s)
,
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par définition des probabilités conditionnelles. Ce que l’on montre, c’est quand on pos-
sède un nombre suffisant de données et pour s suffisamment grand, alors,H peut être
approché par une distribution généralisée de Pareto.

♦ Théorème. – (Théorème de Pickands) Soient X1, X2, etc., un échantillon de
valeurs indépendantes et identiquement distribuées. On considère les valeurs dépassant
un certain seuil s suffisamment élevé. La distribution de X − s sachant que X > s
est donnée approximativement par la loi généralisée de Pareto Pa(x; σ̂, ξ̂|s), dont la
fonction de répartition s’écrit

G(x) = 1−

(
1 +

ξ̂x

σ̂

)−1/ξ̂

, (4.52)

pour x > −σ̂/ξ̂ et dont les paramètres sont notés ξ̂ et σ̂. On peut relier ces paramètres
à leurs équivalents dans la loi des valeurs extrêmes

ξ̂ = ξ, (4.53)
σ̂ = σ + ξ(s− µ). (4.54)

Les lois de Pareto généralisées et des valeurs extrêmes sont duales, ce qui implique
notamment que comme pour la loi des valeurs extrêmes, le comportement de G est
entièrement dicté par le signe de ξ :

– si ξ < 0, les quantiles associés à la loi de Pareto généralisée sont bornés par
s− σ̂/ξ ;

– si ξ = 0, la distribution tend vers une loi exponentielle de paramètre 1/σ̂

G(x) = 1− exp
(
−x
σ̂

)
,

– si ξ > 0, les quantiles croissent indéfiniment vers l’infini.

Choix de s

Le problème principal est la détermination du seuil s :

– si s est trop petit, les valeurs ne sont pas extrêmes et on ne peut pas espérer que
la densité de probabilité de l’échantillon s’approche d’une loi de Pareto ;

– si s est trop grand, il y a peu de données dans l’échantillon et la variance de
l’estimateur est grande.

La solution mathématique à ce problème de sélection de s est apportée par le résultat
suivant ; en pratique, d’autres techniques peuvent être mises en œuvre (Lang et al.,
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1999). Si les dépassements Y (Y = X − s) sont distribués selon le modèle de Pareto de
paramètres σ et ξ alors

E[Y ] =

∫ ∞

0
yG′(y)dy =

σ

1− ξ
,

sous réserve que ξ < 1 : si ξ ≥ 1 la moyenne est infinie. Considérons maintenant un
échantillonX1,X2, etc., dont les dépassements par rapport à un seuil s0 sont distribués
selon la loi de Pareto généralisée. On a donc

E[X − s0|X > s0] =
σs0
1− ξ

,

où σs0 désigne le facteur d’échelle associé à s0. Si la loi de Pareto décrit les excès deX
par rapport à s0, elle décrit également les dépassements pour tout autre seuil s > s0.
Donc, pour tout s > s0, on trouve en se servant de la relation (4.54)

E[X − s|X > s] =
σs

1− ξ
=
σs0 + ξ(s− s0)

1− ξ
. (4.55)

Il s’ensuit que pour tout seuil s > s0, alors E[X − s|X > s] doit être une fonction
linéaire de s. L’idée est donc de tracer la courbeE[X−s|X > s] = f(s) et de rechercher
le domaine sur lequel la fonction f est linéaire. La connaissance de ce domaine linéaire
permet également de déterminer la valeur de ξ. Notamment si E[X− s|X > s] = f(s)
ne varie pas quand s croît (domaine linéaire horizontal), alors ξ ≈ 0 et un modèle de
Gumbel est bien adapté à décrire les extrêmes de l’échantillon.

Obtention de la période de retour

Il reste encore un peu de travail si l’on veut interpréter le résultat en termes de
période de retour. Pour y arriver on procède de la façon suivante (voir Coles, 2001, pp.
81). La loi généralisée de Pareto Pa(x|σ, ξ; s) s’écrit :

G(x) = Prob[X > x|X > s] =

(
1 + ξ

x− s
σ

)−1/ξ

.

On peut transformer cette probabilité conditionnelle en probabilité de dépassement en
introduisant ζs = Prob[X > s] : Prob[X > x|X > s] = Prob[X > x]/ζs, c’est-à-dire :

Prob[X > x] = ζs

(
1 + ξ

x− s
σ

)−1/ξ

.

Il s’ensuit que le quantile xm associé à la pseudo-période 21 m (c’est-à-dire à la proba-
bilité de dépassement Prob[X > x] = 1/m) et défini tel que Pa(xm|σ, ξ; s) = 1/m
est

xm = s+
σ

ξ

(
(mζs)

ξ − 1
)
,

21. On dit ici pseudo pour différencier avec la période de retour calculée en années.



224 Chapitre 4 Introduction à la théorie des valeurs extrêmes

pourm suffisamment grand (de telle sorte que xm > s) et à condition que ξ ̸= 0. Dans
le cas ξ = 0, alors on a

xm = s+ σ ln(mζs).

Si maintenant on veut transformer cette équation en faisant intervenir la période de
retour T (échelle de temps = année) plutôt que la pseudo-périodem (échelle de temps
= arbitraire), il faut faire coïncider les observations : l’événement de période de retour
T est celui qui se produit en moyenne une fois toutes les T années. S’il y a en moyenne
no observations 22 par année, cet événement correspond à un événement de pseudo-
périodem avecm = Tno, d’où l’on déduit la loi

x(T ) = s+
σ

ξ

(
(Tnoζs)

ξ − 1
)
, (4.56)

si ξ ̸= 0 et
x(T ) = s+ σ ln(Tnoζs), (4.57)

si ξ = 0. Reste maintenant à évaluer ζs. L’estimateur naturel est la proportion de don-
nées dépassant le seuil s ; autrement dit, si on a nd données et que ns parmi ces données
dépasse le seuil s, alors

ζ̂s =
ns
nd
.

Il est possible de faire un lien entre la loi généralisée des valeurs extrêmes (4.1) et
loi généralisée de Pareto (4.52) pour les grandes périodes (T ≫ 1). En effet, pour les
grandes périodes, on a − ln(1− 1/T ) ≈ 1/T de telle sorte que le quantile s’écrit

x(T ) =


si ξp > 0, µ+ σ

ξ

(
−1 + T ξ

)
≈ µ+ σ

ξ T
ξ,

si ξp < 0, µ+ σ
ξ

(
−1 + T ξ

)
≈ µ− σ

ξ ,

si ξp = 0, µ+ σ lnT.
(4.58)

On prendra garde que les coefficients µ, ξ, et σ qui apparaissent dans l’équation (4.58)�
et dans les équations (4.56–4.57) sont différents. Pour les différencier, on emploiera
l’indice p pour se référer aux exposants de Pareto. La comparaison des deux systèmes
d’équation amène à (si ξ > 0)

ξ = ξp, (4.59)

µ ≈ s+ σp
ξp

(
(noζs)

ξ − 1
)
, (4.60)

σ ≈ σp(noζs)ξ. (4.61)

22. Il s’agit ici d’observations quelconques, sans que le seuil soit nécessairement dépassé.
Toutefois, en pratique, pour se simplifier la vie, on ne prendra que les valeurs dépassant le seuil
de telle sorte que ζs = 1. Voir ci-dessous la « mise en pratique ».
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Mise en pratique

En pratique :

– Dans un échantillon x de nd données, couvrant na années et dont ns valeurs
dépassent un seuil s, on retient les valeurs dépassant ce seuil. Le nombre annuel
d’observations et le paramètre ζs sont alors

no =
nd
na

et ζs =
ns
nd
.

On obtient un nouvel échantillon de valeurs notées (Yi)1≤i≤ns .
– On classe les valeurs par ordre décroissant que l’on note (Ci)1≤i≤ns .
– À chaque valeur de rang i, on affecte la probabilité empirique d’occurrence et

la pseudo-période :

Pi =
i

ns + 1
etmi =

ns + 1

i
.

– On calcule la log-vraisemblance ℓ(ξ, σ) de l’échantillon et on recherche les coef-
ficients notés ξp etσpmaximisant cette function. L’incertitude peut être calculée
à l’aide de la méthode vue au § 4.3.4 ou § 4.3.4.

– La courbe quantile = f(T ) est la suivante

x(T ) =

{
si ξp ̸= 0, s+

σp
ξp

(
(Tnoζs)

ξ − 1
)

si ξp = 0, s+ σp ln(Tnoζs)

4.7 Alternatives aux lois de valeurs extrêmes

La théorie des valeurs extrêmes est un outil puissant pour faire des estimations de
quantiles extrêmes, mais elle repose sur des hypothèses (en particular la stationnarité
et l’indépendance des événements) qui peuvent être mises en défaut dans certains cas.

4.7.1 Loi de log-Pearson III

La loi de log-Pearson III est une loi de probabilité à trois paramètres (m, α, λ) :

f(x ; m, α, λ) =
|α|

xΓ(λ)
exp−α(lnx−m)(α(lnx−m))λ−1 pour x > em. (4.62)

Elle est d’un emploi commun dans lemonde anglo-saxon pour décrire les crues (Benson,
1968; Rao & Hamed, 1997) ; les études sur des rivières américaines ont montré qu’elles
décrivaient mieux la statistique des crues que d’autres lois. On se reportera au § A.2.10
pour la forme de cette loi et le calcul de ses moments.
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Lorsqu’une variable aléatoireX est distribuée selon une loi de log-Pearson III, cela
est équivalent à dire que lnX est distribué selon la loi de Pearson III (qui peut être vue
comme une généralisation de la loi gamma) :

g(x ; m, α, λ) =
|α|
Γ(λ)

exp−α(x−m)(α(x−m))λ−1 pour x > m. (4.63)

Il peut être plus commode de travailler avec le logarithme de l’échantillon Y = lnX et
caler les paramètres (m, α, λ) à l’aide de la méthode des moments (Bobée, 1975; Bobée
& Robitaille, 1977):

µ = EY =
λ

α
+m, (4.64)

σ2 = VarY =
λ

α2
, (4.65)

γ = E
[
(Y − µ)3

σ2

]
=

2√
λ

(4.66)

avec γ le coefficient d’asymétrie.

♣ Exemple. – La figure montre 4.27(a) montre l’évolution du débit journalier du
Rhône avant son débouché dans le Léman (à la Porte de Scex). Manifestement, on
voit un effet des barrages sur les débits maximaux du Rhône à partir des années 1960.
Quoique la série temporelle ne remplisse pas les conditions d’application de la théorie
des valeurs extrêmes, on peut tenter de caler une loi de valeurs extrêmes. Si on sup-
pose que ξ = 0 et que cette loi de valeurs extrêmes est une loi de Gumbel, on voit que
cette loi a tendance à surestimer les débits aux grandes périodes de retour. Une loi de
Weibull (ξ < 0 ) donne de meilleurs résultats, mais elle sous-estime considérablement
les débits aux petites périodes de retour.

À l’opposé la loi de log-Person III fournit une description correcte de toute la série
des maxima annuels. Une approche plus physique consiste à considérer que le chan-
gement hydrologique résulte des ouvrages hydroélectriques. Il conviendrait donc de
considérer que les événements sont issus d’au moins deux populations. Une loi de mé-
lange combinant deux lois de Gumbel (voir ci-dessous) donne un résultat correct.

4.7.2 Mélange de lois

Contexte

Dans certains cas, les événements ne sont pas distribués selon une seule et même
loi, mais de deux (ou plus encore) lois. Par exemple, dans la zone d’influence méditerra-
néenne, la plupart des pluies sont dues à des dépressions atlantiques, mais quelquefois
il y a des flux de sud amenant des précipitations importantes. De même, quand on
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Figure 4.27 – Chronique des débits journaliers du Rhône à la Porte du Scex (Vouvry,
VS) depuis le 1er janvier 1905. Les points rouges indiquent les maxi annuels. On a calé
quatre lois de probabilité par laméthode dumaximum de vraisemblance : loi de Gumbel,
loi deWeibull, loi de log-Pearson III, et loi de mélange (combinant deux lois de Gumbel).
Données : OFEV.

examine les débits dans une rivière, on peut être amené à distinguer les crues dues à la
fonte des neiges, aux orages d’été ou à des dépressions automnales ou hivernales. Dans
de tels cas, l’hypothèse de « variable identiquement distribuée » n’est plus vérifiée, et
il faut réfléchir à d’autres approches. Parmi celles-ci, il y a les lois de mélanges (Évin
et al., 2011; Kjeldsen et al., 2018).

Définition à travers un exemple

Par exemple, intéressons aux pluies maximales observées chaque année sur un
bassin-versant et supposons qu’on ait deux types de pluies sur ce bassin-versant, cha-
cune caractérisée par une loi de probabilité dont la densité est noté fi et les paramètres
sont θi. La densité f de la loi de mélange s’écrit alors :

f(x ; θ) = π1f1(x ; θ1) + π2f2(x ; θ2) (4.67)

https://www.hydrodaten.admin.ch/fr/seen-und-fluesse/stationen-und-daten/2009
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où les facteurs π1 et π2 représentent, respectivement, la probabilité qu’un événement
Xi appartienne à la première ou à la seconde famille d’événements. On a donc :

π1 + π2 = 1. (4.68)

On note θ = (θ1, θ2) l’ensemble des paramètres de f . Comme π1 et π2 sont liés, on
peut poser π1 = p et π2 = 1− p avec 0 < p < 1.

En pratique, cela revient à procéder de la sorte :

– pour l’année i, on tire un nombre Ti selon la loi de Bernoulli de paramètre p. Si
ti = 1 alors la chute de pluie est de type 1, et si ti = 2 elle est de type 2 ;

– si la chute de pluie est de type 1, alors on tire un nombre aléatoire xi selon la loi
f1(θ1) ;

– si la chute de pluie est de type 2, alors on tire un nombre aléatoire xi selon la loi
f2(θ2).

La série obtenue combine donc deux informations : le type de pluie ti et son intensité
fi. En pratique, le type ti n’est pas connu 23 ; on dit que c’est une variable latente (c’est-
à-dire cachée).

Définition générale

Quand une variable aléatoire X décrivant un phénomène est tirée d’une popula-
tions comprenant m différentes sous-populations d’événements – sans qu’on sache
préciser à quelle sous-population appartient un événement particulier –, alors X est
décrit par une loi de mélange àm composantes, dont la densité de probabilité (appelée
densité de mélange) s’écrit :

f(x ; θ) =

m∑
i=1

πifi(x ; θi), (4.69)

où πi désigne la probabilité que l’observation x appartienne à la ième sous-population
dont la loi de probabilité est fi(x ; θi), avec les contraintes suivantes :

m∑
i=1

πi = 1 et 0 < πi < 1 pour 1 ≤ i ≤ m. (4.70)

23. On pourrait certes se dire que dans l’exemple traité ici, on pourrait étudier les conditions
météorologiques à l’origine de la pluie et décider de quel type elle est, mais en pratique, on ne
dispose pas d’une telle information, et de ce fait on doit la considérer comme une variable
aléatoire latente.
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Moments

Les moments de la loi de mélange sont :

µ = E[X] = π1µ1 + π2µ2 (4.71)

mk = E[(X − µ)k] =
2∑
i=1

πiE[(X − µi + µi − µ)k] (4.72)

= E[(X − µ)k] =
2∑
i=1

πi

(
k
j

)
E[(X − µi)j ]µi − µ)j (4.73)

où µj est la moyenne de fi(θi). Par exemple, la variance s’écrit :

σ2 = E[(X − µ)2] =
2∑
i=1

πi(µ
2
i + σ2i )− µ2. (4.74)

Quoique la densité f soit une combinaison linéaire de f1 et f2, les moments d’ordre
supérieur à 1 sont une combination non linéaire des moments de f1 et f2. La situation
est fort différente si on définit une variable aléatoireZ comme la somme de deux autres
variables aléatoires : Z = π1Z1 + π2Z2 puisque dans ce cas-là, on a :

VarZ = π1VarZ1 + π2VarZ2.

En pratique, la méthode des moments est peu précise et n’amène pas à de bons
résultats. On lui préfère la méthode du maximum de vraisemblance.

Vraisemblance

Vraisemblance d’un échantillon. La vraisemblance d’un échantillon x de n va-
leurs xi est obtenue en faisant le produit de la densité de mélange (4.69) :

L(x ; θ) =

n∏
i=1

f(xi ; θ) =

n∏
i=1

m∑
j=1

πjfj(Xi ; θj). (4.75)

Le problème est que cette expression fait intervenir les variables latentes πj qui sont
inconnues. On calcule donc la vraisemblance complète, c’est-à-dire la probabilité d’ob-
server l’échantillon (x, t) où t = (ti)1≤i≤n désigne les valeurs latentes (certes toujours
inconnues à ce stade) :

L(x, t ; Θ) =
n∏
i=1

f(xi, ti ; Θ) =
n∏
i=1

f(xi | ti,Θ)Prob(ti |Θ), (4.76)



230 Chapitre 4 Introduction à la théorie des valeurs extrêmes

où l’on s’est servi de la propriété (A.2) et où Θ = (θi, πi)1≤i≤n désigne l’ensemble
des paramètres. Pour développer cette expression, il faut distinguer la contribution de
chaque sous-population :

– la probabilité conditionnelle peut s’écrire en fonction de la fonction indicatrice
Ik(t) définie telle que :

Ik = 1 si t = k et sinon Ik = 0,

ce qui permet d’associer un nombre 0 ou 1 à la variable t selon le type d’évé-
nement auquel elle se réfère. Avec cette notation, on peut écrire la probabilité
conditionnelle :

f(xi | ti,Θ) =

m∏
k=1

fk(xi)
Ik(ti).

f coïncide avec fk uniquement si l’observation xi est tirée de la kème sous-
population.

– la probabilité marginale Prob(ti |Θ) d’observer ti est tout simplement la loi de
Bernoulli généralisée 24 :

Prob(ti |Θ) =
m∏
k=1

π
Ik(ti)
k .

La vraisemblance complète peut donc s’écrire aussi :

L(x, t ; Θ) =
n∏
i=1

f(xi | ti,Θ)Prob(ti |Θ) =
n∏
i=1

m∏
k=1

(fk(xi)πk)
Ik(ti), (4.77)

et sa log-vraisemblance :

ℓ = lnL(x, t ; Θ) =
n∑
i=1

m∑
k=1

Ik(ti)(ln fk(xi) + lnπk). (4.78)

Vraisemblance conditionnelle. Il pourrait sembler qu’on n’ait guère avancé dans
la recherche d’une expression de la vraisemblance libre de paramètre indéterminé puis-
qu’on a toujours les variables latentes ti qui apparaissent dans l’expression de la log-
vraisemblance (4.78). Pour contourner cette difficulté, on calcule la moyenne condi-
tionnelle de ℓ par rapport à la densité conditionnelle Prob(ti | x,Θ′). Notons que l’on
conditionne la moyenne par rapport à un ensemble de paramètres Θ′ qui difère de
celui qu’on cherche à calculer. La raison de cette procédure va apparaître plus bas
lorsqu’on va chercher à implémenter una algorithme de calcul sous la forme d’une

24. Elle n’a pas de nom spécial en français à ma connaissance. En anglais, elle s’appelle
categorical distribution.
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méthode itérative appelée espérance-maximisation (EM). Puisque le jeu de paramètres
Θ′ est supposé connu, on peut calculer explicitement la probabilité conditionnelle
Prob(T = i | X = x, Θ′) ; par définition de la probabilité conditionnelle (A.2), on
a :

Prob(T = i | X = x,Θ′) =
Prob(T = i, x |Θ′)

Prob(x |Θ′)
=
π′ifi(x ; Θ′)

f(x ; Θ′)
(4.79)

pour 1 ≤ i ≤ m et où la densité de mélange (4.69) est f(x ; Θ′) =
∑m

k=1 π
′
kfk(x ; Θ

′).

Pour alléger les équations, on introduit les deux notations suivantes :

– la probabilité conditionnelle (4.79) est notée wi(x ; Θ′) :

wji = Prob(T = i | X = xj ,Θ
′) =

π′ifi(xj ; Θ
′)∑m

k=1 π
′
kfk(xj ; Θ

′)
. (4.80)

Elle peut être interprétée comme la probabilité que l’observation xj soit issue de
la sous-population i.

– Lamoyenne conditionnelle de la log-vraisemblance peut alors s’écrire sous forme

Q(Θ,Θ′) = E[ℓ | t,Θ′]

=
m∑
k=1

ℓ(x, t ; Θ)Prob(tk | x,Θ′),

=

m∑
k=1

n∑
i=1

wikℓ(X = xi, T = k ; Θ). (4.81)

Repartant de la définition (4.77) de la vraisemblance et en utilisant la moyenne
conditionnelle (4.81), on aboutit à la moyenne conditionnelle de la vraisemblance où
l’on suppose que l’on connaît le jeu de paramètres Θ′ :

Q(Θ,Θ′) =
n∑
i=1

m∑
k=1

wik(ln fk(xi ; Θ) + lnπk),

=
m∑
k=1

lnπk
n∑
i=1

wik +
m∑
k=1

n∑
i=1

wik ln fk(xi ; Θ). (4.82)

En comparant les équations (4.78) et (4.82), on note que la fonction indicatrice Ik(ti) est
remplacée par la probabilité conditionnelle wik, qui est supposée connue. La moyenne
Q fournit donc une approximation locale de la log-vraisemblance (voir figure 4.28).

Algorithme d’espérance-maximisation (EM). L’algorithme EM est une mé-
thode itérative pour obtenir le maximum de vraisemblance de la log-vraisemblance
observée ℓ(Θ,x) – définie à l’équation (4.75) – d’un échantillon x de n valeurs. Le jeu
de paramètres Θ que l’on cherche à estimer comprend les paramètres θj de chaque
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Figure 4.28 – Recherche du maximum de vraisemblance par un processus itératif. On
suppose qu’à l’étape k, on connaît une estimation du jeu de paramètres θ, estima-
tion que l’on note θk. On construit la moyenne conditionnelle de la log-vraisemblance
Q(θ, θk), et on recherche le maximum de cette fonction. La nouvelle estimation θk+1

est la valeur qui maximise Q. Ce faisant, le processus tend vers le maximum (qui peut
être local) de la log-vraisemblance ℓ.

distribution de la loi de mélange ainsi que les probabilités πj donnant le poids relatif
de chaque sous-population.

Les étapes du calcul sont les suivantes (Davison, 2003; Robert & Casella, 2010) :

1. On suppose qu’à l’étape k, on a une estimation Θk du jeu de paramètres Θ.
2. On calcule le poids relatif de chaque sous-population wi(x ; Θk) à l’aide de

l’équation (4.80).
3. On en déduit la moyenne conditionnelle de la log-vraisemblance Q(Θ,Θk) en

servant de l’équation (4.82).
4. On définit la nouvelle estimation Θk+1 comme étant la valeur qui maxime Q :

Θk+1 = argmax
Θ

Q(Θ,Θk)

Pour cela, on différentieQ par rapport à chaque paramètre du jeuΘ. On note que
les probabilitésπj n’apparaissent que dans le premier terme deQ dans l’équation
(4.82). Il y a une petite subtilité dans le calcul puisque les probabilités sont reliées
entre elles par la contrainte (4.70). Une façon rapide et élégante d’arriver au
résultat est d’utiliser la méthode des multiplicateurs de Lagrange. On obtient :

πk =
1

n

n∑
i=1

wik, (4.83)

c’est-à-dire la valeur moyenne du coefficient de pondération wk. Les autres pa-



4.7 Alternatives aux lois de valeurs extrêmes 233

ramètres θi de Θ sont obtenus en résolvant les équations

∂Q(Θ,Θk)

∂θi
= 0. (4.84)

5. On continue le calcul jusqu’à ce que la différence |Θk+1−Θk| soit en-deçà d’un
seuil fixé ε.

L’idée de l’algorithme EM est donc d’approcher la log-vraisemblance de l’échantillon
ℓ(Θ, x) par la fonction Q(Θ, Θk), qui lui est tangente au point Θk et reste systé-
matiquement au-dessous d’elle (Do & Batzoglou, 2008). L’estimation à l’étape suivante
Θk+1 tend un peu plus vers la valeur Θ̂ qui maximise ℓ(Θ, x).

♣ Exemple. – Revenons à l’exemple où l’on suppose que les maxima annuels des
précipitations sont issus de deux distributions distinctes. Par exemple, quand on exa-
mine les maxima annuels des chutes de neige journalières sur la haute Tarentaise (à Val
d’Isère), on note que la plupart des chutes de neige sont modérément intenses (moins de
60 mm en équivalent en eau liquide), mais il peut y avoir de temps à autre des chutes
de neige bien plus importantes. En effet, les chutes de neige ordinaires résultent du
passage d’une dépression atlantique, dont la vigueur est fortement atténuée quand elle
arrive vers la bordure frontalière. Il peut y avoir des « retours d’est », c’est-à-dire des
flux de sud qui viennent de Méditerranée, puis qui se mettent à circuler d’est en ouest
quand ils viennent heurter les Alpes. L’air humide et chaud deMéditerranée se refroidit
brutalement et se condense, ce qui cause de fortes chutes de neige sur toute la chaîne
frontalière allant du Mercantour au Tessin.

Nous cherchons à caler une loi de mélange combinant deux lois de Gumbel sur un
échantillon x de n maxima annuels :

f(x) = pf1(x ; µ1, σ1) + (1− p)f2(x ; µ2, σ2), (4.85)

avec 0 < p < 1 et la densité de probabilité de la loi de Gumbel de la forme :

fi(x ; µi, σi) =
e
−x−µi

σi
−e−

x−µi
σi

σi
.

Initialement, on peut obtenir une première estimation des paramètres p, (µ1, σ1) et (µ2,
σ2) en séparant l’échantillon en deux groupes, l’un au-dessus du seuil de 70 cm (chutes
de neige rares) et l’autre au-dessous de ce seuil (chutes de neiges ordinaires). La fraction
p est estimée en calculant le nombre relatif de chutes de neige ordinaires, tandis que
les paramètres (µ1, σ1) et (µ2, σ2) sont estimés à l’aide de la méthode des moments ou
du maximum de vraisemblance.

On suppose qu’à l’étape k, on ait une estimationΘk = (pk, µ1,k, σ1,k, µ2,k, σ2,k).
On calcule facilementwji à l’aide de l’équation (4.80), et on déduit p comme la moyenne∑n

j=1w
j
1. Pour calculer les autres paramètres, on cherche un maximum de Q(Θk+1,

Θk).
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La figure 4.29 compare la loi de Gumbel, la loi de Fréchet et la loi de mélange (4.85).
Sans surprise, la loi de Gumbel ne décrit correctement que les événements ordinaires,
mais sous-estime considérablement les événements associés à T > 20 ans. Le meilleur
accord semble être obtenu avec la loi de mélange, mais comme c’est une loi à cinq
paramètres, il est également naturel qu’elle soit plus performante que la loi de Fréchet.
Si on examine le score AIC, qui permet de classer la performance des modèles au regard
du nombre de paramètres – voir équation (4.105) –, c’est le modèle de Fréchet qui offre
la meilleure performance.

Figure 4.29 – Comparaison des lois de probabilité ajustées sur les maxima annuels
des chutes de neige à Val-d’Isère (France) sur la période 1959–2023. Les données sont
issues des données journalières du modèle Safran (Météo-France). On compare la loi de
Gumbel et la loi de Fréchet calées à l’aide de la méthode du maximum de vraisemblance
à la loi de mélange (4.85) ajustée à l’aide de l’algorithme EM. Les scores AIC sont : 578,3
pour Gumbel, 566,4 pour Fréchet, et 569,9 pour la loi de mélange. De ce point de vue,
le modèle de Fréchet – le modèle avec le score le plus bas – serait le plus performant.
Données : Météo-France.

Formulation alternative : loi exponentielle à deux composantes

On avait noté au § 4.6.1 qu’on pouvait voir la loi de Gumbel comme un processus de
Poisson composé où les événements ont une occurrence décrite par une loi de Poisson
et une intensité par une loi exponentielle (dès lors que cette intensité excède un certain
seuil s). On pourrait sophistiquer le modèle en prenant des lois d’intensité plus com-
plexes comme la loi de Gumbel. Au lieu de considérer que l’intensité des événements

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=230&id_rubrique=40
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suit une seule loi exponentielle, on peut supposer qu’elle suit une loi de mélange de
deux distributions exponentielles Ei de paramètres θi (i = 1, 2) :

G(c) = pE1(c) + (1− p)E2(c),

avec 0 < p < 1 un nombre décrivant la part relative des événementsC1 suivant la loi E1.
Le nombre d’événements par an est toujours décrit par une loi de Poisson ; on note λ1 le
paramètre de Poisson décrivant le nombre annuel d’occurrences des événementsC1 de
type 1, et de façon similaire, λ2 représente le nombre annuel moyen d’événements C2 ;
on a naturellement p = λ2/(λ1+λ2). Alors en généralisant l’équation du processus de
Poisson composé (4.40), on trouve que la probabilité d’observer annuellement C ≤ c
est donnée par (Rossi et al., 1984) :

Prob(C ≤ c) = exp (−λ1(1− E1(c))− λ2(1− E2(c))) ,
= exp (−λ1 exp−θ1c) exp (−λ2 exp−θ2c) . (4.86)

Il s’agit d’une loi à quatre paramètres (λ1, θi, λ1, θi) appelée loi exponentielle à deux com-
posantes 25, parfois appelée double exponentielle ou bi-exponentielle. On peut montrer
qu’asymptotiquement, cette forme est équivalente au produit de deux lois de Gumbel
Gi (Gumbel, 1958, voir § 5.3.6) :

Prob(C ≤ c) = max
i, j

(C1, C2),

= Prob(C1 ≤ c, C2 ≤ c),
= Prob(C1 ≤ c)Prob(C2 ≤ c),
= G1(c)G2(c),

puisque les événements C1 et C2 sont considérés indépendants.

25. Two component extreme value distribution (TCVE) en anglais
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4.8 Algorithmes deMetropolis et simulations de
Monte Carlo

4.8.1 Principe des simulations stochastiques (Monte Carlo)

Les méthodes stochastiques que nous présenterons ici s’appuient sur le théorème
de Bayes (voir §A.1.2). Nous le reformulons sous une forme adaptée au présent contexte.
Nous disposons :

– d’une distribution de probabilité f qui dépend de p paramètres θ = (θ1, θ2, · · · , θp) ;
– de n données (par exemple le débit de pointe sur plusieurs années), que l’on note

génériquement sous la forme d = d1, d2, · · · , dn.

Le modèle f est censé reproduire la distribution de probabilité des données observées.
On suppose par ailleurs que nous disposons d’une information a priori sur les para-
mètres, information qui est traduite sous la forme d’une loi de probabilité (probabilité
que les paramètres soient les « bons » paramètres du modèle) Prob(P ). Cette loi de pro-
babilité est appelée prior. Elle est déduite d’une connaissance experte, d’un précédent
calage, etc. S’il n’y aucune connaissance a priori, on choisit un prior plat, c’est-à-dire
une loi de probabilité uniforme (les paramètres peuvent prendre n’importe quelle va-
leur sans préférence aucune).

Dans notre cas, le théorème de Bayes nous permet d’écrire :

Prob(θ|d) = Prob(d|θ)Prob(θ)∫
dθProb(d|θ)Prob(θ)

, (4.87)

ce qui peut s’interpréter de la façon suivante : la probabilité d’avoir des valeurs de pa-
ramètres θ est égale à la vraisemblance P (d|θ) multipliée par la probabilité a priori
d’avoir θ. Le dénominateur ne sert ici qu’à garantir que le résultat final est bien une
probabilité (l’intégrale de Prob(θ|d) doit être égale à 1). Il s’agit d’un terme intégral
complexe à calculer théoriquement dans la plupart des cas et difficile à évaluer numé-
riquement ; sa connaissance n’est toutefois pas requise dans les simulations de type
Metropolis–Hastings que nous allons voir par la suite. Nous avons déjà vu la notion de
vraisemblance d’un échantillon au § 4.3. Cette quantité renseigne en quelque sorte sur
le degré de vraisemblance d’un échantillon de données si la valeur des paramètres θ du
modèle est connue.

Comment cela marche en pratique? On génère aléatoirement un jeu de paramètres
θ d’après leur loi a priori. On calcule la vraisemblance de l’échantillon de données
P (d|θ) par rapport aux valeurs de θ, puis en se servant de l’équation (4.87), on dé-
duit la probabilité que le jeu de paramètres P et l’écart-type σ soient les « bonnes »
valeurs. Si la vraisemblance de l’échantillon et le prior sont petits, la probabilité résul-
tante Prob(d|θ) sera également petite. Si au contraire, le produit des deux nous donne
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une quantité suffisamment grande, il y a de bonnes chances que le jeu de paramètres
θ soit effectivement proche des « bonnes » valeurs.

Les avantages de l’approche apparaissent clairement :

– il s’agit d’une méthode étonnamment souple puisqu’elle n’exige aucune connais-
sance des propriétés de f ou de f (−1) ;

– l’incertitude de l’estimateur θ̂ peut être déterminée puisqu’on génère une densité
de probabilité Prob(θ) ;

– le nombre de paramètres et de données peut être quelconque.

Un point qui peut laisser le lecteur dubitatif est le poids relatif laissé aux priors.
Que se passe-t-il si l’on part d’un prior faux, c’est-à-dire sans pertinence avec la réalité ?
De simples applications numériques montrent que le poids du prior est très important
quand on a peu de données ; l’utilisation des données pour le calage ne produit qu’un
léger ajustement des paramètres du modèle. En revanche, au fur et à mesure que l’on
prend en compte des nouvelles données, l’influence du prior devient plus faible jusqu’à
devenir négligeable.

Si le principe est simple, la mise en œuvre de la démarche peut sembler délicate
car il faut générer des valeurs selon des lois de probabilité plus ou moins simples et
parce que l’équation (4.14) fait appel à un dénominateur complexe (terme intégral à
calculer) surtout quand la dimension du problème est grande. Heureusement, il existe
des algorithmes très performants comme l’algorithme de Metropolis–Hastings (appelé
plus simplement Metropolis) ou l’échantillonneur de Gibbs, qui permettent de réaliser
cette tâche. Ces algorithmes entrent dans la classe des algorithmes de Monte Carlo
par chaîne de Markov (Markov chain Monte Carlo simulation en anglais), qui utilisent
certaines propriétés de séries dites chaînes de Markov 26. L’avantage majeur de ces mé-
thodes est qu’elles ne requièrent pas le calcul du terme intégral de l’équation (4.14), qui
n’est vu que comme un facteur de proportionnalité.

4.8.2 Algorithme de Metropolis–Hastings

L’idée de base de l’algorithme d’Metropolis–Hastings est d’introduire une distribu-
tion de probabilité à partir de laquelle il est simple de générer des valeurs aléatoires ; une
loi de Laplace-Gauss est un bon exemple. On parle de loi de probabilité instrumentale
et on la note iciQ. On va explorer l’espace de probabilité engendré par P = Prob(θ|d)
en simulant des valeurs de θ, puis en retenant ces valeurs si elles sont cohérentes avec
l’équation (4.14). Cette exploration se fait par saut successif ; la transition d’un état à

26. Rappelons que de manière très sommaire, une chaîne de Markov est une suite de valeurs
xn ; le passage d’une valeur xn à une valeur xn+1 peut être décrit à l’aide d’une loi de probabilité
unique. Par exemple, xn+1 = xn + ϵ avec ϵ tiré selon une certaine loi.
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l’autre se fait à l’aide de la loi Q et en fixant un certain taux de transition, que nous
appellerons taux d’acceptation. En pratique, on procède ainsi

1. On part d’un état P n = x, on tire une valeur « candidate » y∗ selon la loi
Q(y|x).

2. On définit un taux d’acceptation comme suit

r =

{
P (y∗)Q(y∗|x)
P (x)Q(x|y∗) if P (x)Q(x|y∗) > 0

1 if P (x)Q(x|y∗) = 0
(4.88)

3. On accepte la valeur y∗ avec une probabilité r. En d’autres termes, on tire une
valeur aléatoire u d’une distribution uniforme U [0, 1]; si r > u ou bien si r > 1,
alors on accepte y∗ et on pose P n+1 = y∗, sinon on rejette y∗ et on pose
P n+1 = P n.

4. On répète la procédure.

Pour assurer une bonne convergence, le nœud de la difficulté réside dans la sélec-
tion d’une bonne loi instrumentale. Il est souvent avantageux d’opter pour la variante
dite « marche aléatoire » de l’algorithme de Metropolis (Robert, 1996), qui implique
de choisir une loi de probabilité symétrique Q = Q(|x − y|); cela permet notam-
ment de simplifier l’expression du taux d’acceptation r dans l’équation (4.88): r =
min[1, P (y∗)/P (x)]. La convergence de la distribution empirique de (Xn) vers P est
ici garantie à cause de la décroissance exponentielle de la queue de distribution de P .
Un choix fréquemment fait est de prendre une loi de Laplace-Gauss. Dans le cas d’un
problème multidimensionnel p > 1, cette loi est supposée non corrélée et avoir une
matrice de covariance ρ :

Q(·|x) : y ← N (x,ρ).

La matrice ρ doit être ajustée de telle sorte qu’il y ait un bon compromis entre le taux
d’acceptation et la capacité de l’algorithme à explorer tout l’espace de probabilité. Si ρ
est trop grand, une proportion extrêmement large de valeurs candidates sera rejetée,
ce qui conduit à une convergence très lente. À l’opposé, si ρ est trop petit, l’algorithme
acceptera quasiment toutes les valeurs candidates, mais le mouvement relatif d’un état
à l’autre dans l’espace des probabilités sera très petit, ce qui de nouveau conduit à une
faible efficacité. Une règle empirique pour cette version de l’algorithme est d’ajuster ρ
de telle sorte que le taux d’acceptation r soit compris dans l’intervalle 0,25–0,5.

4.9 Intervalle de confiance des quantiles

4.9.1 Problématique

Quand on cale une loi de valeurs extrêmes C = F (T ; θ) (ou tout autre loi de pro-
babilité) sur des données, on peut être intéressé à connaître l’intervalle de confiance
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des quantiles C pour une période de retour donnée, surtout lorsqu’on travaille sur de
petites séries temporelles. Jusqu’à présent, on a montré que l’on pouvait estimer l’in-
tervalle de confiance des paramètres θ = (µ, σ, ξ) de cette loi si on utilise la méthode
du maximum de vraisemblance ou l’inférence bayésienne. En quoi cette connaissance
de l’incertitude sur θ peut-être utile ?

Une approche naïve serait de dire qu’en obtenant l’intervalle de confiance [θ1, θ2]
du paramètre θ, l’intervalle de confiance du quantile C serait [F (T, θ1), F (T, θ2)].
Cette approche est erronée car la loi de valeurs extrêmes F est non linéaire, et donc les
incertitudes ne se propagent pas de façon linéaire.

On peut mettre enœuvre deux approches pour estimer les incertitudes sur les quan-
tiles :

– La première consiste à faire un développement de Taylor afin de linéariser la
relation C = F (T ; θ). Quand la variance de θ est faible, on peut se conten-
ter d’un développement au premier ordre ; dans le cas contraire, il faut pousser
l’ordre du développement de Taylor, ce qui rend la méthode un peu plus labo-
rieuse dans son emploi. Malheureusement, quand on travaille avec des séries
courtes de données hydrologiques, on est rarement dans le cas où la variance de
θ est petite.

– La seconde méthode consiste à utiliser la distribution a posteriori du calage de
C = F (T ; θ) lorsqu’on emploie l’inférence bayésienne.

Il existe d’autres approches plus ou moins simples à utiliser (Kite, 1975; Stedinger, 1983;
Chowdhury & Stedinger, 1991; Bâ et al., 2001). On pourra aussi se reporter à Meylan
et al. (2008) (pp. 105–118) pour une revue de certaines des ces méthodes en hydrologie
et Smith (2013) pour un cadre mathématique et physique plus général.

4.9.2 Approximation par développement de Taylor

Principe

Un problème courant en statistique est de déterminer comment se propagent les er-
reurs ou incertitudes. Supposons que l’on ait une variable aléatoireX dont on connais-
sance la distribution f ou ses moments. On définit une nouvelle variable

Y = v(X),

où v est une fonction continue et différentiable. La question est d’obtenir une informa-
tion sur les moments de Y ou sa loi de probabilité g à partir de l’information connue
sur X . En théorie, on sait que la loi de g est liée à f (voir § annexe A.1.4) :

g(y) = f(x)
dx
dy = f(x)|v′(x)|−1, (4.89)
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En pratique, les choses sont plus compliquées : il est difficile de généraliser cette équa-
tion aux distributions multivariées ; le calcul de la fonction inverse x = v(−1)(y) peut
être impossible à faire analytiquement ; on ne connaît pas f , mais uniquement des mo-
ments (empiriques) de X .

On peut contourner cette difficulté en linéarisant la relation Y = v(X) autour de
la moyenne m (moyenne empirique m = X̄ ou bien espérance m = E(X) selon le
problème considéré) de X :

v(X) = v(m) + (X −m)v′(m) +
1

2
(x−m)2v′′(m) + · · · , (4.90)

d’où l’on tire en appliquant l’opérateur moyenne

E(Y ) = E(v(X)) = v(m) +
1

2
v′′(m)VarX. (4.91)

La variance peut se calculer en élevant l’équation (4.90) au carré, en retranchantE(Y )2,
et en simplifiant l’expression en ne retenant que les termes d’ordre 2. Le résultat peut
être obtenu plus rapidement en utilisant l’identité sur la variance d’une combinaison
linéaire

Var(aX + b) = a2VarX, (4.92)

qui se généralise à deux variables

Var(aX + bY + c) = a2VarX + b2VarY + 2abCov(X, Y ). (4.93)

ou plusieurs variables

Var
(

n∑
i=1

aiXi

)
=

n∑
i=1

a2iVarXi + 2
n∑

1≤i<j≤n
aiajCov(Xi, Xj). (4.94)

De l’équation (4.92), on tire immédiatement qu’au premier ordre on a :

VarY = v′2(m)VarX. (4.95)

Lorsque X est distribué selon la loi normale (ou asymptotiquement distribué selon la
loi normale), ce résultat est appelé en statistique « méthode delta ».

♣ Exemple no 2 – Supposons que X soit tiré d’une loi normale N de moyenne
µ et d’écart-type s. On définit le changement de variable :

Y = v(X) = aX2.

L’équation (4.89) nous permet de calculer la densité de probabilité de Y :

g(Y ) =
N (
√
y/a ; m, s)

2a
√
y/a

,
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qui appartient à la famille des lois du χ2 non centré. L’espérance et variance théoriques
sont donc :

E(Y ) = a(µ2 + s2) et VarY = 2a2s2(2µ2 + s2).

Le développement de Taylor (4.91) à l’ordre 2 nous donne :

Ȳ = v(µ) +
1

2
v′′(µ)VarX = aµ2 + as2 = a(µ2 + s2),

ce qui correspond à lamoyenne théorique. Pour la variance, le développement de Taylor
(4.95) à l’ordre 2 fournit la relation :

VarY = v′2(m)VarX = 4a2µ2s2,

et on en déduit que l’erreur par rapport à la valeur théorique est 2a2s4, soit une erreur
relative :

ε =
2a2s4

4a2µ2s2
=

s2

2µ2
.

Cette erreur relative est petite tant que s≪ µ. ⊓⊔

Application aux lois de valeurs extrêmes

On peut maintenant appliquer la méthode par développement de Taylor à la loi de
valeurs extrêmes (Coles, 2001, pp. 56–57) :

C = F (T ; θ) = µ− σ

ξ

(
1−

(
− ln

(
1− 1

T

))−ξ
)

On s’intéresse ici à calculer la variance VarC connaissance les valeurs de θ = (µ, σ, ξ)
et la variance Varθ = (Varµ, Varσ, Varξ). On suppose que l’on a une estimation des
paramètres θ̂, de la variance empirique Varθ, et éventuellement de la covariance des
paramètres Cov(θi,θk). L’ensemble forme la matrice V de variance-covariance ou tout
simplement covariance (puisque Cov(Xi, Xi) = VarXi).

On introduit les variables intermédiaires pour le cas ξ ̸= 0 :

Cµ =
∂C

∂µ

∣∣∣∣
θ=θ̂

= 1, (4.96)

Cσ =
∂C

∂σ

∣∣∣∣
θ=θ̂

=
1

ξ̂

(
1−

(
− ln

(
1− 1

T

))−ξ̂
)
, (4.97)

Cξ =
∂C

∂ξ

∣∣∣∣
θ=θ̂

=

σ̂
(
− ln

(
1− 1

T

))−ξ̂ ((− ln
(
1− 1

T

))ξ̂ − ξ̂ ln (− ln
(
1− 1

T

))
− 1

)
ξ̂2

.

(4.98)
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La variance du quantile C s’obtient en utilisant la relation (4.94)

VarC =C2
µVarµ+ C2

σVarσ + C2
ξVarξ (4.99)

+ 2CµCσCov(µ, σ) + 2CξCσCov(ξ, σ) + 2CµCξCov(µ, ξ). (4.100)

Il existe une formulation compacte sous forme tensorielle de l’équation (4.99) :

VarC = ∇C · V · ∇C, (4.101)

où ∇C = (∂µC, ∂σC, ∂ξC) est le gradient de C par rapport à θ, évalué en θ̂, dont les
composantes sont données par les équations (4.96)–(4.98).

♣ Exemple no 2 – Prenons l’exemple d’une série courte de données de pluie
journalière d’où on extrait les maxima annuels sont : d = {46, 59,2, 60,4, 74,8, 77,6,
83, 91,4, 94,2, 100,6, 100,8, 108, 108,2, 129,2} mm. Admettons que l’on cale une loi de
Gumbel par la méthode du maximum de vraisemblance ℓ(θ)

C = µ− σ ln
(
1− 1

T

)
.

On obtient :
µ̂ = 75,86 mm et σ̂ = 21,49 mm.

On calcule la matrice d’information observée IO :

IO =

 ∂2ℓ∂µ2
∂2ℓ
∂µ∂σ

∂2ℓ
∂µ∂σ

∂2ℓ
∂σ2

 =

[
0,0281 −0,013
−0,013 0,056

]
,

La matrice de covariance s’en déduit

V = I−1
O =

[
40,01 9,42
9,42 19,91

]
.

Le gradient de la fonction C s’écrit

∇C =

[
∂µC
∂σC

]
=

[
1

− ln (1− 1/T )

]
On peut reformuler l’équation (4.94) sous la forme tensorielle plus compacte

VarC = ∇C · V · ∇C.

On peut utiliser les résultats énoncés au § 4.3.4 pour calculer l’intervalle de confiance.
Par exemple, si on considère l’intervalle de confiance à α = 95 %, on introduit le
quantile zα/2 associé à la probabilité 1−α/2 de la loi de normale centrée (moyenne
0, variance 1) : zα/2 = 1,96. L’intervalle de confiance à 95 % du quantile C s’écrit donc

C(T ) = ∇C · V · ∇C ± zα/2
√

VarC(T ).

La figure 4.30 montre la variation de la pluie journalière maximale en fonction de la
période de retour ainsi que l’intervalle de confiance à 95 %.
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Figure 4.30 – Variation de la pluie journalière P (en mm) en fonction de la période de
retour sur le poste de Chabanon (commune de Selonnet, France) sur la période 2011–
2023. La bande colorée montre l’intervalle de confiance à 95 %. Données : ROMMA.

4.9.3 Approximation par inférence bayésienne

Au § 4.8.1, on a vu l’équation (4.87) qui permet de déduire la probabilité a poste-
riori d’observer le paramètre θ à partir d’un jeu de données d et de la vraisemblance
Prob(d|θ) de ce jeu de données

Prob(θ|d) = Prob(d|θ)Prob(θ)∫
dθProb(d|θ)Prob(θ)

. (4.102)

En pratique, la probabilité a posteriori est estimée numériquement à l’aide d’algorithme
comme celui de Metropolis–Hastings. Plusieurs options sont alors possibles pour dé-
terminer un intervalle de confiance du quantile C(T ).

Une façon de faire est de calculer un échantillon de quantiles F (T, θi) à partir de
θi dans l’algorithme de Metropolis–Hastings, puis lorsque cette étape est achevée, de
calculer les quantiles associées aux probabilités α/2 et 1 − α/2 afin d’avoir une esti-
mation plus précise de l’intervalle de confiance à 100α %. En effet, contrairement à la
méthode utilisée pour la méthode du maximum de vraisemblance, on ne fait pas de dé-
veloppement de Taylor, et donc l’estimation ne nécessite pas d’hypothèse particulière.

♣ Exemple no 2 (suite) – Reprenons les données des maxima annuels de pluie
journalière du poste de Chabanon et calons maintenant les paramètres θ = (µ, σ, ξ)
d’une loi de valeurs extrêmes à l’aide de l’inférence bayésienne et de l’algorithme de
Metropolis–Hastings. Nous prenons comme estimateurs θ̂ la médiane 27 de l’échan-

27. La médiane est le quantile associé à la probabilité 0,5.

https://www.romma.fr/
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tillon θi :
µ̂ = 77,70 mm, σ̂ = 25,60 mm et ξ̂ = −0,24. (4.103)

La matrice de covariance est

V =

64.55 −4.51 −0.27
−4.51 39.86 −0.14
−0.27 −0.14 0.04

 . (4.104)

La figure 4.31 montre les histogrammes de l’échantillon θi. Comme ξ̂ < 0, la loi est
une loi de Weibull. On la compare sur la figure 4.31(d) cette loi avec la loi de Gumbel
calée précédemment.

Pour savoir quelle est la loi qui offre la meilleure représentation des données, on
peut se servir du critère d’information d’Akaike 28 A :

A = 2k − 2 lnL, (4.105)

avec k le nombre de paramètres de la loi et L la vraisemblance de la loi calée. Selon ce
critère, le meilleur modèle est celui qui obtient le score A le plus faible. Ici pour la loi
de Gumbel (k = 2), on a :

A = 2k − 2 lnL = 2(2 + ln 59,7) = 123,4

alors que pour la loi de Weibull (k = 3) on a :

A = 2k − 2 lnL = 2(3 + ln 59,1) = 124,3.

Selon le critère d’Akaike, le modèle de Gumbel est le plus approprié, mais l’écart entre
les deux modèles est trop ténu pour qu’on en tire des conclusions nettes.

La figure 4.32 montre la loi de Weibull calée sur les données d ainsi que l’intervalle
de confiance à 70 % (α = 0,7). Pour la méthode fondée sur le développement de Taylor,
le résultat est facile à établir à l’aide de l’équation (4.99) où la matrice de covariance est
donnée par l’équation (4.104). Pour la méthode fondée sur l’inférence bayésienne, on
construit pour différentes valeurs de la période de retour Tk un échantillon C(Tk, θi),
puis on calcule les quantiles associés à α/2 = 0,15 et 1 − α/2 = 0,85 de cet échan-
tillon. La figure 4.32 montre que pour les petites périodes de retour, les deux méthodes
donnent des résultats similaires, mais on note des écarts sensibles pour T > 10 ans.

28. souvent abrégé par son acronyme anglais AIC : Akaike information criterion.
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Figure 4.31 – Résultat de l’algorithme de Metropolis–Hastings. (a) Histogramme de µ ;
la courbe bleue montre une loi empirique calée sur l’histogramme de l’échantillon θi.
(b) Histogramme de σ. (c) Histogramme de ξ. (d) Variation du quantile de pluie journa-
lière P24(T ) en fonction de la période de retour T . On a reporté la courbe de Weibull
calée par inférence bayésienne et la courbe de Gumbel calée par la méthode du maxi-
mum de vraisemblance. La simulation a été réalisée en prenant de lois instrumentales
normales pour les paramètres µ et σ, et une loi normal tronquée pour xi (en sorte que
−0,5 ≤ ξ ≤ 0,5). Un échantillon de 5× 105 valeurs a été généré.
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Figure 4.32 – Variation du quantile de pluie journalière P avec la période de retour T .
On a reporté les intervalles de confiance à 70 % (α = 0,7) tels qu’établis par développe-
ment de Taylor ou bien par estimation des quantiles empiriques.



CHAPITRE5
Crues liquides et inondations

O
n commence par passer en revue les principales notions d’hydrologie né-
cessaires à comprendre et calculer les caractéristiques d’une crue. On s’in-
téresse ensuite au cas des petits bassins-versants de montagne et piémont,

qui présentent une très grande variété de comportement hydrologique ; on passe en
revue les différentes classes de comportement. Dans la dernière partie du chapitre, on
présente les différentes stratégies de détermination du débit de pointe et de l’hydro-
gramme de crue. L’accent est surtout mis sur les méthodes de prédétermination en
l’absence d’observations sur un bassin-versant

Fournir une vision générale du comportement hydrologique d’un bassin-versant
est une entreprise délicate. Il existe en effet une multitude d’échelles de taille : du petit
bassin-versant de montagne de quelques hectares au bassin-versant d’un fleuve cou-
vrant plusieurs milliers de km2. À chaque échelle sont en général associés des phé-
nomènes qui peuvent différer grandement et donc des méthodes de calcul différentes.
On s’intéressera ici plus particulièrement aux petits bassins-versants de montagne tels
qu’on peut les trouver en Suisse et sur l’arc alpin.

5.1 Quelques rappels d’hydrologie

On fournit ici quelques définitions utiles pour comprendre la suite du cours. Pour
approfondir ou réviser les notions importantes, on pourra se reporter utilement au livre
Brutsaert (2005) plutôt orienté sur les aspects physiques et celui de Musy & Higy (2004)
donnant un aperçu général et plutôt centré sur une approche d’ingénieurs.

5.1.1 Définitions

Hyétogramme : un hyétogramme est une représentation de l’intensité de la pluie
tombée en fonction du temps. Comme en général, la pluie est recueillie par un pluvio-
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graphe, l’intensité est intégrée sur un pas de temps de quelques minutes. Les courbes
ont en général l’allure d’un histogramme (voir figure 5.1). Les précipitations ont géné-
ralement des intensités aléatoirement distribuées dans le temps et en conséquence, les
hyétogrammes présentent des formes complexes qui sont difficiles à caractériser. Le
plus souvent on se contente de définir le cumul de pluie P sur un pas de temps de fixe
d et l’intensité moyenne associée Im = P/d. Il existe des méthodes plus sophistiquées
qui permettent de fournir des hyétogrammes synthétiques qui cherchent à reproduire
les caractéristiques principales des hyétogrammes observés. On peut citer :

– les méthodes analytiques de Keifer, de Normand, LHM, etc. ;
– les méthodes numériques de générateur de pluie, fondées sur un tirage aléatoire

des pluies sur un pas de temps donné.

On verra la méthode Shypre dans ce cours (voir la section « Simulateur des pluies » en
fin de chapitre). Un pluviogramme est une courbe représentant la somme des précipi-
tations depuis un temps initial de référence ; c’est donc une courbe croissante au cours
du temps.

P

t

Figure 5.1 – Hyétogramme.

Pluviomètre et pluviographe : les eaux de pluie sont collectées dans des récep-
tacles. Un pluviomètre est un récipient normalisé qui recueille les eaux de pluie jour-
nalières ; la mesure se fait de 7 h TU 1 à 7 h le lendemain. Dans un pluviographe, la
hauteur de précipitation est mesurée en continu au cours du temps (et non plus sur
une durée journalière). En zone de montagne où l’accès est difficile, on place parfois
des totalisateurs qui enregistre le cumul annuel de précipitations (de début octobre à
fin septembre).

Pluie brute/nette/utile : la pluie brute est la quantité de pluie mesurée par un
pluviographe sur une certaine durée t. Une partie de la lame d’eau tombée contribue
directement à la crue (ruissellement), une autre partie sera infiltrée, interceptée par les

1. TU : temps universel.
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végétaux. Selon l’état du sol (saturation du sol) et l’intensité de la pluie, un écoulement
superficiel (ruissellement) est en effet provoqué par la pluie ; la quantité de pluie qui
participe à l’écoulement direct est appelée pluie utile. Si la pluie dure suffisamment
longtemps, une partie de l’eau infiltrée peut également participer à la crue (écoule-
ment hypodermique). La quantité de pluie qui participe à la crue par ruissellement ou
écoulement hypodermique est appelée pluie nette.

Intensité : l’intensité est la vitesse de précipitation, en général mesuré en mm/h,
d’une pluie. On peut définir une intensité moyenne Im d’une pluie P tombée pendant
un temps δt : Im = P/δt. On peut aussi définir une intensité instantanée : I = dP/dt.
Il existe des lois intensité-durée pour les pluies comme la loi de Montana (voir § 5.2.1).

Hydrogramme : un hydrogramme est une représentation graphique montrant la
variation du débit « instantané » dans un cours d’eau en fonction du temps. Ce débit
instantané est généralement moyenné sur un pas de temps (10 min, horaire). Pour les
besoins des calculs hydrauliques, on introduit souvent un hydrogramme synthétique,
qui vérifie un certain nombre de propriétés (débit de pointe, volume de crue, tarisse-
ment, différents temps caractéristiques) similaires aux crues de la rivière étudiée, mais
présente une forme beaucoup plus simple (en général, courbe avec un seul pic de crue).
Un hydrogramme unitaire est l’hydrogramme d’une crue générée par une pluie unitaire,
c’est-à-dire une pluie d’intensité constante sur une certaine durée et dont le cumul est
de 1 mm; cette notion sert dans les méthodes de transformation pluie-débit.

Crue : il existe plusieurs définitions du mot crue. Ici, crue désigne un événement
caractérisé par une rapide augmentation du débit. Plusieurs paramètres sont utilisés
pour décrire une crue

– le débit de pointe : c’est le débit maximal de la crue. Le débit de pointe est un débit
instantané, qui est difficile à estimer si l’on dispose de chroniques de débits avec
des pas de temps longs (de quelques heures à la journée). Il est parfois possible de
déterminer le débit de pointe instantané Qp à partir du débit moyen journalier
Qj à l’aide de formule :

Qp = rQj avec r = 1 +

(
2,66

S

)0,3

,

avec S la surface du bassin-versant en km2. Le coefficient r est appelé coefficient
de pointe. En pratique, r n’est pas une constante, mais varie selon la période
de retour. Dans le cadre de la synthèse nationale sur les crues de petit bassin-
versant, les hydrologues du Cemagref ont proposé l’expression suivante pour
des crues décennales (T = 10 ans) (CTGREF, 1979; Laborde, 1999)

r = 1 +
9,1

d0,84s

(
Q10

Q2
− 1

)
,

où Q10 est le débit moyen journalier décennal, Q2 le débit moyen biennal, ds la
durée spécifique (en h). Si la durée spécifique n’est pas connue, on peut utiliser
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la relation

r = 1 +
2,5

S0,36

(
Q10

Q2
− 1

)2/3

,

avec S la surface du bassin-versant en km2;
– le volume de crue : c’est le volume d’eau mobilisé durant la crue. On introduit

souvent le volume d’eau V correspondant au débit Q supérieur à un seuil s

V =

∫
Q≥s

Qdt.

Le temps de montée est en général assez rapide : c’est le temps entre le débit
avant la crue (débit de base) et le débit de pointe. Le temps entre la fin de la pluie
et le débit de pointe est appelé temps de réponse ; parfois, on préfère définir
le temps de réponse du bassin par rapport à la pluie utile. Plus couramment, on
introduit le temps de concentration qui est le temps que mettrait une goutte entre
le moment où elle tombe et le moment où elle franchit les limites du bassin-
versant après avoir rejoint le cours d’eau. C’est une quantité difficile à estimer
car elle se mesure entre la fin de la pluie utile et la fin de l’écoulement direct
(ruissellement). La durée caractéristique ds est le temps durant lequel le débit
instantané est supérieur à un seuil s = 1

2Qp fixé à la moitié du débit de pointe.
Ce temps peut se mesurer facilement dès lorsqu’on a un hydrogramme de crue.

Qb

Qp

V

t

débit

pluie

tr tm td

ds

Qp/2

Figure 5.2 – Définition des temps et débits lors d’une crue.
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Surface : la surface du bassin-versant est la superficie de toutes les parcelles drai-
nées par le bassin-versant (c’est-à-dire une goutte d’eau qui tombe sur une parcelle se
retrouve après un certain laps de temps dans le cours d’eau du bassin-versant). Quand
on emploie des méthodes de prédétermination, la surface mesurée sur la carte est la
surface projetée ; si on connaît un angle moyen de pente, on peut estimer la surface du
bassin-versant.

Pluie centrée/non centrée : les mesures à l’aide d’un pluviographe sont réalisées
à pas de temps fixe (en général de 7 h TU à 7 h TU le lendemain). Quand on s’intéresse
aux pluies maximales de durée 24 h, il n’y a aucune raison pour que cette pluie soit
observée durant un créneau de mesures J à J + 1 ; il est plus vraisemblable que cette
pluie maximale soit à cheval sur deux journées. Il s’ensuit que si l’on recherche les
maxima journaliers avec un pas de temps glissant ou bien au contraire avec un pas de
temps fixe, on aboutit à des valeurs différentes : les valeurs « glissantes » sont appelées
pluie centrée (sur le maximum de pluie en 24 h) et sont systématiquement supérieures
à celles obtenues sur une grille de temps fixe, appelées pluies non centrées. L’étude
statistique montre qu’il existe une relation linéaire stable entre les pluies de n jours
centrées et celles non centrées :

Pc = αnPnc,

avec αn = (1 − 1/(8n))−1 le coefficient de Weiss. Pour les pluies journalières, on a
α1 = 1,14.

P

t

J J+1

Pluie centrée

Figure 5.3 – Pluies centrée et non centrée.

Abattement et épicentrage : la pluie est un phénomène complexe qui varie dans
l’espace à un instant donné. La distribution spatiale instantanée de l’intensité de pluie
peut être mesurée à l’aide de la signature radar des précipitations ; à plus grande échelle,
le réseau de pluviographes permet également de connaître la distribution spatiale de
la pluie intégrée sur un certain pas de temps. Le plus souvent, pour un bassin-versant
donné, on ne dispose pas d’informations sur la distribution des pluies ; dans le meilleur
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des cas, on a une information ponctuelle et il faut tenter de savoir comment cette me-
sure ponctuelle renseigne sur ce qui se passe à l’échelle de tout le bassin-versant. On
définit un coefficient d’abattement ka comme le rapport entre la lame d’eau précipitée
PBV sur tout un bassin-versant et la mesure locale de la pluie P

ka =
PBV
P

.

En général, ka est dans la fourchette 0,9 à 1 pour les petits bassins-versants (S < 5 km2),
mais diminue jusqu’à atteindre des valeurs de 0,5 pour les grands bassins-versants (S >
100 km2). Pour de petits bassins-versants de montagne, il est possible que ka > 1. Il
existe plusieurs études visant à fournir des estimations de ka selon la taille du bassin-
versant et la période de retour de la pluie. Par exemple, le coefficient d’abattement
employé dans la méthode Socose est

ka =
1

1 +

√
S

30
3
√
d

,

avec S la surface du bassin-versant en km2 et d la durée de la pluie en h. Laborde (1999)
arrive à une expression assez similaire pour le coefficient d’abattement

ka = 1−
√
S

3d0,42
.

L’épicentre d’une pluie est le lieu du bassin-versant où la quantité de pluie précipi-
tée sur une durée d est maximale. On observe en générale une diminution de P en loi
puissance en fonction de la distance depuis l’épicentre. Le coefficient d’épicentrage ke
est le rapport entre la pluie à l’épicentre Pep. et la pluie locale P mesurée à une distance
r de l’épicentre

ke(r) =
Pep.
P

.

Une formule, calée sur le bassin-versant de l’Orgeval dans la région parisienne, fournit
l’estimation suivante

ke = 1 +
(
0,03 + 0,026 lnT + 0,32ed/20

)
ln(1 + S),

avec d la durée de la pluie en h, S la surface du bassin-versant en km2, et T la période
de retour en années.

5.1.2 Effet de l’altitude

L’altitude est un facteur de complexité dans l’intensité et la distribution spatiale
des pluies sur un bassin-versant. En altitude, les pluies dépendent d’une multitude de
facteurs :

– la position du relief par rapport aux océans et leur orientation générale par rap-
port aux flux ;
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Figure 5.4 – Écho radar des précipitations sur l’Arc alpin lors des crues observées en
août 2007 sur la Suisse centrale. Source : Météo Suisse.

– les conditions météorologiques à l’échelle synoptique (interaction des courants
avec les massifs, phénomène de blocage) ;

– les conditions météorologiques à une échelle locale (phénomène de convection
le long des reliefs lors de journées chaudes).

La figure 5.5 montre la répartition des cumuls annuels de précipitations pour les pays
alpins. S’il y a clairement plus de précipitations sur les zones d’altitude, le relief et la
proximité avec la mer Méditerranée jouent un rôle primordial.

Il existe en général un lien entre pluie et altitude, mais ce lien n’est ni systématique,
ni univoque :

– pour les longs pas de temps (pluie sur un à plusieurs jours, cumul annuel ou
mensuel de précipitations), on note en général que les précipitations augmentent
avec l’altitude. Le gradient hypsométrique est généralement dans la fourchette
23–60 mm par tranche d’altitude de 100 m (moyenne autour des 30 mm/100 m)
(Castellani, 1986) ;

– toutefois, dans des régions de collines ou des montagnes à faible pente (par
exemple région cévenole dans la partie méridionale du Massif central), les pluies
peuvent diminuer avec l’altitude surtout aux petits pas de temps. Il y a alors sou-
vent une altitude limite (quelques centaines de mètres) en piémont, au-dessus
de laquelle les précipitations diminuent ;

– pour les petits pas de temps (pluie de quelques heures), le gradient hypsomé-
trique est faible quand il existe (±0,5 − 5 mm par tranche d’altitude de 100 m
pour la pluie horaire). Il est alors possible d’utiliser un poste en fond de vallée
pour estimer les pluies de faible durée en altitude.
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Figure 5.5 – Distribution des cumuls annuels de précipitations dans les Alpes (valeur
moyenne en mm/j) ; la carte a été établie par krigeage de stations de mesures. Source :
Frei et al. (2003). Voir aussi le site du projet EURO4M-APGD (Météo Suisse).

De 1987 à 1995 a été menée une expérience intéressante dite TPG (transect de plu-
viographes pour l’analyse et la modélisation des gradients d’intensité en altitude), qui
consistait à étudier une série de 23 pluviographes placés le long d’une ligne quasiment
droite entre le Lyonnais et le Grésivaudan sur une distance d’environ 60 km (Desurones
et al., 1993). Ce transect traversait une région de collines et le massif de la Chartreuse,
puis venait buter contre le flanc occidental du massif de Belledonne. sa direction est
nord-ouest, c’est-à-dire celle des grosses dépressions atlantiques. On reporte les pluies
journalières décennales (extrapolées) ainsi que les valeurs des coefficients d’une loi
intensité-fréquence (loi exponentielle + loi deMontana) dans le tableau 5.1. La figure 5.6
montre la variation de pluie journalière décennale avec l’altitude. On note clairement
un effet de l’altitude entre les postes du Bas Dauphiné et deux de Chartreuse, toute-
fois il s’agit plus d’une tendance que d’une corrélation forte. Si on prend des postes
en particulier, par exemple Perquelin ou La Diat (tous deux près de Saint-Pierre-en-
Chartreuse), c’est plus le relief (blocage lié au relief abrupt) que l’altitude qui explique
l’intensité des précipitations.

Sevruk (1997) a analysé 340 postes sur toute la Suisse. Il a également trouvé que les
cumuls annuels de précipitations étaient fortement corrélés avec l’altitude :

– Suisse orientale : Pa = 1,57z + 415 mm;
– Suisse occidentale et septentrionale : Pa = 0,866z + 773 mm;
– Tessin : Pa = 0,226z + 1711 mm.

Schwarb et al. (2001) ont analysé les données issues de 5831 pluviomètres classiques
et 259 totalisateurs à travers les Alpes. L’interpolation des données a permis d’établir

https://www.meteoswiss.admin.ch/home/services-and-publications/produkte.subpage.html/en/data/products/2015/alpine-precipitation.html
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Tableau 5.1 – Pour les 23 stations du transect Chartreuse-Belledonne, on reporte l’al-
titude, les coefficients du couplage d’une loi exponentielle et d’une loi de Montana :
P (T, d) = (µ+ σ lnT )d1−b, et la pluie journalière décennale.

station altitude mode µ gradex σ coefficient de Montana b P
m mm/hb−1 mm/hb−1 mm

Bas Dauphiné
Ruy 395 16,84 4,74 0,567 85
Cessieu 320 24,45 7,34 0,662 93
Paladru 494 21,31 5,87 0,651 82
Panissage 395 18,75 5,06 0,619 80
Massieu 470 21,71 6,36 0,677 78
La Boutière 750 21,98 5,88 0,635 89
Les Vernays 600 20,46 5,54 0,613 89
Saint-Laurent-du-Pont 410 27,63 7,91 0,746 80
Chartreuse
Orcière 500 23,81 5,77 0,580 112
La Diat 800 22,59 5,41 0,545 119
Les Essarts 1350 19,89 4,67 0,567 97
Perquelin 1000 20,56 5,25 0,581 98
La Scia 1700 20,71 5,57 0,627 86
Saint-Michel-du-Touvet 1300 23,63 6,06 0,621 99
Saint-Bernard-du-Touvet 910 19,54 5,00 0,582 93
Grésivaudan
Lumbin 230 16,95 4,58 0,617 73
Froges 230 19,63 5,21 0,610 86
Belledonne
Goncelin 780 21,3 5,88 0,685 74
Les Berts 940 20,59 5,53 0,622 87
Pipay 1350 21,98 5,64 0,618 93
Praoutel 1580 18,13 6,01 0,628 79
Haut de Pipay 1820 22,36 6,10 0,595 103
Chalet des Fanges 1270 28,5 7,13 0,635 114

des cartes de cumul de précipitations. Pour la Suisse (voir figure 5.7), l’étude montre :

– dans les massifs internes (Valais, Engadine), il y a des zones sèches qui reçoivent
bien moins de précipitations que les zones externes. La variabilité interannuelle
est peu prononcée, et il n’y a pas de corrélation entre cumul annuel de précipi-
tations et altitude ;

– la zone externe est plus humide ; elle se caractérise par une forte corrélation
entre précipitations et altitude. La variabilité interannuelle est significative (de
l’ordre de ±15 % pour les cumuls annuels d’une année à l’autre).
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Figure 5.6 – Variation de la pluie journalière décennale (en mm) en fonction de l’alti-
tude (en m) pour le TPG. Source : Vetter (2004).

Dans leur étude, Schädler & Weingartner (2002) montrent que seule la Suisse oc-
cidentale se caractérise par un gradient hypsométrique constant de l’ordre de 80 mm
par tranche de 100 m d’altitude (voir figure 5.8). Pour les autres régions, il n’y a pas
de corrélation entre cumul annuel et altitude (éventuellement on pourrait parler de
corrélation négative pour le sud des Alpes et les altitudes supérieures à 2000 m).

Une étude menée par une équipe italienne sur la partie nord-ouest des Alpes ita-
liennes a tenté de déduire l’influence de l’altitude (moyenne) d’un bassin-versant sur
les débits liquides (Allamano et al., 2009). À partir de l’analyse de 57 bassins-versants
de 1 à 104 km2 et d’altitude moyenne comprise entre 500 et 3000 m, ils ont trouvé que
le débit spécifique (décennal) diminuait notablement avec l’altitude, avec d’après eux
une diminution de 0,06 m3/s/km2 du débit spécifique par tranche de 100 m d’altitude. Il
y a également une variabilité très contrastée des débits, qui est d’autant plus marquée
qu’on est à basse altitude :

– entre 500 et 1000 m d’altitude, le débit spécifique varie dans une fourche large
0,1–3,8 m3/s/km2;

– entre 1000 et 2000 m, la fourchette est plus étroite : 0,2–2,5 m3/s/km2;
– au-dessus de 2000 m, le débit spécifique est situé dans une fourchette étroite

0,1–1 m3/s/km2.
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Figure 5.7 – Variation du cumul annuel de précipitations avec l’altitude selon le tran-
sect nord-sud. Source : Spreafico & Weingartner (2005).



258 Chapitre 5 Crues liquides et inondations

+

+

+

+

+

+

+

+

+















*

*

*

*

*

●

●

●

●

●

●

●

●

●

●

1000 1200 1400 1600 1800 2000 2200

0

500

1000

1500

2000

2500

3000

+ nord des Alpes

 Valais

* Grisons

● sud des Alpes

Figure 5.8 – Variation du cumul annuel de pluie avec l’altitude pour quatre zones
climatiques en Suisse. La courbe tiretée est la tendance Pa = 0,866z+773mm pour la
Suisse occidentale donnée par Sevruk (1997). Source : Schädler & Weingartner (2002).
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5.2 Quelques formules utiles

5.2.1 Loi de Montana

La loi de Montana est une représentation de la pluie (cumul ou intensité moyenne)
en fonction de leur durée d :

P (T, d) = ad1−b,

I(T, d) =
P

d
= ad−b (5.1)

– P : pluie de durée d (en s, mn, h, ou j) pour une période de retour T donnée (en
années) ;

– I : intensité de la pluie de durée d ;
– a et b : premier et second coefficients deMontana (dépendant des unités choisies)

qui sont fonctions de T .

Pour la Suisse (voir figure 5.9) et la plupart des pays occidentaux, on peut utiliser
la loi de Montana sur des durées allant de quelques minutes à plusieurs journées. Dans
un contexte méditerranéen (le cas de Locarno pour la figure 5.9), les pluies de longue
durée sont moindres que ce que donne une loi de Montana calée sur les petites durées.
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+ Bâle , I = 53. d-0.9

� Davos , I = 35. d-0.6

* Lausanne , I = 65. d-0.8

● Locarno , I = 96. d-0.6

△ Lugano , I = 80. d-0.7

○ Sion , I = 25. d-0.6

□ Zürich , I = 78. d-0.8

■ Rotenbach , I = 66. d-0.7

▲ Sperbelgraben , I = 57. d-0.8

* Rappebgraben , I = 51. d-0.7

Figure 5.9 – Variation de l’intensité de la pluie de période de retour T = 100 en
fonction de la durée d et calage d’une loi de Montana. Source : Forster & Baumgartner
(1999).

Il existe d’autres formulations telles que

I(T, d) =
a

dn + b
,
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avec n un autre paramètre fonction de T ; le cas n = 1 correspond à la formule de
Talbot, qui donne généralement de bons résultats pour les durées courtes (moins de 3
h). On définit aussi une intensité instantanée i de la pluie de durée d en introduisant

i =
dP
dd = (1− b)ad−b.

5.2.2 Temps de concentration

Le temps de concentration est le temps maximal pour qu’une goutte parcourt tout
le bassin-versant entre l’endroit où elle tombe et l’exutoire de ce bassin. C’est une gran-
deur conceptuelle qui a émergé dès les premières tentatives de modélisation de la ré-
ponse hydrologique d’un bassin-versant au xixe siècle (Beven, 2020). Dans les modèles,
le temps de concentration est souvent compris comme le temps entre la fin de la pluie
nette et la fin du ruissellement direct. En pratique, c’est une grandeur difficile à évaluer.
Aujourd’hui, on lui préfère d’autres grandeurs telles que la durée spécifique.

Il existe plusieurs formules d’usage courant, certaines relativement vieilles comme
la formule de Kirpich qui date de 1940 et a été élaborée à la suite des crues qui ont frappé
le nord-est des États-Unis en 1936 (Folmar et al., 2007) ; les données ayant servi à l’éla-
boration de ces formules sont souvent indisponibles et il convient d’être particulière-
ment méfiant dans l’utilisation des formules empiriques. La dispersion des prédictions
fournies par les formules est considérable puisqu’on peut facilement trouver un ordre
de grandeur quand on fait des applications sur de petits bassins-versants de quelques
km2. La comparaison entre prédictions et données sur de petits versants de montagne
montre également que la plupart des formules surestiment les temps de concentra-
tions, souvent d’un facteur entre 2 et 5, parfois jusqu’à 30 (Quefféléan, 2015) ; pour
les bassins-versants de montagne de plus grande taille (dans la fourchette 100–1500
km2), (Ravazzani et al., 2019) trouvent une dispersion des formules de ±50 % par rap-
port aux valeurs estimées. La dispersion des formules est également significative dans
les bassins-versants urbanisés (McCuen et al., 1984).

On prendra garde également aux unités des variables employées. Ces unités peuvent
varier d’une méthode à l’autre. Les méthodes empiriques nécessitent de préciser cer-
taines caractéristiques du bassin-versant telles que la superficie S et la longueur du
cours d’eauL. La superficie est souvent comprise comme la surface projetée, non la sur-
face réelle, car du point de vue des précipitations c’est la surface projetée qui importe.
En théorie, la longueur du cours d’eau est la longueur du chemin hydraulique le long
du terrain naturel (ce n’est donc pas nécessairement la longueur que l’on mesure sur
une carte, surtout si le bassin-versant est à forte pente). En pratique, toutefois, il s’agit
souvent d’une longueur projetée. Il existe des formules empiriques qui permettent de
relier S et L. Marchi et al. (2010) ont examiné 60 bassins-versants en Europe et ont
obtenu

L = 1,51S0,557
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tandis que Quefféléan (2015) a obtenu

L = 1,87S0,53

sur 275 bassins-versants des Alpes et Pyrénées françaises.

Formule de Turraza (1867)

tc = 0,108
3
√
SL√
im

– tc : temps de concentration en h ;
– S : surface du bassin-versant en km2 ;
– L : longueur du chemin hydraulique le plus long en km;
– im : pente moyenne pondérée le long du thalweg en % définie comme

1√
im

=
1

L

n∑
k=1

ℓk√
ik
,

avec ℓk la longueur du ke tronçon du thalweg, de pente ik.

Formule de Kirpich (1940)

tc = 19,47× 10−3L
0,77

i0,385

– tc : temps de concentration en min ;
– L : longueur du chemin hydraulique en m;
– i : pente moyenne du cours d’eau en %.

Formule de Ventura–Passini (1905–1910)

tc = α
3
√
SL√
im

– tc : temps de concentration en h ;
– α : coefficient de Ventura–Passini (0 < α < 2)

α = c−5/3a−2/3,

avec c coefficient de ruissellement et a coefficient de Montana (norme suisse
d’assainissement) ;
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– S : surface du bassin-versant en km2;
– L longueur du thalweg le plus long en m;
– im : pente moyenne pondérée le long du thalweg en % définie comme

1√
im

=
1

L

n∑
k=1

ℓk√
ik
,

avec ℓk la longueur du ke tronçon du thalweg, de pente ik.

Formule de Sogreah

tc = 0,90

(
S
c

)0,35 1√
i

– tc : temps de concentration en min ;
– S : surface du bassin-versant en ha ;
– c : coefficient de ruissellement ;
– im : pente moyenne le long du thalweg en %.

Cette formule est appelée aussi « formule de Dujardin ».

Formule d’Izzard–Meunier (1946)

tc = β
S0,312

i0,625

– i : pente moyenne en % ;
– tc : temps de concentration en min ;
– S : surface du bassin-versant en km2 ;
– β : coefficient de Meunier valant β = 331 pour un bassin-versant végétalisé et
β = 145 lorsque le bassin-versant est dégradé.

Formule SNV

La Schweizerische Normen-Vereinigung 2 (SNV)

tc = 5 + β
12L

C5/3K2/3
√
i

– tc : temps de concentration en min ;

2. Association suisse de normalisation.
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– C : coefficient de ruissellement ;
– K : coefficient de la SNV, qui est fonction de la période de retour et du lieu ;
– L : longueur de la ligne d’eau principale (en m) ;
– i : pente de la ligne d’eau (en %).

Formule de Li–Chibber (2008)

Li & Chibber (2008) ont étudié le ruissellement sur des parcelles faiblement incli-
nées et de petites dimensions (17 m2), dont ils changeaient l’état de surface. Ils ont
établit le temps de concentration en corrélant les valeurs mesurées aux variables du
problème :

tc = 0,3L0,5n0,32θ−2,277i−0,172I−0,646.

avec

– tc : temps de concentration en min ;
– L : longueur en m;
– n : coefficient de Manning ;
– θ : saturation du sol en (de 0 à 1) ;
– I : intensité de la pluie (en mm/h) ;
– i : pente de la ligne d’eau (en %).

Estimation théorique du temps de concentration

Des modèles conceptuels ont été élaborés pour estimer le temps de concentration.
L’idée est d’examiner le cheminement d’une goutte d’eau entre son point de chute et
l’exutoire du bassin-versant. Des outils de simulation à partir de système d’informa-
tion géographique ont été développés à cette fin (Michailidi et al., 2018). Des modèles
analytiques ont également été obtenus pour déterminer la dépendance du temps de
concentration vis-à-vis des paramètres du bassin-versant (Henderson&Wooding, 1964;
Singh, 1976; Zeller, 1981; Beven, 1982; Loukas &Quick, 1996; Baiamonte & Singh, 2016;
Beven, 2020). La section 5.6.4 illustre le principe de ces calculs en traitant le cas d’un
petit bassin versant.

5.2.3 Durée spécifique

La durée spécifique d’une crue est la durée pendant laquelle le débit est supérieur
ou égal à la moitié du débit de pointe. La durée spécifique peut se mesurer des hy-
drogrammes de façon relativement simple. L’analyse des données existantes a permis
d’obtenir des formules selon le type de bassin-versant. Là encore, il faut être prudent
quant à la précision des formules et il faut porter une attention particulière aux unités
dans les formules.
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Méthode Socose (France)

Formule calée sur des données provenant de toute la France

ln ds = −0,69 + 0,32 lnS + 2,2

√
Pa

Pj,10ta

– ds : durée caractéristique en h ;
– S : surface du bassin-versant en km2;
– Pj,10 : pluie journalière décennale en mm;
– Pa : cumul moyen annuel de précipitations en mm;
– ta : température annuelle moyenne ramenée au niveau de la mer en ℃.

Cipriani et al. (2012) ont obtenu des formules prenant en compte les spécifiés régionales
de différentes régions de France métropolitaine.

Petits bassins-versants rapides

ln ds = 0,375 lnS + 3,729

– ds : durée caractéristique en mn (valable pour 4 ≤ ds ≤ 300 mn) ;
– S : surface du bassin-versant en km2 (valable pour 10−2 < S < 15 km2).

Bassins-versants à forte pente

ds = 12,5 + 4,3

√
S√
i
− 22,2

√
Pa
Pj,10

– ds : durée caractéristique en mn ;
– S : surface du bassin-versant en km2;
– Pj,10 : pluie journalière décennale en mm;
– Pa : cumul moyen annuel de précipitations en mm;
– i : pente moyenne du thalweg.

5.2.4 Temps de montée

Le temps de montée est souvent lié au temps de concentration. La méthode ration-
nelle suppose que tm = tc (voir § 5.6.1) tandis que la méthode SCS prend tm = 0,375tc.
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Certains auteurs ont cherché à relier le temps de montée aux caractéristiques du bassin-
versant. Par exemple, Quefféléan (2015) a obtenu

tm = 0,077S0,55

(tm en h, S en km2) pour des bassins-versants de montagne en France de superficie
S ≤ 370 km2.

5.3 Origine des crues

Il n’existe pas de classification générale de l’origine des crues (Tarasova et al., 2019).
Pour les Alpes, il est commode de considérer trois scénarios majeurs dans la formation
des crues :

– les pluies brèves et intenses : typiquement des orages de fin d’après-midi l’été
quand il faut chaud et humide. La saison à risque est l’été (juin à septembre). Les
débits spécifiques de pointe se situent dans une fourchette large 1–10 m3/s/km2

pour une période de retour T = 10 ans. Le coefficient d’écoulement est souvent
moyen (0,3 à 0,8). Les crues sont rapides et ne durent en général que quelques
heures. Le plus souvent, seul un bassin-versant est touché de façon isolée. En
conditions exceptionnelles, des valeurs dépassant 20m3/s/km2 ont été observées
(crue de l’Orba dans les Alpes italiennes en août 1935 ou bien du Tech en octobre
1940 dans les Pyrénées) lors d’épisodes de pluie diluviens et hors normes (pour
l’Europe) sur des massifs montagnes proches de la Méditerranée. En août 1996,
de violents orages (140–220 mm en 2 h, 160–250 mm en 24 h) causèrent une
crue de grande ampleur de l’Arás dans les Pyrénées espagnoles, causant la mort
de 87 personnes à Biescas. Avec un débit de 430 m3/s pour un bassin-versant
de 18 km2, le débit spécifique a été voisin de 24 m3/s/km2 en moyenne sur le
bassin-versant, avec des valeurs atteignant 45 m3/s/km2 sur certains affluents
(Benito et al., 1998) ;

– les pluies soutenues sur de longues périodes (plusieurs jours, parfois plusieurs
semaines) liées au passage d’un ou plusieurs systèmes dépressionnaires bien or-
ganisés sur les Alpes. La saison à risque est en général l’automne et le début du
printemps, très exceptionnellement en hiver. Les crues sont lentes, durent plu-
sieurs jours, et concernent une vallée entière, voire tout un massif ou une région.
Les débits spécifiques de pointe dépassent exceptionnellement 1–2 m3/s/km2

pour T = 10 ans. Le coefficient d’écoulement est élevé (de 0,6 à 1) ;
– la fonte des neiges au printemps ou bien un important redoux accompagné de

pluie durant l’hiver ou le printemps. Les crues sont lentes et étalées sur plusieurs
jours à semaines. La saison à risque est la fin du printemps (mai et juin). Les
débits spécifiques de pointe dépassent exceptionnellement 1m3/s/km2 pourT =
10 ans.
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Un exemple est fourni par la crue de l’Arc (Haute Maurienne) et celle du Guil
en juin 1957 et de nombreux autres rivières de la chaîne frontalière : le mois
de mai 1957 avait été plus froid que la normale et un important stock de neige
subsistait en altitude, au-dessus de 2000 m. Au début de juin, les températures
se sont mises à s’élever très brutalement (plus de 20℃) sous l’effet de l’arrivée
d’air chaud et humide de Méditerranée. Les précipitations faibles du mois de
juin se sont intensifiées avec l’arrivée d’air froid de Scandinavie. À ces chutes
de pluie s’est ajoutée la fonte rapide du manteau neigeux, ce qui a conduit à des
crues extrêmes. Ainsi à Saint-Michel-de-Maurienne, alors que le débit moyen
interannuel pour le mois de juin est Q̄ = 84 m3/s, un débit moyen journalier de
500 m3/s a été enregistré le 14 juin 1957 (voir figure 5.10).
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Figure 5.10 – Débit journalier de l’Arc à Saint-Michel-de-Maurienne (Savoie) en juin
1957. (a) variation du débit moyen journalier en juin 1957, (b) variation du débit de l’Arc
en 1957 et comparaison avec les moyennes mensuelles.

La réponse d’un bassin-versant à une pluie est variée. Certains bassins-versants
sont sensibles à tous les scénarios décrits ci-dessus tandis que d’autres ne réagissent
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qu’à un scénario précis. La réponse d’un bassin-versant à une pluie dépend :

– de la forme générale du bassin-versant : selon que le bassin-versant est de forme
oblongue ou ramassée, le temps mis par l’eau pour atteindre l’exutoire peut dif-
férer notablement ;

– la densité du réseau hydrographique drainant le bassin-versant ;
– le couvert végétal : densité, nature, réseau racinaire, etc.
– l’inclinaison moyenne des pentes ;
– la nature des sols, la géologie du sous-sol, la capacité d’infiltration et de résur-

gence, l’existence de surfaces imperméables (glacier, route, etc.) ;
– l’altitude et ses effets sur la limite des neiges, nature pédologique du sol, pergi-

sol/permafrost, végétation, etc. ;
– la possibilité de blocage de cellules orageuses ou un effet de barrière sur le pas-

sage d’une perturbation.

On peut distinguer trois classes de réponses :

– réponse rapide (groupe 1) : le bassin-versant répond à peu près systématique-
ment et de la même façon aux pluies brèves et intenses. Aucune crue ne survient
après des précipitations longues, mais peu soutenues. Le débit de crue dépend
foncièrement de l’intensité des pluies : plus l’intensité est forte, plus le débit de
pointe est élevé. Le temps de montée et la durée spécifique de la crue sont courts.
Les petits bassins-versants demontagne, raides et peu végétalisés, entrent le plus
souvent dans cette catégorie. Le torrent de l’Alptal (SZ) en est un exemple ;

– réponse moyenne (groupe 2) : le bassin-versant répond de façon atténuée aux
pluies mêmes intenses ou soutenues sur plusieurs jours. En général, la capacité
d’infiltration est bonne, le ruissellement est faible (forte résistance, végétation
dense, pente modérée). Toutefois, des concours de circonstances font qu’ excep-
tionnellement des crues peuvent se produire avec des débits importants ;

– réponse lente (groupe 3) : le bassin-versant ne répond pas ou faiblement aux
pluies. Le débit de pointe est généralement faible et l’onde de crue est assez
étalée.



Tableau 5.2 – Nom de la rivière, surface S du bassin-versant
(km2), région et localité où le débit est estimé, débit spécifique de
pointe en conditions décennales Qs,10 (m3/s/km2), surface occu-
pée par la végétation selon son type, pentemoyenne (%) du bassin-
versant, pluie décennale horaireP10(1) et journalièreP10(24), na-
ture géologique du terrain. D’après (Graff, 2004).

Nom S Région Localité Qs,10 % nu % pâturage % boisé Pente P10(1) P10(24) Géologie
Groupe 1

Laval 0,86 Alpes-du-Sud Draix 14,3 68 10 22 58 32 100 marnes
Erlenbach 0,64 Suisse Centrale Alptal, Schwyz 7 0 60 40 20 35 120 flysh
Groupe 2
Rimbaud 1,5 Alpes-du-Sud Toulon 5,2 - 35 160 gneiss

Latte 0,19 Massif Central Mont Lozère 3,5 - granit
Sapine 0,54 Massif Central Mont Lozère 2,7 granit

Groupe 3
Rietholzbach 3,31 Suisse Centrale Mosnang 2,1 76 20 molasse

Lumpenenbach 0,93 Suisse Centrale Alptal, Schwyz 4,1 55 20 15 40 140 flysh
Vogelbach 1,55 Suisse Centrale Alptal, Schwyz 3,1 10 65 15 40 110 flysh
Brusquet 1,08 Alpes-du-Sud Draix 1,3 13 87 53 44 92 marnes
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5.4 Méthodes par corrélation statistique

5.4.1 Méthode Crupédix

La méthode Crupédix est une formule qui permet d’évaluer le débit de pointe de pé-
riode de retour T = 10 ans. La formule a été obtenue à partir d’une analyse statistique
sur 630 bassins-versants documentés français dont la taille variait entre 1,4 et 52 000
km2 :

Qcrup. = Q̂p,10 = RS0,8

(
Pj,10
80

)2

[m3/s],

avec S la surface du bassin-versant en km2, Pj,10 la pluie journalière décennale (en
mm), et R un coefficient régional qui vaut R = 1 partout en France sauf sur le Massif
Central, les Pyrénées, le Languedoc-Roussillon, le bassin de la Seine et de la Meuse, la
Vendée et une partie de l’Aquitaine.

Selon Galéa & Ramez (1995), il y a seulement une probabilité de 70 % que le vrai
débit se situe entre 1

2Qcrup. et 2Qcrup.

Figure 5.11 – Valeur du paramètre R dans la méthode Crupédix.
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5.4.2 Courbe enveloppe

Plusieurs formules empiriques ont été calées en corrélant (par régression linéaire)
le débit de pointe mesuré/estimé et la superficie d’un bassin versant sous la forme d’une
loi puissance

Qp = aSb (5.2)

avecQp le débit de pointe (enm3/s),S la superficie (en km2), a et b sont deux paramètres
qui dépendent du contexte hydrologique. On parle de courbe enveloppe car en général,
ces courbes cherchent à fournir une borne maximale des débits de pointe. La figure 5.12
montre des courbes enveloppes de crues éclair pour différentes régions en Europe. Le
tableau 5.3 fournit les valeurs de a et b de l’équation (5.2) pour des crues éclair en
Europe, en France, dans le monde, et en Suisse. Le tableau 5.4 donnent ces valeurs pour
des crues sur différents bassins-versant suisses. Une courbe enveloppe d’équation un
peu plus complexe que la loi puissance (5.2) a été ajustée sur des données de crue issues
de plusieurs bassins-versants dans le monde :

Qp =
3009,2

(S + 41,31)0,78
S,

avecQp le débit de pointe (en m/cube/s), S la superficie (en km2) (Hingray et al., 2009).

Figure 5.12 – Variation du débit spécifique (de pointe) en fonction de la superficie du
bassin versant, avec (a) selon la localisation du bassin versant et (b) la nature de la
mesure. D’après (Marchi et al., 2010).

Le problème de plusieurs formulations de courbe enveloppe est qu’elles ne font
pas de mention précise à la période de retour. Des approches plus rigoureuses ont été
suivies en utilisant la régression sur des quantiles 3 et la simulations de Monte Carlo

3. Dans la littérature francophone, bien des auteurs traduisent directement le terme originel
anglais « quantile regression » par la parataxe « régression quantile », qui est peu claire en
français. Au demeurant, on remarquera que cette section est riche en parataxes, c’est-à-dire des
juxtapositions de deux substantifs : loi puissance, courbe envelope et régression quantile.
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Tableau 5.3 – Valeurs des coefficients a et b selon le contexte météorologique.

Zone géographique a b S T Source
Gard 30 0,75 20 à 400 km2 T = 100 (Lang & Lavabre, 2007)
Monde 350 0,6 S ≤ 104 km2 rare a (Gaume et al., 2009)
Méditerranée 97 0,6 1 à 104 km2 rare (Gaume et al., 2009)
Europe 230 0,43 1 à 104 km2 rare (Marchi et al., 2010)
Monde 850 0,357 S ≥ 100 km2 extrême b (Marchi et al., 2010)
Zone océanique c 4,05 0,72 1 à 104 km2 T ∼ 1000 ans (Lang & Lavabre, 2007)
Zone de piedmont d 7,4 0,72 1 à 104 km2 T ∼ 1000 ans (Lang & Lavabre, 2007)
Zone méditerranéenne e 16,4 0,72 1 à 104 km2 T ∼ 1000 ans (Lang & Lavabre, 2007)
Suisse c f 0,66 10 à 500 km2 T = 100 ans (Spreafico et al., 2003)
Suisse 7,2 0,566 1 à 104 km2 T = 100 ans (Spreafico et al., 2003)

a Rare ici veut dire que la période de retour est dans une fourchette T = 100− 1000 ans.
b Extrême ici veut dire que la crue était exceptionnelle et correspondait à la plus grosse crue

connue.
cBassin de la Loire, Bretagne, Saône, Moselle.
d Pyrénées, Préalpes, Dordogne, Pyrénées centrales et occidentales, Aude, Ariège, Drôme.
eAlpes maritimes, Corse, Cévennes, Tarn, Ardèche, Haute-Loire, Pyrénées orientales.
f Pour des terrains relativement plats, bordés de collines peu élevées, on a c = 2,5−4. Pour

des terrains vallonnés, on a c = 4− 6. Pour des terrains vallonnés des Préalpes, on a c = 6− 9.
Pour des bassins-versants à forte pente, on a c = 9− 12 sauf en zone glaciaire (c = 3− 5)

Tableau 5.4 – Valeurs des coefficients a et b pour calculer le débit de pointe centennal
selon les régions en Suisse. Adapté de (Spreafico et al., 2003).

Région a b

Jura, Neuchâtel 1,44 0,73
Jura bernois 5,98 0,59

Saint Gall, Thurgovie 2,65 0,61
Zürich 7,86 0,58

Argovie, Bâle 0,68 0,79
Alpes vaudoises 7,18 0,60

Berne 17,66 0,54
Mont-Blanc, Valais oriental 4,36 0,64

Valais central 1,3 0,74
Oberland oriental 1,4 0,78

Tessin oriental 0,83 0,58
Tessin occidental 12,41 0,69
Grisons orientales 0,9 0,83

Grisons occidentales 4,41 0,74

(Bertola et al., 2024) (voir figure 5.13). L’idée est caler des lois puissances de la forme
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5.2 uniquement sur des quantiles associés à une certaine probabilité.

Figure 5.13 – (a) Emplacement des rivières documentées dans la base de données eu-
ropéenne sur les crues (points) et quatre régions représentées par des carrés de couleur.
(b)-(e) Courbes enveloppes (trait gras) obtenues par régression sur les quantiles asso-
ciés à la probabilité p = 0,999 (crue millennale) et courbe enveloppes régionales (trait
fin). Les couleurs des lignes correspondent aux quatre régions de la carte (a). Les points
gris indiquent les débits spécifiques et les points noirs les crues record. La pente b est
indiquée pour chaque région. Source : Bertola et al. (2024). La base de données com-
prend 8023 rivières dans 33 pays européens avec des observations entre 1805 et 2021,
mais la plupart postérieures à 1961. La durée d’observation est donc au mieux de 215
ans.



5.5 Méthodes statistiques de type gradex 273

5.5 Méthodes statistiques de type gradex

5.5.1 Méthode du gradex

La méthode du gradex a été proposée à la fin des années 1960 par Pierre Guillot
et Daniel Duband (EDF) (Guillot & Duband, 1967). Le principe de la méthode est très
simple, ce qui explique son large succès et sa popularité. Cette méthode se fonde sur
les observations suivantes :

– la plupart des pluies maximales annuelles sont distribuées selon une loi expo-
nentielle ou une loi de Gumbel. Ainsi deux pluies extrêmes P1 et P2 de période
de retour respective T1 et T2 vérifient la relation

P2 − P1 = G ln T2
T1
, (5.3)

avec G > 0 un coefficient exprimé en mm (si les pluies en mm) et appelé le
gradex des pluies ;

– l’infiltration dans le sol diminue au cours du temps du fait de la saturation pro-
gressive du sol. Lorsque le sol est saturé, toute l’eau qui continue de précipiter
ruisselle sur le sol. Cette eau ruisselée participe directement au volume de crue ;

– lorsque le sol est saturé, tout surcroît de pluie pendant une durée égale au temps
de concentration tc se transforme intégralement en un surcroît de débit sur une
durée à peu près égale à tc (à 10–20 % près).

De ces observations, on admet l’hypothèse du gradex : la courbe intensité-fréquence
des pluies de durée tc est parallèle à la courbe intensité-fréquence du débit. En consé-
quence, lorsque sur un bassin-versant on dispose de données de pluie sur une période
suffisamment longue (quelques dizaines d’années), on peut estimer les débits extrêmes
en considérant que le gradex des débitsGq (en m3/s) équivaut à celui des pluiesGp (en
mm) lorsqu’on les exprime dans la même unité, c’est-à-dire

Gq =
S

3,6tc
Gp, (5.4)

avec S la superficie du bassin-versant en km2, tc le temps de concentration en h, 3,6
un facteur de conversion des unités. On se sert du temps de concentration tc comme
durée caractéristique car c’est la durée optimale de pluie : en effet, une pluie de durée
d < tc, l’intensité de pluie (rappelons la loi de Montana Im = ad−b) est supérieure à
l’intensité Ic associée au temps tc (Ic = at−bc ), mais seule une partie du bassin-versant
contribue à la crue (puisque toutes les gouttes d’eau n’ont pas pu atteindre l’exutoire)
et donc le début résultant est plus que le débit Qc généré par une pluie de durée tc.
Lorsque d > tc, tout le bassin-versant contribue, mais l’intensité moyenne associée est
plus faible, donc le débit résultant est aussi plus faible.
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En se servant de la relation (5.3) et en considérant que la période de retour pour
laquelle on observe la saturation du sol est T = 10 ans, on aboutit à une approximation
dite du gradex de la loi intensité-fréquence pour les débits

Q = Q10 +Gq ln
T

10
, (5.5)

avec Q10 le débit de pointe décennal.

Dans cette méthode, le débit décennal Q10 et le temps de concentration doivent
être estimés indépendamment. Des variations de cette méthode ont été proposées. En
particulier, la « formulation esthétique » lisse la transition entre les régimes des crues
ordinaires et des crues extrêmes. Plus récemment, la prise en compte du type de condi-
tions météorologiques a permis d’améliorer la performance de cette méthode (Paquet
et al., 2006).

5.5.2 Méthode QdF

La méthode QdF est une méthode développée par Prudhomme, Galéa, et Javelle au
Cemagref (devenu INRAE) de Lyon (France), qui permet de donner une relation durée-
intensité-fréquence pour le débit en fonction du débit décennal (qui doit être connu ou
bien évalué par ailleurs), de la superficie du bassin-versant, du gradex des pluies, et du
type de réponse du bassin-versant.

Principe

Il y a trois idées de base :

1. L’idée fondamentale de laméthodeQdF est qu’on peut étudier les hydrogrammes
de crue en les caractérisant par des débitsQmoyens ou bien systématiquement
dépassés sur des durées d variables ; chaque hydrogramme est valable pour une
période de retour ou fréquence F donnée. D’où le nom QdF.

2. L’extrapolation des quantiles de débit se fait selon une approche de type gradex :
on suppose que la courbeQ(T ) varie parallèlement à la courbe des pluies P (T )
pour les périodes de retour T suffisamment grandes.

3. Pour une même région, le comportement des bassins-versants est à peu près
identique. Il existe une « loi-maîtresse » valable régionalement qui permet de
représenter la réponse hydrologique des bassins-versants à l’aide d’une seule
courbe adimensionnelle. Il existe donc également des « marqueurs » qui per-
mettent d’adimensionnaliser les variables hydrologiques. Ici, on va considérer
deux marqueurs ou échelles (durée et débit)D∗ etQ∗, qui sont propres à chaque
bassin-versant ; le principe de régionalisation affirme que les débits et durées sur
un bassin-versant (BV) sans observation peuvent être estimés à partir des débits
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Figure 5.14 – Extrapolation de la distribution des débits moyens journaliers max.
annuels par la distribution des pluies journalières maximales annuelles. D’après
(Djerboua et al., 2004).

et durées observées sur un bassin-versant de référence par une simple loi d’ho-
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Variables hydrologiques employées

Pour faire les calculs d’hydrogramme, on ne sert pas du débit instantanéQ(t) car il
y a trop d’informations. À la place, on suppose que tout hydrogramme peut se présenter
sous la forme d’un hydrogramme synthétique de crue, avec une courbe montante et
une courbe descendante (décrue), appelé encore hydrogramme mono-fréquence car il
n’y a qu’un seul pic de crue. On introduit deux variables qui permettent de réduire
l’information nécessaire (voir figure 5.15) :

– le débit seuil Qs(d) de durée d est la plus grande valeur de débit qui est systé-
matiquement dépassée au cours d’une durée d de la crue. La forme supposée de
l’hydrogramme fait que la relation Qs(d) est unique et continue ;

– le débit moyen Qm(d) de durée d est la valeur moyenne du débit sur une durée
d.

d

Q

t

Qm

Qs

Figure 5.15 – Définition du débit seuil Qs (débit systématiquement dépassé pendant
une durée) et du débit moyen Qm.

Pour un pays au climat tempéré comme la France, on considère deux échelles de
débit et de temps, qui sont appelées marqueurs :

– Q∗ = Q10 le débit de pointe instantané de la crue décennale. Ce débit sert à
séparer les débits ordinaires correspondant aux petites crues fréquentes et les
débits plus importants ;

– l’échelle de temps (durée)D∗ peut être définie comme le temps de concentration
tc ou bien la durée spécifique ds. L’avantage de ds est que c’est une donnée
mesurable alors que tc reste une quantité plus conceptuelle.

Les autres données du problème peuvent s’exprimer en unités de temps ou de débit.
Par exemple, quand on utilise le gradex des pluies pour différentes durées d, on peut le
transformer en gradex adimensionnel de la façon suivante : tout d’abord, on transforme
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les unités de mm en m3/s à l’aide de la relation

Ĝp [m3/s] = S

3,6d
Gp [mm], (5.6)

avec S la surface du bassin-versant exprimée en km2 et d la durée de la pluie en h (Ĝp
est donc aussi le gradex des débits de durée d).

Sélection d’un modèle

Pour la France métropolitaine, il existe trois réponses types de bassin-versant :

– type « Soyans » : le bassin-versant typique est celui du Roubion (Drôme proven-
çale). Il est caractéristique des bassins-versants avec des écoulements rapides et
un faible stockage (climat à dominante continentale). Les crues ne durent géné-
ralement pas très longtemps ; l’hydrogramme est pointu. Les crues extrêmes ne
sont pas en continuité avec les crues ordinaires ;

– type « Florac » : le bassin-versant typique est celui de la Mimente à Florac, dans
la partie méridionale des Cévennes (Lozère), donc sous influence climatique mé-
diterranéenne. Ce bassin sert de référence pour des crues rapides, mais avec un
stockage ; une partie de l’eau stockée est restituée durant la crue, ce qui allonge
la durée de la crue et augmente son volume, sans toutefois accroître le débit de
pointe ;

– type « Vandenesse » : le bassin-versant typique est celui de la Dragne (Nièvre,
Bourgogne). Les crues sont volumineuses et s’étalent sur des durées longues
comme c’est souvent le cas pour régions à dominante océanique.

Pour les régions tempérées hors de France métropolitaine, il est possible d’appliquer la
méthode QdF, mais il est vraisemblable qu’il faille choisir d’autres sites de référence.

Selon sa situation et sa taille, les caractéristiques d’un bassin-versant varient d’amont
en aval, avec une modification du régime des crues : plus la taille augmente, plus le vo-
lume de crue tend à être important et moins l’hydrogramme est pointu. Une même
rivière peut générer des crues de type « Soyans » dans la partie supérieure et des crues
« Vandenesse » à sa confluence.

La question qui se pose est : parmi ces modèles de référence, quel est le modèle le
plus approprié pour décrire un bassin-versant quelconque pour lequel on n’a pas ou peu
de données hydrologiques? La réponse apportée par la méthode QdF est la suivante :
on trace la variation du gradex adimensionnel Γ = Ĝp/Q10 des pluies en fonction de
la durée η (adimensionnelle) de la pluie et on compare cette courbe avec les courbes
limites séparant les domaines Soyans, Florac, et Vandenesse. Ces courbes limites sont
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au nombre de deux

L1(η) =
1

0,768η + 2,332
, (5.7)

L2(η) =
1

0,419η + 1,580
, (5.8)

avec η = d/D∗ En pratique, on considère des durées de pluie allant de 1
2D∗ à 5D∗ ; on

calcule le gradex Gp des pluies associées à ces durées et à l’aide de l’équation (5.6), on
exprime ces gradex de pluie en gradex de débit et on les norme en les divisant par Q10

pour obtenir Γ = Ĝp/Q10. On reporte ensuite les couples (η, Γ).

♣ Exemple. – Sur un petit bassin-versant du Chablais, d’une superficie de 2 km2,
l’étude des pluies a donné les estimations suivantes du gradex des pluies : Gp = 3,7
mm pour d = 1 h, 4,8 mm pour d = 2 h, 5,5 mm pour d = 3 h, 7,0 mm pour d = 6
h, 8,9 mm pour d = 12 h, 11,4 mm pour d = 24 h. Une estimation empirique du débit
décennal donne Q10 = 3 m3/s et une durée spécifique ds = 1 h. On pose D∗ = ds ;
le gradex des pluies est transformé en gradex de débit à l’aide de la relation (5.6). Cela
fournit Ĝp(d = 1) = 2,05 m3/s, Ĝp(d = 2) = 1,33 m3/s, Ĝp(d = 3) = 1,02 m3/s,
Ĝp(d = 6) = 0,65 m3/s, Ĝp(d = 12) = 0,41 m3/s, et Ĝp(d = 24) = 0,26 m3/s. On
forme ensuite la suite (ηi, Γi), avec ηi = di/D∗ et Γi = Ĝp/Q10, où di = 1, 2, 3, 6,
12, et 24 h. On reporte sur la figure 5.16 la courbe empirique Γ = Γ(η) et les limites
entre les comportements de type Soyans, Vandenesse, et Florac. On note qu’aux temps
courts (η < 2), le comportement est de type Soyans, mais qu’aux temps longs (η > 2)
le comportement se rapproche de celui de Florac, voire Vandenesse. Comme on se situe
dans un contexte de petit bassin-versant de montagne, caractérisé par des crues rapides
et brèves, le comportement retenu est de type Soyans.

Loi débit-fréquence

La loi débit-fréquence est fondée sur la méthode du gradex dans sa version dite
« formulation esthétique ». Le quantile de débit suit une loi de Gumbel pour les petites
périodes de retour (T ≤ 20 ans), puis la « formation esthétique » (pour 20 ≤ T ≤
1000) :

Q(T, d)

Q∗
= A(η) lnT +B(η) pour 0,5 ≤ T ≤ 20 ans, (5.9)

Q(T, d)−Q(10, d)

Q∗
= C(η) ln

(
1 +

A(η)

C(η)

T − 10

10

)
pour 20 ≤ T ≤ 1000 ans,

(5.10)

où Q(10, d) est le débit décennal obtenu à l’aide de l’équation (5.9). Les fonctions A,
B, et C sont de la forme f(η) avec

f(η) =
1

α1η + α2
+ α3.
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Figure 5.16 – Variation de Γ en fonction de η pour le Chablais. La courbe continue
représente la courbe empirique Γ = Γ(η) pour un poste du Chablais – simple interpo-
lation linéaire des points (ηi, Γi) – et les courbes à tiret représentent les courbes L1 et
L2.

Les lois (5.9–5.10) sont valables aussi bien pour des débits moyensQm(d) ou des dé-
bits seuils Qs(d). Les paramètres des lois changent selon le type de variable employée.
Les tableaux 5.5.2 et 5.5.2 fournissent les valeurs des paramètres selon que, respective-
ment, l’on opte pour un débit moyen Qm ou un débit seuil Qs.

Tableau 5.5 – Valeurs des coefficients αi pour les fonctions A, B, et C lorsqu’on
cherche à calculer le débit moyenné sur une période d.

Modèle A B C
α1 α2 α3 α1 α2 α3 α1 α2 α3

Soyans 0,87 4,60 0 1,07 2,50 0,099 0,569 0,690 0,046
Florac 1,12 3,56 0 0,95 3,18 0,039 1,56 1,91 0,085
Vandenesse 2,635 6,19 0,016 1,045 2,385 0,172 1,083 1,75 0

Tableau 5.6 – Valeurs des coefficients αi pour les fonctions A, B, et C lorsqu’on
cherche à calculer le débit seuil sur une période d.

Modèle A B C
α1 α2 α3 α1 α2 α3 α1 α2 α3

Soyans 2,57 4,86 0 2,10 2,10 0,050 1,49 0,660 0,017
Florac 3,05 3,53 0 2,13 2,96 0,010 2,78 1,77 0,040
Vandenesse 3,970 6,48 0,010 1,910 1,910 0,097 3,674 1,774 0,013
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Hydrogramme synthétique

La formulation QdF en termes de débit seuil permet d’obtenir un hydrogramme
de crue synthétique. Cet hydrogramme est par ailleurs consistant avec les quantiles de
débit moyenQm. L’hydrogramme pour une crue de période de retour T est défini par :

– t < ds, une courbe (droite) de montée : Q = Qmt/ds. Il y a une augmentation
linéaire du débit Q jusqu’au temps t = ds où le débit atteint le débit de pointe
Qp ;

– t = ds, un débit de pointe : Qp = Qm(T, dp). C’est le débit moyen instantané,
donc un débit observé sur une durée dp = 1 s = 0,0003 h ;

– t > ds, une courbe de décrue : Q = Qs(T, d). Le débit à l’instant t se calcule à
partir du débit seuil dépassé sur une durée d = t− dsQ/Qp.
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Figure 5.17 – Principe de formation de l’hydrogramme.

Modèle QdF convergent

Il existe une variante de cette méthode appelée « modèle QdF convergent », qui
suppose que le débit moyen vérifie la loi d’échelle (Lang & Lavabre, 2007) :

Qm(d, T ) =
Qm(0,T )

1 + d/∆
, (5.11)

où Qm(0,T ) correspond au débit de pointe (le débit moyen observé sur une durée
infiniment courte) et∆ un paramètre à caler. On renvoie à Lang & Lavabre (2007) pour
plus d’informations.
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5.6 Méthodes de transformation pluie-débit

Les débits dans les rivières sont souvent des données peu disponibles : hormis pour
certaines grandes villes ou bien pour des sites avec un intérêt hydroélectrique, il y a
peu de postes de mesures installés. Comme par ailleurs les débits peuvent varier de
façon substantielle le long des cours d’eau en fonction des apports par les affluents et
que les séries de données sont souvent courtes, il reste difficile d’estimer les quantiles
de débit en un point donné d’un cours d’eau. Il est dès lors très tentant de contourner
cette difficulté en cherchant à relier les débits aux pluies qui sont censées les générer. En
effet, les pluies sont mieux connues, plus faciles à mesurer ; leur distribution spatiale est
un peu mieux appréhendée que les débits et leur distribution temporelle se prête bien
à une analyse statistique de type théorie des valeurs extrêmes. Très tôt les hydrologues
ont donc cherché à développer des modèles de transformation pluie-débit qui visent à
reproduire la génération d’une crue à partir de la pluie. Nous allons passer en revue
quelques-uns des modèles les plus connus

Comme toute simplification de la réalité, ce type de modélisation est limité par

– la complexité des interactions entre le sol, l’atmosphère, et l’eau ;
– le nombre de paramètres conceptuels qui sont introduits et qui rendent difficile

les procédures de calage.

Il y a en général deux sous-modèles dans un modèle de transformation pluie-débit :

– un module de passage de la pluie brute (pluie précipitée) à la pluie efficace (pluie
participant à la crue). Cette transformation nécessite de connaître les pertes dues
à l’interception par les végétaux, la rétention dans le sol, le ruissellement direct,
etc. ;

– un module de transformation de la pluie efficace en volume de crue. Cette trans-
formation nécessite de modéliser les différents processus de ruissellement, drai-
nage, et écoulement dans le cours d’eau jusqu’à l’exutoire.

Les différentes transformations sont basées sur des représentations le plus souvent
conceptuelles du fonctionnement du bassin-versant, avec parfois une approximation
physique du comportement réel.

Nous commençons par décrire une méthode très simple dite « méthode ration-
nelle », qui a été utilisée dès la moitié du xixe siècle. Cemodèle calcule le débit de pointe
à partir du volume d’eau précipité et d’un temps caractéristique (temps de concentra-
tion). Nous voyons ensuite deux méthodes un peu plus élaborées : le modèle SCS et sa
variante française SoCoSe. Ces méthodes calculent le débit à partir du volume d’eau
ruisselé, c’est-à-dire le volume d’eau précipité auquel on a retranché l’eau interceptée
par la végétation et l’eau infiltrée dans le sol. Nous décrivons ensuite unmodèle concep-
tuel un peu plus complexe, où le sol est modélisé comme un réservoir. Avec ce type de
modèles, on entre véritablement dans le domaine des outils utilisables aussi bien pour
la prévision de crues que dans les calculs hydrauliques. Un modèle comme le modèle



282 Chapitre 5 Crues liquides et inondations

suédois HBV 4 a été par exemple utilisé en Suisse pour la prévision des crues sur le Rhin
jusqu’à Bâle (Lindström et al., 1997).

Notons que nous ne parlerons pas ici des modèles spatialement distribués, qui af-
finent la description des crues en scindant le bassin-versant en plusieurs unités hydro-
logiquement homogènes. Le modèle Topmodel développé par Beven et Kirby est l’un
des plus connus. La classe de modèles ORage, Socont, puis MineRve a été développée
à l’EPFL pour décrire des crues sur des bassins-versants alpins (Bérod, 1994; Jordan,
2007) (on en verra une version très simplifiée avec les modèles GR4 et GR4H). Ces
modèles tiennent compte d’une multitude de processus hydrologiques pour évaluer
l’apport des précipitations et leur effet sur la génération d’une crue : infiltration, évapo-
ration, interception par les végétaux, fusion de la neige et des glaciers. Le débit drainé
par une parcelle du bassin-versant est ensuite évacué par un cours d’eau ; on parle de
routage de crue (flood routing). On peut alors utiliser des outils de calcul hydraulique
tels que les équations de Saint-Venant. Ce type de procédures sort du cadre de ce cours,
mais le lecteur peut se référer au cours d’hydraulique (master GC) ainsi qu’à des livres
spécialisés (Brutsaert, 2005).

5.6.1 Méthode rationnelle

La méthode la plus ancienne d’estimation du débit de pointe à partir des pluies
est appelée méthode rationnelle. La pluie est supposée d’intensité ip constante sur une
durée t = tc et le volume de crue est proportionnel au volume de pluie. La réponse
en débit est un hydrogramme triangulaire, de durée 2tc et de débit de pointe Qp. Le
volume de pluie est Vp = tcipS. Le volume de crue est

Vc = 2× 1

2
Qptc,

avec S la surface du bassin-versant. On suppose que le coefficient de proportionnalité
est C (0 < C ≤ 1), appelé encore coefficient de ruissellement de pointe. De l’égalité
Vc = CVp, on tire

Qp = CipS.

Notons que ip est généralement exprimé en mm/h alors que Qp est en m3/s. Pour que
la formule précédente soit dans ces unités, on modifie la formule de la façon suivante

Qp =
CipS

3,6
[m3/s]. (5.12)

4. acronyme du suédois hydrologisca byrans vattenbalansavdelning (service bilan hydrique
du bureau hydrologique).
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Figure 5.18 – Principe de transformation pluie-débit dans la méthode rationnelle.

Tableau 5.7 – Quelques valeurs guides de C selon l’occupation du sol.

Type de surface C

zone urbanisée 0,7–0,95
zone résidentielle
lâche 0,3–0,5
dense 0,5–0,75
parcs 0,1–0,2
pelouse
terrain meuble, peu pentu (i < 2 %) 0,05–0,2
terrain peu perméable et pentu (i > 5 %) 0,15–0,25

5.6.2 Méthode SCS

Cette méthode a été développée au cours des années 1960 au Soil Conservation
Service (SCS) de l’United States Forest Administration (USFA), ce qui explique son nom.
Elle s’applique pour les petits bassins-versants en milieu rural, sans observations.

Elle repose sur les quatre hypothèses suivantes :

– lorsque la pluie tombe, une partie est interceptée par la végétation. Il faut trans-
former la pluie brute Pb en pluie utile Pu

Pu = Pb − I, (5.13)

où I est l’interception par la végétation (en mm).
– la pluie qui atteint le sol participe au ruissellement R(t) et à l’infiltration J(t)

Pu = R+ J. (5.14)

– Le rapport entre l’eau ruisselée (R) et l’eau précipitée (Pu) est égal au rapport
entre la quantité d’eau J(t) infiltrée au temps t et la quantité maximale d’eau
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PuI

R

J

Pb

Figure 5.19 – Schéma de la méthode SCS.

J∞ que le sol peut recevoir quand il y a saturation

R(t)

Pu
=
J(t)

J∞
. (5.15)

Cette hypothèse très forte peut être démontrée dans le cas où la saturation dans
le sol au cours du temps suit une loi de Horton (variation exponentielle de l’in-
tensité d’infiltration) (Yu, 1998).

– l’interception par la végétation est indépendante de la pluie utile et est reliée à
la capacité maximale d’infiltration

I = 0,2J∞. (5.16)

C’est une loi empirique tirée des observations.

En combinant les équations (5.13) à (5.15), puis en servant de la relation empirique
(5.16), on tire la relation

R

Pu
=

Pu
Pu + J∞

.

De là, on déduit que la quantité d’eau ruisselée vaut

R =
P 2
u

Pu + J∞
=

(Pb − 0,2J∞)2

Pb + 0,8J∞
.

Dans ce modèle, la quantité d’eau ruisselée dépend de façon non linéaire de la quantité
de pluie reçue Pb ; la relation est aussi fonction d’un seul paramètre (capacité maximale
d’infiltration du sol) J∞ qui doit être calé (voir ci-dessous).
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Q

t

tm = 0,375tc

Qp

td = 0,625tc

Figure 5.20 – Hydrogramme de crue dans la méthode SCS.

Cette pluie brute génère une crue, dont le débit de pointe peut être estimé en consi-
dérant un hydrogramme triangulaire (voir figure 5.20). Le volume de crue étant R, on
déduit que si tc est le temps de concentration, tm le temps de montée (estimé ici à
tm = 0,375tc), on déduit

Qp = 2
SR

3,6tc
≈ 0,2

SR

tm
[m3/s],

avec S la surface du bassin-versant en km2, tc le temps de montée en h. Rappelons que
le facteur 3,6 provient de la conversion des unités en m3/s. Le temps de concentration
doit être estimé indépendamment, par exemple à l’aide d’une des relations proposées
au § 5.2.2.

Reste à évaluer le seul paramètre du modèle, qui est la capacité maximale d’infil-
tration du sol) J∞. Ce paramètre dépend de l’état d’humidité dans le sol et du type
d’occupation des sols. Le bassin-versant doit être subdivisé en parcelles de surface Si à
interception Ji homogène. L’interception moyenne du bassin-versant est alors calculée
par une moyenne pondérée

J∞
S

=
∑
i

Ji
Si
.

Chaque valeur de Ji est évaluée à partir du coefficient de ruissellement Cn

Ji = 25,4

(
1000

Cn
− 10

)
.

5.6.3 Méthode Socose

La méthode Socose est une variante française de la méthode SCS, développée par
Claude Michel au Cemagref (Oberlin, 1980; CTGREF, 1980). Elle a été ajustée sur 5000
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Tableau 5.8 – Quelques valeurs guides de Cn selon le type de sol et la densité de
la végétation. Sol A : sol sablonneux (très perméable) ; sol B : sol sableux ou limoneux
(perméable) ; sol C : sol argileux à limoneux (peu perméable) ; sol D : sol argileux (très
peu perméable). D’après (Ponce, 1994).

culture végétation sol A sol B sol C sol D
jachère 77 86 91 94
céréales lâche 63 74 82 85

dense 61 73 81 84
légumineuse lâche 64 75 83 85

dense 55 69 78 83
prairie 30 58 71 78
bois lâche 45 66 77 83

dense 25 55 70 77
pistes, routes 72 82 87 89

crues survenues dans 187 bassins-versants de 2 à 200 km2. Par rapport à la méthode
SCS, elle introduit les expressions suivantes pour le paramètre de rétention J et la durée
spécifique ds (en remplacement du temps de montée)

ln ds = −0,69 + 0,32 lnS + 2,2

√
Pa
P10ta

,

J = 260 + 21 ln S
L
− 54

√
Pa
P10

,

avec J exprimée en mm, ds en h, Pa le cumul annuel moyen de précipitations (en
mm), P10 la pluie maximale journalière décennale (en mm), ta la température moyenne
annuelle réduite au niveau de la mer (en ℃), L le chemin hydraulique le plus long
jusqu’à l’exutoire, S la surface en km2– avec S ≥ 2 km2– (voir figure 5.21).

La méthode propose un hyétogramme de projet

P (t) = a

 t[(
t
ds

)2
+ 2dst − 2

]3/7


1−b

valable pour 0 < t ≤ 2ds qui représente la pluie d’intensité maximale. La pluie to-
tale durant l’événement de durée ds est donc P (2ds) = a(1,25ds)

1−b. Le passage de
la pluie locale à la pluie moyenne sur le bassin-versant se fait à l’aide du coefficient
d’épicentrage ka. La méthode Socose introduit donc un indice k appelé « indice pluvio-
métrique »

k =
24b

21

P10

1 +

√
S

30 3
√
ds

,
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avec b le coefficient de Montana (P = at1−b). La méthode Socose définit également
deux paramètres

ρ = 1− 0,2
J

k(1,25ds)1−b

et ξ est un paramètre proche de 1, qui est déterminé à partir d’une abaque (voir fi-
gure 5.22). Le débit de pointe décennal est

Q10 = ξ
kS

(1,25ds)b
ρ2

15− 12ρ
[m3/s].

L’hydrogramme associé à cette méthode a pour équation

Q(τ) = Q10
2τ4

1 + τ8
,

avec τ = 2t/(3ds) un temps adimensionnel.
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Figure 5.21 – Distribution du cumul annuel moyen de précipitations Pa sur la France
(à droite) et distribution des températures moyennes annuelles ta (à gauche). D’après
(Joly et al., 2010).
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Figure 5.22 – Valeur du coefficient ξ en fonction du paramètre ρ et du coefficient de
Montana b. D’après (Oberlin, 1980; CTGREF, 1980).
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5.6.4 Méthode de Zeller

La plupart des modèles qui sont décrits dans ce chapitre sont dits conceptuels car
ils schématisent la réponse hydrologique à l’aide d’opérateurs mathématiques censés
décrire des fonctions du bassin-versant (ruissellement, infiltration, évapotranspiration,
restitution, écoulement) de façon simplifiée. On pourrait attaquer le problème en consi-
dérant le sol comme un milieu poreux et en se servant des équations d’écoulement
dans les milieux poreux (p. ex., équation de Dupuit-–Forchheimer), et on parle alors de
modèle physique. De tels modèles donnent rarement de bons résultats, et la puissance
de calcul nécessaire est colossale. Toutefois, sur de petits surfaces, l’utilisation de loi
physique permet d’obtenir des ordres de grandeur corrects. On va illustrer ici cette pos-
sibilité avec la méthode de Zeller (Zeller, 1981), que l’on justifiera à l’aide d’un modèle
de ruissellement ou d’écoulement souterrain (Beven, 2020).

Base phénoménologique

On examine le parcours de l’eau entre le moment où elle tombe sous forme de pluie
avec une intensité constante I et le moment où elle quitte le bassin-versant (voir figure
5.23). Pour cela on va considérer deux phases (Henderson & Wooding, 1964; Beven,
1982; Sloan & Moore, 1984; Loukas & Quick, 1996; Beven, 2020) :

– une phase d’écoulement sur un versant de penteα et longueurLv . L’écoulement
est soit une nappe de surface (ruissellement) sur un sol saturé ou bien un écou-
lement hypodermique ;

– une phase d’écoulement dans le cours d’eau qui draine le bassin-versant. La
pente de la rivière est i et sa longueur Lr .

Pour l’écoulement en nappe, qu’il soit de surface ou souterrain, on peut considérer que
l’écoulement a une épaisseur h(x,t) et une vitesse u(x,t) qui est liée – en première
approximation – à la hauteur h : u = ahb, avec a et b deux coefficients qui dépendent
de la nature de l’écoulement

– par exemple, a = C
√
α et b = 1/2 si on considère un écoulement de surface et

une loi de Chézy avec un coefficient de frottement C (typiquement C = 1,3− 2
m1/2/s) ;

– par exemple, a = K0 sinα/h0 et b = 1 si on considère un écoulement de surface
et une approximation de Darcy (tirée de l’équation de Dupuit-–Forchheimer)
avec une conductivité hydraulique K0 (typiquement K0 = 100 − 1000 mm/h)
et h0 une profondeur de saturation (h0 ∼ 1 m).

On va s’intéresser ici à définir des temps caractéristiques de ruissellement et d’écou-
lement dans la rivière. La méthode permettrait de faire un calcul analytique complet
ou de procéder à une résolution numérique des deux équations de conservation de la
masse, et donc de calculer un hydrogramme en fonction d’une pluie, mais on se conten-
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Figure 5.23 – Écoulement souterrain et alimentation d’un cours d’eau. Une rivière
s’écoule dans la direction x (normale à la figure) et draine des pentes latérales. Sur ces
pentes, la pluie ruisselle sous forme d’une nappe d’eau, ou bien s’infiltre et s’écoule
sous la forme d’un écoulement souterrain. La section mouillée dans la rivière est notée
A, le périmètre mouillé est χ.

tera ici d’expliquer les grandes lignes du calcul analytique et de déterminer les échelles
de temps.

Écoulement de versant L’écoulement sur le versant vérifie l’équation de conser-
vation de la masse :

ϵ
∂h

∂t
+
∂hu

∂z
= I, (5.17)

avec ϵ un coefficient de stockage effectif ; on prendra ici ϵ = 1. Comme on a u = ahb,
on déduit :

∂h

∂t
+ c(h)

∂h

∂z
= I avec c(h) = a(b+ 1)hb.

Il s’agit d’une équation d’advection non linéaire avec une vitesse d’advection c(h). On
peut la résoudre en la mettant sous forme caractéristique 5 :

dh
dt = I le long de dz

dt = c(h) = a(b+ 1)hb,

5. c.-à-d. on remplace une équation aux dérivées partielles par un système de deux équa-
tions différentielles ordinaires. Voir cours de master GC.
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et on suppose que le versant est initial sec (h(z,0) = 0) et qu’il n’y a pas d’eau arrivant
de l’amont de z0 (h(z0, t) = 0). On a donc h = It le long de la courbe caractéristique :

z =

∫
a(b+ 1)hbdt+ z1 = aIbt1+b + z1, (5.18)

avec z1 constante d’intégration (telle que quand z = z1 on ait h = 0). Cela implique
qu’en un point 0 ≤ z ≤ z0 (avec le repère choisi à la figure 5.23 on a z0 = Lv) :

– on a une croissance linéaire de la hauteur h : h(z, t) = It jusqu’au temps t∞ tel
que aIbt1+b∞ = z0 − z ;

– pour t ≥ t∞, la solution devient stationnaire :

h(z, t) = h∞(z) =

(
I(z0 − z)

a

)1/(1+b)

.

Si on identifie la longueur du versant comme Lv = z0, la hauteur de la lame d’eau à
son arrivée dans la rivière est hv = (ILv/a)

1/(1+b). En ce point, le débit varie en loi
puissance du temps

qv(t) = uvhv = ah1+bv = a(It)1+b

pour t < t∞, et devient constant pour t ≥ t∞

qv(t) = ah1+b∞ = Iz0.

Le temps quemet une parcelle d’eau tombant en z0 pour atteindre la rivière est le temps
lié à la courbe caractéristique émanant de z0 = Lv . C’est aussi le temps critique t∞(0)

tv = t∞(0) =
( z0
aIb

)1/(1+b)
. (5.19)

Écoulement dans la rivière L’écoulement dans le cours d’eau vérifie l’équation
de conservation de la masse :

∂A

∂t
+
∂Q

∂x
= 2qv, (5.20)

oùA est la section mouillée,Q le débit d’eau transitant par cette section, et qv = hvu =
ah1+bv est le débit latéral (le coefficient 2 vient du fait que l’on considère que chaque
versant de part et d’autre de la rivière contribue de façon égale au débit Q). Le débit Q
peut être relié à la section mouillée A à l’aide de la loi de Manning-Strickler :

Q =
A
√
iR

2/3
h

n
, (5.21)

avec n le coefficient de Manning (typiquement n = 0,025 − 0,1 s/m1/3) et Rh =
A/χ le périmètre mouillé. Pour les rivières naturelles, une bonne approximation deRh
est Rh = k

√
A avec k un coefficient de forme (sans dimension, typiquement dans la
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Figure 5.24 – (a) Courbes caractéristiques (5.18). La courbe en trait gras correspond à
la trajectoire z = aIbt1+b d’une particule émise de z0 qui va en direction de la rivière ;
le domaine en aplat de couleur représente le domaine contrôlé par la condition initiale
h = 0 ; dans ce domaine, la hauteur varie linéairement h(x, t) = It. Dans le domaine
au-dessous de la courbe z = aIbt1+b, la hauteur est constante et égale à h∞(z). (b)
Variation de la hauteur d’eau en z = 0 en fonction du temps. Calcul pour des valeurs
arbitraires a = 1 1/s, b = 1, I = 1 m/s, et z0 = 3 m.

fourchette 0,25–0,40). Mise sous forme caractéristique, l’équation de conservation de
la masse (5.20) nous dit :

dA
dt = 2qv le long de dx

dt =
∂Q

∂A
=

4

3

k2/3A1/3
√
i

n
. (5.22)

On a donc à intégrer :

dA
dt =

{
2a(It)1+b si t ≤ t∞

2Iz0 si t > t∞
⇒ A =


2a

2 + b
I1+bt2+b si t ≤ t∞,

Ac + 2Iz0(t− t∞) si t > t∞,
(5.23)

avec Ac la section mouillée au temps t∞. Les caractéristiques sont donc des courbes

x−x1 =
∫

4

3

k2/3A1/3
√
i

n
dt = 4

3

k2/3
√
i

n


(
2aI1+b

2 + b

)1/3
3t(5+b)/3

5 + b
si t ≤ t∞,

L0 +
3(Ac + 2Iz0(t− t∞))4/3

8Iz0
si t > t∞,

(5.24)
avec x1 une constante d’intégration (que l’on prend arbitrairement égale à 0) et L0 =

Lcr − 3A
4/3
c /(8Iz0) une autre constante d’intégration. On a défini une longueur cri-

tique de parcours qui correspond à la distance parcourue au temps t∞ :

Lcr =
4 3
√
2

(b+ 5)n

√
ik2/3

3

√
aIb+1

b+ 2
t(5+b)/3∞ . (5.25)
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En prenant la longueur de la rivière jusqu’à l’exutoire Lr et en inversant l’équa-
tion (5.24), on peut calculer le temps tr que met une parcelle d’eau pour parcourir la
longueur Lr :

tr =


si Lr ≤ Lcr, 2−

7
b+5

 (b+ 5)Lrn
√
ik2/3 3

√
aIb+1

b+2

 3
b+5

si Lr > Lcr, t∞ +
1

2

(
23/4(Lr − Lcr)3/4n3/4

i3/8(z0I)1/4
√
k

− Ac
z0I

) (5.26)

Comme précédemment, on peut montrer qu’il existe un débit limite pour t > tr

Q∞(x) = 2qvx = 2Iz0x

et que pour t ≤ tr , le débit Q varie en loi puissance du temps (obtenue en combinant
la loi de Manning-Strickler (5.21) et l’évolution (5.23) de la section mouillée A).

Le temps de concentration sera, par définition, égal à la somme des temps de par-
cours du versant et de la rivière :

tc = tr + tv. (5.27)

Application numérique Prenons par exemple une pente longue de Lv = z0 =
500 m et inclinée à α = 30 %, avec une rugosité de C = 1,5 m1/2/s. Il tombe une pluie
I = 20 mm/h (à convertir dans les bonnes unités) pendant deux heures. L’équation
(5.19) nous dit que le temps caractéristique pour atteindre un régime stationnaire est
tv = 4055 s, soit un peu plus d’une heure. Pour t ≥ tv , l’eau ruisselle le long des pentes
avec un débit (par unité de largeur) constant : qv = Iz0.

On suppose qu’après la phase de ruissellement, l’eau s’écoule dans un torrent de
pente i = 5 %, de longueur L = 1 km, avec un facteur de forme k = 0,3 et une rugosité
n = 0,05 s/m1/3. D’après l’équation (5.26), le temps nécessaire tr = 1032 s. Le temps
de concentration est tc = 1032 + 4056 = 5088 s, soit un temps inférieur à celui de la
pluie. Comme la méthode de Zeller le suggère ci-dessous, il faut reprendre une intensité
de pluie un peu plus forte sur un temps un peu plus court, et réitérer le calcul.

Principe de la méthode de Zeller

Nous exposons ici le principe de laméthode proposée par Zeller (1981) pour estimer
le temps de concentration et le débit pour un petit bassin-versant. Par « petit », il faut
entendre que l’on peut identifier un cours d’eau drainant des pentes et le découper en
zones homogènes sans que le travail devienne trop fastidieux. La méthode de Zeller
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doit être vue comme un canevas et non comme un cadre rigide. C’est une méthode
itérative :

1. on suppose que l’on dispose des données de pluie, notamment de la loi deMontana
(5.1) pour une période de retour ;

2. on se fixe une durée d de précipitation et on calcule l’intensité correspondante
à l’aide de la loi de Montana (5.1) ;

3. Zeller (1981) s’est servi de la formule d’Izzard pour estimer le temps de parcours
tv sur les versants (par ruissellement), mais on peut se servir d’autres formula-
tions, par exemple de l’équation (5.19) obtenue ci-dessus ;

4. on en déduit un débit arrivant dans le cours d’eau. Dans la méthode originale,
Zeller (1981) applique une méthode rationnelle (5.12) en écrivant que le débit
est généré par une surface S avec un coefficient de ruissellement C est Q =
CIS/3,6 ;

5. connaissant le débit à travers une sectionA, on peut en déduire la vitessemoyenne
u = Q/A, et de là le temps tr que met l’eau à parcourir un tronçon tr de rivière :
tr = Lr/u.

6. le temps de concentration est défini comme tc = tr + tv ;
7. on compare ce temps avec la durée d de la pluie ;
8. si d et tc sont raisonnablement proches, on arrête le calcul sinon on itère avec

une valeur différente de d jusqu’à observer la convergence souhaitée.

5.6.5 Modèle réservoir GR4

Principe

Les modèles à n réservoirs et p paramètres sont des représentations conceptuelles
du fonctionnement d’un bassin-versant qui généralisent le modèle SCS. La principale
nouveauté est qu’on considère maintenant que le sol agit comme un réservoir et qu’en
conséquence, une partie de l’eau infiltrée est restituée avec un temps de latence au cours
d’eau en crue. Nous considérons ici un des modèles qui offre le meilleur compromis
entre simplicité et performance : il s’agit d’un modèle à un réservoir et 4 paramètres ;
ce modèle est appelé GR4 (pour Génie Rural à 4 paramètres) et fait partie d’une classe
de modèles conceptuels de transformation pluie-débit développés par Claude Michel
au Cemagref (Rojas-Serna, 2005). Il offre une approximation satisfaisante des petits
bassins-versants rapides (Graff, 2004). Il existe plusieurs formulations de ce modèle,
qui généralement se distinguent notamment par le pas de temps employé : les modèles
de type GR4H à pas de temps horaire pour les crues rapides et les modèles GR4J à pas
de temps journalier pour les crues lentes (Perrin et al., 2001, 2003; Oudin et al., 2008).
Ici, nous ferons une présentation générale indépendante du pas de temps (on emploie
donc des équations différentielles au lieu des équations de bilan employées dans les
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modèles d’ingénierie). La formulation est adaptée à de petits bassins-versants de mon-
tagne (Graff, 2004) où l’interception de la pluie par la végétation se fait de façon simple
et ne nécessite pas de connaître l’évapotranspiration ; pour d’autres bassins-versants,
il faut prendre un modèle GR4H ou GR4J avec prise en compte de l’évapotranspiration
(Perrin, 2000; Perrin et al., 2003).

X2

dR = X1dP

(1 − X1)dP

dP = Idt

V

dH = X3V dt

Q

t

X4

Figure 5.25 – Schéma de principe d’un modèle réservoir GR4.

Le modèle prend en compte quatre phénomènes (voir figure 5.25) :

– les pertes initiales (interception par la végétation) sont en général faibles. On les
prend égales à une valeur X2 (en mm) ;

– une fois que la capacité d’interception est saturée, il y a ruissellement. La quan-
tité d’eau ruisselée par unité de temps est liée à la pluie précipitée dP = I(t)dt

dR(t) = X1dP, (5.28)

avec X1 un coefficient sans dimension (exprimé en %) ;
– dans le même temps dt, une partie de l’eau (1 −X1)Idt est infiltrée et stockée

dans un réservoir dont le volume initial est nul V (0) = 0 ; V est un volume
par unité de surface, il s’exprime donc en mm. Une partie du volume stocké est
restituée par des écoulements hypodermiques au cours d’eau

dH(t) = X3V (t)dt, (5.29)

avec X3 un taux de vidange linéaire (exprimé en %/h) ;
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– le temps de montée tm de l’hydrogramme est noté X4 (en h). On suppose que
l’hydrogramme est symétrique, donc td = X4. La lame totale d’eau transmise
au cours d’eau est T = R+H .

Les valeurs moyennes des coefficients X1, X2, X3, et X4 sont données dans le
tableau 5.9.

Tableau 5.9 – Valeurs moyennes des coefficients pour les différents bassins-versants.
Adapté de (Graff, 2004).

Nom Surface Région X1 X2 X3 X4 R/T
km2 % mm %/h h %

Groupe 1
Laval 0,86 Alpes-du-Sud 57,6 7,28 2,4 0,38 91
Erlenbach 0,64 Suisse Centrale 46,5 13,6 16,2 0,63 53
Groupe 2
Rimbaud 1,5 Alpes-du-Sud 35,4 40 2,28 1,07 57
Latte 0,19 Massif Central 14,4 75,4 3,96 0,78 41
Sapine 0,54 Massif Central 15,7 71,1 0,90 1,03 34
Groupe 3
Rietholzbach 3,31 Suisse Centrale 26,5 17 2,82 1,11 41
Lumpenenbach 0,93 Suisse Centrale 22,6 12,2 9,6 0,5 41
Vogelbach 1,55 Suisse Centrale 31,4 11,5 5,88 0,64 56
Brusquet 1,08 Alpes-du-Sud 13,8 22,4 0,72 1,63 54

Il reste une dernière opération pour passer de la pluie au débit. Sur le plan physique,
ce passage est complexe car il implique des processus très différents : ruissellement le
long du sol, drainage des sols, propagation d’une intumescence de crue le long d’un
cours d’eau à la géométrie plus oumoins complexe (cours d’eau principal et tributaires),
etc. Mathématiquement, on remplace tous ces processus par une « boîte noire », qui
permet de relier le débit à la pluie nette par l’intermédiaire d’une fonction de transfert.
L’idée de base est calquée sur la théorie de la réponse linéaire (Dooge, 1973; Brutsaert,
2005). On peut l’exprimer de la façon suivante : on considère une pluie unitaire de durée
infinitésimale (c’est-à-dire la quantité de pluie est de 1 mm et la durée est infiniment
petite) ; dans le cadre de la théorie de la réponse linéaire, cette impulsion initiale est
une fonction de Dirac δ. Cette pluie se produisant à l’instant t = 0 génère une crue
unitaire, dont l’hydrogramme est appelé l’hydrogramme unitaire instantané. La figure
5.26 montre l’allure de l’hydrogramme pour le modèle étudié ici ; son équation est

q(t) =
3

2X4
η2 pour 0 ≤ η ≤ 1,

q(t) =
3

2X4
(2− η)2 pour 1 ≤ η ≤ 2,

q(t) = 0 pour η > 2,
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avec ici η = t/X4 ; l’unité de q est 1/s. La fonction q est aussi appelée fonction de
transfert car elle permet de passer d’une pluie quelconque au débit induit par cette pluie.
Le choix de cette fonction est arbitraire, mais il doit satisfaire la contrainte

∫
t q(t)dt = 1.

Physiquement, on peut interpréter la fonction de transfert q comme une fonction qui
étale le volume de pluie nette sans en changer son volume total.

0.0 0.5 1.0 1.5 2.0
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Figure 5.26 – Hydrogramme unitaire q(η) d’un modèle réservoir GR4.

Comme le schématise la figure 5.27, une pluie complexe peut être décomposée en
une succession d’impulsions. En effet, on peut par définition écrire

P (t) =

∫
I(τ)dτ,

où τ est une variable d’intégration. On peut interpréter I(τ)dτ comme pluie de durée
dτ , qui vaut I fois la pluie unitaire δ(t − τ). Comme une pluie unitaire provoque une
crue unitaire q(t− τ), la pluie I(τ)dτ provoque une crue élémentaire I(τ)q(t− τ)dτ .
Comme le système est supposé linéaire, la réponse totale du système est la somme de
toutes les contributions élémentaires. En intégrant sur le temps et en multipliant par
la surface S du bassin-versant, on déduit le débit résultat de la pluie P (t)

Q(t) = αS

∫ t

0
I(τ)q(t− τ)dτ, (5.30)

où S est ici exprimé en km2 et α = 1/3,6 (comme pour la méthode rationnelle, la
conversion des unités pour aboutir à des m3/s nécessite d’introduireα). Cette opération
est un produit de convolution entre l’intensité nette I et la fonction de transfert q.
En pratique, la pluie n’est pas une fonction continue, mais une succession de valeurs
discrètes (un histogramme) ; il est alors d’usage de remplacer l’équation (5.30) par un
produit de convolution discret ; c’est un point que nous n’aborderons pas ici. Dans le
modèle GR4, ce n’est pas la pluie I que l’on va utiliser, mais la lame d’eauT représentant
la somme du volume d’eau ruisselée et du volume d’eau restituée après infiltration et
stockage dans le sol-réservoir.
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Figure 5.27 – (a) Réponse à une impulsion de pluie. (b) Décomposition d’une pluie
complexe en une série d’impulsions élémentaires.

Application

On va examiner ici la solution dans le cas d’une pluie d’intensité constante pendant
une durée t0.

Le bilan hydrique dépend du niveau dans le réservoir. Le volume V obéit à l’équa-
tion

dV
dt = −X3V (t) + (1−X1)

dP
dt . (5.31)

Considérons une pluie d’intensité constante I = dP/dt = I0, qui commence à
t = 0 et s’arrête à un instant t0. Durant les premiers instants, la pluie est interceptée.
Jusqu’au temps t1 = X2/I0, il n’y a pas d’eau qui atteint le sol ; on suppose que t1 < t0.
Pour t ≥ t1, l’eau touche le sol, commence à ruisseler et à s’infiltrer. La résolution de
l’équation (5.31) fournit

V (t) = I0
1−X1

X3
e−(t−t1)X3(e(t−t1)X3 − 1).

Le flux d’eau restituée au torrent à l’instant t0 ≥ t > t1 est donc

Ṫ = X3V +X1I0 = I0

(
(1−X1)e

−(t−t1)X3(e(t−t1)X3 − 1) +X1

)
.

À l’instant t0, la pluie s’arrête. Le niveau dans le réservoir diminue selon l’équation
d
dtV (t) = −X3V (t),
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avec pour condition initiale V (t0) = V0 = I0
1−X1
X3

e−(t0−t1)X3(e(t0−t1)X3 − 1). La
solution est

V (t) = V0e
−(t−t0)X3 .

Le flux total d’eau restituée au torrent à l’instant t > t0 est donc

Ṫ = X3V = X3V0e
−(t−t0)X3 .

Le débit résultant est obtenu par le produit de convolution (5.30) en remplaçant I
par Ṫ :

Q(t) = αS

∫ t

0
Ṫ (τ)q(t− τ)dτ.

En changeant la variable d’intégration, on obtient la relation suivante

Q(t) = αS

∫ t

0
Ṫ (t− τ)q(τ)dτ,

qui peut s’intégrer facilement numériquement (et peut s’intégrer à la main, mais plus
laborieusement).
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Figure 5.28 – (a) Variation de la lame d’eau Ṫ . (b) Hydrogramme résultant. Calcul
effectué avec : I0 = 50 mm/h pendant t0 = 1 h ; paramètres du bassin-versant : S = 1
km2, X1 = 8 %, X2 = 0 mm, X3 = 0,1 h−1, et X4 = 1 h.

5.6.6 Modèle réservoir GR4J

Principe

Le modèle GR4J développé par Charles Perrin est une évolution du modèle GR3J
(Edijatno & Michel, 1989). Il s’agit d’un modèle à deux réservoirs et quatre paramètres.
En entrée, il nécessite une série temporelle de précipitation P et une d’évapotranspira-
tion E. Cette dernière donnée étant le plus souvent inconnue, il faut l’estimer à l’aide
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de formules empiriques (Oudin et al., 2005, voir p. ex.). Il fournit le débit journalier
moyen Q. Quoiqu’initialement développé pour un pas de temps journalier, il peut se
décliner avec une base de temps horaire (GR4H).

La figure 5.29 montre le principe du modèle. Il y a deux réservoirs :

– le réservoir de production : il correspond d’une part à un effet tampon représen-
tant les échanges d’eau entre la végétation, le sol, et l’atmosphère, et d’autre part
à l’infiltration d’eau dans le sol. La taille de ce réservoir estX1 [mm]. Le niveau
d’eau dans le réservoir est S [mm] ;

– le réservoir de routage : il sert à étaler le volume de crue. Sa taille est notée X3

[mm], et le niveau d’eau est R [mm].

Les étapes du calcul sont les suivantes.

1. Initialement, au cours d’une journée, le bassin-versant subit une pluie P et de
l’évapotranspiration E. Si P > E, alors il existe une pluie nette Pn = P −E, et
l’évapotranspiration est étanchée :En = 0. Si au contraire P < E, alors Pn = 0
et l’évapotranspiration nette est En = E − P .

2. Une fraction de la pluie nette s’infiltre dans le sol. Cette fraction notée Ps [mm]
est d’autant plus importante que le réservoir est vide. On suppose donc que pour
une pluie élémentaire dPn, une fraction dPs se dirige vers le réservoir dontS/X1

sert de jauge de remplissage :

dPs =
(
1−

(
S

X1

)2
)

dPn,

et le réservoir voit son niveau augmenter :

dS = dPs.

L’équation différentielle du remplissage est donc

dS
1− (S/X1)2

= dPn.

Si Sk désigne le niveau d’eau dans le réservoir le jour précédent et Sk+1 le nou-
veau niveau, on a [

arctanh S

X1

]Sk+1

Sk

=
Pn
X1

.

En simplifiant 6, on obtient :

Sk+1 =
Sk +X1 tanh(Pn/X1)

1 + Sk tanh(Pn/X1)/X1

6. On se sert de l’identité tanh(a+ b) =
tanh a+ tanh b
1 + tanh a tanh b .
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3. On fait le même type de calcul avec l’évapotranspiration. Le niveau du réser-
voir diminue du fait de l’évapotranspiration, or celle-ci dépend du niveau du
réservoir. On définit une évapotranspiration au niveau sol/réservoir Es, et on re-
lie empiriquement sa variation temporelle au degré de remplissage du réservoir
et à l’évapotranspiration nette :

dEs =
S

X1

(
2− S

X1

)
dEn.

Au bout de 24 heures, le réservoir a vu son niveau évoluer :

Sk+1 =
1− tanh(En/X1)

1 + (1− Sk/X1) tanh(En/X1)
.

On déduit que la pluie nette qui s’est infiltrée en 24 h est :

Ps = Sk+1 − Sk =
(X2

1 − S2
k) tanh(Pn/X1)

X1 + Sk tanh(Pn/X1)
,

et que la quantité d’eau qui s’est évaporée est :

Es = Sk+1 − Sk =
Sk(2X1 − Sk) tanh(Pn/X1)

X1 + (X1 − Sk) tanh(Pn/X1)
.

La variation totale du réservoir tient compte des deux processus :

Sk+1 = Sk − Es + Ps.

4. De l’eau percole du réservoir avec un taux Ṡ ∝ S5. Perrin et al. (2003) proposent
la formulation empirique suivante pour estimer la quantité d’eau percolée

Pe
S

= 1−

(
1 +

(
4

9

S

X1

)4
)−1/4

.

Le volume d’eau dans le réservoir varie en conséquence (en tenant compte de
tous les processus)

Sk+1 = Sk − Pe − Es + Ps.

La lame d’eau qui est redirigée vers le cours d’eau est donc

Pr = Pn − Ps + Pe.

5. Afin d’avoir un hydrogramme avec unemontée et une décrue réalistes, les concep-
teurs du modèle supposent que le flux Pr se scinde en deux composantes :

– une petite fraction (10 %) est associée à un hydrogramme unitaire HU1
[1/j] de la forme

q1(t) =
5

4X4
η3/2 pour 0 ≤ η ≤ 1,

q1(t) =
5

4X4
(2− η)3/2 pour 1 ≤ η ≤ 2,

q1(t) = 0 pour η > 2,



5.6 Méthodes de transformation pluie-débit 303

avec η = t/X4 où X4 est un temps caractéristique [jour]. On forme le
produit de convolution pour obtenir le débit Q1 ou plus exactement son
équivalent en hauteur d’eau [mm]

Q1(t) =

∫
q1(t− τ)Pr(τ)dτ.

– la plus grande fraction (90 %) est associée à un hydrogramme unitaire HU2
[1/j] de la forme

q9(t) =
5

2X4
η3/2 pour 0 ≤ η ≤ 1,

q9(t) = 0 pour η > 1,

et on forme le produit de convolution pour former le débit Q9 [mm]

Q9(t) =

∫
q9(t− τ)Pr(τ)dτ.

6. Quoique les deux flux soient scindés dans le calcul, il existe en pratique un cou-
plage. Ce couplage entre flux est décrit à l’aide de la fonction

F = min
(
X2,

(
R

X3

)7/2
)
,

où X2 (avec possiblement X2 < 0) un coefficient d’échange, X3 [mm] est la
taille du réservoir de routage et R [mm] le niveau d’eau dans ce réservoir. Le
niveau dans ce réservoir varie donc comme :

Rk+1 = max(0, Rk +Q9 + F )−Qr

où le débit retournant vers la rivière Qr est supposé être de la forme :

Qr
R

= 1−

(
1 +

(
R

X3

)4
)−1/4

.

Le débitQ1 transitant directement sans passer par le réservoir devientQd [mm] :

Qd = max(Q1 + F, 0).

7. Le débit total est finalement :

Q̂ = Qr +Qd [mm].

Attention, il s’agit d’un débit en équivalent de hauteur d’eau [mm]. Pour obtenir le
débit moyen journalier, il faut multiplier par la superficie A du bassin-versant [km2 ]
et diviser par l’unité de temps [1 j = 86 400 s] :

Q =
AQ̂

86
[m3/s]. (5.32)
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Tableau 5.10 – Valeurs moyennes des coefficients et plages de variation. Les valeurs
ont été calées à partir des données collectées sur 429 bassins-versants. Source : (Perrin
et al., 2003).

unité valeur médiane intervalle de confiance (à 80 %) signification
X1 mm 350 100 à 1200 taille réservoir sol
X2 mm –0,6 –3 à 5 coefficient sol-routage
X3 mm 90 20 à 300 taille réservoir routage
X4 jour 1,7 1,1 à 2,9 temps caractéristique

Le tableau 5.10 fournit les valeurs typiques des paramètresX1 àX4 calés par Perrin
et al. (2003).

Perrin (2002) ont proposé des formules empiriques pour les paramètres X3 [mm]
et X4 [jour] :

X3 = 0,4(Pmax − Pmax)1.1,

avec Pmax la pluie moyenne mensuelle du mois le plus arrosé [mm] et Pmax le pluie
moyenne mensuelle du mois le moins arrosé [mm], et

X4 = 0,5 + 1,3
A0,16

P 0,64
jy

,

avecA la superficie [km2 ] du bassin-versant et Pjy [mm] la pluie journalière moyenne
sur le bassin-versant.

Pour aller plus loin

Il faut signaler la suite de modèles de type réservoir dans le langage R (Coron et al.,
2017; Delaigue et al., 2018) : airGR et airGRteaching. On se peut utilement se référer à
la page de présentation du code airGR.

https://hydrogr.github.io/airGR/
https://hydrogr.github.io/airGR/
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Figure 5.29 – Schéma fonctionnel du modèle pluie-débit GR4J : au cours d’une journée
(24 h), le bassin-versant subit des précipitations (pluie P ) et l’évapotranspiration. Si la
précipitation est de faible intensité, elle sera entièrement transformée en vapeur d’eau ;
si elle dépasse un certain seuil lié à l’évapotranspiration E, alors la pluie nette est
Pn = P −E et l’évapotranspiration nette est En = 0. Une partie de la pluie nette s’est
infiltre dans le sol ; on la note Ps et le reste (Pn − Ps ruisselle vers la rivière). L’eau
infiltrée est stockée dans le sol, qui agit comme un réservoir dont le niveau est S et
le volume maximal est X1. L’eau percole et est restituée à la rivière ; on appelle Pe le
volume d’eau émis par le réservoir. Pr = Pe + Pn − Ps constitue donc la lame d’eau
totale qui ruisselle. Le modèle étale ce volume ruisselé avec : 10 % de la lame qui est
rapidement évacué vers la rivière (fonction de transfert HU1) pour former le débit Q1

tandis que les 90 % restants sont dirigés vers avec un débitQ9. Il y a des échanges entre
le sol et l’écoulement de surface ainsi que le réservoir ; ces échanges sont contrôlés par
la variableX2. Le débit émis par le réservoir est notéQr et celui transitant directement
vers la rivière estQd. La somme des deux forme le débitQ = Qr +Qd. D’après Perrin
et al. (2003).
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5.6.7 Méthode Shypre

Nous terminons ce chapitre avec une méthode de détermination des caractéris-
tiques des débits à partir d’une connaissance fine des pluies. Cette méthode se nour-
rit des éléments vus à travers le chapitre, à savoir une détermination de la probabilité
d’observer une pluieP et unmodèle de transfert pluie-débit (voir figure 5.30) (Eagleson,
1972; Freeze, 1980). Il existe de nombreuses variantes de cette méthode. On va l’illustrer
ici à travers la méthode Shypre, qui a été développée à partir des années 1990 en France
pour déterminer la relation intensité-fréquence des débits dans des bassins-versants
jaugés ou non (Arnaud & Lavabre, 2010). La méthode Shypre comporte deux étapes :

– à l’aide d’un simulateur stochastique de pluie, on génère une chronique de pluies
au pas de temps horaire. C’est le simulateur développé par (Cernesson et al.,
1996), qui est utilisé dans la méthode Shypre, mais il existe d’autres algorithmes
(Oriani et al., 2014; Ailliot et al., 2015; Akrour et al., 2015; Breinl et al., 2017; Évin
et al., 2018). Le simulateur doit être calé à partir de données d’un pluviographe.

– à l’aide d’une méthode de transfert pluie-débit (modèle Socose, GR3H, etc.), on
transforme cette chronique de pluies en chronique de débits, puis on traite sta-
tistiquement la série temporelle qui en résulte pour déterminer les quantiles qui
nous intéressent (p. ex. le débit centennal). L’avantage est qu’on peut générer
des chroniques de pluies sur de longues durées (p. ex. 1000 ans ou plus), et donc
de débits, ce qui permet d’aboutir à des estimations plus précises des quantiles
(p. ex. la crue centennale). On peut aussi calculer des moyennes d’ensemble et
des incertitudes de façon plus précise. Historiquement, c’est le modèle GR3H
(modèle à deux réservoirs et trois paramètres au pas de temps horaire) qui a été
utilisé (Aubert et al., 2014), mais d’autres modèles de transformation de pluies
en débits ont été implémentés.

probabilité de pluie convolution

modèle de ruissellement

Figure 5.30 – Schéma de principe. D’après (Eagleson, 1972).

Un peu comme un jeu de Lego, la méthode Shypre peut être adaptée selon les ob-
jectifs poursuivis. Par exemple, la méthode Shyreg est calquée sur la méthode Shypre,
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avec deux différences (Arnaud et al., 2008; Fouchier, 2010; Arnaud et al., 2014; Aubert,
2012; Aubert et al., 2014) :

– les pluies sont régionalisées en tenant compte de l’information pluviométrique
disponible et du relief. Une carte des précipitations pour la France métropoli-
taine a été obtenue à la résolution de 1 pixel = 1 km2. Le simulateur de pluie est
donc calé pour une région donnée (base données shyreg-pluie). La figure 5.6.7
montre la distribution de la pluie horaire et journalière décennale sur la France
métropolitaine ;

– les débits sont déduits des pluies simulées à l’aide d’un modèle GR simplifié et
en tenant compte d’un abattement. La méthode a été appliquée à 1605 bassins-
versants pour former la banque de données Shyreg-débit.

La méthode Schadex développée par Emmanuel Paquet à EDF est construite sur une
approche similaire : une simulation des pluies sur la longue durée, la chronique des
événements sur un bassin-versant (circulation atmosphérique, formation et fonte du
manteau neigeux, infiltration, évapotranspiration), et le transfert sous forme de débit
à l’exutoire du bassin-versant (Paquet et al., 2006, 2013; Lawrence et al., 2014).
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Figure 5.31 – Quantiles de pluie ponctuelle en mm de durée 1h et 24 h, de période
de retour 10 ans. Méthode SHYREG, base 2016 pluie journalière. Source : INRAE et
HYDRIS hydrologie.

Des modèles couplant prévision des précipitations et transformation pluie-débit
ont également été construits sur le même principe et sont utilisés pour la prévision des
crues. Par exemple, le modèle Minerve est utilisé pour l’alerte hydrométéorologique
en Valais. Il est alimenté par les prévisions météorologiques à 72 h de Météo-Suisse

https://shyreg.recover.inrae.fr/
https://www.crealp.ch/fr/accueil/outils-services/logiciels/rs-minerve.html
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(modèle Cosmo-7) et de modèles à réservoir pour la transformation pluie-débit, qui
prennent en compte la présence de neige et de glace en altitude (Schaefli et al., 2005;
Jordan et al., 2010; García Hernández et al., 2011). La France teste un système de pré-
vision des crues éclair suivant le même principe que celui exposé dans cette section
(Demargne et al., 2019).

Simulateur des pluies

Nous commençons par le calage du simulateur stochastique des pluies (Cernesson
et al., 1996; Arnaud & Lavabre, 2010). On suppose que l’on dispose d’une série de don-
nées au pas minimal d’une heure. Les hyétogrammes de cette série sont décomposés
en succession d’événements pluvieux et de périodes sèches au pas de temps journalier
(voir figure 5.33) :

– une période sèche est une période sans pluie ou bien avec des pluies trop faibles
pour être significatives (le seuil de délimitation est fixé à 4 mm) ;

– un événements pluvieux est une période de pluie soutenue délimitée par deux
périodes sèches. Toutes les pluies journalières qui le composent sont supérieures
à 4 mm, et il existe au moins une pluie, dont le cumul journalier excède 20 mm.
On considère qu’il y a NE événements par an.

Une fois que chaque événement pluvieux a été déterminé, on regarde sa structure à
l’échelle horaire. On distingue (voir figure 5.33) :

– une averse est une succession de pluies horaires présentant un seul maximum
local. Chaque averse est caractérisée par sa durée (DA), son volume (VOL), le
volume relatif du pic de l’averse (RX) et la position relative de ce pic (RPX) ;

– un période pluvieuse est composée d’une ou de plusieurs averses séparées par
des périodes sèches. Il y a NG périodes plusieurs par événements pluvieux, et
chaque période comprend NA averses.

Le tableau 5.11 énumère les lois de probabilité employées pour chaque variable et
le(s) paramètre(s) de calage.

Une fois le simulateur calé, on peut créer une série temporelle de précipitations au
pas de temps horaire :

1. on génère un nombre aléatoire NE d’événements pluvieux. Comme NE suit une
loi de Poisson, la durée entre deux événements pluvieux suit une loi exponen-
tielle, ce qui permet de caler dans le temps le début de chaque événement ;

2. pour chaque événement, on tire aléatoirement un nombre NG de périodes plu-
vieuses et la durée DIA des périodes sèches entre les périodes pluvieuses. On a
alors entièrement positionné dans le temps les périodes au sein des événements
pluvieux ;
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Figure 5.32 – Principe de détermination des événements pluvieux : un événement plu-
vieux est une succession de pluies journalières non nulles. Pour qu’il soit considéré
dans la statistique, il faut que toutes les pluies journalières qui le composent soient
supérieures au seuil de délimitation fixé à 4 mm et qu’il y ait au moins une pluie jour-
nalière supérieure au seuil de sélection de 20 mm.

3. pour chaque période pluvieuse, on tire aléatoirement le nombre NA d’averses,
leur durée DA et leur volume VOL ;

4. pour chaque averse, on tire aléatoirement la position relative RPX du pic de
l’averse et l’intensité relative RX associée ;

5. on distribue aléatoirement le reste du volume de l’averse de part et d’autre du
pic (on tire le volume de pluie associé à chaque pas de temps à partir de la loi
uniforme, et on classe par ordre croissant ou décroissant les valeurs afin de res-
pecter la croissance et la décroissance de part et d’autre du pic).
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Figure 5.33 – Recherche des périodes pluvieuses (au nombre de NG) et des averses
(dont le nombre est NA). À partir de la série temporelle, on peut déterminer les variables
du problème : durée DA de chaque averse, durée DIA entre deux averses, volume VOL
de chaque averse, volume relatif du pic de l’averse (RX), et position relative (RPX) de
cette averse.

Simulateur des débits

Classiquement, la méthode Shypre se fonde sur le modèle GR3H. Ce modèle sup-
pose qu’une partie du transfert des eaux de ruissellement se fait par un écoulement le
long du cours d’eau principal. La méthode a été employée pour des bassins-versants de
5 km2 à 10 000 km2. Elle ne marche pas pour des bassins-versants karstiques (le Doubs
par exemple), des bassins-versants régulés par des barrages, ou des petits bassins-versants
de montagne pour lesquels la fonte nivale est un processus important dans la genèse
des crues.

Nous présentons ici le modèle GR4H tiré du modèle GR4 vu précédemment au
§ 5.6.5, qui est adapté aux tout petits bassins-versants. Pour ce faire, le modèle GR4
doit être intégré afin de fournir le débit instantané Qi au temps ti = iδt en fonction
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Tableau 5.11 – Loi de probabilité associée à chaque variable et valeur typique du (des)
paramètre(s) de chaque loi.

variable loi de probabilité valeur du paramètre
nombre d’événements pluvieux NE loi de Poisson pNE = 10
nombre de périodes pluvieuses NG loi géométrique pNG = 0,25
durée des périodes sèches entre périodes loi géométrique pDIA = 0,2
nombre d’averse NA par période loi géométrique pNA = 0,5− 0,7
durée DA de chaque averse loi de Poisson pDA = 5− 10
volume VOL de chaque averse loi exponentielle pV OL = 0,1− 0,2
volume relatif RX du pic d’averse loi uniforme
position relative du pic loi normale pRPX = 0,5 σRPX = 0,1− 0,2

du volume Vk et de la pluie horaire Pk aux temps tk (k ≤ i), avec δt = 1 h le pas de
temps horaire du simulateur. Pour cela, il faut discrétiser l’équation (5.30)

Qi = Q(ti) = S

∫ 2X4

0
q(τ)I(ti − τ)dτ = S

J∑
j=0

q(tj)I(ti − tj),

avec J est la partie entière du rapport 2X4/δt. Sans discrétisation, la résolution de
l’équation (5.30) à chaque pas de temps a un coût exorbitant.QuandX4 est un multiple
de δt, la discrétisation peut donner un résultat exact, et dans le cas contraire, il existe
une erreur de troncature. Si par exemple, on a une durée de transfert X4 = δt = 1 h
(une hypothèse réaliste pour de petits bassins-versants de taille inférieure à 10 km2),
alors le débit dépend de la pluie Pi et du niveau du réservoir Vi au temps ti ainsi que
de leur état précédent Pi−1 et Vi−1 :

Qi = αPi + βVi + γPi−1 + ϵVi−1,

où βi etγi des coefficients qui ont été déterminés en fonction des paramètres X1, X2,
X3 et X4 :

α =
X1

2
−

(X1 − 1)
(
X3X4(X3X4(X3X4 − 3) + 6) + 6e−X3X4 − 6

)
2X3

3X
3
4

(5.33)

β =
3
(
X3X4(X3X4 − 2)− 2e−X3X4 + 2

)
2X2

3X
3
4

(5.34)

γ =
1

2

(
X1−

(X1− 1)e−X3X4
(
eX3X4

(
X33X43 − 6

)
+ 3X3X4(X3X4 + 2) + 6

)
X33X43

)
(5.35)

ϵ =
3
(
e−X3X4(−X3X4(X3X4 + 2)− 2) + 2

)
2X2

3X
3
4

(5.36)

Le principe de l’algorithme est exposé à la figure 5.34.
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Figure 5.34 – Schéma fonctionnel du modèle pluie-débit GR4H: pendant un intervalle
de temps δt = 1 h, une pluie Pi tombe. Si la capacité d’interception n’est pas nulle
(X2 > 0), alors la pluie est diminuée deX2 :P ′

i = Pi−X2 siP > X2 (et doncX2 = 0 à
l’itération suivante), et P ′

i = 0 siP < X2 (et doncX2 = X2−Pi à l’itération suivante).
Une fraction X1P

′
i de l’eau ruisselle tandis que la fraction (1 − X1)P

′
i s’infiltre dans

le sol. Le niveau Vi du « réservoir sol » s’accroît donc de l’eau infiltrée, mais perd
aussi une quantité X3Vi. La somme des eaux ruisselée et infiltré forme la lame d’eau
restituée au cours d’eau, qui une fois convoluée avec la fonction de transfert q fournit
le débit Qi à l’instant ti. Schéma adapté de celui proposé par Benjamin Graff dans
sa thèse (Graff, 2004, p. 139). Le modèle GR4H présenté ici difère un peu du schéma
originel du modèle GR4J proposé par Perrin et al. (2003), qui notamment prend en
compte l’évapotranspiration comme entrée du modèle.

5.6.8 Prise en compte de la fonte nivale

Approches possibles

Beaucoup de bassins-versants dans les pays montagneux comme la Suisse ont un
régime hydrographique nivo-pluvial, c’est-à-dire que les débits sont influencés par la
fonte nivale. L’apport de cette fonte au débit d’une rivière est généralement estimé à
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l’aide de l’une des deux approches suivantes (Ferguson, 1999; DeWalle & Rango, 2008) :

– Bilan énergétique. Les modèles physiques fondés sur un bilan énergétique consi-
dèrent le bilan de la « valeur en eau 7 » du manteau neigeux en fonction des ap-
ports, des pertes, et des variations internes du manteau neigeux. Ce bilan prend
en compte l’influence des précipitations (sous forme solide ou liquide), la redis-
tribution de neige par le vent, les échanges de masse avec l’atmosphère hors pré-
cipitation (sublimation, condensation, évaporation), le ruissellement à la base du
manteau neigeux, et l’infiltration dans le sol. En Suisse, la prévision des crues se
fait à l’aide du modèle Flexible Snow Model (FSM) développé au sein du service
hydrologique du WSL/SLF (Mott et al., 2023).

– Corrélation statistique avec les températures. Les modèles considèrent que le
volume de neige fondue varie linéairement avec un « indice de température »,
qui se définit comme la différence entre la température moyenne (souvent jour-
nalière) et une température de base (représentant la température requise pour
faire fondre la neige). Le coefficient de proportionnalité dépend de la couverture
de végétation, de la pente et de l’orientation, et de l’altitude. Deux des modèles
les plus populaires sont SRM (Snowmelt-Runoff Model) (Martinec et al., 2008) et
HBV (Lindström et al., 1997).

Si les modèles physiques offrent une description plus réaliste des débits liés à la fonte
nivale en fonction des conditions nivo-météorologiques, ils sont aussi bien plus gour-
mands en données et bien plus lourds à mettre en oeuvre que les modèles statistiques.

Modèle CemaNeige

Ici, pour être en continuité avec la présentation des modèles conceptuels de type
réservoir vus précédemment au § 5.6.5 et offrir un cadre de calcul adapté aux études
en ingénierie, nous décrivons le principe du modèle CemaNeige développé par Audrey
Valéry au Cemagref (devenu INRAE) (Valéry, 2010; Valéry et al., 2014), qui peut être vu
comme une variante du modèle HBV. Ce modèle nécessite seulement deux paramètres
de calcul propres à chaque versant, et les autres paramètres sont supposés avoir un
caractère universel. Le modèle a été testé sur 380 bassins-versants en France, Suisse,
Suède et Canada, et s’avère en moyenne plus performant que les modèles plus anciens.

La figure 5.35 montre le principe du modèle et les différentes opérations. Il faut
fournir en entrée la température T (moyenne sur le pas de temps considéré ∆t, en ℃)
et la précipitation (lame d’eau équivalente en eau sur∆t, en mm). Le modèle fournit la
lame d’eau résultant soit de la part de précipitation liquide, soit de la fonte de la neige.

7. Les Anglo-Saxons parlent de snow water equivalent (équivalent en eau de la neige), abré-
gée comme SWE, c’est-à-dire la conversion de la masse du manteau neigeux en masse d’eau
liquide.

https://www.slf.ch/en/snow/snow-as-a-water-resource/snow-hydrological-forecasting/
https://www.slf.ch/en/snow/snow-as-a-water-resource/snow-hydrological-forecasting/


314 Chapitre 5 Crues liquides et inondations

Le modèle nécessite de scinder le bassin-versant en plusieurs étages et de fournir les
tranches d’altitude (courbe hypsométrique). Le calcul comprend plus étapes :

1. Extrapolation des températures et précipitations en fonction de l’altitude :

T (t, z) = T (t) + θ(z − zref ),

avec θ le gradient de température, zref une altitude référence (valeur médiane
des températures sur le bassin-versant), et

P (t, z) = P (t) exp(β(z − zref )),

avec β un gradient hypsométrique.
2. Décomposition de la précipitation en précipitation solide N et liquide. Quand

l’altitude référence zref est au-dessous de 1500 m, le coefficient α est une fonc-
tion de deux paramètres de température Tmin et Tmax correspondant à la plage
de températures pour laquelle on observe de la neige. Quand zref > 1500m, on
pose Tmin = −1 ℃ et Tmax = +3 ℃. On définit

N = αP

la quantité de précipitation sous forme solide.
3. Lemanteau neigeux comme réservoir. Pendant le temps∆t, le réservoir « neige »

peut varier du fait de l’apport de neige N ou de la fonte F :

G(t+∆, z) = G(t, z) +N(t, z)− F (t, z).

On introduit un paramètre décrivant l’état thermique du manteau neigeux (une
sorte de température moyenne au sein du manteau neigeux) :

e(t+∆, z) = min(Ce(t, z) + (1− C)T (t, z), 0),

où C est un paramètre de pondération traduisant les transferts thermiques au
sein du manteau neigeux et avec l’atmosphère.

4. Prise en compte de la couverture neigeuse. La fonte n’intervient que lorsque
l’état thermique est e = 0 et T > Tf où Tf = 0 ℃ est la température de fusion
de la neige. La fonte potentielle Fpot est

Fpot = K(T − Tf ),

avecK le paramètre de fonte. Quand la quantité G de neige du réservoir est en-
deçà d’un seuil Gs, seule une fraction de l’étage considéré fournit de la neige
fondue. QuandG > Gs, la lame de neige fondue F correspond à la fonte poten-
tielle Fpot. On note p la fraction de la zone enneigée :

p =
G

Gs
.
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5. Calcul de la fonte nivale. La fonte F s’écrit :

F = (Vm + (1− Vm)p)Fpot,

où Vm est la contribution minimale du bassin-versant à la lame F quand p→ 0.
6. Transfert au module de débit. La lame totale d’eau L transmise au module de

calcul des débits est donc :

L = (1− α)P + F.

CemaNeige utilise des paramétrisations publiées dans la littérature pour les para-
mètres Tmin et Tmax, les paramètres θ et β, la température de fonte Tf , la fonte mini-
male Vm, et Gs le seuil de couverture. Les deux paramètres libres sontK le paramètre
de fonte [mm/℃] (K ∼ 3 mm/℃) et C le paramètre de pondération [-] (C ∼ 0,18 en
Suisse).

Pour aller plus loin

Le code CemaNeige est disponible avec d’autres modèles réservoirs tels que GR4
(à pas de temps journalier ou horaire) dans la bibliothèque airGR du langage R. Il faut
prendre garde qu’il existe plusieurs formulations de modèle sans que le nom ne change.
Par exemple, le modèle CemaNeige originel a deux paramètres (Valéry, 2010), mais il
existe une variante à quatre paramètres (Riboust et al., 2019) ; de même le modèle GR4
connaît plusieurs déclinaisons (Perrin et al., 2003; Graff, 2004) qui ne se recouvrent pas.
On peut coupler le code CemaNeige à un modèle GR dans airGR.

https://hydrogr.github.io/airGR/
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① Effet de l'altitude

② Décomposition pluie/neige

③ Réservoir neige

④ Vidange réservoir

⑤ Effet de la couverture neigeuse

⑤ Calcul de la fonte

⑥ Routage

Figure 5.35 – Schéma fonctionnel du modèle CemaNeige : en entrée, le modèle consi-
dère des séries temporelles de température T et de précipitations P . La première étape
du calcul consiste à subdiviser le bassin-versant en différents étages pour lesquels la
température serait adaptée en fonction de l’altitude z. Ensuite on examine quelle est
la proportion de précipitation sous formes solide et liquide. Le paramètre α = f(T,z)
permet d’estimer la quantité de précipitation sous forme solide, que l’on désigne par
N = αP . La quantité P −N = (1− α)P est donc la proportion de précipitation sous
forme liquide qui est transmise directement au module de calcul des débits. La neige
forme le manteau neigeux. Conceptuellement, un manteau neigeux est vu comme un
réservoir, dont l’équivalent en volume d’eau est noté G. Le manteau neigeux est éga-
lement caractérisé par son état thermique e. Lorsque e = 0, le manteau neigeux fond.
Tout l’étage k n’est pas nécessairement couvert de neige, et on introduit un coefficient
p de couverture neigeuse. Ce coefficient est défini comme p = max(G/Gs, 1) où Gs
est une valeur seuil. La valeur en eau de la neige fondue dépend de la différence de
température ∆T = Tk − Tf entre la température moyenne de l’étage k et la tempéra-
ture de fusion et de la couverture neigeuse. La neige fondue est ensuite transmise au
module de calcul des débits.



ANNEXEA
Annexe A: probabilités

A.1 Qu’est ce qu’une probabilité?

A.1.1 Introduction du concept « probabilité »

D
ans le langage couRant, l’adjectif « probable » désigne quelque chose qui
est vraisemblable, qui peut se produire, mais sans certitude. Dans le langage
mathématique, la chose est moins aisée à définir ou, plus exactement, elle

n’offre pas de consensus. On compte ainsi pas moins de trois manières de définir la
probabilité d’un événement. Historiquement, la probabilité P a été vue sous un aspect
de dénombrement dans les jeux de hasard :

P =
nombre de cas favorables
nombre de possibilités .

Par exemple, avec un dé parfait, la probabilité de tirer un nombre pair est de 3/6=1/2 :
on a donc une chance sur deux de tirer un chiffre pair en tirant un dé non pipé. On voit
rapidement qu’avec ce type de définition, la base du calcul est une affaire de dénom-
brement et dès lors qu’on travaille avec des ensembles qui ne sont plus dénombrables,
on ne peut plus appliquer ce type de définition.

Une vision classique, longtemps prédominante, est dite fréquentiste car elle pos-
tule que la probabilité P d’un événement peut être estimée en réalisant un très grand
nombre d’expériences et en comptant le nombre d’occurrences de l’événement consi-
déré :

P = lim
n→∞

nombre d’événements observés
nombre total d’événements n .

En pratique, il faut qu’on soit en mesure de réaliser (ou d’observer) un grand nombre
d’expériences pour estimer la probabilité. Dans le cas contraire, ce concept ne permet
pas de définir une probabilité. Par exemple, la question « quelle est la probabilité qu’il
neige à Lausanne le 1er novembre 2100? » n’a pas de réponse dans le cadre conceptuel
fréquentiste.

317
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Beaucoup considèrent que la vision fréquentiste conduit à une rigidité intenable
tant du point de vue de la logique que pour les aspects pratiques. De plus en plus, on
assiste à l’émergence du point de vue bayésien, qui affirme que la probabilité objective
d’un événement n’existe pas et qu’il faut lui substituer la notion de probabilité subjec-
tive qui mesure l’incertitude que l’on a dans la connaissance d’un événement, mesure
qui varie d’un observateur à l’autre :

P = mesure du degré de croyance qu’un événement se produise.

Tout ce que l’on peut exiger de cette mesure d’incertitude est qu’elle remplisse les
axiomes fondamentaux du calcul des probabilités (voir § A.1.2). Dans ce cadre bayé-
sien, il est possible de répondre à la question formulée plus haut. Par exemple, en se
fondant sur une étude statistique des chutes de neige à la date fixe du 1er novembre,
on peut arriver à estimer la probabilité qu’il neige le 1er novembre 2100 à Lausanne. La
réponse fournie n’est alors rien d’autre qu’un degré de vraisemblance.

Il convient de ne pas opposer brutalement ces points de vue car, en pratique, ils
donnent des résultats qui sont assez voisins. Par exemple, pour aboutir à une estimation
bayésienne de la probabilité d’une chute de neige le 1er novembre 2100 à Lausanne,
une attitude pragmatique est d’évaluer la probabilité d’occurrence de chutes sur un
échantillon d’événements passés en calculant une fréquence empirique d’occurrence.
Si sur les 40 dernières années, il a neigé 2 fois un 1er novembre, on peut avancer que
la probabilité qu’il neige le 1er novembre 2100 est de 2/40 = 1/20 ≈ 5 %. Dans 10 ans,
avec de nouvelles observations, on sera en mesure d’affiner encore cette estimation.
Cette manière de procéder n’est pas la seule. On peut par exemple trouver qu’il y a en
moyenne 4 chutes de neige par an à Lausanne. En moyenne, il y aurait donc 4/365=1,1
% de chances qu’il neige un 1er novembre, mais comme il ne neige essentiellement que
pour certains mois de l’année, mettons pour 6 mois de l’année, la valeur moyenne est
de 4/365/(6/12) ≈ 2,2 %. On voit à travers cet exemple deux aspect cruciaux :

– le calcul bayésien des probabilités est subjectif ;
– il peut intégrer de nouvelles connaissances (ou observations) au fil du temps.

A.1.2 Les règles de base du calcul des probabilités

Il convient de rappeler avant toute chose quelques définitions élémentaires. On dit
qu’un phénomène ou une expérience est aléatoire si on ne peut pas prévoir de manière
certaine son résultat ou bien, si répété dans des conditions identiques, sa réalisation
donne lieu à des résultats différents. Une avalanche est par exemple un phénomène
aléatoire dans les deux sens du terme (sous réserve, pour le second point, de s’entendre
sur ce que sont des conditions identiques).

Un événement est une assertion sur le résultat de l’expérience ou de l’observation.
Par exemple, la proposition « la chute de pluie journalière est de 10 cm » est un événe-
ment. Une réunion d’événements est encore un événement ; par exemple, la proposition
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« la rivière atteint la cote 100 m » est une collection d’événements élémentaires de la
forme « la rivière atteint la cote 90 m, la cote 80 m, 70 m, etc. ». Une population est
l’ensemble de tous les événements possibles.

Propriétés élémentaires

Quel que soit le point de vue adopté pour la définition de la probabilité, quelques
propriétés élémentaires doivent être vérifiées. À tout événement, on associe un nombre
positif P compris entre 0 et 1, appelé probabilité. Soient E1 et E2 deux événements, on
a :

– complémentarité : la probabilité qu’un événement ne se réalise pas vaut 1 −
P (E1)

P (non E1) = 1− P (E1).

– probabilité d’observer deux événements : on introduit différentes notations, qui
peuvent se comprendre en considérant que les événements sont des ensembles
(voir fig. A.1) qui peuvent être joints ou intersectés. Ainsi,E1

⋃
E2 désigne l’en-

semble de deux événements et signifie en théorie des probabilités le fait d’ob-
server E1 ou E2 (ou bien encore, si on parle de propositions, au moins une des
deux propositionsE1 ouE2 est vraie). On note la probabilité jointe P (E1

⋃
E2)

ou P (E,E2) – ou bien P (E+E2) dans la notation de Jaynes (2003), qui dé-
signe l’opération logique E+E2 comme étant une somme logique ou disjonc-
tion. Insistons ici sur le fait que quelle soit la notation choisie (un symbole +
ou
⋃
, il s’agit juste d’une convention d’écriture qui n’implique pas d’opération

numérique (on ne somme pas les valeurs).
E1
⋂
E2 désigne l’intersection de deux événements et signifie qu’on observe à

la fois E1 et E2 (ou bien encore, à la fois les deux propositions E1 ou E2 sont
vraies). La probabilité d’observer à la fois E1 et E2 est notée P (E1

⋂
E2) – ou

bien P (E1E2) par Jaynes (2003) qui parle de produit logique (ou conjonction)
pour désigner « à la fois E1 et E2 ».
La probabilité d’observerE1 ouE2 est égale à la somme des probabilités d’obser-
ver individuellementE1 etE2 moins la probabilité d’observerE1 etE2 ensemble
(afin de ne pas compter deux fois le même événement)

P (E1

⋃
E2) = P (E1) + P (E2)− P (E1

⋂
E2).

Une simplification peut être opérée quand les deux événements sont mutuelle-
ment exclusifs, c’est-à-dire quand P (E1

⋂
E2) = 0 : P (E1 ou E2) = P (E1) +

P (E2). Le plus souvent la probabilité jointe est notée

P (E1 et E2) = P (E1

⋂
E2) = P (E1, E2).

On emploie dans certains livres la notation E1 ∧ E2 ;
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– probabilité conditionnelle : la probabilité d’observer E1 sachant que E2 est ob-
servé est égale au rapport de la probabilité d’observer à la fois E1 et E2 sur la
probabilité d’observer E2 séparément.

P (E1|E2) =
P (E1

⋂
E2)

P (E2)
.

Si les deux événements sont dits (statistiquement) indépendants alors :P (E1|E2) =
P (E1) ;

– comme la relation précédente est symétrique, on en tire la (première) relation de
Bayes :

P (E2|E1) =
P (E1|E2)P (E2)

P (E1)
.

En combinant avec la première règle de composition (étendue à une série de n
événements complémentaires, c’est-à-dire ils sont exclusifs les uns par rapport
aux autres :

∑n
i=1 P (Ei) = 1), on obtient le second théorème de Bayes

P (Ej |F ) =
P (F |Ej)P (Ej)

P (F )
,

où F désigne un événement quelconque et où

P (F ) =
n∑
i=1

P (F |Ei)P (Ei).

Ce théorème permet de renverser l’ordre dans le conditionnement en exprimant
la probabilité d’observer un événement Ej sachant que F s’est produit en fonc-
tion des autres probabilités marginales. L’utilité de ce théorème est montrée à
travers l’exemple suivant.

E1

E2

Figure A.1 – Deux événements E1 et E2.
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Notons que ces règles formulées ici pour des événements discrets peuvent se trans-
poser aux variables aléatoires continues. Ainsi, le théorème de Bayes dans sa formula-
tion continue s’écrit

P (z|y) = P (y|z)P (z)∫
P (y|z)P (z)dz

,

avec y et z deux variables aléatoires. Ce théorème sera abondamment utilisé dans les
problèmes d’inférence (dite bayésienne).

♣ Exemple. – On a observé les feux de forêt pendant un grand nombre d’années.
Sur 100 feux observés, il y a eu 80 feux déclenchés par des pyromanes, 15 feux déclen-
chés par inadvertance/imprudence, et 5 feux d’origine non identifiée, éventuellement
consécutifs à des orages. On a également noté que 30 % des feux dus à une impru-
dence atteignaient les alentours d’un village contre 80 % des feux dus à des pyromanes ;
lorsque le feu était du troisième type, on trouvait que dans 60 % des cas le village était
concerné. On note E1 l’événement « le feu est dû à un pyromane », E2 « le feu a pris
naissance à cause d’une imprudence », et E3 « le feu est d’un autre type ». On note
D l’événement « le feu de forêt atteint le village ou ses environs immédiats ». On a
d’après l’énoncé : P (E1) = 0,8 ; P (E2) = 0,15 ; P (E3) = 0,05. De même, on sait que :
P (D|E1) = 0,8 ; P (D|E2) = 0,3 ; P (D|E3) = 0,6.

La question est : « un feu vient de se déclencher dans la forêt voisine, quelle est la
probabilité qu’elle atteigne le village? ». La réponse est :

P (D) =
∑
i

P (D|Ei)P (Ei) = 0,8× 0,8 + 0,15× 0,3 + 0,05× 0,6 = 0,715.

Dans 71,5 % des cas, le feu de forêt atteint le village. On se pose maintenant la question
« quand un feu de forêt menace directement le village, quelle est la probabilité que ce
feu ait été déclenché par un pyromane? ». La réponse est d’après la formule de Bayes :

P (E1|D) =
P (D|E1)P (E1)

P (D)
=

0,8× 0,8

0,715
≈ 0,895.

Il y a donc 89 % de chances que le feu soit sous d’origine criminelle s’il arrive au village.
On tire de cet exemple très simple plusieurs enseignements.

– Les propriétés élémentaires du calcul des probabilités permettent de faire des
opérations basiques et de manipuler de manière rigoureuse les assertions.

– La prise en compte d’une information (le feu atteint le village) modifie la proba-
bilité puisqu’on passe de P (E1) = 0,8 à P (E1|D) = 0,895. ⊓⊔

♣ Exemple. – Voici un exemple emprunté à Gerd Gigerenzer (Gigerenzer, 2003).
La probabilité qu’une femme entre 40 et 50 ans ait le cancer est de 0,8 %. Si une femme
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atteinte du cancer passe une mammographie, il y a 90 % de chances que le résultat soit
positif. Si une femme n’a pas le cancer, il y a 7 % de chances que sa mammographie four-
nisse un faux positif. Considérons maintenant une femme qui passe une mammogra-
phie, dont le résultat est positif.Quelle est la probabilité qu’elle soit réellement atteinte
du cancer?

Interrogés lesmédecins expérimentés pensent intuitivement queP ∼ 90%. Pourtant
en appliquant le théorème de Bayes, on trouve un résultat de l’ordre de 9 %. En effet,
on cherche à calculer la probabilité conditionnelleP (malade|positif), or d’après le théo-
rème de Bayes, cette probabilité se définit comme

P (malade|positif) = P (positif|malade)P (malade)
P (positif)

Or les données fournies nous donnent les estimations suivantes : P (malade) = 0,008,
P (sain) = 1−P (malade) = 0,992, P (positif|malade) = 0,9, et P (positif|sain) = 0,07.
Pour le dénominateur, la règle de composition des probabilités nous donne

P (positif) = P (positif|malade)P (malade) + P (positif|sain)P (sain),

soit encore
P (positif) = 0,9× 0,008 + 0,07× 0,992 = 7,66 %.

On déduit donc la probabilité qu’une femme soit réellement atteinte d’un cancer si sa
mammographie est positive :

P (malade|positif) = 0,9× 0,008

0,07664
= 9,4 %.

Gerd Gigerenzer a développé une technique dite des fréquences naturelles (voir figure
A.2) qui permet d’arriver à l’estimation suivante de la probabilité conditionnelle

P (malade|positif) = 7/(7 + 70),

donc P = 9,1 %. La différence vient des arrondies dans le décompte des personnes.

1000 personnes

8 malades                                 992 non-malades

7 positifs                           1 négatif 70 positifs                           922 négatifs

Figure A.2 – Calcul des « fréquences naturelles » selon la méthode de Gerd Gigerenzer
(Gigerenzer, 2003).
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À noter que les campagnes publiques de dépistage du cancer du sein sont en passe
de devenir un scandale sanitaire ; la situation est dénoncée par de nombreux méde-
cins et scientifiques depuis de nombreuses années (voir p. ex. ce le site d’informations
www.cancer-rose.fr de la doctoresse Cécile Bour). Le problème est propre à cette forme
de cancer, et ne concerne donc pas les autres campagnes de dépistage.

♣ Exemple. – Voici un article d’opinion tiré du Monde Le Monde du 30 mars 2010.

« Ce n’est pas tous les jours qu’être un peu matheux peut aider à dé-
fendre la liberté d’expression. Tiens, on va aider Zemmour, même s’il n’est
pas toujours sympathique, à se dépêtrer de la LicRa qui décidément tire
sur tout ce qui bouge, des pigistes du Figaro aux humoristes anarchistes
(on se souvient du procès contre Siné).

« M. Zemmour donc, se retrouve condamné par toutes les bonnes
consciences pour avoir proféré ces paroles sacrilèges : « la plupart des
trafiquants sont noirs et arabes ».

« Mon conseil à Zemmour est de prendre comme avocat un prof de
math (d’abord ils sont moins chers) qui seul pourra irréfutablement dé-
montrer à la cour que ses propos ne constituent pas une attaque raciste.
Car ce qui est condamnable, ce n’est pas de constater statistiquement que
« la plupart des trafiquants sont noirs et arabes », mais de prétendre en
déduire, comme le font ses accusateurs, que « la plupart des Noirs et des
Arabes sont des trafiquants », un propos qui, lui, tombe clairement sous
le coup de la loi.

« Or, comme l’a démontré le peu médiatique Thomas Bayes, un pas-
teur et mathématicien qui vécut à Londres dans les années 1750, le pre-
mier énoncé n’implique absolument pas l’autre, loin s’en faut. Dans le
cours que je donne chaque année à mes étudiants, je leur montre, n’utili-
sant le fameux théorème de Bayes, que la proportion (techniquement la
« probabilité conditionnelle ») des émigrés parmi les délinquants peut lar-
gement dépasser 50 % (propos de Zemmour) sans que la proportion des
délinquants parmi les émigrés (le propos raciste) soit beaucoup plus éle-
vée qu’elle ne l’est parmi la population des Français « de souche », chère
à Gérard Longuet. Et si l’on introduit, en plus, le fait avéré que le taux de
délinquance est plus fort parmi les tranches de population à bas revenus,
on peut même trouver des situations où les émigrés sont simplement plus
vertueux que les franchouillards, dans toutes les tranches !

« La formule (de Bayes) qui relaxe immédiatement Zemmour, la voici :
p(trafiquants/émigrés) = p(émigrés/trafiquants)×p(trafiquants)/p(émigrés)

A =
B × C
D

.

Application numérique : avec B = 1/2, C = 1/10 000, et D = 1/10, la
proportion des trafiquants parmi les émigrés est de 1/2 000 ! Pas de quoi

https://www.cancer-rose.fr/
http://www.lemonde.fr/opinions/article/2010/03/30/la-licra-contre-zemmour-revisez-vos-maths-par-jean-michel-claverie_1326184_3232.html#ens_id=1320193
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justifier de renvoyer chez eux les 1 999 autres qui ne font rien de répréhen-
sible. Une autre chose que montre ce calcul, c’est l’influence terriblement
négative que peut avoir une infime fraction de délinquants sur la percep-
tion de la minorité dont ils sont issus. Pour garder votre souplesse d’esprit,
pratiquez le retournement bayésien une fois pas jour ! »

Son auteur Jean-Michel Claverie est professeur de génomique et bioinformatique médi-
cale, faculté de médecine, Université de la Méditerranée, Marseille. Il est aussi directeur
du laboratoire « information génomique & structurale ».

A.1.3 Loi de probabilité

On a dit précédemment qu’un événement est dit aléatoire si son résultat n’est pas
certain ou bien qu’il varie au gré des réalisations et on a dit que la mesure de cette
réalisation, la probabilité, est un nombre compris entre 0 et 1. On appelle variable aléa-
toire X la quantité qui dépend de la valeur prise par l’événement. Si l’événement ne
peut prendre que des valeurs discrètes (finies ou dénombrables), on parle de variable
aléatoire discrète ; si, au contraire, un événement peut prendre des valeurs continues
sur un intervalle donné, alors on parle de variable aléatoire continue.

♣Exemple. – Si l’on reprend l’exemple précédent, la nature du feu est une variable
aléatoire, qui peut prendre ses valeurs dans un ensemble à trois valeurs : {feu d’origine
criminelle, feu d’origine accidentelle, autre forme}. Il s’agit d’une variable discrète. Si
on considère une chute de pluie, celle-ci peut prendre n’importe quelle valeur positive,
il s’agit d’une variable aléatoire continue. ⊓⊔

Une loi de probabilité (ou distribution) est une fonction qui décrit comment sont
distribuées les valeurs de la variable aléatoire considérée. Le support d’une loi de pro-
babilité est le domaine sur lequel elle prend ses valeurs ; on le note supp.

♣ Exemple. – La loi exponentielle s’écrit sous la forme Pa(X = x) = ae−ax où
a est un réel positif. Le support de Pa est l’ensemble des réels positifs : suppPa = R+,
car Pa n’est définie que pour des valeurs x positives ou nulles. ⊓⊔

Si la variable est discrète, la loi de probabilité fournit la probabilité d’observer dans
quel état est le système :

PX(X = x) = prob(X prend la valeur x).

Si la variable est continue, on introduit la densité de probabilité (ou la masse pour
une variable discrète) f(x) qui est la probabilité d’observer l’état du système dans un
certain voisinage dx :

f(x)dx = PX(x ⩽ X ⩽ x+ dx).
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La probabilité est un nombre sans dimension (physique) compris entre 0 et 1. En
revanche, la densité de probabilité a pour dimension l’inverse de l’unité de X puisque
f = dPX/dx.

Pour une densité de probabilité f de support [a, b], on appelle fonction de répartition
FX l’intégrale de f :

FX(x) = P (X ≤ x) =
x∫
a

f(u)du.

Elle donne la probabilité que la variable aléatoire ne dépasse par une valeur donnée x.
On parle aussi de probabilité de non-dépassement. On introduit la quantité complémen-
taire, dite probabilité de dépassement, la probabilité que la variable dépasse systémati-
quement une valeur seuil :

1− FX(x) = P (X ≥ x) =
b∫
x

f(u)du.

À noter que l’on a nécessairement FX(b) = P (X ⩽ b) =
∫ b
a f(u)du = 1.

On déduit de cela que

Prob[a ≤ X ≤ b] =
∫ b

a
f(x)dx = FX(b)− FX(a).

On appelle moyenne (ou espérance ou moment d’ordre 1) E(X) d’une variable dis-
crète la moyenne arithmétique des différentes valeurs que X peut prendre, pondérées
par leurs probabilités :E(X) =

∑
i xiP (X = xi). L’équivalent pour une variable conti-

nue est :

E(X) =

b∫
a

xf(x)dx =

b∫
a

xdPX .

Quand on écrit une relation de forme P = Prob[X ≤ x], on appelle x le quantile
associé à la probabilité de non-dépassement P .

À noter la notation générale suivie dans le calcul des probabilités : les variables
capitales désignent le nom de la variable aléatoire tandis qu’une variable minuscule
renvoie à la valeur particulière que peut prendre une variable aléatoire. Par exemple,
si on note C la quantité de pluie qu’il peut tomber en 24 h (la chute de pluie journa-
lière autrement dit), alors c désigne la valeur particulière que peut prendre la variable
aléatoire C .
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A.1.4 Changement de variable

Dans un changement de variable de la forme x → y = v(x) avec v une fonction
croissante bijective 1, la probabilité doit rester invariante (il s’agit d’un nombre d’un
nombre dimension qui garde la même valeur quel que soit l’espace considéré). On a
donc

f(x)dx = PX(x ≤ X ≤ x+ dx) = PY (y ≤ Y ≤ y + dx) = g(y)dy,

où g est la densité de probabilité de Y . On en déduit donc

g(y) = f(x)
dx
dy = f(x)|v′(x)|−1. (A.1)

Cette relation s’étend à des fonctions à plusieurs variables.

A.1.5 Moyenne, variance, moments

On appelle variance (ou moment centré d’ordre 2) la quantité définie par (pour une
variable continue) :

σ2 = E[(X −m)2] =

b∫
a

(x−m)2f(x)dx,

avecm = E(X) la moyenne de X . Pour une variable discrète, on a

σ2 =
∑
i

(xi −m)2PX(X = xi).

La variance sert à traduire la répartition de densité (ou de masse) autour de la valeur
moyenne. Une « petite » variance signifie que les valeurs sont centrées autour de la
valeur moyenne alors qu’une « grande » variance indique qu’il existe un nuage diffus
de points autour de la valeur moyenne. La quantité σ s’appelle l’écart-type. On introduit
le moment d’ordre 2 M2 =

∫ b
a x

2f(x)dx ; c’est une quantité qui est reliée à la variance
(moment centré d’ordre 2) par :M2 = σ2 +M2

1 , avecM1 = E[X] = m. On introduit
aussi la covariance de deux variables aléatoires X et Y

Cov(X, Y ) = Cov(X, Y ) = E[(X −mx)(Y −my)],

avecmx = E(X) etmy = E(Y ).

1. Cela marche aussi avec des fonctions décroissantes, mais il faut faire attention au signe
car la probabilité est nécessairement un nombre réel compris entre 0 et 1, donc il faut écrire
f(x)dx = −g(y)dy.
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On appelle mode d’une loi de probabilité la valeur la plus fréquente, c’est-à-dire
associée à un maximum de la densité de probabilité ; en d’autres termes, le mode est
la valeur xmp telle que f ′(xmp) = 0. À noter qu’il peut y avoir plusieurs modes si la
densité de probabilité possède plusieurs maxima (de même valeur). On appelle valeur
médiane la valeur xm telle que P (xm) = 1/2. Son interprétation est simple : puisque
la valeur médiane correspond à la moitié de la fonction de répartition, il y a autant de
valeurs inférieures à xm que de valeurs supérieures à xm.

Une loi de probabilité est une fonction qui dépend de paramètres de forme θ. On
note souvent cette dépendance sous la forme : f(x ; θ) et cela peut se lire « la densité de
probabilité de la variable aléatoireX avec les paramètres θ ». On trouve des notations
synonymes, que l’on emploie selon les contextes : f [θ](x), f(θ)(x) ou bien fθ(x). Deux
problèmes se posent en général :

– soit on connaît θ et on cherche à déterminer les différentes valeurs que peut
prendre X (par exemple, la valeur moyenne et la variance) ;

– soit on connaît un échantillon (fini) de valeurs prises par X et on cherche à
déterminer les paramètres θ de la loi de probabilité de X .

En pratique, la première classe de problèmes ouvre le champ à la simulation, où à partir
de la connaissance d’une loi, on crée des échantillons de valeurs de X . La seconde
catégorie renvoie au problème d’inférence statistique.

♣ Exemple. – On appelle processus de Poisson un processus au cours duquel des
événements se produisent de manière intermittente et jamais deux à la fois. L’intervalle
de temps T entre deux événements est une variable aléatoire mais, en moyenne, le
nombre d’événements par unité de temps est constant. On pose donc E(T ) = λ, où λ
est une constante positive. Ici, manifestement, T est une variable aléatoire continue. On
tire également que le nombre moyen d’événements par unité de temps est : N = 1/λ.
Si on considère le nombre n d’événements par unité de temps, il s’agit d’une variable
discrète. On montre que T et n ont les lois de probabilité suivantes :

f(T |λ) = e−T/λ/λ : loi exponentielle de paramètre λ,

P (n|N) = e−N
Nn

n!
: loi de Poisson.

On vérifie que E(T ) = λ et E(n) = N .

Un observateur note qu’en moyenne, il y a deux crues par décennie. Quelle est
la probabilité d’observer deux crues au cours d’une même année? Quel est le temps
moyen entre deux événements?Quelle est la probabilité d’observer deux années consé-
cutives avec une crue? De ce qui précède, en prenant l’année pour unité de temps, on
tire : N = 0,2. La probabilité d’observer deux crues au cours d’une même année est
donc : P (2|0,2) = e−0,2 0,22

2! ≈ 0,0163 (il y a donc presque 2 % de chances d’observer
deux crues). On tire : λ = 1/N = 5. La durée moyenne entre deux crues est donc de 5
ans. S’il y a deux années consécutives avec une crue par année, alors on tire que T ⩽ 2
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ans, donc P (T ⩽ 2) =
∫ 2
0 dte−t/λ/λ = 1 − e−2/λ ≈ 0,329. Il y a à peu près une

chance sur trois d’observer deux années consécutives avec une crue. ⊓⊔

Nous nous sommes intéressés jusqu’à présent à des lois à une seule variable aléa-
toire. On peut étendre les définitions à plusieurs variables. Par exemple, en dimension
2, on appelle probabilité jointe d’observer à la fois les deux variables aléatoiresX et Y :

f(x, y) = P (X = x et Y = y).

On peut naturellement considérer les lois deX et Y prises séparément. On parle alors
de loi marginale. Par exemple la loi marginale de X s’écrit :

fX(x) =

∫
f(x, y)dy.

On appelle aussi la loi conditionnelle qui exprime, par exemple, la probabilité d’observer
X sachant Y . On la note f(x|y) = Prob(X = x|Y = y). D’après les propriétés
élémentaires du calcul des probabilités, on a :

f(x, y) = f(x|y)f(y). (A.2)
Le conditionnement de variables aléatoires est un aspect essentiel du calcul des proba-
bilités, surtout dans un contexte d’approximation et de prévision.

♣ Exemple. – Un problème fondamental en zonage est de déterminer avec quelle
probabilité une rivière débordant de son lit peut atteindre un endroit donné avec une
certaine hauteur/vitesse d’eau. Un tel problème peut être abordé en le décomposant en
deux étapes. Dans la première étape, un observateur se place à une certain distance
de l’axe du lit de la rivière ; on appelle X = x cette distance entre le point d’obser-
vation et cet axe. On suppose qu’une crue a atteint une certaine distance X après le
débordement ; on mesure alors sa hauteur/vitesse Y . Pour une crue donnée, on a donc
l’information (Y |X) qui se lit : « valeur de la hauteur/vitesse Y sachant que la distance
parcourue par l’eau estX ». Admettons que l’on soit en mesure de faire plusieurs obser-
vations ; on va donc pouvoir approcher la probabilité d’observer une pression donnée
Y sachant que la distance parcourue vaut x : P (Y |X = x). La seconde étape consiste
à changer de position X = x′ et à renouveler la mesure ; ce faisant, en réitérant la
procédure plusieurs fois, on tire à la fois la probabilité d’observer la rivière atteindre
un endroit P (X = x′) et la probabilité P (Y |X = x′) que la rivière ayant atteint cet
endroit exerce une hauteur/vitesse Y . La probabilité jointe d’observer une crue en tel
endroit avec telle hauteur/vitesse s’en déduit alors : P (X, Y ) = P (Y |X)P (X). ⊓⊔

A.2 Quelques lois de probabilité usuelles

On va ici rappeler quelques lois essentielles et fréquemment rencontrées en hy-
drologie statistique. Tout d’abord, les lois discrètes comme la loi de Bernoulli, la loi
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binomiale, la loi de Poisson servent le plus souvent à décrire les fréquences d’occur-
rence des événements, c’est-à-dire le nombre de fois qu’un phénomène se produit par
unité de temps. Ensuite, nous verrons quelques lois continues comme la loi de Laplace-
Gauss, la loi exponentielle, et les lois de valeur extrême. Ces lois sont très utiles pour
décrire la distribution de l’intensité des phénomènes hydrologiques.

A.2.1 Loi de Bernoulli et lois dérivées

Loi de Bernoulli

Il s’agit d’une loi discrète à un paramètre p d’une variableX qui peut prendre deux
valeurs (0 ou 1 par exemple) avec les probabilités p et 1 − p respectivement. On parle
aussi de modèle d’urne : si l’on place des boules noires et blanches et qu’il y a une
proportion p de boules blanches, alors la probabilité de tirer au hasard une blanche est
p.

La moyenne est : E(X) = p ; la variance est : Var(X) = p(1− p).

Cette loi sert dans de nombreuses situations pratiques où l’on s’intéresse à l’occur-
rence d’événements (comme une crue, une chute de pluie dépassant un certain seuil,
etc.). Cette loi peut être étendue pour considérer n ⩾ 2 états possibles.

Loi binomiale

Une autre loi tirée de la loi de Bernoulli est la loi binomiale : supposons que l’on
répètem fois l’expérience de tirage de boule ; après chaque tirage, on replace la boule
dans l’urne (pour que le nombre de boules soit identique). On noteX le nombre de fois
qu’une boule blanche est apparue dans cette séquence dem tirages. La probabilité que
ce nombre vaille k est :

B(m, p)(k) = Prob(X = k) = Ckmp
k(1− p)m−k.

La moyenne est : E(X) = mp ; la variance est : Var(X) = mp(1− p).

Loi binomiale négative

Une autre extension est la loi dite binomiale négative. On appelle X le nombre de
tirages qu’il faut réaliser pour obtenir un ensemble de k succès. On montre que :

N eg(k, p)(i) = Prob(X = i) = Ck−1
i−1 p

k(1− p)i−k.

La moyenne est : E(X) = k(1− p)/p ; la variance est : Var(X) = k(1− p)/p2. Notons
que pour une loi binomiale négative, la variance est toujours supérieure à la moyenne.
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En pratique, cette loi peut se révéler utile en remplacement de la loi de Poisson pour
décrire des processus hydrologiques instationnaires. En effet, la loi binomiale négative
peut être vue comme une loi de Poisson dont le taux est lui-même aléatoire et distribué
selon une loi gamma (voir § A.2.4) :

N eg[k, p](i) =
∫ ∞

0
P[λ](i)Ga[k,(1− p)/p](λ)dλ.

A.2.2 Loi de Poisson

Il s’agit d’une loi discrète à un paramètre λ d’une variable aléatoire X qui peut
prendre une infinité de valeurs entières :

P(λ)(k) = Prob(X = k) = e−λ
λk

k!
.

La loi de Poisson peut être vue comme une limite de la loi binomiale quand le nombre
de succès p est petit. Cette loi a donc un grand nombre d’applications dès lors que l’on
s’intéresse à l’occurrence de phénomènes rares et à des phénomènes de comptage.

Par exemple, si λ désigne le nombre de crues par an, Prob(X = 2) = e−2λ2/2
donne la probabilité d’observer deux crues au cours de la même année.

La moyenne est : E(X) = λ ; la variance est : Var(X) = λ.

A.2.3 Loi uniforme

C’est une loi continue définie sur un intervalle [a, b] (en général [0, 1]). Elle ne
possède aucun paramètre hormis les deux bornes a et b. La densité de probabilité est
constante :

U[a, b](x) =


0 si x < a
1
b−a si a ≤ x ≤ b
0 si x > b

.

La moyenne est : E(X) = 1 ; la variance est : Var(X) = 0. Cette loi sert souvent à
traduire l’absence d’information ou de connaissance : toute valeur est a priori possible.

A.2.4 Loi exponentielle

C’est une loi continue à un paramètre, dont la densité de probabilité s’écrit :

E(λ)(x) = λe−λx.

La moyenne est : E(X) = 1/λ ; la variance est : Var(X) = 1/λ2.
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La loi exponentielle présente également des propriétés très intéressantes, notam-
ment vis-à-vis de la loi de Poisson. Considérons un processus qui arriveN fois par unité
de temps en moyenne (par exemple,N chutes de pluie par an). On suppose que chaque
événement est indépendant (la dernière chute de pluie ne dépend pas de la précédente,
par exemple). La distribution du nombre d’événements suit alors une loi de Poisson (en
théorie, elle converge vers une loi de Poisson) et le temps entre deux événements est
une variable aléatoire distribuée selon un loi exponentielle de paramètre λ = 1/N .

A noter que l’on a :E[X] =
√

Var[X], une propriété qui peut être utile pour vérifier
si une population est distribuée selon une loi exponentielle.

Une caractéristique des processus de Poisson est liée à l’hypothèse que les événe-
ments ont la même probabilité de se produire pour des intervalles de temps de même
durée. On peut relaxer cette hypothèse à l’aide des processus dit non-homogènes ou
instationnaires. Si les événements se produisent de manière aléatoire, N(t) constitue
un processus de Poisson non homogène d’intensité λ(t) si :

– N(0) = 0

– le nombre d’événements se produisant en des temps disjoints sont indépendants
– la distribution du nombre d’événements ne dépend que de l’intervalle de temps

et non du temps absolu où se situe cet intervalle
– limh→0

P(exactement un événement entret et t+h)
h = λ(t) (la probabilité d’observer un

événement dans un petit intervalle de temps h est λ(t)h)
– limh→0

P(deux événements ou plus entret et t+h)
h = 0 la probabilité d’observer deux évé-

nements dans un petit intervalle de temps h est nulle).

A.2.5 Loi de Laplace-Gauss (ou loi normale)

C’est l’une des lois les plus connues et employées. On parle de loi de Laplace-Gauss
(les deux mathématiciens s’en sont disputé la paternité), de loi de Gauss, ou de loi nor-
male. Une variable X est distribuée selon une loi de Laplace-Gauss de moyenne µ et
de variance σ2 si :

N (µ, σ)(x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (A.3)

C’est une courbe symétrique en forme de cloche autour de la valeur moyenne (voir
figure A.3). La moyenne est : E(X) = µ ; la variance est : Var(X) = σ2.

C’est une distribution fondamentale et assez universelle, notamment car, d’après
le théorème de la limite centrale, la distribution de probabilité d’une somme de n va-
riables indépendantes et identiquement distribuées selon la même loi tend vers une loi
gaussienne quand n→∞.

On peut étendre la définition de la loi de Laplace-Gauss à des variables vectorielles.
Considérons une variable vectorielle aléatoire X = (X1, X2, . . . ,Xn) de dimension
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Figure A.3 – Représentation graphique de la loiN (0, 1/2). La courbe continue repré-
sente la densité de probabilité tandis que la courbe en tiret représente la fonction de
répartition.

n ; la densité de probabilité de la loi multinormale s’écrit

Nd(µ, σ) =
1

(2π)d/2
√
detσ

exp
(
−1

2
xTσ−1x

)
,

avec σ la matrice de covariance (matrice de taille d× d)

σ =


σ1,1 . . . . . . σ1,d
. . . σi,j . . . . . .
. . . . . . σj,i . . .
σd,1 . . . . . . σd,d

 ,
où l’élément (i, j) correspond à la covariance des variablesXi etXj prises individuel-
lement

σi,j =
Cov(Xi, Xj)√
Var(Xi)Var(Xj)

.

Notons que la matrice est symétrique et que les termes diagonaux σi,i sont égaux à 1.

A.2.6 Loi du χ2
k

Il s’agit d’une loi en relation avec la loi de Laplace-Gauss. Considérons la somme
de k carrés de variables tirées d’une loi de Laplace-Gauss

X = Z2
1 + . . . Z2

k .
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On montre que cette variable suit une loi de distribution appelée du χ2 à k paramètres
de liberté ; elle est notée χ2

k. Sa densité de probabilité s’écrit

χ2
k(x) =

xk/2−1

2k/2Γ(k/2)
exp−x/2 ,

où x > 0 et Γ est la fonction dite gamma : Γ(x) =
∫∞
0 ux−1 exp−u du. La moyenne est :

E(X) = k ; la variance est : Var(X) = 2k.

A.2.7 Loi de Student

Il s’agit d’une loi en relation avec la loi de Laplace-Gauss et celle duχ2. Considérons
Z tirée selon une loi normaleN (0, 1) et Y une variable tirée selon une loi duχ2 à ν > 0
degrés de liberté. La variable

T =
Z√
Y /ν

est une variable aléatoire dont la loi est la loi de Student à ν degrés de liberté, de densité
de probabilité :

PT (t ; ν) =
1√
kπ

Γ(k+1
2 )

Γ(k2 )

1

(1 + t2

k )
k+1
2

pour t ∈ R. La moyenne est E(T ) = 0 et la variance vérifie

VarT =
ν

ν − 2

pour ν > 2.

Cette loi joue un grand rôle dans l’estimation de l’erreur standard d’une moyenne
empirique. Rappelons que le théorème de la limite centrale montre que la moyenne
empirique X̄ d’un échantillon den valeursXi est distribuée selon la loi normale centrée
autour de l’espérance de la population Z = (X̄ − µ)/(σ/

√
n). En pratique, cela veut

que l’on peut estimer µ en prenant X̄ ; l’erreur est de ±σ/
√
n. Le problème est qu’en

général, l’écart-type de la population n’est pas plus connue que l’espérance ; il est donc
tentant de remplacer σ par l’écart-type empirique

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

La variable Y = (n−1)S2/σ2 est une variable χ2 à ν ′ = n−1 degré de liberté d’après
la propriété que l’on a vue ci-dessus au § A.2.6. Il s’ensuite donc que la variable

T =

X̄−µ
σ/

√
n√

(n−1)S2/σ2

n−1

=
X − µ
S/
√
n

est une variable de Student à ν ′ = n− 1 degrés de liberté.
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Figure A.4 – Densité de probabilité de la distribution de Student pour nu = 1, 10, 100,
et 1000 ; on a également reporté en rouge la distribution de probabilité de la loi normale
N (0,1).

A.2.8 Loi gamma

C’est une loi de probabilité à deux paramètres : un paramètre d’échelle λ et un autre
de forme κ > 0. Sa densité de probabilité s’écrit 2

Ga[λ, κ](x) = λκ

Γ(κ)
xκ−1 exp−λx , (A.4)

pour tout x > 0 et où Γ est la fonction gamma. La moyenne est : E(X) = κ/λ ; la
variance est : Var(X) = κ/λ2. Quand κ = 1, on retrouve la loi exponentielle.

Lois gamma et du χ2
k sont intimement liées puisque si X est tiré selon une loi

Ga[λ, κ], alors on montre que la variable λX a pour densité de probabilité 1
2χ

2
2κ.

A.2.9 Loi bêta

C’est une loi de probabilité à deux paramètres de forme, qui possède un support
fini sur [0, 1] :

Be[α, β](x) = xα−1(1− x)β−1

B(α, β)
, (A.5)

pour tout 1 ≥ x ≥ 0 et où B(α, β) =
∫ 1
0 x

α−1(1− x)β−1dx est la fonction bêta.

2. Attention, il existe dans la littérature d’autres paramétrisations de cette loi.
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La moyenne est : E(X) = α/(α+β) ; la variance est : Var(X) = αβ/(α+β)2/(1+
α+ β). Quand α = β = 1, on retrouve la loi uniforme.

Cette loi est utile quand on cherche à travailler avec des variables aléatoires variant
sur un intervalle borné. Cette loi est également particulièrement utile en inférence bayé-
sienne puisqu’on montre que c’est un prior conjugué à la loi binomiale (Robert, 2001).

A.2.10 Lois de Pearson

On appelle loi de Pearson une loi dont la densité de probabilité vérifie l’équation
différentielle ordinaire

f ′(x) =
a0 + a1x

b0 + b1x+ b2x2
f(x). (A.6)

Cette loi comprend sept types de forme en fonction des paramètres a0, a1, b0, b1 et b2.
La plupart de ces formes recoupent ou généralisent des lois existantes : loi bêta (forme
I et II), loi normale et loi gamma (forme III), loi gamma inverse (forme V), loi de Fisher
(forme VI) et loi de Student (forme VII).

En hydrologie, on utilise principalement la loi de Pearson ou la loi de log-Pearson
III (Bobée, 1975; Bobée & Robitaille, 1977; Rao & Hamed, 2000). C’est une loi à trois
paramètres (α, λ,m) dont densité de probabilité prend la forme :

f(x) =
|α|
Γ(λ)

exp−α(x−m)(α(x−m))λ−1 pour α(x−m) > 0, (A.7)

qui est la solution de l’équation (A.6) avec a1 = αb1, a0 = b1(1−λ−αm) et b0 = −b1m.
On parle de loi de log-Pearson quand lnx est distribué selon une loi de Pearson.

La fonction de répartition est :

F (x) =

∫ x

m
f(ξ)dξ = Γ(λ,− α(x−m))

Γ(λ)
pour α(x−m) > 0, (A.8)

où
Γ(a,z) =

∫ ∞

z
ta−1e−tdt

est la fonction gamma incomplète.

Les trois moments centrés de la loi de Pearson III sont :

µ1 = E(X) = m+
λ

α
, (A.9)

µ2 = VarX = E
[
(X − µ)2

]
=

λ

α2
, (A.10)

µ3 = SkewX = E
[
(X − µ)3

]
= 2

λ

α3
. (A.11)
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Si y = lnx est distribué selon une loi de Pearson III, alors la variable aléatoire y
varie selon l’équation (A.7). On fait le changement de variable y = v(x) = lnx et on
se sert de l’équation (A.1) :

fx = fy(y)
dy
dx = fy(lnx)

1

x
,

=
|α|

xΓ(λ)
exp−α(lnx−m)(α(lnx−m))λ−1 pour α(lnx−m) > 0. (A.12)

La fonction de répartition est :

F (x) =

∫ x

em
fx(ξ)dξ =

Γ(λ,− α(m− lnx))
Γ(λ)

pour α(lnx−m) > 0. (A.13)

Les moments (non centrés) de la loi de log-Pearson III sont (Bobée, 1975) :

mr = E[Xr] =
erm

(1− rα−1)λ
, (A.14)

d’où l’on déduit les moments centrés :

µ =
em

(1− α−1)λ
, (A.15)

VarX =m2 − µ2 = e2mαλ
(
(α− 2)−λ − (α− 1)−2λαλ

)
, (A.16)

µ3 =m3 − 3µVarX − µ3, (A.17)
= e3mαλ

(
αλ
(
2αλ − 3(α− 2)−λ(α− 1)2λ

)
(α− 1)−3λ + (α− 3)−λ

)
.

Bobée (1975) a proposé une méthode de calage par la méthode des moments. En
prenant le logarithme des trois premiers moments (A.14), on obtient :

L1 =m− λ ln(1− 1/α), (A.18)
L2 = 2m− λ ln(1− 2/α), (A.19)
L3 = 3m− λ ln(1− 3/α). (A.20)

On résout une seule équation pour α :

ln (1− 1/α)3

1− 3/α
= B ln (1− 1/α)2

1− 2/α
, (A.21)

avec B défini par
B =

L3 − 3L1

L2 − 2L1
.

Une fois que α a été calculé numériquement, on déduit immédiatement λ :

λ =
L2 − 2L1

ln (1− 1/α)2 − ln(1− 2/α)
. (A.22)

Finalement, on tirem :
m = L1 + λ ln(1− 1/α). (A.23)
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A.3 Quelques théorèmes importants

Nous regroupons ici un certain nombre de théorèmes importants, notamment pour
la modélisation par simulation de Monte Carlo.

A.3.1 Inégalité de Markov

♦Théorème. – Si X est une variable aléatoire positive alors pour tout a > 0 :

P(X ≥ a) ≤ E(X)

a
.

⇝ Démonstration. – Supposons que la loi de probabilité de X soit f avec un
support sur R+. Par définition on a

E(X) =

∫
R+

xf(x)dx,

que l’on peut transformer de la façon suivante

E(X) =

∫ a

0
xf(x)dx+

∫ ∞

a
xf(x)dx,

≥
∫ ∞

a
xf(x)dx,

≥
∫ ∞

a
af(x)dx,

car xf(x) ≥ af(x) quand x ≥ a. Le dernier membre de droite n’est rien d’autre que
aP(X ≥ a). ⊓⊔

A.3.2 Inégalité de Chebyshev

C’est un corollaire de l’énoncé précédent. Cette inégalité est appelée encore inéga-
lité de Bienaymé–Chebyshev.

♦Théorème. – Si X est une variable aléatoire de moyenne µ et de variance σ2,
alors la probabilité que X soit loin de sa valeur moyenne est bornée. Pour tout k > 0

P(|X − µ| ≥ kσ) ≤ 1

k2
.
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⇝ Démonstration. – Comme la variable réduite (X − µ)2/σ2 est une variable
aléatoire de moyenne 1, on déduit du théorème de Markov que

P
(
(X − µ)2

σ2
≥ k2

)
≤ 1

k2
.

Le résultat s’en suit car l’inégalité (X − µ)2/σ2 > k2 équivaut à (X − µ)/σ > k. ⊓⊔

A.3.3 Loi faible des grands nombres

La dernière inégalité est utile à montrer la loi faible des grands nombres, base de la
méthode de Monte Carlo.

♦Théorème. – Soit X1, X2, . . . Xn une séquence de variables indépendantes dis-
tribuées selon une loi de moyenne µ et de variance finie σ2, alors pour tout ε > 0, on
a :

P
(∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

)
→ 0 quand n→∞.

⇝ Démonstration. – Rappelons tout d’abord que la moyenne de la somme de
variables aléatoires indépendantes est égale à la somme de leur moyenne

E(nY ) = E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn) = nµ,

où Y =
∑n

i=1Xi, tandis que pour la variance d’une somme, on montre facilement que

Var(nY ) = Var(X1 + · · ·Xn) =
1

n
(Var(X1) + · · ·+ Var(Xn)) =

σ2

n
.

L’inégalité de Chebyschev nous indique que pour tout k > 0

P(|Y − µ| ≥ kσ√
n
) ≤ 1

k2
.

On trouve le résultat souhaité en posant simplement ε = kσ/
√
n. ⊓⊔

La formulation « forte » de la loi des grands nombres affirme qu’il est certain que
la somme d’une séquence de n variables aléatoires indépendantes et identiquement
distribués tende vers µ quand n est grand

lim
n→∞

X1 + · · ·+Xn

n
= µ.
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A.3.4 Théorème de la limite centrale

Le théorème central limite 3 va un peu plus loin que la loi des grands nombres en
précisant que si l’on utilise la variable réduite Zn = (X̄n − µ)/(

√
nσ), alors la suite

(Zn)n∈N converge (en loi) vers la loi normale N (0,1).

♦Théorème. – Soit X1, X2, . . . Xn une suite de variables indépendantes distri-
buées selon une loi de moyenne µ et de variance finie σ2, alors

X1 + · · ·+Xn − nµ√
nσ

→ N (0,1). (A.24)

Le théorème central limite permet de formaliser l’intervalle de confiance en défi-
nissant la précision avec laquelle la moyenne empirique X̄ tend vers la moyenne µ. On
peut en effet reformuler le théorème central limite commet suit :

∀a, b (−∞ ≤ a < b ≤ +∞) lim
n→∞

Prob[a < Zn < b] =

∫ b

a
dx 1√

2π
e−x

2/2.

Cette équation permet d’affiner la définition de l’intervalle de confiance. À cet effet, on
généralise le théorème limite centrale de la façon suivante.

♦Théorème. – En plus des hypothèses précédentes (Xi indépendantes et iden-
tiquement distribués), on définit Z2

n = (X2
1 + · · · + X2

n)/(n − 1) − X̄2
n (écart-type

empirique). Soit α un réel (petit) et zα le réel tel que :∫ zα

−zα
dx 1√

2π
e−x

2/2 = 1− 2α.

On pose :

T1 = X̄ − zασ√
n

T ′
1 = X̄ −

zα
√
S2
n√

n
,

T2 = X̄ +
zασ√
n

T ′
2 = X̄ +

zα
√
S2
n√

n
,

alors
lim
n→∞

Prob[T1 ≤ µ ≤ T2] = lim
n→∞

Prob[T ′
1 ≤ µ ≤ T ′

2] = 1− α.

Par exemple, quand on parle de l’intervalle de confiance à 95%, cela revient à
prendre zα = 1,96. L’interprétation classique est que si l’on tire N échantillons et

3. Il faudrait plutôt dire « théorème de la limite centrée », qui est plus juste que la traduction
anglaise mot à mot « central limit theorem ».
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qu’on construit des intervalles X̄i ± 1,96Sn/
√
n, alors la valeur théorique µ tombera

dans 95 % de ces intervalles en moyenne.

Quand on fait des essais avec une variable aléatoire, on peut approcher sa moyenne
en prenant :

µ ≈ X̄ ±
zα
√
S2
n√

n

La convergence est plutôt lente (en n−1/2) mais il est possible d’accélérer les choses en
tentant de réduire la variance σ2.

A.4 Quelques définitions autour de la notion de
série temporelle

♢Définition. – On parle de série temporelle ou chronologique pour désigner toute
série chronologique d’une quantité (généralement scalaire) en fonction du temps : (ti, xi)
où t1 < t2 < . . . < tn.

♣ Exemple. – La variation du cours de la bourse au fil des jours, le débit minimal
d’une rivière chaque année (étiage), etc. constituent des séries temporelles.

A.4.1 Série déterministe ou aléatoire

♢ Définition. – On parle de série temporelle déterministe quand la valeur prise à
l’instant ti par x est connue précisément ; il existe une relation déterminant xi en fonc-
tion des valeurs prises précédemment et/ou du temps. Par exemple une suite récurrente
de la forme xi+1 = f(xn), avec f une fonction, est une série déterministe.

♢ Définition. – Inversement, on parle de série temporelle aléatoire quand on ne
peut pas établir avec précision la valeur prise à l’instant ti par x. On peut tout au plus
dire qu’il existe une certaine probabilité P que cette valeur soit xi.

♢ Définition. – On parle de série stationnaire quand les caractéristiques de cette
série ne dépendent pas du temps. Ainsi, pour une série aléatoire, la probabilité jointe
d’observer (xi, . . . xj) est égale à la probabilité d’observer un échantillon décalé d’un
temps k :

P (xi, . . . xj) = P (xi+k, . . . xj+k),

pour tout triplet (i, j, k). La plupart du temps, on fait l’hypothèse que l’échantillon de
données est stationnaire pour simplifier les calculs.
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Pour caractériser une série temporelle aléatoire stationnaire, il faut :

– établir la probabilité P que la valeur prise à l’instant ti par x soit xi, xi−1 à
l’instant ti−1 ;

– évaluer l’auto-corrélation du signal. La fonction d’autocorrélation permet d’esti-
mer un temps caractéristique qui donne en quelque sorte la mémoire du système.

Pour caractériser un processus stationnaire, il suffit de fournir sa densité de probabilité
(la probabilité de trouver le processus dans un certain état) et sa fonction d’autocorré-
lation.

A.4.2 Corrélation

Lorsqu’une fonction aléatoire est stationnaire, alors l’auto-variance R(s), ou sous
une forme normalisée la fonction d’autocorrélation ρ(s), est la fonction :

R(s) = ⟨f ′(t)f ′(t+ s)⟩, (A.25)

ρ(s) =
⟨f ′(t)f ′(t+ s)⟩
⟨f ′2(t)⟩

, (A.26)

où f ′(t) = f(t) − ⟨f(t)⟩ désigne la fluctuation par rapport à la valeur moyenne et
⟨·⟩ désigne l’opérateur « moyenne ». L’autocorrélation permet d’évaluer la corrélation
existant entre deux instants séparés du temps s. Plus R est grand, plus les signaux se
ressemblent. L’échelle intégrale de temps permet de donner un ordre de grandeur du
temps de corrélation entre deux instants :

τ =

∫ ∞

0
ρ(s)ds.

Dans le cas d’une série (xi)1≤i≤N , on peut définir également l’autocorrélation comme
étant :

R(n) =
1

N − n

N−n∑
i=1

xixi+n −

(
1

N − n

N−n∑
i=1

xi

)2

.

En statistique, la covariance de deux variables aléatoires, dont la densité de proba-
bilité jointe est notée fX,Y , est définie par :

Cov(X, Y ) =

∫
(x− E(X)) (y − E(Y )) dxdy,

que l’on peut transformer en coefficient de corrélation :

Corr(X, Y ) =
Cov(X, Y )

VarXVarY .
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La covariance traduit le degré de linéarité entre deux variables. Si deux variables aléa-
toires sont indépendantes, alors la covariance est nulle (l’inverse n’est pas vrai).�

Attention une forte autocorrélation d’une fonction à deux variables ou de va-
riables statistiques ne signifie pas qu’il existe un lien fort entre variables. Corrélation
est ici à prendre au sens général et non au sens de la corrélation entre deux points
C = ⟨xixj⟩ − ⟨xi⟩⟨xj⟩. En effet, considérons une variable aléatoire x ∼ f(θ) avec
f une densité symétrique f(x|θ) = f(−x|θ) et construisons y = x2 ; comme y dé-
pend de x, les deux variables sont dépendantes. Pourtant leur corrélation est nulle :
Cov(x, y) = ⟨xy⟩ − ⟨x⟩⟨y⟩ = 0 car ⟨x3⟩ = ⟨x⟩.

A.4.3 Autocorrélation partielle

La fonction d’autocorrélation ρ(s) mesure le degré de corrélation entre deux va-
leurs xt et xt+s dont les occurrences sont séparées d’un temps s. Le problème est que
lorsque les valeurs sont corrélées, cettemesure reflète également l’influence des valeurs
xt+r avec 0 < r < s sur la valeur xt+s.

Par exemple, si on mesure les débits moyens mensuels dans une rivière, on peut
s’intéresser à savoir comment le débit en mars dépend du débit en janvier. Si on calcule
l’autocorrélation à l’aide de l’équation A.26, la mesure ainsi obtenue reflète la façon
dont non seulement janvier, mais également février influe sur le débit enmars. Pour ôter
l’influence du mois de février, il faut utiliser une variante de l’autocorrélation appelée
« autocorrélation partielle 4 ».

L’autocorrélation partielle est définie de la façon suivante :

ϕ(1) = corr(xt+1,xt), (A.27)
ϕ(k) = corr(xt+k − x̂t+k, xt − x̂t) pour k ≥ 2 (A.28)

où x̂t+k et x̂t sont des combinaisons linéaires de (xt+1, xt+2, · · · ,xt+k−1) qui mini-
misent l’erreur quadratique moyenne xt+k de xt respectivement. En pratique, on se
sert d’une méthode itérative (méthode de Durbin–Levinson) pour calculer ϕ(n) (Box
et al., 2015, voir § A.3.2).

A.4.4 Densité de probabilité ; chaîne de Markov †

On introduit P (x1, t1 . . . xn, tn) la probabilité d’observer la valeur x = x1 à l’ins-
tant t1, x = x2 à l’instant t2, etc. On introduit également la probabilité conditionnelle
d’observer la valeur x = xi à l’instant t sachant qu’à l’instant ti−1 on avait x = xi−1,
à l’instant ti−2 on avait x = xi−2, etc.

P (xi, ti|xi−1, ti−1;xi−2, ti−2;xi−3, ti−3; · · · ).
4. partial autocorrelation function (pacf) en anglais.
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Cette probabilité conditionnelle est en générale très complexe à manipuler, mais dans
bien des cas pratiques, le temps d’échantillonnage (c’est-à-dire le temps entre deux
temps ∆ti = ti − ti−1) est bien plus grand que le temps d’autocorrélation de la série.
Dans ce cas, le passé lointain n’a pas d’influence sur le présent ou, autrement dit, le
passé influe sur le présent (à t = ti) uniquement à travers le dernier état visité (c’est-à-
dire la valeur x = xi−1 à l’instant ti−1).

♢Définition. –On dit alors que la série est une chaîne de Markov et on peut écrire :

P (xi, ti|xi−1, ti−1;xi−2, ti−2;xi−3, ti−3; · · · ) = P (xi, ti|xi−1, ti−1).

A.4.5 Processus à moyenne mobile

On appelle processus à moyenne mobile 5 d’ordre q – abrégé MA(q) – la série tem-
porelle définie par :

xi = µ+ ϵi + θ1ϵi−1 + θ2ϵi−2 + · · ·+ θqϵi−q (A.29)

où µ est une constante, la variable ϵk est du bruit blanc 6 évalué au temps k, et θk est
un jeu de paramètres constants.

La série temporelle fluctue autour de sa moyenne µ et la valeur à un temps i dépend
du passé, plus précisément, elle dépend des q valeurs passées.

La figure A.5 montre un exemple de processus MA(2). On trace aussi l’autocorréla-
tion empirique et l’autocorrélation partielle de l’échantillon. On note que pour k = 2,
ρ (et incidemment ϕ) est au-dessus du seuil fixé par l’intervalle de confiance à 95 %, ce
qui est une preuve a posteriori que l’ordre du processus est bien q = 2.

A.4.6 Processus autorégressif

On appelle processus autorégressif 7 d’ordre p – abrégé AR(p) – la série temporelle
définie par :

xi = C + ϵi + ϕ1xi−1 + ϕ2xi−2 + · · ·+ ϕpxi−p (A.30)
où C est une constante, la variable ϵi est du bruit blanc au temps i et ϕk est un jeu de
paramètres constants. La moyenne de xi vérifie :

E(X) = C +

p∑
k=1

ϕkE(X),

5. Moving average process en anglais, d’où l’acronyme MA.
6. On appelle bruit blanc un processus aléatoire ϵk qui est nul en moyenne, de variance

finie et dont deux occurrences sont non corrélées : E(ϵk) = 0, E(ϵ2k) = σ2 > 0, et ρ(k) = 0
pour k > 0.

7. Autoregressive process en anglais, d’où l’acronyme AR.
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Figure A.5 – Exemple d’un processus MA(2) avec µ = 2, θ1 = θ2 = 0,5 et σ2 = 1. (a)
Réalisation jusqu’à un temps k = 100. (b) Autocorrélation. (c) Autocorrélation partielle.
La droite tiretée montre l’intervalle de confiance à 95 %.

et donc la moyenne du processus est :

µ = E(X) =
C

1−
∑p

k=1 ϕk
.

On peut introduire l’écart à la moyenne :

x̃i = xi − µ,
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et avec cette notation, l’équation (A.30) est équivalente à :

x̃i = ϵi + ϕ1x̃i−1 + ϕ2x̃i−2 + · · ·+ ϕpx̃i−p (A.31)

Comme le processus AM, un processus autorégressif AR(p) dépend de l’historique
récent, jusqu’au p précédentes valeurs. La figure A.6 montre un exemple de proces-
sus AR(2). On trace aussi l’autocorrélation empirique et l’autocorrélation partielle de
l’échantillon. On note que pour k = 2, ϕ est au-dessus du seuil fixé par l’intervalle de
confiance à 95 %, ce qui est une preuve a posteriori que l’ordre du processus est bien
p = 2.

Si on introduit l’opérateur retard 8 B défini par :

Bxk = xk−1

et donc par itération :
Bjxk = xk−j

on peut récrire l’équation (A.31) sous la forme

x̃i = ϵi + (ϕ1B + ϕ2B
2 + · · ·+ ϕpB

p)x̃i,

soit encore

Φ(B)x̃i = ϵi avec Φ(B) = 1−
p∑

k=1

ϕkB
k. (A.32)

En introduisant Ψ la fonction inverse de Φ : Ψ(B) = Φ−1(B), on peut écrire (A.31)
sous une forme explicite

x̃i = Ψ(B)ϵi, (A.33)

où l’on voit que Ψ(B) joue le rôle de fonction de transfert et que le processus AR agit
comme un filtre linéaire du bruit. Cela montre aussi une équivalence formelle entre pro-
cessus autorégressif et à moyenne mobile : un processus autorégressif est un processus
AM avec un ordre q infini.

Cette formulation aide à fournir une condition de convergence vers l’état station-
naire. Prenons l’exemple d’un processus AR(1) :

xi = ϕ1xi−1 + ϵi, (A.34)

soit encore
xi = Ψ(B)ϵi = (1− ϕ1)−1ϵi,

or un développement de Taylor de la fonction de transfert nous fournit :

Ψ(B) =
1

1− ϕ1B
=

∞∑
k=0

ϕk1B
k,

8. lag ou backward shift operator en anglais
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Figure A.6 – Exemple d’un processus MA(2) avec µ = 2, ϕ1 = θ2 = 0,5 et σ2 = 1. (a)
Réalisation jusqu’à un temps k = 100. (b) Autocorrélation. (c) Autocorrélation partielle.
La droite tiretée montre l’intervalle de confiance à 95 %.

et une condition nécessaire de convergence est que |ϕ1| < 1. Dit autrement, cela veut
dire que la racine de l’équation Φ(B) = 1 − ϕ1B = 0 est B = ϕ−1

1 et donc que cette
racine est située au-delà du cercle unitaire (Box et al., 2015, p. 55). Cette condition se
généralise pour des processus d’ordre p quelconque. Elle assure que la variance et la
fonction d’autocorrélation sont bien définies ; dans le cas contraire, le bruit est amplifié
à chaque pas de temps, et la variance tend vers l’infini.
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A.4.7 Processus ARMA

On appelle processus ARMA d’ordre (p, q) – abrégé ARMA(p, q) – la série tempo-
relle combinant un processus à moyenne mobile et un processus autorégressif :

xi = C+ϵi+ϕ1xi−1+ϕ2xi−2+ · · ·+ϕpxi−p+θ1ϵi−1+θ2ϵi−2+ · · ·+θqϵi−q. (A.35)

A.5 Histogramme: échantillon de petite taille †

Une alternative à la méthode des histogrammes est d’employer la « méthode des
champs de probabilité », notamment développée par Bialek et Holy (Bialek et al., 1996;
Holy, 1997), qui est fondée sur le théorème de Bayes ; cette méthode est une variante
plus générale de laméthode dite des fonctions-noyaux (Reiss &Thomas, 2001). Supposons
que l’on ait un échantillon de n valeurs de µ notées (µ1, µ2 · · · , µn) ; nous recherchons
la distribution de probabilité Q qui approche le mieux la distribution empirique de µ.
Les fonctions « candidates » Q sont tirées d’un espace de fonctions continues, nor-
malisées 9, et positives. On peut donc poser : Q = ψ2 avec

∫
ψ2dµ = 1. En outre, on

suppose que Q est continue ou, d’un point de vue probabiliste, la probabilité d’obser-
ver des gradients importants de ψ est très faible. Holy résuma toutes ces conditions en
avançant que la distribution de Q, notée P [Q] ou indifféremment P [ψ], est :

P [ψ] =
1

Z
exp

[
−
∫
ℓ2

2
(∂µψ)

2dµ
]
δ

(
1−

∫
ψ2dµ

)
(A.36)

où Z est un facteur de normalisation, ℓ est un paramètre libre imposant la régularité de
Q, et δ est la fonction Dirac 10 (Holy, 1997). Dans l’équation (A.36), le terme exponentiel
exprime la pénalité attribuée à la fonction ψ si son gradient prend de fortes valeurs :
en effet, si cela est le cas, la dérivée de ψ par rapport à µ, notée ∂µψ est grande et le
terme exponentiel est très petit ; la pénalité est ici sous une forme exponentielle pour
des raisons pratiques et par analogie avec la mécanique statistique, mais d’autres choix
sont possibles. Le second terme (fonction Dirac) impose la normalité de Q. Appliquer
le théorème de Bayes permet de prendre en compte la connaissance a priori sur Q:

P [Q|µ1, µ2 · · · , µN ] =
P [µ1, µ2 · · · , µN |Q]P [Q]

P [µ1, µ2 · · · , µN ]
,

où :

– P [Q|µ1, µ2 · · · , µN ] est la probabilité a posteriori deQ connaissant les données ;
– P [µ1, µ2 · · · , µN |Q] = ψ2(µ1)ψ

2(µ2) · · ·ψ2(µN ) est la vraisemblance de ces
données (µ1, µ2, · · · µN ) connaissant la distribution Q ;

9. Leur intégrale vaut 1. La normalité d’une fonction est la propriété des fonctions vérifiant∫
f(µ)dµ = 1.
10. La fonction Dirac δ est telle que δ(x) = 0 pour x ̸= 0 et δ(0) = 1.
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– le dénominateur est une constante de normalisation :

P [µ1, µ2 · · · , µN ] =
∫

dQP [Q]Q(µ1) · · ·Q(µN ).

On obtient alors :

P [Q|µ1, µ2 · · · , µN ] ∝ e−S[ψ]δ
(
1−

∫
dµψ2

)
,

où S est une fonctionnelle :

S =

∫
dµ
(
ℓ2

2
(∂xψ)

2 − 2 lnψ
∑
i

δ(µ− µi)

)
.

La distribution la plus probable Q̂ connaissant les données est la fonction qui minimise
la fonctionnelle S. Il s’agit d’un calcul de variations d’Euler–Lagrange ; en se servant
des règles de calcul des variations, on montre que Q̂ est de la forme :

ψ̂ =

√
Q̂ =

√
κ
∑
i

aie
−κ|µ−µi|,

où κ2 = 2λ/ℓ2, avec λ est un facteur de Lagrange qui doit être ajusté pour garantir la
normalité deQ, et ai (1 ≤ i ≤ N) sont des coefficients. Le facteur de Lagrange λ et les
coefficients ai sont solutions du système de N + 1 équations :

2λai
∑
k

ake
−κ|µk−µi| = 1, pour i = 1, · · · ,N (A.37)

N

2λ
+
∑
i,j

aiajκ|µj − µi|e−κ|µj−µi| = 1

Le paramètre libre ℓ commande la pénalité imposée à Q quand son gradient (sa dé-
rivée) prend des valeurs importantes. Le meilleur accord est obtenu avec une valeur
petite de ℓ, mais dans ce cas, la solution peut être fortement oscillante. À l’opposé, la
meilleure régularité est obtenue en choisissant une valeur relativement grande de ℓ,
mais la courbe résultante peut représenter de façon peu fidèle les données. En pratique,
il faut trouver un compromis entre accord et régularité, ce qui peut se faire en traçant
une « courbe de compromis », c’est-à-dire S(ψ̂) en fonction de lnκ = ln

√
2λ − ln ℓ

dans un diagramme semi-logarithmique. Généralement, la courbe de compromis pos-
sède un maximum/minimum (courbe en cloche) ou un point d’inflexion (courbe en S).
Une valeur convenable de ℓ est alors choisie en sélectionnant le point où dS[ψ̂]/d ln ℓ
s’annule ou tend vers 0 puisque ce point correspond à sensibilité minimale de S (Holy,
1997).
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A.6 Principe de l’estimation

Généralement, lorsqu’on cherche à déterminer la loi de distribution dont est issu un
échantillon de valeurs, on recherche une loi issue d’une famille paramétrique f(· ; θ),
où θ est l’ensemble des paramètres de la loi. Ainsi pour une loi de Laplace-Gauss, on a
θ = (µ, σ) avec µ la moyenne et σ l’écart-type.

Quand on dispose de données, on cherche à estimer les paramètres θ à partir de
l’échantillon (xi). La fonction à variable(s) aléatoire(s) qui lie l’échantillon au jeu de
paramètres θ est appelée un estimateur. Par exemple, l’estimateur « moyenne » est la
fonction :

(xi)1≤i≤n → µ̂ =
1

n

n∑
i=1

xi,

et la quantité µ̂ est appelée l’estimation de la moyenne µ. Puisque les variables sont
aléatoires, différentes répétitions de l’expérience produisent des échantillons de valeurs
(xi) différentes et donc des estimations de µ̂ également différentes. La probabilité de
distribution de µ̂ est appelée la distribution d’échantillonnage.

Il est utile de définir des fonctions d’estimation qui donnent des valeurs les plus
proches possible des paramètres θ. Pour qualifier l’écart entre les paramètres θ et θ̂, on
introduit le biais d’un estimateur

Biais(θ̂) = E(θ̂)− θ,

ainsi que l’erreur quadratique moyenne 11

MSE(θ̂) = E
(
(θ̂ − θ)2

)
.

Quand l’estimateur a un biais nul, il est dit non biaisé, c’est-à-dire il va donner, en
moyenne, la bonne valeur du paramètre recherché. Onmontre, par exemple, que l’estima-
teur « moyenne » est non-biaisé. Pour d’autres estimateurs (par exemple pour estimer
la variance), il est difficile d’assurer qu’il soit non biaisé, mais il est souvent possible de
le construire de telle sorte que l’erreur quadratique moyenne soit faible. Quand cette
erreur est faible, cela signifie que n’importe quelle estimation θ̂ est raisonnablement
proche de θ.

La distribution d’échantillonnage détermine la variabilité d’un estimateur. On peut
donc estimer la précision de l’estimateur en calculant l’écart type de la distribution
d’échantillonnage de θ̂. On l’appelle l’erreur type 12 SE(θ̂) ; c’est l’écart type de sa dis-
tribution d’échantillonnage. Plus SE(θ̂) est petit, meilleure est la précision de l’estima-
teur.

11. Mean-square error en anglais.
12. Standard error en anglais.
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La question, souvent délicate, est de savoir si l’on peut arriver à construire des
estimateurs corrects de ces moments empiriques. Pour cela, il faut qu’ils soient conver-
gents quand n→∞ et non biaisés. On se reportera à des ouvrages spécialisés (Saporta,
1990; Robert, 2001; Davison, 2003) pour plus de renseignements sur ce point. On peut
juste rappeler que :

– pour le moment d’ordre 1 (moyenne), on montre que la moyenne empirique x̄ =∑n
i=1 xi/n est un bon estimateur de la moyenne théorique E[f ] (convergent et

non biaisé) ;
– pour le moment centré d’ordre 2 (variance), si la moyenne de la population E[f ]

n’est pas connue mais seulement estimée à l’aide de x̄, alors un estimateur non
biaisé de la variance est

Var(x) =
∑n

i (xi − x̄)2

n− 1
.

Toutefois, cela cesse d’être vrai si la moyenne de la population est connue exac-
tement. Dans ce cas, il faut revenir à l’expression : Var(x) =

∑n
i (xi −m)2/n

avecm = E[f ] ;
– pour le moment centré d’ordre 3, on am3 =

∑n
i (xi− x̄)3/n, qui est un estima-

teur biaisé. En pratique on définit un coefficient d’asymétrie γ1 = m3/σ
3, dont

un estimateur non biaisé est

γ1 =
n

n− 2

√
n− 1

∑n
i (xi − x̄)3

(
∑n

i (xi − x̄)2)3/2

La précision d’un estimateur peut être quantifiée à l’aide du calcul de l’intervalle
de confiance (cf. § 4.3.4). Cette quantification est rendue particulièrement aisée quand
il existe un pivot ; un pivot est une fonction particulière de θ̂ et θ, dont la distribution
ne dépend pas de θ. Par exemple, dans le cas de l’estimateur « moyenne », la fonction
g(µ̂, µ) = µ̂−µ est un pivot car le théorème de la limite centrale montre que µ̂−µ ∼
N (0, σ2/n). Quand on peut trouver un pivot pour un estimateur, alors il est possible
de préciser un intervalle de confiance pour θ̂. En effet si ψ = g(θ̂, θ) est un pivot, alors
sa distribution d’échantillonnage ne dépend pas de paramètre inconnu et pour tout réel
α (tel que 0 < α < 1), on peut trouver des limites supérieure et inférieure, ϕs et ϕi,
telles que :

Prob(ϕs ≤ ϕ ≤ ϕi) = 1− α,

qui peut être transformée par changement de variable en

Prob(θs ≤ θ ≤ θi) = 1− α,

où [θi, θs] est appelé l’intervalle de confiance à 100(1−α) % de θ. Cet intervalle donne
la gamme de valeurs où l’on peut être sûr de trouver θ.
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A.7 Tests statistiques d’ajustement

À partir d’un échantillon de données x, il a été possible d’ajuster les paramètres θ
(de dimension p) d’une distribution f(x ; θ). En faisant cet ajustement, on a implicite-
ment supposé que l’échantillon avait été généré par cette loi f . Il est possible de vérifier
la pertinence de cette hypothèse à l’aide de tests. Nous en décrirons rapidement deux :
le test du χ2 pour les valeurs discrètes et le test de Kolmogorov–Smirnov pour les va-
leurs continues. Dans tous les cas, on ne pourra jamais prouver que cette hypothèse
est exacte (il faudrait connaître toute la population dont est extrait l’échantillon), mais
seulement se faire une idée sur la pertinence de cette hypothèse. De plus, un test d’ajus-
tement ne garantit pas l’unicité de la solution ; autrement dit, ce n’est pas parce qu’on
a trouvé une loi répondant avec succès à un test statistique pour un échantillon qu’il
n’existe pas d’autres lois pouvant représenter l’échantillon de manière plus précise.

A.7.1 Test du χ2

L’idée du test du χ2 est de construire un histogramme des valeurs échantillon-
nées et des valeurs théoriques, puis de mesurer l’écart relatif séparant les deux histo-
grammes. Donnons un découpage du support de f enN intervalles. Ce découpage peut
être régulier mais il est bien plus intéressant de travailler avec des intervalles de taille
irrégulière mais constituant des classes équiprobables ; dans ce cas, les bornes sont don-
nées par : yi = F−1 ((i− 1)/N) (1 ≤ i ≤ N + 1), avec F−1 l’inverse de la fonction
de répartition. Dans tous les cas, il est préférable d’avoir au moins 3 à 5 éléments par
intervalle (dans le cas contraire on peut procéder à des regroupements).

On compte le nombre nk d’éléments de l’échantillon x qui sont dans le kième
intervalle [yk, yk+1[ et on calcule le nombre théorique d’éléments que l’on devrait avoir
tk = N(F (yk+1)−F (yk)) (avec des classes équiprobables, on a : tk = 1/N ). On définit
une distance relative entre les deux histogrammes de la façon suivante :

D2 =

N∑
k=1

(nk − tk)2

tk
.

Intuitivement on sent que cette distance ne doit pas être trop grande pour que l’échantil-
lon soit effectivement tiré d’une population de loi de distribution f . Cette distance est
une somme de k termes aléatoires (ils ne sont toutefois pas indépendants puisqu’ils
vérifient la condition

∑
nk = n ; au mieux seuls N − 1 termes sont indépendants).

Un théorème important montre que, pour n grand, D2 est distribué selon la loi de
probabilité dite du χ2(ν), qui est une loi à un paramètre 13 ν pris égal ici à ν = N−1−p
(Saporta, 1990).

13. On appelle ν le degré de liberté.
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En pratique, on procède ainsi.

– On se fixe N classes équiprobables (le nombre de classes est généralement fixé
de telle sorte qu’il y ait au moins 5 éléments par classe).

– On dénombre les éléments de l’échantillon par classe et on détermine le nombre
théorique d’après la loi ajustée f(θ).

– On calcule la distanceD2 et on recherche la probabilitéPD2 (de non-dépassement)
d’observer le quantile D2 avec une loi χ2(ν).

– On se fixe un seuil 14 de rejet α (typiquement de l’ordre de 5 ou 10 %) pour le
test du χ2.

– Si PD2 ⩽ α alors il est peu vraisemblable que l’échantillon soit tiré selon la loi
ajustée. On peut donc rejeter la distribution f(θ).

A.7.2 Test de Kolmogorov–Smirnov

Le principe est à peu près similaire si ce n’est qu’on ne compare plus des densités de
probabilité (histogrammes) mais des fonctions de répartition. On définit une distance
entre fonctions de répartition de la façon suivante :

D = max |F (xi|θ)− F ∗
n(xi)|,

où F ∗
n(xi) désigne la fonction de répartition empirique construite à partir des n valeurs

xi. Le théorème de Glivenko–Kolmogorov montre que cette distance suit une loi de
probabilité dite de Kolmogorov–Smirnov dont la fonction de répartition s’écrit :

K(y ; k) =
+∞∑
−∞

(−1)k exp(−2k2y2).

C’est une loi à un paramètre k = n. En pratique, on procédera de la même façon que
pour le test du χ2.

A.8 Génération de nombres aléatoires

On ne traite ici que le cas de variables continues mais l’extension à des variables
discrètes ne pose guère de problème. On recense ici deux méthodes classiques et faciles
à programmer. L’algorithme deMetropolis offre un cadre plus général et universel d’ob-
tention de variable aléatoire.

14. Ce seuil signifie que si on était en mesure d’effectuer un nombre infiniment grand de
tests n∗ sur des échantillons de taille donnée et si tous les échantillons étaient tirés de la même
population de loi f(θ), alors en moyenne αn∗ échantillons seraient rejetés par le test.
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A.8.1 Inversion directe

C’est la méthode la plus simple. Soit f une densité de probabilité, F sa fonction de
répartition. Si on veut simuler des nombres aléatoires tirés selon f , alors on peut tirer
u selon une loi uniforme sur [0, 1], puis poser X = F−1(u).

Par exemple, pour simuler une loi exponentielle de taux λ, il suffit de poser X =
− ln(1− u) (ou plus simple X = − lnu car u et 1− u suivent la même loi).

A.8.2 Méthode d’acceptation/rejet

Dans certains cas, on ne sait pas calculer directement (analytiquement)F−1 ou cela
demande du temps. On peut alors approcher la densité f par une fonction g plus simple
telle que : f(x) ≤ cg(x) où c est une constante supérieure à 1 (on a en général intérêt à
choisir c de telle sorte que c = max(f(x)/g(x)) soit le plus petit possible). Si u est une
variable aléatoire et x une variable aléatoire tirée selon g alors la loi conditionnelle de
x sachant l’événement « cug(x) < f(x) » a pour densité f .

A.9 Méthodes stochastiques

Beaucoup de problèmes pratiques se ramènent à l’un des problèmes suivants :

– trouver le minimum d’une fonction (problème d’optimisation) ;
– calculer une intégrale ;
– générer un échantillon de n valeurs tirées selon une loi de probabilité donnée

(problème d’échantillonnage).

Pour résoudre ces problèmes, il existe

– un certain nombre de méthodes déterministes qui permettent d’aboutir généra-
lement au résultat avec une précision donnée ε ;

– des méthodes stochastiques, qui en théorie permettent d’aboutir à des résultats
avec une précision donnée.

Comment en pratique choisir plutôt un algorithme déterministe ou stochastique? La
réponse n’est pas facile et dépend, entre autres choses, :

– du coût de calcul (nombre d’opérations à effectuer, temps total de calcul, éven-
tuellement temps nécessaire à écrire/adapter l’algorithme) ;

– de la robustesse du calcul ;
– de la possibilité de faire du calcul analytique pour les méthodes déterministes ;
– de la possibilité de stocker de grandes quantités de données pour les méthodes

déterministes ou stochastiques.
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Généralement, le nombre d’opérations élémentaires impliquées dans un algorithme dé-
terministe est fonction de la taille du problème n (par exemple, le nombre de pas de
discrétisation pour le calcul d’une intégrale) et de la précision ε requise. Typiquement,
un algorithme déterministe demanderaK ln ε−1n opérations contre ε−2n2 pour des al-
gorithmes stochastiques. De ce point de vue, un algorithme déterministe est bien plus
rapide à précision égale qu’un algorithme stochastique.

La situation est moins claire en ce qui concerne la robustesse, notamment si les me-
sures sont bruitées. Prenons l’exemple suivant : on mesure une variable f(x) pour diffé-
rentes valeurs de x et on souhaite déterminer pour quelle valeur de x on observe f = 1.
Si les données ne sont pas bruitées, il existe plusieurs méthodes (Newton, etc.) qui per-
mettent de trouver cela rapidement et précisément (Press et al., 1992). Considérons
maintenant que les données sont bruitées (imprécision de la mesure, fluctuations du
paramètres, etc.), alors les méthodes déterministes ont de fortes chances de ne pas mar-
cher ou bien de donner un résultat faux comme le laisse deviner la figure A.7.
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Figure A.7 – Mesure de f ; signal pur (gauche) et signal bruité (droite) avec un niveau
de 10 %.

C’est ainsi qu’en présence de bruit, trouver le zéro d’une fonction ou bien son mi-
nimum s’il existe peut être plus efficacement obtenu avec un algorithme stochastique
(Venkatesh et al., 1997). Ainsi, si la taille du système est grande et que la précision
souhaitée n’est pas très grande, un algorithme stochastique satisfera largement aux
besoins.

Il existe des cas où la suprématie des algorithmes stochastiques est évidente : ce
sont les problèmes d’optimisation, d’évaluation de possibilité ou de combinaison. Un
problème classique, dit du « représentant de commerce » (salesman problem), est le
suivant. Un représentant doit au cours d’une tournée aller dans N villes différentes.
Connaissant les distances entre ces villes, comment optimiser la distance totale à par-
courir en recherchant dans quel ordre les villes doivent être visitées? C’est typiquement
un problème dont le temps de calcul est en N ! pour une résolution déterministe alors
qu’on va rester dans des temps en N2 opérations pour un algorithme stochastique.
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A.9.1 Exemple : intégration d’une fonction

On cherche à calculer l’intégrale d’une fonction f sur un domaine χ

I =

∫
χ
f(x)dx.

On peut aborder ce problème de deux façons :

– approche déterministe impliquant une discrétisation de l’équation. Le signe d’in-
tégration est alors interprété comme une somme ;

– approche stochastique : on tire de nombres aléatoires et on interprète l’intégra-
tion comme une moyenne.

On va examiner ces deux méthodes en considérant – pour simplifier le problème – que
χ est un intervalle χ = [a,b] et f une fonction scalaire.

Approche déterministe : approximation de Riemann

Une approximation de I peut être obtenue en divisant un intervalle χ = [a,b] en
une succession d’espaces réguliers xi = a+ i(b− a)/n. On a alors :

I =

∫
χ
dxf(x) ≈

n−1∑
i=0

f(xi)(xi+1 − xi)

Cette méthode s’appelle méthode des rectangles ; c’est la plus basique des méthodes
d’intégration. Il existe de nombreuses variations (méthode des trapèzes ou méthode de
Simpson, etc.) qui sont bien plus performantes.

♣ Exemple. – Admettons que l’on veuille résoudre
∫
exdx sur χ = [0, 1]. Analy-

tiquement on trouve I = e− 1 ≈ 1,718.

La figure A.8 montre comment varie Î en fonction du nombre d’intervalles n. On
note la lente convergence en 1/n de la série vers la valeur exacte. Au bout de 1000
itérations, on trouve Î = 1,71371, soit une erreur de 0,266 %.

Approche stochastique

Méthode 1 (Monte Carlo). – On peut transformer l’intégrale à résoudre

I =

∫
χ
f(x)dx =

∫
χ
h(x)g(x)dx,

avec g(x) une densité de probabilité a priori quelconque, mais :

– qui est strictement positive sur χ ;
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Figure A.8 – Calcul de I par une adaptation stochastique de l’algorithme de Riemann.

– qui est nulle en dehors de χ ;
– dont on doit pouvoir tirer facilement des réalisations ;
– qui peut être choisie de façon à accélérer la vitesse de convergence.

Par défaut, on peut prendre g comme étant la loi uniforme sur χ. La fonction h est
obtenue en posant simplement h = f/g. On peut interpréter I comme : I = Eg[h(x)].
La loi forte des grands nombres nous indique que si l’on est capable de générer x1 · · ·xn
selon g, alors

h̄n =
1

n

n∑
k=1

h(xk)

converge vers I . Cette méthode est un exemple typique de simulations de Monte Carlo.

La précision peut être estimée en calculant la variance de l’estimateur. La variance
théorique est donnée par :

Var(h) = 1

n

∫
χ
(h(x)− I)2 g(x)dx =

1

n

(∫
χ
dxg(x)h2(x)− E2

g[h(x)]

)
,

qui peut être évaluée par :

vn =
1

n2

n∑
k=1

h2(xk)−
h̄2n
n2
.

Pour n grand, le rapport (h̄n−Eg[h])/
√
vm se comporte comme une variable aléatoire

normale N (0,1).

♣ Exemple. – On identifie : g(x) = ex et h est la loi uniforme sur χ. On ap-
plique une méthode de simulation par Monte Carlo. Comme le montre la figure A.9, la
convergence est très lente. Au bout de n = 1000 simulations, l’écart type relatif est de
Sn/
√
n ≈ 0,016, l’intervalle de confiance à 95% est donc±1,96×0,016 = 0,03 autour
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Figure A.9 –Calcul de I . Les points représentent les résultats d’une simulation. Pour le
dessin de gauche, on a reporté le rapport Sn/

√
n en fonction du nombre de simulations

n.

de la valeur moyenne estimée (1,680). La valeur obtenue pour 1000 itérations est de
1,73713, soit une erreur de 1,09 %.

Méthode 2 (adaptation stochastique). – Une autre façon de faire est d’adapter
des algorithmes stochastiques pour en accélérer la vitesse de convergence. Une adap-
tation stochastique de la méthode des rectangles consiste à supposer que les xi ne
sont plus régulièrement espacés mais distribués selon f . On obtient alors une conver-
gence plus rapide (en 1/n2) que précédemment. La figure A.10 montre un exemple de
convergence dans le cas où la méthode des trapèzes est appliquée avec une distribution
aléatoire des points.

♣ Exemple. – La figure A.10 montre comment varie Î en fonction du nombre de
tirages n. Au bout de 1000 tirages, on obtient Î = 1,71781, soit une erreur de 0,02769%.
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Î

Figure A.10 – Calcul de I par une adaptation stochastique de la méthode des trapèzes.





ANNEXEB
Annexe B: quelques

demonstrations du cours

B.1 Normalité de l’estimateur θ̂

♦Théorème. – Soient x = x1, . . . xn des réalisations indépendantes d’une dis-
tribution f(· ; θ) où θ désigne le paramètre f , ℓ la log-vraisemblance, θ̂ l’estimateur
du maximum de vraisemblance, et θ0 la « bonne » valeur (du paramètre θ) que l’on
cherche à estimer. Alors pour n suffisamment grand, on a :

θ̂ − θ0

1/
√
IA(θ)

∼ N (0, 1),

avec

IA(θ
0) = E

(
− ∂2

∂θ2
ℓ(θ0|x)

)
= −

∫
∂2

∂θ2
ℓ(θ0|x)f(x; θ0)dx = −n

∫
∂2

∂θ2
ℓ(θ0|x)f(x; θ0)dx,

l’information attendue (ou encore information de Fisher). On peut écrire cette relation
sous la forme équivalente

θ̂ ∼ N (θ0, IA(θ
0)−1).

⇝ Démonstration. – Pour montrer ce résultat et comprendre ce qu’est l’infor-
mation de Fisher, il faut se souvenir que l’estimateur de vraisemblance est la valeur qui
maximalise la log-vraisemblance ℓ(θ) d’un échantillon de données tirées de f , donc on
a

∂

∂θ
ℓ(θ̂) = 0.

Cette équation s’appelle équation de la log-vraisemblance. Gardons en mémoire que
chaque fonction ℓ est implicitement définie à partir de l’observations des n valeurs x.

359
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Rappelons que la log-vraisemblance ℓ(θ) est un nombre aléatoire : différentes valeurs
de x conduisent à des valeurs différentes de ℓ(θ).

On peut tout d’abord montrer que E[∂θℓ(θ0)] = 0, c’est-à-dire en moyenne la
bonne valeur vérifie les équations de la vraisemblance pour n’importe quel échantillon
de n valeurs tirées selon la loi f . En pratique, si l’on prend une réalisation particulière
et qu’on calcule ℓ′(θ0), on a en faisant un développement limité à l’ordre 1 :

ℓ′(θ0) = ℓ′(θ̂) + (θ0 − θ̂)ℓ′′(θ̂) + · · · , (B.1)
= (θ0 − θ̂)ℓ′′(θ̂),

donc ℓ′(θ0) n’est pas nul en général pour une réalisation particulière, mais le devient
en moyenne.

En effet, on a

E[∂θℓ(θ0)] =
n∑
i=1

E
[
∂ ln f(xi ; θ)

∂θ0

]
, avec xi ∼ f(·, θ0)

= n

∫
∂ ln f(x ; θ)

∂θ0
f(x ; θ0)dx,

= n

∫
∂f(x ; θ0)

∂θ0
dx.

En intervertissant les opérateurs d’intégration et différentiel et puisque f(x ; θ) est une
densité de probabilité, on aboutit à

E[∂θℓ(θ0)] = n
d
dθ

∫
f(x ; θ)dx = 0,

puisque par définition, l’intégrale de f vaut 1.

Onmontre ensuite que la variance est égale à IA. Repartons de l’expression trouvée
précédemment ∫

∂ ln f(x ; θ)
∂θ

f(x ; θ)dx = 0,

et on différentie par rapport à θ∫
∂2 ln f(x ; θ0)

∂θ2
f(x ; θ0)dx+

∫ (
∂ ln f(x ; θ0)

∂θ

)2

f(x ; θ0)dx = E

[(
∂ℓ

∂θ

)2
]
+E

[
∂2ℓ

∂θ2

]
= 0.

Comme la variance est définie par

Var
(
∂ℓ

∂θ

)
= E

[
{ℓ′(θ0)− E(ℓ′(θ0)}2

]
= E

[
(ℓ′(θ0))2

]
,
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on déduit la relation recherchée

Var
(
∂ℓ

∂θ

)
= E

[
−∂

2ℓ

∂θ2

]
= niA,

ce qui permet d’introduire l’information de Fisher et de l’interpréter comme étant la
variance de la courbure autour de la bonne valeur du paramètre θ0. On a également
introduit iA = −

∫
f∂2θ ln fdx l’information attendue à partir d’une seule observation.

Reprenons maintenant le développement limité de ℓ′ comme celui de l’équation
(B.1) si ce n’est qu’on intervertit le rôle de θ̂ et θ0

ℓ′(θ̂) = ℓ′(θ0) + (θ̂ − θ0)ℓ′′(θ0) + · · · = 0,

soit encore
θ̂ − θ0 = − ℓ

′(θ0)

ℓ′′(θ0)
.

De cela on peut définir que θ̂ − θ0 est le rapport de deux variables aléatoires

√
n(θ̂ − θ0) = Yn

Zn
,

avec

Yn = − 1√
n
ℓ′(θ0) = − 1√

n

n∑
k=1

∂

∂θ
f(xi, θ

0) et Zn =
1

n
ℓ′′(θ0).

Yn est une somme de variables aléatoires de moyenne nulle et de variance iA et on a
pris soin de mettre Yn sous la forme utilisée dans l’équation (A.24) du théorème central
limite. On en déduit donc d’après ce théorème que Yn se comporte comme une variable
tirée d’une loi normale N (0,1) quand n→∞ :

Yn → N (0,1).

La variable Zn est la moyenne de variables aléatoires de moyenne −iA, qui d’après la
loi forte des grandes nombres tend vers iA quand n→∞.

Zn → iA.

Il s’ensuit que le rapport Yn/Zn tend vers

Yn
Zn
→ N (0,− 1/iA).

Puisque
√
n(θ̂ − θ0)→ N (0,− 1/iA), on déduit

θ̂ − θ0 → N (0,− (niA)
−1) = N (0,− (IA)

−1),

qui est la relation souhaitée. ⊓⊔
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B.2 Approximationde l’information attenduepar
une loi du χ2

♦Théorème. – Soient x1 . . . xn des réalisations indépendantes d’une distribution
f(· ; θ) où θ désigne le paramètre de f , ℓ la log-vraisemblance, et θ̂ l’estimateur du
maximum de vraisemblance. Alors pour n suffisamment grand, on a :

D(θ0) ∼ χ2
1.

⇝Démonstration. – Faisons un développement à l’ordre 2 de la log-vraisemblance
autour de θ0, qui est la bonne valeur du paramètre θ, mais cette est inconnue (la distance
entre θ0 et l’estimateur θ̂ n’est donc pas connue de façon certaine)

ℓ(θ̂) = ℓ(θ0) + (θ̂ − θ0)ℓ′(θ0) + 1

2
(θ̂ − θ0)2ℓ′′(θ0) + · · · ,

Comme ℓ′(θ0) = 0, on tire que

D(θ0) = 2(ℓ(θ̂)− ℓ(θ0)) = (θ̂ − θ0)2ℓ′′(θ0).

Nous avons au § 4.3.4 que quand n suffisamment grand, on a

θ̂ − θ0 ∼ N (0, IA(θ
0)−1),

soit encore √
IA(θ0)(θ̂ − θ0) ∼ N (0, 1),

donc si l’on considère D(θ0) = IA(θ
0)(θ̂ − θ0)2, alors on doit avoir

D ∼ χ2
1,

puisque le carré d’une variable gaussienne varie selon la loi du χ2.

⊓⊔
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