


ii

Christophe ANCEY,
EPFL, ENAC/IIC/LHE,
Ecublens, CH-1015 Lausanne, Suisse

christophe.ancey@epfl.ch, lhe.epfl.ch

Risques hydrologiques et aménagement du territoire / C. ANCEY

version 21.3 du 8 novembre 2024, Lausanne

Attribution: pas d’utilisation commerciale, pas de modification, 3.0.
Licence Creative Common 3.0. Ce travail est soumis aux droits d’auteurs. Tous les droits
sont réservés ; toute copie, partielle ou complete, doit faire 'objet d’'une autorisation de
Pauteur. La gestion typographique a été réalisée a I’aide du package efrench de Bernard
GauLLE. Tous les clichés sont de Christophe Ancey sauf mention contraire.

Ce livre est le support du cours Risques hydrologiques et aménagement du territoire
donné en master Sciences et Ingénierie de ’Environnement de 'EPFL. Le lecteur trou-
vera plus d’informations sur la page web du cours: http://lhe.epfl.ch/hydrologie.php.
Mes remerciements vont a Nicolas ANDREINI, Jean-Julien DessiMoz, Rémy MARQUIS,
Anne-Lise MEYENHOFER, et Edouard Boujo pour la relecture du manuscrit.

Crédit des illustrations. Premiére de couverture: la Navisence en crue a Zinal
(VS) le 21 juin 2024 (Bob de Graffenried). Table des matiéres: maitre Santa Clara de
Palencia, détail de la mort de la Vierge (musée des Beaux-Arts, Lyon). Avant-propos:
Hubert Robert, vue imaginaire de la Grande Galerie du Louvre en ruines (le Louvre,
Paris). Notations : Isaack van Ostade, la riviére gelée (le Louvre, Paris). Aller plus loin:
Edouard Manet, les coquelicots (exposition « collection Bithrle », Fondation de I'Hermi-
tage, Lausanne). Chapitre 1: Pieter Bruegel I’Ancien, le combat de carnaval et caréme
(Kunsthistorisches Museum, Vienne). Chapitre 2: Félix Cortey, ex-voto représentant
la débacle du Giétro a Sembrancher en 1818 (paroisse de Sembrancher, VS) — cliché
Robert Hofer. Chapitre 3: Pieter Bruegel ’Ancien, les mendiants (le Louvre, Paris).
Chapitre 4: papyrus du livre des morts (le Louvre, Paris). Chapitre 5: Alfred Sisley,
Pinondation a Port-Marly montrant la crue de la Seine de 1876 (musée d’Orsay, Paris).
Annexes: hiéroglyphe dit « menu de Tepemankh » (le Louvre, Paris). Bibliographie:
Gabriel Maelesskircher, I’apétre Saint Mathieu a son pupitre (Museo Nacional Thyssen-
Bornemisza, Madrid). Index: Matthias Stom, le souper @ Emmaus (Museo Nacional
Thyssen-Bornemisza, Madrid).


https://creativecommons.org/licenses/by-nc-nd/3.0/fr/
http://lhe.epfl.ch/hydrologie.php

« La ciencia engaria de tres maneras: transformando sus proposiciones en
normas, divulgando sus resultados preferentemente a sus méto-
dos, callando sus limitaciones epistemologicas. »

Nicolas GOMEz DAVILA, Escolios a un texto implicito, 28

« La science nous trompe de trois maniéres: en transformant ses propo-
sitions en normes, en divulguant ses résultats plutét que ses mé-
thodes, en passant sous silence ses limitations épistémologiques. »
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OBJET DE CE COURS est de fournir une vision moderne de la gestion du risque
hydrologique (crue, inondation, avalanche) pour 'ingénieur en sciences en-
vironnementales. Outre la nécessaire compréhension des phénomenes na-

turels impliqués dans les risques hydrologiques, l'ingénieur doit posséder des outils
de calcul qui lui permettent de déterminer ce qui peut se produire, c’est-a-dire a la
fois 'intensité des phénoménes dommageables et leur probabilité d’occurrence. Il doit
également étre en mesure d’aider les preneurs de décision dans I’élaboration des poli-
tiques publiques d’occupation des sols et de prévention des risques ainsi que dans la
réalisation d’ouvrages de protection adaptés a limiter le risque sur un enjeu donné.

Ces outils de calculs sont de deux natures. D’une part, il faut une solide base sta-
tistique pour permettre de déterminer ce qui peut potentiellement se produire (comme
phénomeénes dommageables) a partir d’'une connaissance des phénomenes présents et
passés. Dans le cadre de ce cours, on s’appuiera principalement sur la théorie des va-
leurs extrémes pour proposer une approche statistique rigoureuse. D’autre part, il faut
disposer d’outils de calcul déterministes (calcul d’onde crue par exemple) pour déter-
miner le comportement d’un processus en particulier. Nous présenterons ici quelques
outils simples de calcul.






Les notations et formules suivantes sont utilisées:

Vecteurs et matrices sont notés en gras.
Les variables sont italiques.
Les fonctions et opérateurs sont en caractéres romans.

Les algorithmes sont écrits en caractéres sans empattement (sans sérif si on pré-

fere cet anglicisme).

Pour désigner les densités de probabilité, j’emploie des polices stylisées:

N pour la loi de Laplace-Gauss ou loi normale (voir § A.2.5);
Ny pour sa variante a d dimensions (voir § A.2.5);

XZ pour la loi du « chi-deux » a k degrés de liberté (voir § A.2.6);
& pour la loi exponentielle (voir § A.2.4);

‘P pour la loi de Poisson (voir § A.2.2);

B pour la loi binémiale (voir § A.2.1);

Neg pour la loi bindmiale négative (voir § A.2.1);

We pour la loi de Weibull (voir § 4.1.3);

Gu pour la loi de Gumbel (voir § 4.1.3);

Fr pour la loi de Fréchet (voir § 4.1.3);

‘Pa pour la loi de Pareto (voir § 4.6.2);

U pour la loi uniforme (voir § A.2.3).

Le symbole ~ ou < signifie « tiré selon la loi ».
Le symbole o signifie « proportionnel(le) a ».
L’indice 7 aprés un vecteur signifie le transposé de ce vecteur.

J utilise 1 pour désigner le vecteur unité.
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Le symbole & indique le début d’un exemple. Le symbole @ est employé pour
attirer Pattention sur un point difficile. Le symbole 4 sert a repérer un théoréme
tandis que le symbole ¢ est employé pour les définitions. Le symbole » renvoie
a des compléments en annexe. Le symbole O indique la fin d’'un exemple ou
d’une démonstration.

Le symbole E désigne la moyenne (espérance ou moment d’ordre 1) d’une dis-
tribution ou d’un échantillon. Le symbole Var représente la variance, Cov la
covariance.

Pour les opérations différentielles, la notation abrégée 0, f signifie f/0x.

Les notions difficiles, non nécessaires a la compréhension du cours, mais indis-
pensables pour quelqu’un qui voudrait avoir une bonne maitrise du contenu du
cours, sont signalées a 1’aide du symbole T.

En général, les variables aléatoires sont en lettres capitales tandis que les valeurs
particuliéres qu’elles peuvent prendre sont en minuscules. Ainsi X désigne une
variable aléatoire et X = x est une réalisation particuliére.

On introduit le coefficient binomial :

<k> = = =

qui donne le nombre de sous-ensembles a k éléments parmi un ensemble a n
éléments. Ici n et k < n sont deux entiers naturels.



Ressources

Pour le langage R:

- voir la page du CRAN pour une liste des différents paquets pour le traitement
des valeurs extrémes dans le cadre de la théorie des valeurs extrémes abordée
au chap. 4;

— voir la page github pour les modéles réservoir de type GR présentés au chap. 5
R est spécifiquement dédié aux calculs statistiques, et c’est donc le langage ou I'on trou-
vera le plus d’outils pour '’hydrologie statistique. Il existe aussi des environnements

spécifiques pour les calculs statistiques et I'inférence bayesienne tels que Stan et JAGS.
Il existe également des interfaces R (RStan) et Python (PyStan) pour Stan.

En Python, on a un nombre croissant de modules, dont:
- pyextremes: calage d’une loi de valeurs extrémes par la méthode du maximum
de vraisemblance (voir chap. 4);

— pymc: module assez complet permettant de faire des simulations de Monte Carlo
pour 'inférence bayesienne.

Les Etats européens se sont engagés a fournir I'acces libre aux données topogra-
phiques, hydrologiques et hydrauliques. C’est le cas déja de la France:
- Données topographiques: Géoservices
- Données hydrométriques:
— Mesures in situ: Hydro Portail
- Estimations sur des bassins non jaugés: Shyreg débit
- Données météorologiques:

— Mesures in situ: Météo France


https://cran.r-project.org/web/views/ExtremeValue.html
https://hydrogr.github.io/airGR/
https://mc-stan.org/
https://mcmc-jags.sourceforge.io/
https://georgebv.github.io/pyextremes/
https://www.pymc.io/welcome.html
https://geoservices.ign.fr/
https://www.hydro.eaufrance.fr/
https://shyreg.recover.inrae.fr/
https://meteo.data.gouv.fr/form
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- Estimations sur des bassins non jaugés: Shyreg pluie

- Projections climatiques: https://www.drias-climat.fr/Drias les futurs du

climat

Je fournis des cahiers Jupyter pour le traitement des données de Météo-France sur ma

page github.

Pour I'Union Européenne, le portail Copernicus regroupe un ensemble de données
météorologiques et climatiques pour I’Europe, avec a la fois des données reconstituées
et des projections climatiques.

Pour la Suisse, il faudra attendre jusqu’au 1% avril 2025 (voir la page de Météo

Suisse).

Ouvrages conseillés

- Météorologie et climat

Thillet, J.-J., et D. Schueller, Petit manuel de météo montagne, Glénat, Grenoble,
2009. Comme son nom l'indique il s’agit d’un livre consacré a la météorolo-
gie dans les zones montagnes, avec un accent mis sur les Alpes francaises.
Son principal auteur est Jean-Jacques Thillet, un ancien de Météo-France

et un des grands pionniers de la prévision météorologique en montagne.
Corboz, Y., Météorologie: 100 expériences pour comprendre les phénomenes
météo, Belin, Paris, 2008.

Séchet, G., Y’a plus de saison, Aubanel, Genéve, 2008.

Leroy Ladurie, E., Abrégé d’histoire du climat: du Moyen Age @ nos jours,
Fayard, Paris, 2007.

- Histoire et catastrophes

Walter, F., Catastrophes: une histoire culturelle xvi° siécle-xx1° siécle, Seuil,
Paris, 2008.

Walter, F., B. Fantini, and P. Delvaux, Les cultures du risque: (xv1° siécle—
xxI¢ siécle), Presses d’Histoire Suisse, Genéve, 2006.

Favier, R., Les pouvoirs publics face aux risques naturels dans I’histoire, Publications
de la MSH-Alpes, Grenoble, 2002.

Granet-Abisset, A.-M., and G. Brugnot, Avalanches et risques. Regards croi-
sés d’ingénieurs et d’historiens, CNRS MSH Alpes, Grenoble, 2002.

Gros, F., Le principe Sécurité, Gallimard, Paris, 2012.

— Statistique et théorie des valeurs extrémes

Coles, S. G., An Introduction to Statistical Modeling of Extreme Values, Springer,
London, 2001.

Davison, A. C., Statistical Models, Cambridge University Press, Cambridge,
2003.


https://shyreg.pluie.recover.inrae.fr/
https://shyreg.pluie.recover.inrae.fr/
https://github.com/cancey/Meteo-France
https://cds.climate.copernicus.eu/#!/home
https://www.meteosuisse.admin.ch/services-et-publications/service/open-government-data-donnees-ouvertes-de-l-administration-publique-suisse.html
https://www.meteosuisse.admin.ch/services-et-publications/service/open-government-data-donnees-ouvertes-de-l-administration-publique-suisse.html
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- Reiss, R.-D., and M. Thomas, Statistical Analysis of Extreme Values, Birkehaiiser,

Basel, 2001.

- Teegavarapu, R.S.V., Floods in a Chaning Climate: Extreme precipitations,

Cambridge University Press, Cambridge, 2012.

- Approche bayesienne et ingénierie

Bernier, J., E. Parent, et J.-J. Boreux, Statistique pour I’environnement: trai-
tement bayésien de Uincertitude, 363 pp., Tec & Doc, Paris, 2000.

Parent, E., and J. Bernier, Bayesian POT modeling for historical data, Journal
of Hydrology, 274, 95-108, 2003.

Parent, E., and J. Bernier, Le raisonnement bayesien: modélisation et infé-
rence, Springer, Paris, 2007.

— Gestion des crues et statistique des débits

Meylan, P., A.-C. Favre, et A. Musy, Hydrologie fréquentielle, Presses Polytechniques
et Universitaires Romandes, Lausanne, 2008.

Lang, M., et J. Lavabre (coord.), Estimation de la crue centennale pour les

plans de prévention des risques d’inondation, Editions Quae, Versailles, 2007.

Roche, P.-A., J. Miquel, and E. Gaume, Hydrologie quantitative: Processus,
modeéles et aide a la décision, Springer Verlag France, Paris, 2012.

Beven, K., Environmental Modelling: An Uncertain Future, Routledge (Taylor

& Francis), Oxon, 2009

- Hydrologie physique

Musy, A., and C. Higy, Hydrologie 1. Une science de la nature, Presses Polytechniques
et Universitaires Romandes, Lausanne, 2004.

Hingray, B., B. Picouet, et A. Musy, Hydrologie 2: une science pour l'ingé-

nieur, Presses Polytechniques et Universitaires Romandes, Lausanne, 2009.
Brutsaert, W., Hydrology: An Introduction, 605 pp., Cambridge University

Press, Cambridge, 2005.






\ OBJET DE CE CHAPITRE est de camper le décor du cours avec d’une part le rap-
4. pel des objectifs poursuivis en aménagement du territoire et, d’autre part,
une introduction a la gestion des risques dans nos sociétés. Nous aborde-
rons la délicate question de la définition du risque et de sa mesure. Comme ’a montré
le sociologue allemande Ulrich Beck, les sociétés occidentales sont désormais des « so-
ciétés du risque », ou le risque fait partie intégrante de leur fonctionnement, ou préve-
nir, anticiper, et gérer le risque font désormais partie des politiques publiques. Dans le
méme temps, nos sociétés aiment rationaliser et normaliser (transformer en normes).
Le risque n’échappe pas a cette tendance lourde et on le verra a travers plusieurs ana-
lyses appuyées d’exemples que les risques générent des controverses profondes. Ce ne
sont pas seulement les mesures de prévention qui font 'objet de critiques, mais égale-
ment les approches et la concertation entre acteurs.

1.1 Aménagement du territoire

1.1.1 Définition et principes

Par « aménagement du territoire », on entend la gestion et la planification de 'uti-
lisation du territoire national. Une bonne gestion implique que les surfaces soient amé-
nagées en respectant un certain nombre de principes, au premier rang desquels on
trouve naturellement le développement économique, la réponse aux besoins des popu-
lations locales, et la préservation des ressources naturelles. La notion d’aménagement
du territoire a des dimensions:

- politiques (qui fixent les grandes orientations du développement national),

— juridiques (qui encadrent le développement du territoire),
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- administratives (qui mettent en ceuvre les instruments de contrdle, décision,
etc.),
- techniques (qui fournissent les outils pour les ingénieurs, architectes, etc.).

Volet politique

Pour la Suisse, le but poursuivi dans la politique nationale d’aménagement du ter-
ritoire est rappelé dans I’article liminaire de la loi fédérale sur 'aménagement du terri-
toire du 22 juin 1979 (LAT, RS 700). Voici ce que dit 'article premier:

« La Confédération, les cantons et les communes veillent & assurer
une utilisation mesurée du sol. Ils coordonnent celles de leurs activités
qui ont des effets sur 'organisation du territoire et ils s’emploient a réali-
ser une occupation du territoire propre a garantir un développement har-
monieux de I’ensemble du pays. Dans ’accomplissement de leurs tiches,
ils tiennent compte des données naturelles ainsi que des besoins de la
population et de I’économie.

« Ils soutiennent par des mesures d’aménagement les efforts qui sont
entrepris notamment aux fins:

a. de protéger les bases naturelles de la vie, telles que le sol, I’air, 'eau,
la forét et le paysage;

b. de créer et de maintenir un milieu bati harmonieusement aménagé
et favorable a I’habitat et a 'exercice des activités économiques;

c. de favoriser la vie sociale, économique et culturelle des diverses
régions du pays et de promouvoir une décentralisation judicieuse
de I'urbanisation et de I'économie;

d. de garantir des sources d’approvisionnement suffisantes dans le
pays;

e. d’assurer la défense générale du pays.»

Les grandes orientations de la politique suisse en matiere d’aménagement du territoire
se retrouvent dans la plupart des pays occidentaux, avec toutefois des nuances que I'on
retrouve déja dans le nom méme donné a cette thématique: les anglo-saxons parlent
de « land-use planning » (ou « spatial planning ») tandis que les germanophones em-
ploient le terme « Raumplanung ». Les grands principes sont les suivants:

- développement raisonné de 'agriculture;

- préservation du paysage, des foréts, et des sites naturels;

- contrdle de l'urbanisation (concentration des équipements et habitations) par
une juste répartition sur le territoire;

- garantie de circulation des biens et des personnes (développement d’un réseau
de transport) et garantie d’acces aux grands équipements et infrastructures (écoles,
centres de loisir, services publics);
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- dialogue avec les populations concernées;

- compensation et indemnisation, assurances en cas de catastrophe.

Volet juridique

Plusieurs lois ont transcrit en termes juridiques les grandes orientations souhaitées
pour 'aménagement du territoire en Suisse:

- la loi fédérale sur 'aménagement du territoire (LAT, RS 700) du 22 juin 1979 fixe
les grandes lignes de la politique fédérale en Suisse et donne un cadre général
d’organisation. Dans un état fédéral comme la Suisse, il y a une séparation nette
entre d’une part la Confédération, qui fixe les orientations et dispose d’un pou-
voir d’approbation (art. 11), et les cantons, qui disposent de facto du pouvoir de
décision: « les cantons réglent la compétence et la procédure » (art. 25). Chaque
canton bénéficie donc d’une grande marge de manceuvre dans ’application des
directives fédérales et de leur transcription dans le droit cantonal. Outre ses pré-
rogatives en matiere de permis de construire, le canton a en charge I’élaboration
du « plan directeur », qui dresse a la fois une planification et un outil de coor-
dination des moyens a mettre ceuvre dans ’aménagement au niveau cantonal.
Le canton est également responsable de la cartographie des dangers naturels et
des risques sur son territoire. A noter qu’a I’échelle communale, le zonage et les
prescriptions de construction sont consignés dans un document appelé « plan
d’affectation » (art. 14). Sites naturels, zones urbanisées, et terres agricoles sont
concernés;

- plusieurs lois, dont la loi fédérale sur 'aménagement des cours d’eau (RS 721.00)
du 21 juin 1991 et la loi fédérale sur les foréts (LFo, RS 921.0) du 4 octobre 1991,
fournissent des instruments de gestion du territoire, avec notamment:

- des mesures d’encouragement et d’accompagnement de la Confédération
(subvention pour la construction d’ouvrages de protection, les foréts de
protection),

- des outils de gestion comme les cartes de danger,

- la collecte de données utiles a la prévision des phénoménes (données hy-
drologiques),

- la rédaction de directives techniques,
- les dispositions 1égales relatives a I’expropriation,
— les droits et devoirs respectifs de la Confédération et des cantons.

Pour plus d’information sur le cadre juridique, on consultera le guide « Cadre juridique
des cartes de dangers » disponible sur le site PLanaT (Liithi, 2004).


http://www.planat.ch/index.php?userhash=44748314&navID=1216&l=f
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Volet administratif

Les instances fédérales et cantonales en charge de ’'aménagement du territoire se
voient attribuer trois grandes missions:

— Didentification des dangers: il faut cartographier les zones soumises a des dangers
naturels (cartes de danger) et recenser les événements naturels dommageables
(cadastre des événements). Pour chaque danger identifié sur un périmétre donné,
il faut déterminer le potentiel de dommages en cas d’événement;

- la gestion du risque: il faut planifier correctement I'usage du sol en fonction des
dangers. Lorsqu’il n’est pas possible d’écarter un danger, il convient de prévoir
une protection des biens et des personnes. Le niveau de protection dépend de
I’enjeu. On considére que des zones habitées constituent un enjeu plus important
que des terrains agricoles. La définition des « objectifs de protection » vise a
catégoriser les enjeux en fonction de leur importance afin que 'on puisse adapter
le niveau de protection;;

— le contréle: tout équipement (habitation, équipement, voie d’accés, etc.) doit faire
l’objet d’'une autorisation avant sa construction. Cette autorisation et les éven-
tuelles prescriptions qui 'accompagnent sont délivrées au terme d’une instruc-
tion du dossier de permis de construire sur la base du plan d’affectation com-
munal. Certains ouvrages nécessitent des contréles techniques réguliers pour
s’assurer de leur bon fonctionnement.

Pour plus d’information sur la prise en compte des dangers naturels dans les plans
d’aménagement, on consultera les recommandations « Aménagement du territoire et
dangers naturels » disponibles sur le site de I'office fédéral du développement territo-
rial.

Volet technique

Le volet technique comprend une multitude d’actions et d’acteurs:

— études socio-économiques pour évaluer I'intérét et les besoins en équipements,
les lieux a développer, les flux de biens et de personnes;

- collectes d’informations: données météorologiques, démographie, tourisme, tra-
fic de passagers ou de marchandises, échanges économiques, dispositifs d’alerte,
etc.;

- conception des infrastructures: routes, grands équipements (écoles, administra-
tions, stades, aéroports, ports, etc.);

- planification et cartographie : schéma directeur d’aménagement sur le moyen et
long termes, plan cadastral, carte de danger, etc.

Dans le cadre de ce cours, nous nous intéresserons plus particuliérement aux dan-
gers naturels qu’il faut prendre en compte dans I'aménagement du territoire, et plus


http://www.are.admin.ch/dokumentation/00121/00224/index.html?lang=fr&msg-id=991
http://www.are.admin.ch/dokumentation/00121/00224/index.html?lang=fr&msg-id=991
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particuliérement a la gestion des risques hydrologiques: I’accent est plus particulie-
rement mis sur les dangers hydrologiques tels qu’on peut les rencontrer en zones de
montagne et piémont.

1.1.2 Comparaison avec la France
Apercu historique

Si la France suit une politique d’aménagement de son territoire dont les grandes
lignes sont similaires a celles de la Suisse, I’histoire, 'organisation, et la mise en ceuvre
sont différentes. Contrairement a la Suisse, la France est un pays trés centralisé, ou le
cceur de la nation est Paris. Cette situation est le fruit d’'une longue tradition centrali-
satrice naissant tout d’abord avec les monarques (en lutte contre leurs grands vassaux)
au Moyen Age, par la suite affirmée par les monarques absolus (le roi s’identifiant a la
nation), et confirmée par les jacobins sous la Révolution (le centralisme étant alors le
garant du maintien de la République).

Paris et sa region ont donc attiré une grande partie de la population et des infra-
structures du pays. Dés les années 1950, 'Etat a tenté de lutter contre cet effet centripéte
en cherchant un meilleur équilibre dans la distribution des populations, des moyens
économiques, et des infrastructures. En 1950, le ministre de la Reconstruction et de
I'Urbanisme Eugéne Claudius-Petit définit les grandes lignes de la politique francaise
d’aménagement du territoire dans le rapport « Pour un plan national d’aménagement
du territoire »:

« L’aménagement du territoire, c’est la recherche dans le cadre géogra-
phique de la France d’une meilleure répartition des hommes en fonction
des ressources naturelles et de I’activité économique. »

En 1963, cette volonté de I'Etat de prendre en main de facon plus active le développe-
ment territorial a débouché sur la création d’une agence spécialisée: la Délégation inter-
ministérielle a ’aménagement du territoire et a attractivité régionale (DATAR). Pendant
plusieurs décennies, 'aménagement du territoire a été une mission partagée entre plu-
sieurs ministéres (Equipement, Environnement ou Ecologie, Urbanisme, Industrie) au
gré des gouvernements, puis trés récemment (2009), le gouvernement Fillon a créé un
« ministere de 'espace rural et de 'aménagement du territoire ». Les missions d’aména-
gement du territoire sont, cependant, toujours partagées par plusieurs ministeres, dont
celui en charge de 'Ecologie pour tout ce qui touche a la prévention des risques.

Role central de I’Etat

Au cours des années 1990, la France a entamé une politique de décentralisation pour
redonner plus de latitude aux régions et aux collectivités locales dans I'organisation
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socio-économique de leur espace. L’Etat a toutefois rappelé son role prépondérant a
travers deux textes de loi: la loi n® 95-115 du 4 février 1995 dite « orientation pour
laménagement et le développement du territoire », qui a été amendée par la loi Voynet
n°® 99-533 du 25 juin 1999 dite « orientation pour 'aménagement et le développement
durable du territoire ». L’article premier de la loi Voynet affirme le principe suivant:

« La politique nationale d’aménagement et de développement durable
du territoire concourt a I'unité de la nation, aux solidarités entre citoyens
et a Uintégration des populations.(...) Déterminée au niveau national par
I’Etat, aprés consultation des partenaires intéressés, des régions ainsi que
des départements, elle participe, dans le respect du principe de subsidia-
rité !, a la construction de I'Union européenne et est conduite par 'Etat
et par les collectivités territoriales dans le respect des principes de la dé-
centralisation. Elle renforce la coopération entre I’Etat, les collectivités
territoriales, les organismes publics et les acteurs économiques et sociaux
du développement. »

Les missions de la politique d’aménagement du territoire sont données a I’article 2 de
la loi Voynet:

« La politique d’aménagement et de développement durable du terri-
toire repose sur les choix stratégiques suivants:

«— le renforcement de pdles de développement a vocation européenne
et internationale, susceptibles d’offrir des alternatives a la région
parisienne;

«— le développement local, organisé dans le cadre des bassins d’emploi
et fondé sur la complémentarité et la solidarité des territoires ru-
raux et urbains. Il favorise au sein de pays présentant une cohésion
géographique, historique, culturelle, économique et sociale la mise
en valeur des potentialités du territoire en s’appuyant sur une forte
coopération intercommunale et sur I'initiative et la participation
des acteurs locaux;

«— l'organisation d’agglomérations favorisant leur développement éco-
nomique, I'intégration des populations, la solidarité dans la répar-
tition des activités, des services et de la fiscalité locale ainsi que la
gestion maitrisée de ’espace;

«— le soutien des territoires en difficulté, notamment les territoires ru-

raux en déclin, certains territoires de montagne, les territoires ur-
bains déstructurés ou trés dégradés cumulant des handicaps écono-

1. Le principe de subsidiarité est un principe d’organisation politique qui vise a confier la
responsabilité d’une action publique a I’autorité (publique) du niveau le plus faible, autorité qui
soit en mesure de résoudre par elle-méme les problémes qui se posent. L’autorité supérieure
n’intervient que si’échelon inférieur n’est pas capable de résoudre tous les problémes (principe
de suppléance).
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miques et sociaux, certaines zones littorales, les zones en reconver-
sion, les régions insulaires et les départements d’outre-mer-régions
ultrapériphériques francaises et des pays mentionnés a I’article 22.»

Il n’existe pas de cadre légal unique qui définisse les missions, les taches, les respon-
sabilités des différents acteurs de ’'aménagement du territoire. Pour la partie qui nous
intéresse ici, la gestion des risques, il existe un principe général, qui est celui de la
responsabilité de I'Etat, affirmé par exemple dans la circulaire du Ministére de 'Equi-
pement du 17 décembre 1987 (voir aussi article 40 de la loi n® 87-565 du 22 juillet 1987):

« 11 revient a I'Etat d’afficher le risque. En effet I'usager d’un ser-
vice public ou le client d’une installation commerciale peut prétendre au
méme niveau de sécurité sur tout le territoire »

ou bien dans la circulaire du 20 juin 1988

« L’Etat doit afficher les risques en déterminant leurs localisations et
leurs caractéristiques et en veillant a ce que les divers intervenants les
prennent en compte dans leurs actions. »

S’il revient a I'’Etat de « dire le risque », il n’est en revanche pas responsable de la mise
en sécurité:

« Lorsque ’aménageur, collectivité publique ou investisseur privé, dé-
cide d’équiper une zone a risques moyennant des protections, la mise au
point d’un projet lui appartient »

(circulaire du Ministére de I'Equipement du 17 décembre 1987), un principe qui date du
Code civil napoléonien (article 33 de la loi du 16 septembre 1807 sur la responsabilité
pécuniaire des riverains et propriétaires).

Les services de I'Etat dispose d’une multitude de textes réglementaires pour afficher
le risque et autoriser/réglementer/interdire la construction selon le niveau de risque.
Initialement, ces textes étaient contenus dans le Code civil et le Code de 'urbanisme,
par exemple a travers l'article R111-2

« Le permis de construire peut étre refusé ou n’étre accordé que sous
réserve de 'observation de prescriptions spéciales si les constructions,
par leur situation ou leurs dimensions, sont de nature a porter atteinte a
la salubrité ou a la sécurité publique. Il en est de méme si les constructions
projetées, par leur implantation a proximité d’autres installations, leurs
caractéristiques ou leur situation, sont de nature a porter atteinte a la
salubrité ou a la sécurité publique. »

Deux lois sont venues compléter les bases légales existantes: la loi n°® 85-30 du 9 janvier
1985 dite « Montagne » et surtout la loi n°® 95-101 du 2 février 1995 relative a la protec-
tion de I’environnement. Cette derniere loi a notamment créé les « plans de prévention
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des risques naturels prévisibles » (PPR) en remplacement des « plans d’exposition aux
risques » (PER) (MATE, 1997).

1.2 Enjeuxdel’aménagement du territoire en Suisse

Les politiques d’aménagement du territoire se mesurent sur le long terme, et de ce
fait il est difficile de les évaluer et de les corriger. Elles nécessitent une anticipation de
P’évolution de la société. Quels sont les enjeux de 'aménagement du territoire pour un
pays comme la Suisse ?

Le premier enjeu est d’accueillir la population et de permettre les moyens de sub-
sistance. La Suisse est le huitiéme pays le plus peuplé d’Europe avec une densité de
199 hab/km? (voir figure 1.1a); la densité moyenne sur le continent européen est de 32
hab/km?, elle atteint 117 hab/km? pour I'Union Européenne. Comme les zones mon-
tagneuses représentent 63 % du territoire helvétique, la densité effective est plus im-
portante que ce que la valeur moyenne n’indique. Les projections démographiques
montrent que la population suisse devrait continuer a fortement croitre dans les pro-
chaines années: les démographes prévoient une croissance de 22 % entre 2020 et 2050
alors que pour I'Union Européenne (voir figure 1.1b), ils prévoient un accroissement de
4 % pour I’'Union Européenne, avec plusieurs pays en décroissance. Hormis la France,
tous les pays limitrophes de la Suisse devraient voir leur population diminuer (c’est le
cas de I’Allemagne en dépit de I'accueil de 1,3 millions de réfugiés). L’augmentation
de la population suisse tient plus a 'immigration (donc a Pattrait de la Suisse) qu’a
sa natalité. Le taux de fécondité est ainsi en constante diminution en Suisse, avec un
taux actuel de 1,55 enfants par femme contre 2,08 enfant/femme pour la France et 1,44
enfant/femme pour I’Allemagne. Le probléme démographique de la Suisse est au coeur
des débats actuels sur le « mitage du territoire » et la régulation des flux migratoires.

Le second enjeu est de permettre le développement d’une activité économique et de
la qualité de vie tout en préservant le milieu naturel dans sa diversité et son étendue. La
Suisse fait partie des pays les plus riches du monde, avec un produit intérieur brut (PIB)
par habitant de 81 200 $. Elle occupe la quatriéme position derriére le Luxembourg, la
Norvege, et le Qatar. Ces deux derniers devant la richesse nationale 4 leur sous-sol, on
mesure la performance de I’économie Suisse. Il y a presque un paradoxe a la situation
économique de la Suisse, qui doit contrebalancer de nombreux obstacles:

- éloignement de la mer;
— pauvreté en ressources (minerais, agriculture);

— relief du pays, rendant le transport plus difficile et plus lent.

Selon les critéres actuels de 'ONU, la Suisse de 1780 serait classée parmi les pays du
Tiers Monde. En dépit de cela, la Suisse est 'un des pays les plus riches et celui qui
investit le plus a I’étranger (par habitant). Elle a bénéficié d’un développement indus-
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triel précoce. Vers 1830, la Suisse était le second pays le plus industrialisé (ramené
a sa population), derriére ’Angleterre et devant la Belgique, et loin devant les grands
pays continentaux que sont la France et les territoires allemands. Selon I’historien Jean-
Francois Bergier, il y a plusieurs explications a ce miracle économique (Bairoch, 1997;
Walter, 2016):

la précocité de I'emploi du coton dans 'industrie textile (alors que les autres
pays ont misé sur la sidérurgie);

la disponibilité d’'une main d’ceuvre rurale a niveau d’éducation élevé;

la disponibilités de capitaux;

la nécessité d’exporter des produits manufacturés pour payer les importations
agricoles.

L’économie suisse s’est diversifiée : industrie du luxe (textile, horlogerie), machines de

précisions, électricité, tourisme. Elle a massivement investi ses capitaux a I’étranger et
a implanté des succursales a I’étranger (ce sont les premiéres multinationales), notam-
ment en Italie. Dés 1870, la Suisse passe de terre d’émigration a terre d’immigration.

Figure 1.1 - (a)
Densité de la
population
dans les pays
européens (la
Suisse est
indiquée en
rouge). (b)
Evolution de la
population en
Suisse depuis
1850 et
projection a
I’horizon 2050.
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Le taux d’étrangers est de 29 % (contre 12 % pour I'UE) en 2015. Par exemple, la Suisse
a accueilli les huguenots francais chassés apres la révocation de 1’édit de Nantes par
Louis XIV en 1685, le plus souvent des bourgeois et des artisans aisés qui jouérent un
role-clé dans la transition économique de la Suisse du xvii® siecle. La Suisse a aussi
accueilli des entrepreneurs tels que Henri Nestlé (venant d’Allemagne) créateur de la
multinationale éponyme (deuxiéme plus grande entreprise suisse) ou plus récemment
Marc Rich (homme d’affaires américain qui a créé Glencore, la plus importante entre-
prise suisse). En termes de richesse produite, elle occupait la huitiéme place mondiale
en 1830 (en termes de PIB par habitant). En 1913, elle était a la troisieme place.

Si la Suisse est un pays tres riche, elle est un mauvais éléve sur le plan écologique,
se placant en vingtiéme position en termes d’empreinte écologique (voir figure 1.2).
En novembre 2015, une émission de la RTS résumait la situation: « Si tous les étres
humains vivaient comme un Suisse moyen, ce ne sont pas les ressources d’une, mais de
presque trois Terres qui seraient nécessaires pour subvenir a leurs besoins. » Quoique
le comportement des individus ne soit pas du ressort des politiques d’aménagement du
territoire, la préservation du patrimoine naturel est un point essentiel de ces politiques.

Figure 1.2 — Empreinte écologique des pays européens dont la Suisse. Source : RTS.

Le troisieme enjeu est d’assurer une protection efficace contre les dangers naturels
(crues, séismes, etc.). Parmi les catastrophes qui ont touché la Suisse depuis 30 ans, il
faut indiquer que

- toutes sont d’origine naturelle;

— la distribution de probabilité des cotits induits par ces catastrophes suit une loi
puissance P o d~3/4 comme le montrent les figures 1.3;


http://www.rts.ch/info/suisse/7250250-la-suisse-dans-le-top-20-des-pays-a-plus-forte-empreinte-ecologique.html
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- en conséquence, il n’est pas possible de détermine un coit moyen d’une catas-
trophe, ce qui est un défi majeur pour les compagnies d’assurances et de réassu-
rance.

L’événement le plus coliteux été constitué par les inondations de 2009 (avec 2,1 mil-
liards de francs, soit 3 % du budget de la confédération). Des événements dépassant les
10 milliards de dommage sont certains sur le sieécle a venir. La compilation des données
des assurances cantonales (voir 1.4) montre également un accroissement du coiit des
dommages induits par les dangers naturels. Le volet « danger naturel » des politiques
d’aménagement du territoire est donc un point essentiel pour assurer la pérennité éco-
nomique du pays. En Suisse, seuls les risques industriel (effondrement de la capacité
de production et transport d’électricité, appelé encore blackout) et sanitaire (pandémie)
ont été identifiés comme plus significatifs en termes de dommages si on prend le siécle
comme échelle de temps (voir figure 1.5) (Hohl & Brem, 2015). La Revue Militaire Suisse
avait consacré un numéro en 2018 sur les conséquences d’un blackout en Suisse; si la
panne du réseau électrique ne pouvait étre rapidement résolue, il y aurait un effet do-
mino conduisant a une situation de chaos et des émeutes dans le pays (Chambaz, 2018).

probabilité P

0.101

0.051 B

10 50 100 500 1000
dommage (mia CHF)

probabilité P

0.051 B

1 10 100 1000
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Figure 1.3 - (a)
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assurances et
(b) Cott total
des dommages.
Source:
EMDAT.
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Figure 1.4 - Evolution du colit des dommages assurés par les assurances cantonales.
Source: ECA.

1.3

Définition et perception du risque

La perception du risque est cruciale (Lagadec, 2012). Pour lutter contre un risque,
encore faut-il en étre conscient ! Cela appelle donc des procédures qui permettent d’iden-
tifier un risque, de le mesurer, et de définir des mesures de prévention si on estime que
le risque est trop grand. Si cette démarche peut sembler simple, elle se révele en pra-
tique fort tortueuse. Citons quelques exemples de problemes récents et posons-nous la
question de comment les risques sont percus/ressentis/identifiés et comment ils sont
traités par les médias et les pouvoirs publics:

risques environnementaux: plantation d’organismes génétiquement modifiés,
crise de la vache folle, grippe aviaire, pollution de I'air (0ozone), du sol (nitrates),
des eaux (métaux lourds, composés chimiques, dérivés du pétrole), pluies acides;;

risques industriels: explosion de 'usine AZF a Toulouse en 2001, incendie de la
plate-forme BP dans le golfe du Mexique en avril 2010;

risques sanitaires: coronavirus, SIDA, hépatite, sang contaminé, amiante, effets
de la canicule de 2003, radon, antenne-relais de téléphonie mobile;

risques liés au transport : sécurité routiére, accidents aériens comme I’avion d’Air
France en juin 2009 entre Rio de Janeiro et Paris;

risques climatiques: débat autour du réchauffement climatique;

risques sociaux: terrorisme, mouvements sociaux violents, guerre civile.


http://www.vkf.ch/
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Figure 1.5 — Diagramme des risques pour la Suisse. Représentation des risques de 27
scénarios pour lesquels une fréquence a pu étre estimée. Plus un scénario se situe en
haut a droite, plus élevé est le risque associé. Les dommages sont composés des indica-
teurs de dommages agrégés et sont traduits sous forme monétaire. Les menaces d’ori-
gine naturelle sont représentées en vert, celles d’origine technique en bleu et celles
d’origine sociétale en orange. Source: Office fédéral de la protection de la population
(OFPP).

1.3.1 Définition du risque

Les mots risque, risk, Risiko, rischio, et riesgo employés en francgais, anglais, alle-
mand, italien, ou espagnol dérivent tous du bas latin risicum (ou resicum), un mot qui
apparait au x11° siecle dans des documents contractuels pour désigner les dangers aux-
quels étaient exposés les navires marchands italiens (Piron, 2004); le sens est alors
voisin de « mauvaise fortune ». Le vocabulaire s’est enrichi a partir du xvi® siécle
avec d’autres nuances autour du théme « risque » telles que périple, danger, sinistre,
fléau, désastre, vulnérabilité, résilience, etc. en francais (hazard, disaster, vulnerability,
resilience en anglais).

Pour 'ingénieur?, le risque se définit et se mesure. Le probléme est qu’on ne s’en-

2. C’est évidemment une vision un peu simplificatrice que dénoncent le sociologue et I’his-
torien des risques (Borraz, 2007).


https://www.babs.admin.ch/fr/aufgabenbabs/gefaehrdrisiken.html
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tend toujours pas sur ce que le mot risque veut dire. Le dictionnaire Littré le définit
ainsi

« Etymologie: a. italien risco, risque, prob. du latin resecum, objet cou-
pant, écueil, d’ou risque encouru par les navires, de resecare, couper

« R1sQUE, n. m. Péril dans lequel entre I’idée de hasard. « Encore méme
qu’on ne coure nul risque de la vie », Pascal. »

Le Larousse définit le risque ainsi

« R1sQUE, n. m. (ital. risco). 1. Danger, inconvénient plus ou moins
probable auquel on est exposé. ¢ A risque(s): prédisposé a certains in-
convénients; exposé a un danger, a une perte, a un échec; qui présente
un danger. 2. Préjudice, sinistre éventuel que les compagnies d’assurance
garantissent moyennant le paiement d’une prime. »

La mesure du risque est tout aussi problématique. Dans bien des domaines, le risque
est défini comme

risque = fréquence/probabilité potentielle d’occurrence x intensité/sévérité du risque,
alors que d’autres le définissent plutdét comme

risque = vulnérabilité de I’objet x intensité du risque x fréquence du phénoméne.

Dans des systémes plus complexes (systémes industriels par exemple), le risque
global résulte d’'une multitude de facteurs et il est donc nécessaire de généraliser la
notion de risque en considérant le risque associé a des actions/événements individuels

risque = Z probabilité de I’événement X son intensité X facteur de pondération.

1.3.2 Subjectivité du risque

Le risque est subjectif ou plus exactement, nous avons une perception subjective du
risque. Chacun de nous a une conscience plus ou moins aiguisée du risque qu’il prend
ou bien auquel il est soumis. Cette prise de conscience est plus ou moins une bonne
représentation du risque réel. La perception du risque est fonction du contexte socio-
économique dans lequel nous évoluons, du caractére propre des individus (aversion ou
amour du risque), et de la représentation dans les médias et I’opinion publique.

C’est ainsi qu’assez étrangement, les enquétes d’opinions montrent que dans les
pays occidentaux, les personnes interrogées considérent que nous sommes soumis a
un risque croissant; par exemple, aux Etats-Unis, 78 % des personnes sondées pensent
que le niveau général de risque a fortement augmenté au cours des 20 derniéres années
(Wilson & Crouch, 2001). Pourtant, I’espérance de vie dans les pays occidentaux est en
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forte augmentation depuis 1945. La figure montre I’évolution de 'espérance de vie en
Suisse depuis 1880: on y voit une augmentation a peu prés linéaire sur 130 ans, qui a
amené P’espérance de vie de 40 a 80 ans. Une évolution similaire existe dans les pays
européens et en Amérique du Nord. Le tableau 1.1 montre I’évolution au cours de la
derniére décennie pour quelques pays de I'Union Européenne et la Suisse; la encore,
les progres sont réguliers.

Figure 1.6 — Evolution de I'espérance de vie en Suisse depuis 1880 d’aprés le site de
Poffice fédéral de la statistique. www.bfs.admin.ch. Voir aussi(Robine & Paccaud, 2004).

Tableau 1.1 - Evolution de 'espérance de vie (4 la naissance) au sein de la zone Euro (16
pays) pour les deux sexes, en Allemagne, France, Royaume-Uni (R-U), Italie, et Suisse.
Source: Eurostat.

1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021
Zone euro 78,38 78,96 79,00 79,83 80,55 80,1 81,4 81,7 81,6 820 824 81,6
Allemagne 78,05 78,62 78,63 79,43 80,09 80,3 806 80,6 80,7 81,1 81,3 80,8
France 78,88 79,25 79,28 80,34 81,29 81,6 819 824 824 828 83,0 824
Italie 79,60 80,20 80,03 80,92 81,57 82,1 824 829 82,7 831 836 827

R-U 7748 7824 7840 79,17 79,84 80,5 804 81,1 81,0 81,3 81,3
Suisse 79,87 80,45 80,69 81,45 82,03 823 82,8 829 830 837 840 839

Dans un rapport de 2006 sur la perception du terrorisme en Europe, un sondage
réveéle que 67 % des Européens considéraient que le terrorisme international était une
menace trés importante et croissante pour la sécurité de I'Europe (Collectif, 2006). Dans


http://www.bfs.admin.ch/bfs/portal/fr/index/themen/01/06/blank/dos/la_mortalite_en_suisse/tabl04.html
https://ec.europa.eu/eurostat/databrowser/view/tps00205/default/table?lang=en
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ce méme sondage, les armes de destruction massive (nucléaires, chimiques, bactériolo-
giques) et la montée de extrémisme musulman sont citées par plus de 60 % des per-
sonnes interrogées comme des risques trés importants. La méme étude montrait que
cependant, le risque lié au terrorisme n’avait jamais été aussi faible dans les pays occi-
dentaux et le nombre de victimes du terrorisme avait diminué®. La figure 1.7 montre
I’évolution du nombre de victimes dans le monde depuis 1970. En Europe (hors Russie),
le taux de décés par attentat terroriste est de 0,65 par million d’habitants en moyenne
pour la décennie 2005-2015, un chiffre a comparer par exemple avec le taux de suicide,
qui est pour 'Union Européenne de 110 par million d’habitants (130 pour la Suisse). Si
le risque lié au terrorisme est sans doute I'un des risques les plus faibles pour les socié-
tés occidentales, il est I'un des plus sur-représentés et médiatisés. Il est intéressant de
noter que c’est le risque qui a induit la plus coliteuse politique de prévention puisque,
par exemple, la seconde guerre d’Irak (mars a avril 2003) qui a été motivée pour préve-
nir le risque terroriste aurait cotité plus de 2000 milliards de dollars (Bilmes & Stiglitz,
2006).

Régulierement dans les médias, des crimes atroces commis sur des enfants ou des
personnes agées suscitent toujours un grand émoi. Comme pour le terrorisme, nom-
breux sont ceux qui considérent que notre société est de plus en plus violente. Pourtant,
en ce qui concerne les violences graves sur les personnes, le nombre de victimes d’homi-
cide a fortement diminué depuis le début de siécle, et la diminution continue mais a un
taux moindre depuis les années 1980 : pour la France ou la Suisse, le taux d’homicides
était de voisin 2 pour 10° habitants au début des années 1980 contre 1 a la fin des an-
nées 2000 (source: Institut national des hautes études de la sécurité et de la justice).
Aux Etats-Unis, le taux d’homicides varie entre 5 et 10 victimes pour 10° habitants. Si
on compare aux autres causes de déces (voir 1.2), on voit que la criminalité représente
0,1 % des causes de déces en Suisse.

3. Au cours de la décennie 20002010, on retient: les attentats du 11 septembre 2001 a New
York et Washington (2976 victimes), ceux du 11 mars 2004 a Madrid (191 victimes), ceux du 7
juillet 2005 & Londres (56 morts) et la double attaque du 22 juillet 2011 & Oslo (77 morts). A ces
attaques dues a des extrémistes s’ajoute une multitude de petits attentats le plus souvent sans
victimes, dus aux séparatistes et a des mouvements anarchistes ou d’extréme droite. On peut
se reporter au rapport annuel du Conseil de I’'Europe pour le détail dans I'Union européenne.
Toutefois, a partir des années 2000, les actes terroristes ont été plus nombreux et violents en
Europe: Mohammed Merah tue 7 personnes en 2012 a Toulouse, les attentats de janvier 2015
font 17 morts en région parisienne (dont 12 pour le journal satirique Charlie Hebdo), ceux de
novembre 2015 frappant le coeur de Paris causent la mort de 130 personnes. Puis on déplore
32 morts en mars 2016 a Bruxelles, 86 morts a Nice en juillet 2016 (attentat au camion fou),
12 morts a Berlin en décembre 2016, 5 et 7 morts a Londres en mars et juin 2017, 13 morts a
Barcelone en aott 2017.


https://inhesj.fr/sites/default/files/ondrp_files/publications/pdf/flashcrim2.pdf
http://www.consilium.europa.eu/uedocs/cmsUpload/TE-SAT 202010.pdf

1.3 Définition et perception du risque 17

Figure 1.7 - Evolution du nombre de victimes d’actes terroristes dans le monde depuis
1970. Source : ourworldindata.org.

Figure 1.8 — Evolution du nombre de victimes d’homicide (taux d’homicides pour
100 000 habitants en Europe depuis le Moyen Age. Source : ourworldindata.org.


https://ourworldindata.org/terrorism
https://ourworldindata.org/homicides
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Tableau 1.2 — Taux de mortalité en Suisse (pour cent mille habitants): cause acciden-
telle et principales maladies en 2015. Les causes criminelles (homicides, actes de ter-
rorisme) ne sont pas reportées. Sources: Office fédéral de la statistique et Bureau de
prévention des accidents.

Causes Hommes Femmes

Maladies infectieuses 6,9 4.4
Tumeurs 163,7 106,4

intestin 10,4 6,8

poumons 36,3 18,3

sein 0,1 20,3

Diabéte sucré 10,1 6,6
Démence 29,1 35,3

Appareil circulatoire 154,5 103,7
Appareil respiratoire 36,7 22,6
Cirrhose alcoolique 6,5 2,5
Accidents et morts violentes 483 33,1
circulation routiére 4.2 1,5

sport 3,2 0,6

habitat, loisir 243 25,3

suicides 16,6 5,7

toutes causes 1003 682

1.3.3 Lerisque comme construction sociale

Dés les années 1970, anthropologues, historiens, géographes, et sociologues se sont
intéressés a la prise de conscience du risque par les sociétés humaines (Nelkin, 1989;
Jasanoff, 1998; Renn, 1998; Cceur et al., 1998; Pigeon, 2002; Favier, 2007; Granet-Abisset,
2012). Un des points forts est la convergence des analyses pour montrer que la percep-
tion du risque ou sa gestion n’est pas un fait de nos sociétés, mais qu’au contraire toutes
les sociétés ont leur propre représentation du risque. Ces analyses contrastent donc
avec d’autres théories, qui considérent la perception du risque comme une construc-
tion mentale/comportementale (le risque comme possibilité de perte ou de dommage)
(Tversky & Kahneman, 1991) ou technique (le risque calculable) (Beck, 2008). Pour
reprendre les mots de I’anthropologue américaine Mary Douglas, le risque est une
« construction sociale » (Douglas, 1986).

Les analyses des sociologues cherchent aussi a battre en breche la dichotomie faite
entre sociétés anciennes et sociétés modernes: les sociétés anciennes seraient marquées
par la superstition et la fatalité, ne voyant dans les catastrophes que le signe de la vo-
lonté divine tandis que les sociétés modernes auraient une approche rationnelle déve-


https://www.bfs.admin.ch/bfs/fr/home/statistiques/sante/etat-sante/mortalite-causes-deces/specifiques.html
https://www.bfu.ch/fr/Documents/04_Forschung-und-Statistik/02_Statistik/2018/PDF/F_UNB.T.10.pdf
https://www.bfu.ch/fr/Documents/04_Forschung-und-Statistik/02_Statistik/2018/PDF/F_UNB.T.10.pdf
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loppant des outils scientifiques d’analyse et en mettant en ceuvre des techniques de
prévention et de lutte contre les forces naturelles. Selon les sociologues, les anciens
percevaient souvent la survenue d’une catastrophe comme un message divin (une pu-
nition ou un avertissement qu’il convenait de déchiffrer) quand il y avait transgression
de régles morales ou sociales; la catastrophe est donc une manifestation divine qui
pointe un égarement, un écart de conduite d’individus ou de la collectivité dans son
entier. Les modernes voient la catastrophe naturelle comme un dysfonctionnement,
une erreur humaine, un défaut d’attention, un manque d’anticipation, le non-respect
de normes, mais dans la plupart des cas de figure, il s’agit de la transgression d’une
norme. De ce point de vue, la perception des risques et des causes de catastrophes a
changé de centre de gravité (de origine divine a la cause naturelle oul’erreur humaine),
mais elle repose toujours sur 'idée que c’est une erreur/trangression (plus que de la fa-
talité) qui est la cause des dommages. Dans son étude sur les rapports de '’homme aux
catastrophes, I’historien Francois Walter notait que « la plupart des auteurs dessinent
une ligne de partage entre le traitement irrationnel des désastres caractéristique des
sociétés anciennes et une gestion mesurée et scientifique dévolue aux modernes. (...)
il convient de réagir a toute forme d’infantilisation généralisée des sociétés du passé »
(Walter, 2008). Il résumait ainsi I’évolution de la construction du risque:

« Ces nombreuses réflexions stimulantes ont permis d’échapper a
Pemprise d’'un modeéle téléologique enchainant des étapes chronologiques
réductionnistes. Celles-ci se contentaient un peu vite du passage d’une
société de la fatalité a une société de la sécurité; de I’arrachement pro-
gressif au poids de la nature et de la confrontation inéluctable a un autre
danger bien plus grand, ’homme lui-méme. Il est parfaitement réduc-
teur de s’en tenir a « trois phases distinctes » qui scanderaient I'histoire.
La premieére serait celle de la punition et de la vengeance divines; la se-
conde, de type fataliste, aboutirait avec les Lumiéres; la troisiéme incri-
minerait la responsabilité humaine avec une évolution allant d’explica-
tions univoques (la recherche du bouc émissaire) vers des explications
plurivoques. Pour pédagogique qu’elle soit et si elle n’est pas totalement
fausse, cette chronologie mérite révision et affinement. En réalité, les tem-
poralités sont beaucoup plus imbriquées. Etudier la catastrophe a partir
des catégories construites par chaque société en son temps, déterminer la
pluralité des discours et différencier les types d’acteurs, tels sont des lors
les prémisses de toute recherche. Aux multiples calamités, les sociétés ont
surtout tenté de conférer du sens. L’explication scientifique, le recours au
religieux, la sublimation esthétique, les différentes formes de fiction et de
mise en scene graphique sont autant de moyens culturels pour gérer la
catastrophe ou anticiper le risque. »

Certains sociologues et historiens vont encore plus loin dans leur analyse en avan-
cant que le risque sert la structuration sociale d’une société, en particulier pour les
sociétés occidentales modernes en asseyant le role de I’Etat et en assurant un pacte
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social & partir su x1x°¢ siécle. Il y a en effet un intérét pour I'Etat de s’appuyer sur
une représentation rationnelle du risque, qui permette de promouvoir ou maintenir un
ordre social, notamment en imposant un certain modele de gestion du territoire ou des
normes sanitaires ou sécuritaires ot I'Etat se porte comme garant de la sécurité collec-
tive (Gros, 2012). Pouvoir expliquer la catastrophe, c’est pouvoir éviter le mouvement
de panique ou la défiance au sein des populations, qui au Moyen Age a pu conduire a
des courants spontanés de révolte*. C’est ainsi qu’au milieu du x1x° siécle, les inonda-
tions n’étaient plus présentées comme la manifestation de la colére divine, mais comme
la conséquence d’une surexploitation des foréts de montagne (voir § 1.5.4). Il y avait
donc un coupable tout désigné: le paysan de montagne, responsable du surpaturage
et du déboisement des versants, donc responsable des crues. Cela a permis aux états
européens de mettre en place une politique de gestion du territoire et de prévention en
affirmant le réle central des administrations étatiques et en se substituant aux autorités
locales (Walter, 2008).

Des anthropologues défendent méme I'idée que le risque a une fonction sociale en
catégorisant la société en strates selon leur perception du risque (Renn, 1998). Ainsi
pour expliquer la variabilité de la perception du risque selon les individus, Douglas
(1986) développe une théorie culturelle du risque et distingue quatre groupes dans toute
société structurée:

- le premier groupe se caractérise par un fonctionnement hiérarchique et bureau-
cratique. L’appareil administratif en fournit 'image type. Ce groupe a pour but
la survie et stabilité du systéme social. La lutte contre les risques (lutte contre
les maladies, les catastrophes naturelles, etc.) permet d’imposer un contréle sur
la société (gestion du territoire, régulation et surveillance des flux de population
ou de marchandises, politiques sanitaires comme les campagnes de vaccination
ou le traitement des eaux usées, etc.) et d’asseoir le role de I’Etat comme garant
de la sécurité des biens et des personnes. Pour les bureaucrates, la promulgation
de normes et réglements est une facon de lutter contre des menaces extérieures
tout en maintenant une cohésion interne;

- le second valorise I'initiative personnelle, donc la prise de risque a ’échelle de
I'individu comme opportunité. Les entreprises en sont un exemple, mais dans
le domaine privé, les adeptes de sports a risque (alpinisme, navigation, etc.) en

4. Le Moyen Age fut agité par divers mouvements sociaux: des mouvements religieux
comme le millénarisme qui interprétait les catastrophes comme autant de signes précurseurs
de I’Apocalypse et du retour du Christ, des révoltes paysannes remettant en cause 'ordre public
(révolte des Paysans dans le centre de ’Allemagne, avec le prétre Thomas Miinzer préchant un
anarchisme chrétien au début du xviI° siécle ou révolte des Paysans de John Ball a la fin du
x1ve siécle dans le sud de ’Angleterre), jacqueries contre les nobles et bourgeois (soulévement
paysan survenu en 1358 dans le nord de la France ravagé par la Guerre de Cent Ans, « Carnaval
de Romans » de 1580 ou un événement festif dégénéra en bain de sang avec pour toile de fond
le ressentiment accumulé entre classes sociales), Croisades d’enfants, des patres, et des gueux,
animées par des ermites comme Foulques de Neuilly, souvent partant du nord de ’Europe au
début du xm1° siecle.
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fournissent un autre exemple. Dans le premier cas, il y a opportunité d’un gain
financier ou d’un succés sur un marché compétitif alors que dans le second, il
s’agit plus d’un plaisir, le besoin de défi, ou la recherche d’une reconnaissance.
Dans tous les cas, ce groupe est hostile & une régulation excessive (par I'Etat ou
les collectivités) car cela réduit leur marge de manceuvre, leur potentiel de gain,
ou leur liberté d’action;

- le troisiéme groupe regroupe tous les mouvements qui se définissent par leur
lutte contre quelque chose qui se révéle nuisible sur le long terme, par exemple
les écologistes contre les risques qui pesent sur I’environnement du fait des acti-
vités humaines. Ce sont souvent des mouvements égalitaristes, qui misent sur la
coopération entre individus et I’équité pour promouvoir une société plus juste et
durable a leurs yeux. Ils s’opposent donc au second groupe, dont les valeurs sont
axées sur la liberté et la compétition entre individus. Ils peuvent aussi s’opposer
au premier groupe en se présentant comme une voie alternative de société. Le
risque est alors la raison d’étre d’une association de moyens pour lutter contre
un ordre établi;

- le quatrieme regroupe ceux qui subissent et voient les choses avec fatalité. Le
risque est subi. Le risque est une composante, parmi d’autres, du milieu dans
lequel les gens évoluent. Il s’agit de la grande majorité de la population. Ils font
en général confiance dans la hiérarchie pour assurer leur protection. Ils ont une
vision confuse de la nature des risques et ne réagissent que lorsqu’ils sont concer-
nés directement par une menace particuliére.

1.3.4 Risque acceptable, risque accepté

Le risque est dit acceptable quand il a été réduit a un niveau tolérable pour un (ou
des) individu(s) ou une entité. La notion de « tolérable » renvoie ici au fait que le ni-
veau de risque est consistant avec les autres risques auxquels 'individu ou I'entité est
soumis. On parle aussi de risque accepté pour désigner un risque auquel un individu
se soumet en toutes connaissances de cause. Par exemple, un skieur accepte le risque
d’avalanche dans sa pratique du ski hors des pistes, c’est-a-dire qu’il a conscience qu'un
accident d’avalanche peut survenir et que malgré cela, il s’engage dans une pente po-
tentiellement dangereuse.

Un risque peut étre acceptable, mais il peut ne pas étre accepté. Par exemple, si on
revient sur le cas des accidents d’avalanche impliquant des skieurs, on peut considérer
que le risque est faible par rapport a d’autres activités comme les sports nautiques (voir
tableau 1.3) donc acceptable de ce point de vue, mais il n’est pas accepté par tout un
chacun. En effet, chaque hiver les accidents d’avalanche provoquent des tollés et des
avis trés tranchés sont exprimés dans les médias pour interdire ou réglementer le ski
hors-piste.
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Tableau 1.3 — Comparaison entre taux de mortalité liés a des risques naturels (a) et ceux
dus a des accidents de la vie quotidienne (b), et & une pratique d’une activité sportive
(c): nombre de victimes en moyenne par an pour 1 million d’habitants (a, b) ou de
pratiquants (c). Valeurs pour les pays occidentaux sur la période 1980-2008. Sources
diverses.

Nature Taux
(a) risque naturel.:

— foudre 0,2

- crue 0,5

— avalanche 0,5 —4
(b) risque domestique:

- noyade 10-16

- overdose (drogue) 50-60

- suicide 100-200
— accident de la circulation 130-150
- accident domestique 110-330
- grippe 300-400
— tabac 3000-5000
(c) risque sportif :

— football 60

- ski 410

— alpinisme 600

- plongée 1260

- nautisme 8000

1.3.5 Mesures du risque

Toute évaluation objective du risque devrait se fonder sur une mesure du risque.
Une mesure courante du risque est de calculer un taux d’accidents, un nombre de
victimes, un montant de dommages de facon relative ou bien absolue. Si on prend
Pexemple de la sécurité routiére, la mesure du risque se fait en comptabilisant le nombre
de victimes (décédées dans un intervalle de 30 jours apreés 'accident) de facon absolue
ou relativement & une autre grandeur représentative:

— le nombre de morts sur la route;

— le nombre de morts par rapport a la population du pays;
- le nombre de morts par rapport au nombre de kilométres parcourus.
On pourrait tout aussi bien définir le risque « routier » en prenant le nombre d’acci-

dents, le nombre de blessés, ou les cotits humain et matériel. Le choix de la mesure du
risque n’est pas anodin car il conditionne l'interprétation des résultats qu’on en tire.
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Par exemple, une étude suédoise sur le cancer du sein a suivi 280000 femmes
(Gigerenzer, 2003). Elle a montré que la mortalité des femmes agées de plus 40 ans
était de 4 %.sans dépistage du cancer, avec et 3 %.avec dépistage. Qu’en conclure ? Cela
semble militer en faveur d’'une campagne massive de dépistage puisqu’elle permet une
réduction relative de 25 % de la mortalité. Toutefois, en chiffres absolus, la baisse n’est
que 1 %o, et si 'on calcule le gain en termes d’espérance de vie pour une femme, il est
en moyenne de 12 jours, ce qui est équivalent a rouler 450 km en moins chaque année.
Interrogées sur le sujet, les femmes surestiment d’un facteur 60 le nombre de vie sau-
vées et se focalisent sur cette forme de cancer (il y a un risque quasi équiprobable de
cancer des poumons ou colorectal, deux formes plus meurtriéres).

1.3.6 Risque et incertitude

Une autre notion intimement liée a la définition et a la mesure du risque est I’ incerti-
tude. On dit qu’un phénomeéne est incertain lorsque:

— onapeude connaissances sur le phénomeéne, ce qui empéche de le prévoir/décrire
finement. Par exemple, la quantité de pluie qui a déclenché une crue sur un bas-
sin versant peut étre estimée, mais elle n’est pas connue parfaitement car on ne
peut faire des mesures de pluie qu’en nombre trés limité de points du bassin-
versant. Incertitude signifie manque de connaissance;

- le phénomene est aléatoire, c’est-a-dire il varie stochastiquement. La quantité
de pluie cumulée sur une année est une variable aléatoire; on ne peut pas étre
certain a ’avance de la quantité de pluie qu’il va tomber, mais si on dispose de
données suffisantes, on peut décrire les propriétés statistiques comme la pluie
moyenne annuelle ou la variance. Incertitude signifie variabilité;

— le phénomeéne pourrait étre décrit de facon déterministe, mais la description est
tellement complexe que 'on a intérét a remplacer une connaissance complexe
par une connaissance incertaine, mais formulée simplement. La physique des
fluides offre de nombreux exemples: le mouvement brownien, la turbulence, etc.

Mesurer un risque lié a processus stochastique est — au moins sur le principe — rela-
tivement simple puisqu’une étude statistique des données permet de caractériser les
variations. L’incertitude porte principalement sur la prévision dans le temps car pour
le reste, on peut décrire plus ou moins finement ce qui peut se passer. Par exemple, le
cancer lié au tabac est un « risque stochastique »: on ne peut étre certain qu’'un fu-
meur développe un cancer et que le cas échéant, il en meurt, mais a partir d'une étude
médicale, on peut établir la probabilité que tel soit le cas au vu des caractéristiques
de ce fumeur; renouvelant cette analyse sur I’ensemble de la société, on peut prédire
raisonnablement le nombre de gens qui vont décéder d’un cancer lié au tabagisme.

Mesurer un risque qui n’est pas lié & un phénomeéne stochastique est bien plus
délicat. Prenons le cas du risque climatique. L’évolution du climat n’est pas certaine,
mais des scénarios élaborés par les scientifiques a I’aide de modéles numériques, il
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apparait fortement vraisemblable que les températures continuent de monter si rien
n’est fait, ce qui conduirait a un déreglement climatique. Dans ce cas de figure, on ne
dispose pas de données et de connaissances pour mesurer le risque. Comment répondre
objectivement a la question « quel est le risque que la température moyenne annuelle
de la Terre augmente de 1 °C d’ici les dix prochaines années ? ». Ici, le risque va traduire
le degré de plausibilité du scénario et il sera en pratique impossible de le confirmer ou
d’infirmer ce scénario méme aprés que I’événement est survenu. Ainsi, toujours avec
notre question du risque climatique, s’il ne se passe rien, que peut-on en conclure ? Que
les prévisions étaient fausses ? Que I’on est dans la marge d’incertitude du phénomeéne ?
Ou bien la politique de prévention mise en place par les états a été payante ?

Une remarque utile concerne la différence entre incertitude et erreur. La encore,
pas de consensus absolu et universel, mais plut6t une tendance: on parle d’erreur pour
désigner les imperfections/défaillances d’un modéle (erreur de précision numérique,
erreur liée a des hypothéses simplificatrices, etc.), d’'un systéme (erreur de fonctionne-
ment due a une surchauffe), ou d’un protocole (erreur de mesure). L’erreur peut étre
systématique et/ou aléatoire.

Un autre probléme lié aux incertitudes est la validité du message que 1’on souhaite
transmettre. Par exemple, la figure 1.9(a) montre une augmentation de 500 % du nombre
de jeunes filles victimes d’auto-mutilation aux Etats-Unis sur la période 2007-2020.
Cette augmentation est considérable et elle est bien plus marquée que pour d’autres
classes d’age, ce qui a laissé penser qu’il y avait un probléme spécifique urgent a ré-
gler pour cette catégorie d’adolescentes°. Toutefois, si on prend en compte I'intervalle
de confiance, la conclusion est un peu moins nette, surtout si on cale un modéle. Par
exemple, un modéle linéaire ajusté sur les données acquises de 2001 a 2013 fournit la
tendance taux = 26,4 4+ 0,8(an — 2001), et cette tendance est quasiment entiérement
contenue dans l'intervalle de confiance a 95 %. Ce modéle accréditerait I'idée que le
nombre de jeunes victimes d’auto-mutilation n’a que peu varié au cours des dernieres
années. En I’absence d’informations supplémentaires, notamment sur le calcul des don-
nées, il est difficile de conclure.

5. Voir par exemple ’exemple de I’analyse de Zach Rausch qui pointe les effets nocifs des
réseaux sociaux.


https://www.afterbabel.com/p/the-girls-are-not-alright-responses
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Figure 1.9 — Taux d’hospitalisation (pour 10° habitants) de jeunes filles agées de 10
A 14 ans aux FEtats-Unis, qui se seraient auto-mutilées. Source: US Center for Disease
Control and Prevention. (a) Valeurs moyennes. (b) Valeurs moyennes avec intervalle
de confiance a 95 % (bande orange). La courbe tiretée est la tendance linéaire calée sur
les données 2001-2013: taux = 26,4 + 0,8(an — 2001).


https://www.cdc.gov/nchs/fastats/suicide.htm
https://www.cdc.gov/nchs/fastats/suicide.htm
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1.4 Politiques publiques de prévention

1.4.1 Typologie simplifiée des politiques de prévention

Plusieurs plans d’action peuvent étre esquissés:

— la politique de I’interdiction: il s’agit d’une vision extréme, ot ’on fait tout pour

réduire le risque a zéro en s’attaquant aux causes (présumées) du risque. Par
exemple, pour réduire le trou d’ozone et le risque climatique induit, les gouver-
nements de I'Union Européenne ont banni 'usage des gaz chlorofluorocarbones
(appelé gaz CFC) utilisés dans les systemes de refroidissement et de climatisa-
tion (Protocole de Montréal de 1987). L’industrie les a donc substitués par des
gaz hydrochlorofluorocarbones (HCFC) et hydrofluorocarbones (HFC), qui ne
s’attaquent pas a I’ozone atmosphérique; il s’est malheureusement avéré depuis
que ces gaz participent a 'effet de serre car leurs molécules sont jusqu’a 10* plus
efficaces que le dioxyde de carbone (McNeill, 2010).

la politique du bon sens: c’est traditionnellement la politique employée le plus
fréquemment. Les risques ne sont pas niés, mais ne sont pas analysés de facon
poussée; les décisions sont prises en « bon pére de famille ». Ainsi, a la fin du
x1x° siécle et au début du xx° siécle, on s’est rendu compte que ’ajout de chlore
dans ’eau permettait de la purifier et d’éviter la propagation de maladies in-
fectieuses comme la typhoide dans les réseaux d’adduction d’eau des grandes
villes. La chlorination a donc été massivement pratiquée jusqu’a ce qu’on se
rende compte des effets induits négatifs (développement de composés cancéri-
genes). Les études ultérieures menées a la fin du xx° siecle laissent penser que le
bénéfice induit par I'utilisation du chlore reste bien supérieur au risque de can-
cer qu’il induit et I’Organisation mondiale de la santé a préconisé son emploi, ce
qui justifie a posteriori le bien-fondé de cette politique de lutte contre les mala-
dies. Il existe des cas inverses ou ce qui semblait étre du bon sens a I’époque s’est
révélé étre de piétre efficacité. Par exemple, longtemps la forét a été vue comme
un moyen de protection par les forestiers européens pour lutter contre les crues
et les avalanches. C’est ainsi qu’a la fin du x1x° siécle, 'ingénieur du génie ru-
ral Demontzey ¢ préconisait I« extinction des torrents par le reboisement ». Un
siécle plus tard, les études sur les effets globaux de la forét sur la génération des
crues sur un grand bassin-versant ont montré que le risque n’avait été que fai-
blement atténué, voire parfois augmenté (probléeme des bois flottants) alors que

6. Prosper Demontzey (1831-1898) était un ingénieur des Eaux et Foréts francais. Il a été

un artisan du reboisement comme moyen de lutte contre les crues torrentielles et I’érosion,
suivant en cela Alexandre Surell. Il s’est beaucoup intéressé a différentes techniques associant
génie civil et revégétalisation. Il est’auteur de plusieurs études sur le reboisement et la sélection
des essences. Il a également 'un des premiers a comprendre la plus-value de la photographie
dans I’étude du paysage.
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le cotit de la forét de protection devenait de plus en plus élevé compte tenu de
sa fragilité et du colt croissant de la main d’ceuvre (voir § 1.5.4).
I’analyse risque-bénéfice et I’ analyse multi-critére: c’est la procédure préconisée
par les spécialistes du risque. On cherche a optimiser le niveau de protection par
rapport a un ensemble de critéres objectifs (le colit économique par exemple) ou
subjectifs (I’aversion du risque). Elle est pratiquée par les ingénieurs depuis fort
longtemps. Le naturaliste Lenoble (1926) dans son étude sur la prévention des
crues notait:
« Et puis, quand il s’agit de protéger une ceuvre matérielle, la
raison commande de supputer le doit et ’avoir. Cette année méme,
au cours d’une excursion dans la vallée de Saint-Gervais, mon pre-
mier mouvement fut de m’étonner de I'insouciance des hommes qui
ont installé, sur le Bon-Nant, au confluent du torrent de Bionnassay,
une usine électrique. En cas de renouvellements possible de la catas-
trophe de 1892, elle sera balayée. Et cependant, en réfléchissant, je
dus reconnaitre que les ingénieurs ont été de sages calculateurs. En
effet, la probabilité est qu'une nouvelle poche d’eau ne se formera,
sil’on s’en rapporte au passé, que dans les quelques centaines d’an-
nées, dans plusieurs milliers peut-étre; on a donc la quasi-certitude
d’amortir 'usine bien auparavant, et le quantum de la provision a
introduire de ce fait au bilan est insignifiant. La mauvaise affaire se-
rait précisément d’engager, dans la vallée du torrent de Bionnassay,
des dépenses considérables en boisement ou barrages dont 'amor-
tissement et ’entretien annuel dépasseraient de loin la valeur du
risque, sans qu’on soit stir de le supprimer. »

La difficulté vient de la technicité croissante de ’analyse, qui peut rendre les ré-
sultats difficilement compréhensibles par les décideurs ou les populations, voire
induire de la défiance. Parmi les critéres objectifs, 'estimation du cotit écono-
mique (cout de la protection et estimation des dommages et des vies humaines
en cas de probléme) reste un exercice difficile. Comment évaluer le prix d’une
vie humaine ? L’analyse colts-bénéfices est celle qui est recommandée par le
ministére de I’environnement pour la gestion du risque d’inondations. Ainsi, le
Centre Européen de Prévention et de gestion des Risques d’Inondation indique
(CEPRI, 2011):

« Les analyses économiques du risque d’inondation sont restées
relativement peu nombreuses en France jusqu’a ces dernieres an-
nées. Le manque de méthodologies, de données facilement acces-
sibles, le tout en lien avec une absence d’obligation réglementaire, a
pu en étre partiellement la cause et freiner le développement d’une
culture de I’évaluation et la constitution d’un savoir-faire francais
en la matiére tandis que nos voisins européens (le Royaume-Uni,
la Suisse, I’Allemagne notamment) prenaient vigoureusement cette
voie. Cependant, la nécessité d’éclairer les décisions, d’asseoir les
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argumentaires, de mieux connaitre la réalité des impacts des inon-
dations et de hiérarchiser 'action en matiére de gestion du risque
d’inondation a, dans un contexte de resserrement budgétaire géné-
ralisé, mis en lumiere la nécessité de recourir davantage aux ap-
proches économiques et en particulier aux analyses cofit/bénéfice
(ACB). Celles-ci sont désormais de plus en plus incontournables pour
prétendre a I'octroi de subventions de I'Etat ou de I’'Europe (FEDER).
C’est en particulier le cas des projets PAPI (Programme d’action de
prévention des inondations) qui doivent répondre au cahier des char-
ges de février 2011 pour les mesures dites structurelles c’est-a-dire
qui ont un impact sur I’aléa. Ainsi, « les projets candidats a la label-
lisation PAPI devront nécessairement procéder a ’analyse des coits
du programme au regard de ses bénéfices attendus et fournir les
résultats de cette analyse. Pour les actions d’investissement impor-
tantes (25 % du montant total du programme ou montant global des
travaux ou aménagement supérieur a 2 M€), des analyses coit bé-
néfice sont a réaliser. Le Ministére en charge du Développement du-
rable (MEDDTL) entend induire une évolution notable de la maniere
de concevoir et de justifier des mesures de réduction du risque. »

— le principe de précaution: a partir des années 1990, le recours au « principe de pré-

caution » est devenu de plus en plus fréquent dans les politiques publiques, no-
tamment dans la gestion de la crise de la « vache folle » ou d’accidents marquants
comme le crash du Concorde en 2000. Au printemps 2010, apres ’éruption du
volcan islandais Eyjafjallajoll, les autorités européennes interdirent les vols ci-
vils pendant plusieurs jours en évoquant le principe de précaution, ce qui causa
des pertes évaluées a plus de 4 milliards de francs aux compagnies aériennes.
Défendu par les uns comme un principe de bon sens en ’absence de données,
attaqué par les autres comme une dérobade, un concept plus dangereux que les
risques dont il est censé nous prémunir, ou le « moteur de 'inaction », le prin-
cipe de précaution est devenu 'argument majeur des politiques européennes
chaque fois qu’un risque n’est pas lié a un processus stochastique, mais traduit
I’absence de connaissances. Le 15™€ principe de la Déclaration de Rio énonce:

« L’absence de certitudes, compte tenu des connaissances scien-
tifiques et techniques du moment, ne doit pas retarder ’adoption
de mesures effectives et proportionnées visant a prévenir un risque
de dommages graves et irréversibles a ’environnement a un cofit
économiquement acceptable. »

Ce principe a été repris en France dans la loi de 1995 relative au renforcement
de la protection de I’environnement. Le principe de précaution s’intercale donc
entre la politique maximaliste du « risque zéro », qui n’est pas tenable en pra-
tique, et la vision minimaliste du risque calculable et prévisible en obligeant a
prendre en considération des risques incertains, mais possibles sur la base des
connaissances actuelles (Montain-Domenach, 2005). La Suisse s’est alignée sur
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la position de I'Union Européenne qui a fixé les critéres d’application du prin-
cipe de précaution. Un groupe de travail réuni par I'Office fédéral de la santé
publique énoncait les régles suivantes:

« L’acception suisse du principe de précaution au sens strict est
similaire a celle de I'Union Européenne, telle que définie dans la com-
munication de la Commission du 2.2.2000. Elle peut étre résumée
comme suit:

« Si des dommages graves et irréversibles menacent la santé de
I’homme, des animaux ou des plantes ou I’environnement, ’absence
de certitude scientifique quant au rapport de cause a effet d’un pro-
duit ou d’un processus ne doit pas retarder ’adoption de mesures de
protection. Le recours au principe de précaution suppose que deux
critéres « si » soient satisfaits (dans quels cas y a-t-il application):

1. 1l s’agit d’un intérét public prépondérant ;
2. Ilexiste de premiers indices scientifiques révélant des dommages

graves ou irréversibles ou tout au moins une hypothése du risque
scientifiquement plausible.»

Tableau 1.4 - Sommes remboursées par les assurances cantonales suisses pour la dé-
cennie 1999-2008 en millions de CHF (pour les 19 cantons pour lesquels 'assurance
via le VKF est obligatoire). Source: Vereinigung der kantonalen Feuerversicherungen
(www.vkf.ch).

Nature Montant total (MCHF) Part relative (%)
tempéte 869,3 26,8

gréle 728,4 22,4
inondation 1474,7 454

avalanche 138,9 4,3

éboulement 35,2 1,1

1.4.2 Gestion intégrée des risques

Longtemps la lutte contre les risques s’est faite de facon isolée et dans I’espoir de
supprimer les problémes. Au fil des années, il est apparu que cette approche pouvait
causer plus de problémes qu’elle n’en résolvait. Par exemple, la construction des digues
de protection contre les crues a posé des problémes sur le long terme dans le transfert
des sédiments (causant aggradation et dégradation dans les cours d’eau) ou dans la bio-
diversité. Dans la gestion des risques hydrologiques, il faut souvent travailler a I’échelle
du bassin-versant, et non plus chercher a se protéger localement contre les crues (Lane,


http://www.who.int/entity/ifcs/documents/forums/forum5/synthesepaper_precaution_ch_fr.pdf
http://www.vkf.ch
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2017). Cette gestion globale nécessite une approche multidisciplinaire (écologie, hydro-
logie, hydraulique, urbanisme, aménagement du territoire, alerte et organisation des
secours.

De nos jours, on tend a favoriser une approche globale de la gestion du risque.
Cette approche a notamment mis en avant a travers des conférences internationales
organisées par I’Organisation des Nations Unies pour améliorer la résilience des so-
ciétés humaines (conférence de Sendai au Japon en 2015). En Suisse, la plate-forme
interdisciplinaire PLANAT définit ainsi la gestion intégrée des risques:

« Les éléments suivants jouent un role essentiel dans la gestion inté-
grée des dangers naturels:

«— Recenser et évaluer les risques: les risques liés a tous les processus
naturels dangereux sont recensés et évalués périodiquement.

«— Agir de maniére uniforme: les niveaux de sécurité devant étre at-
teints sont toujours fixés conjointement en suivant une procédure
homogene.

«— Tenir compte des conditions-cadre: les entités qui portent une res-
ponsabilité ou un risque se référent aux recommandations régissant
le niveau de sécurité devant étre atteint. Mais elles considérent éga-
lement le contexte local et les attentes d’autres domaines.

«— Exploiter les possibilités d’action : toutes les options envisageables
pour améliorer et maintenir la sécurité sont évaluées. Elles com-
prennent des me-sures d’aménagement du territoire ainsi qu’orga-
nisationnelles, biologiques et techniques. Ces mesures sont combi-
nées de maniére optimale dans le cadre d’une planification intégrée
et examinées sous les angles de leur effet, de leur utilité, de leur cotit
et de leur proportionnalité. Les synergies possibles avec d’autres
taches et le degré d’acceptabilité des risques résiduels jouent aussi
un role décisif dans le choix des variantes et dans la décision d’ap-
pliquer des mesures. Les ouvrages de protection sont entretenus et
leur efficacité est vérifiée périodiquement.

«— Tenir compte des incertitudes: les incertitudes sont nommeées, quan-
tifiées autant que possible, signalées et prises en compte dans les
décisions.

«— Peser les intéréts et poser des priorités: les décisions concernant
la réalisation de mesures définissent a quel point les risques seront
évités, atténués ou acceptés. Cela présuppose une pesée des inté-
réts et des solutions envisageables ainsi qu'une justification fondée
des décisions en découlant, car la solution optimale dans ’ensemble
n’est pas toujours la meilleure vis-a-vis de chacun des aspects.»


http://www.planat.ch/fileadmin/PLANAT/Strategie2018/Strategie_fr.pdf
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1.4.3 Risque et degré de complexité

Les sociétés modernes ont cherché a améliorer leur résilience, c’est-a-dire leur capa-
cité a surmonter les catastrophes naturelles par des moyens technologiques et des régle-
mentations toujours plus pointues. Cette recherche d’'une meilleure résistance entraine
la mise en place de systémes de plus en plus complexes et onéreux. Le probléme n’est
pas propre a la lutte contre les dangers naturels. Le grand patron américain Norman
Augustine (patron du géant de la défense américaine Lockheed Martin) dénongcait la
montée en spirale des coits de la défense. Il énoncait sa loi (voir figure 1.10):

« In the year 2054, the entire defence budget will purchase just one
aircraft. This aircraft will have to be shared by the Air Force and Navy 3.5
days each per week except for leap year, when it will be made available
to the Marines for the extra day. »

Figure 1.10 — Evolution du cotit des avions militaires achetés par le Pentagone.

Dans le domaine des dangers naturels, on peut citer 'accroissement considérable
des cotts de la lutte contre les avalanches. Ainsi, en ce qui concerne le déclenchement
préventif, les domaines skiables ont longtemps procédé par des purges a explosif. Le
colit était de quelques dizaines de francs (explosif, détonateur, personnel) et ne néces-
sitait aucun investissement. De nos jours, des outils tels que le gazex (détonation d’un
mélange d’oxygeéne et de propane, voir chap. 3) sont couramment employés. Ils néces-
sitent un investissement conséquent (de I’'ordre de 100 kCHF par point de tir au gazex,
50 kCHF au catex) sans compter leur maintenance ultérieure. Leur efficacité n’est guere
meilleure que de I’explosif, mais ils offrent plus de confort, de rapidité, et de sécurité. La
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lutte contre les avalanches dans les stations de ski a connu une augmentation continue
de ses cotits et un degré croissant de complexité.

Cette croissance dans la complexité des techniques se voit également dans le flux
croissant d’informations constant. Par exemple, si ’on reste dans le domaine des ava-
lanches, on voit que la production d’articles scientifiques recensés par I'Institute for
Scientific Information (base de données: web of knowledge) a crit d’un facteur 100
entre 1970 et 2010 (voir figure 1.11), ce qui ne veut pas dire que nos connaissance se
sont accrues dans les mémes proportions. La qualité de 'information est inégale, parfois
redondante, parfois contradictoire. Dans tous les cas, un tel flux d’informations rend
difficile tout suivi exhaustif de la production scientifique. Il tend aussi a cloisonner les
scientifiques et les ingénieurs dans des domaines de plus en plus spécialisés.
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Figure 1.11 - Evolution du nombre d’articles référencés dans Web of Science avec le
mot-clé: « snow avalanche ».

1.4.4 Expliciter le risque aux populations et aux décideurs

Expert, public, décideur

Pour analyser le risque, proposer aux décideurs politiques des stratégies de lutte, et
faire accepter ou négocier avec les acteurs locaux impliqués, il y a nécessairement une
base scientifique et technique importante, mais également des aspects sociologiques,
dont I'importance n’est pas moindre. Un biais assez systématique dans notre approche
technique du risque est de considérer que le public est généralement ignorant, mal
informé, ou sous 'emprise de croyances irrationnelles. Le sociologue Claude Gilbert
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dénoncait ainsi le « présupposé de I'irrationalité du public (déterminé par ses percep-
tions, soumis a ses peurs...) et donc celui de la rationalité des décideurs, des experts,
etc. (avec, en arriere-plan, Uopposition entre risques objectifs et risques subjectifs) »
(Gilbert, 2008). Ce clivage entre, d’une part, le cercle des sachants (les experts, les dé-
cideurs) et, d’autre part, le public se retrouve dans la mise en opposition entre anciens
et modernes.

Prenons 'exemple d’'un zonage d’un secteur soumis a un risque de crue; que pen-
ser de la confrontation entre un ingénieur hydraulicien, qui arrive avec ses calculs et
son analyse, et le riverain, qui a accumulé des décennies d’observations et formule éga-
lement un avis sur I'origine et le déroulement des crues? Qui est I’expert ? L’ingénieur
qui calcule la crue ou le riverain qui la vit? Lorsque les deux arrivent a des vues di-
vergentes, il est commun pour I'ingénieur de balayer les dires de son contradicteur en
mettant en avant le poids de la science.

Le point de vue inverse, a savoir ’excessive défiance vis-a-vis des scientifiques, est
un phénomeéne inquiétant. Un exemple est fourni par les commentaires d’'un profes-
seur de médecine, Claude Got, qui s’est beaucoup investi dans la prévention routiere
en France. Il déclare sur son site « la banalité de I'acte de conduire (...) facilite une
prise de parole sans fondement scientifique. Les conducteurs « savent » pourquoi les
accidents se produisent et ils en tirent facilement des certitudes quant aux méthodes a
mettre en ceuvre pour les prévenir. » Dans son livre « The Death of Expertise », 'expert
américain en relations internationales Thomas Nichols constate également la défiance
grandissante entre citoyens et experts: « These are dangerous times. Never have so
many people had access to so much knowledge, and yet been so resistant to learning
anything. » Il en pointe les causes variées: (i) une société moderne qui renforce I’ego
des individus, (ii) 'effet Dunning-Kruger (plus on est incompétent, plus on a de certi-
tudes que l'on est compétent), (iii) les travers des universités actuelles, ou ’éducation
de masse a produit une marchandisation du savoir, (iv) une information facilement
accessible et en profusion sur internet, sans gage de qualité, (v) Ueffondrement du jour-
nalisme d’investigation, surtout dans la presse écrite, et (vi) diatribes contre 'expertise
scientifique relayées médias et des politiciens (Nichols, 2017). Sur le méme sujet, Harry
Collins et Dave Levitan montrent comment la sphére politique s’est emparée de cer-
tains sujets techniques, tout en décrédibilisant les scientifiques du domaine (Collins,
2014; Levitan, 2017); le réchauffement climatique en offre un example saisissant. Les
sociologues du risque et des mouvements sociaux pointent la maladresse des acteurs
dominants de la scéne du risque. Une position que Michel Callon résume ainsi (Callon
et al., 2001, pp. 49-53):

« les controverses socio-techniques (...) sont fréquemment percues
comme la conséquence d’un déficit de communication et d’information:
le savant ou le politique n’ont pas voulu (ou ils n’ont pas réussi a) se faire
comprendre du citoyen ordinaire. Au mieux, elles seraient une perte de
temps dont on aurait pu faire ’économie, au pire elles seraient la consé-
quence difficilement évitable de I’état d’arriération intellectuelle d’un peuple


http://www.securite-routiere.org/desinformation/desinformation.htm
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qui a besoin d’étre guidé en permanence. (...)

« L’expertise savante comme le volontarisme politique, lorsqu’ils pren-
nent la forme d’un discours d’autorité, échouent aux interrogations des
citoyens concernés. Toute tentative pour ignorer la fécondité des disputes,
pour réduire les débats a de simples formalités ou pour les corseter dans
des procédures aussi stériles qu’obligatoires se retourne t6t ou tard contre
ceux qui prétendent « connaitre la chanson » et se vantent de ne rien
ignorer de I'art de « tirer les ficelles ». (...)

« On peut dire que la controverse enrichit le sens d’une situation. En
effet, tous les grands projets d’aménagement ou de réforme sociale pour-
suivent des objectifs précis mais partiels. Ils répondent a des besoins ou
a des demandes, jugés légitimes, qui peuvent étre ceux d’'une agence ou
d’un organisme publics cherchant a étendre ou a renouveler leur champ
d’action (modernisation des moyens de transport, résolution du probléme
des déchets nucléaires ou encore élargissement des politiques de lutte
contre les stupéfiants) (...). La délimitation et la formulation initiales de
ces besoins s’accomplissent généralement dans des cercles fermés (ca-
binets politiques, administrations centrales, directions d’entreprises pu-
bliques, etc.). Mais un tel confinement ne peut étre durable. Tout pro-
cessus de décision exige un travail d’ouverture, de décision, ne serait-ce
qu’en raison de la nécessité de mobiliser les acteurs qui permettront de
faire aboutir le projet. »

Pour I'ingénieur, comme pour le médecin ou le décideur politique, il est donc tou-
jours tentant de s’abriter derriére la rationalité de sa démarche et d’arguer de l'irrationa-
lité du public pour imposer ses vues. Il est clair que la pratique expose a la rencontre
d’un grand nombre de personnes, dont le discours est soit trés bancal, soit trés par-
tial, et qu’en conséquence, le praticien a tendance a balayer toute objection a son ana-
lyse. Cependant, les erreurs d’appréciation des « experts » sont tellement nombreuses
qu’elles ont, dans le méme temps, conduit a décrédibiliser la parole de 'expert aupres du
grand public. Ce fossé entre public et praticiens/décideurs existe et tend a s’accroitre ;
pour l'ingénieur en charge de dossier de risque, il faudra composer avec cet aspect
« sociologique » du mieux possible.

En pratique

C’est en grande partie sur 'expérience et le savoir-faire du chargé d’étude que re-
pose cette tiche d’analyse et d’explication du risque aux populations concernées d’une
facon transparente et argumentée. Comment en pratique peut-on faire passer un mes-
sage technique a ceux qui vont prendre une décision ou ceux qui vont bénéficier/subir
la politique de lutte ? Vaste débat dont on peut ici apporter quelques pistes de réflexion:

- une facon de mettre en perspective un risque est de le comparer avec d’autres



1.5 Les controverses dans la gestion du risque 35

risques. Le tableau 1.3 fournit ainsi une liste d’activités et le risque d’accident
mortel lié a ces activités. On note la forte variabilité des taux de mortalité; pour
une analyse sociologique de la question, on peut également noter le décalage
entre le risque réel et le risque percgu par la population;

- indiquer la méthodologie choisie, les étapes du raisonnement, les données sélec-
tionnées ou écartées devient de plus en plus fondamentale. Il faut ainsi noter que
si les études de risque faisaient quelques pages il y a une dizaine d’années et se
contentaient le plus souvent d’esquisser la solution, on observe de nos jours une
augmentation sensible du volume des rapports, avec une description de plus en
plus poussée de 'analyse de la problématique;

— préciser clairement le vocabulaire employé et éviter le jargon technique sont des
recommandations couramment faites et rarement suivies. La multiplication des
termes et leur chevauchement partiel (par exemple, quelle est la différence entre
risque, aléa, danger ?) font que des spécialistes ne se comprennent pas toujours.
Comment espérer que le commun des mortels saisisse la subtilité conceptuelle
entre deux mots voisins dans le langage courant (danger et risque par exemple) ?

- le passage de I'analyse scientifico-technique des phénomenes a une définition
des moyens de lutte nécessite également d’étre clair tant sur la définition de la
méthode que sur la prise en compte des avantages/inconvénients/répercussions.

1.5 Les controverses dans la gestion du risque

1.5.1 Risque et controverse

De toutes les actions menées par les états dans le domaine public, la gestion des
risques est certainement le point qui provoque le plus de controverses et d’'incompréhen-
sion entre les autorités, les techniciens, et les populations, notamment lors des crises a
un point tel que d’un point de vue sociologique, on peut penser que la controverse est
une dimension essentielle de la notion de risque (Borraz, 2007). Les derniers mois ont
été riches en crises qui illustrent les problémes de gestion des risques:

— Gestion de la grippe HIN1: en juin 2009, 'Organisation mondiale de la santé
(OMS) lancait une alerte de pandémie concernant la grippe porcine ou grippe
HINT1. Cette grippe était décrite comme d’une treés grande virulence et suscep-
tible de causer des millions de morts’. Plusieurs états européens ont suivi les
recommandations de ’'OMS et commandé des doses de vaccin en tres grand
nombre (13 millions de doses pour la Suisse, 94 millions pour la France) aupres
de grands groupes pharmaceutiques. A 1'été 2010, la pandémie est déclarée finie

7. Le virus souche HIN1 avait causé en 30 et 100 millions de morts en 1918 au lendemain
de la premiére guerre mondiale. Cette grippe plus connue sous le nom de « grippe espagnole »
fit plus de victimes que la guerre elle-méme.
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par 'OMS. Sur le plan sanitaire, on dénombre 20 morts de la grippe HIN1 en
Suisse (contre 400 en moyenne pour la grippe saisonniére), 312 en France, envi-
ron 18 000 dans le monde. Le coiit financier de la prévention a été colossal, avec
848 millions CHF pour la Suisse et 420 ° millions € pour la France juste pour les
vaccins; le cofit total de la campagne de vaccination en France a été évalué a 2,5
milliards €. Le bilan financier et humain a provoqué un scandale en Europe. Par
sarésolution 1749, ’Assemblée parlementaire du Conseil de 'Europe dénonce la
gabegie financiére, le manque de transparence de ’OMS, et la possible collusion
entre experts et groupes pharmaceutiques:

« L’Assemblée parlementaire est alarmée par la facon dont la
grippe pandémique HINT1 a été gérée non seulement par I’Organi-
sation mondiale de la santé (OMS) mais aussi par les autorités de
santé compétentes tant au niveau de I'Union européenne qu’au ni-
veau national. Elle s’inquiéte notamment de certaines répercussions
de décisions et d’avis ayant entrainé une distorsion des priorités au
sein des services de santé publique a travers ’Europe, un gaspillage
de fonds publics importants et 'existence de peurs injustifiées rela-
tives aux risques de santé encourus par la population européenne en
général.

« L’Assemblée fait état d’'un grave manque de transparence dans
les prises de décisions liées a la pandémie, qui souléve des préoccu-
pations concernant I'influence que I'industrie pharmaceutique a pu
exercer sur certaines décisions parmi les plus importantes concer-
nant la pandémie. L’Assemblée craint que ce manque de transpa-
rence et de responsabilité ne fasse chuter la confiance accordée aux
conseils des grands organismes de santé publique. Cela pourrait se
révéler désastreux en cas d’'une nouvelle maladie de nature pandé-
mique qui pourrait étre beaucoup plus grave que la grippe HIN1. »

- Tempéte Xynthia et crues dans le Var: la France a été touchée par deux événe-

ments de grande ampleur en 2010. Le 28 février, la concomitance d’une forte
marée et du passage d’une dépression rapide et profonde sur 'Europe provoque
des vents tempétueux et des inondations causant un lourd bilan humain: la mort
de 65 personnes, dont 53 sur le littoral atlantique frangais. Le 15 juin, le sud de
la France, principalement le Var, est touché par des pluies exceptionnelles (400
mm aux Arcs prés de Draguignan). On dénombre 25 victimes. Dans les deux cas,
une vive polémique a éclaté a propos du zonage de risque. L’Etat francais est
rapidement intervenu a propos des inondations en Charentes-Martimes et en
Vendée en mettant en ceuvre des opérations de secours de grande ampleur et en
évoquant le classement en zone inconstructible d’une partie du littoral concerné
par les inondations, parlant de « zones noires », ce qui provoqua un tollé parmi la

8. D’aprés un article de Frédéric Vassaux du 12 janvier 2010 dans I'Illustré.
9. Voir 'analyse sur le site actualités news environnement.


http://assembly.coe.int/Mainf.asp?link=/Documents/AdoptedText/ta10/FRES1749.htm
http://www.illustre.ch/le_vrai_bilan_de_la_grippe_a_42350_.html
http://www.actualites-news-environnement.com/23837-Bilan-grippe-A-H1N1.html
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population locale et les élus !°. Le chef de I'Etat Nicolas Sarkozy reconnaissait !* :

« La catastrophe du 28 février n’est pas seulement le produit
d’événements climatiques. Je vais prendre mes responsabilités. Cette
catastrophe est le résultat d’'une cascade de décisions litigieuses ou
contraires au bon sens, de négligences, de prescriptions non respec-
tées, d’expertises négligées sont mises en ceuvre pour prévenir ou
garder le contréle sur des événements redoutés, et que les consé-
quences peuvent étre atténuées. (...) J'entends remettre de lordre
dans notre politique de prévention et de gestion des risques. »

Les controverses récentes fournissent des éléments intéressants pour appréhender com-
ment est géré le risque dans les sociétés occidentales:

elles mettent en évidence l'existence d’un paradigme universel - tel que défini
par (Gilbert et al, 2007) (voir § 1.5.3) — du risque pour les autorités;

Pexistence de controverses permet d’éclairer les rapports entre acteurs, public,
et autorités. La perception des risques et leur traitement illustrent souvent les
clivages et antagonismes qui existent entre ces différents intervenants;

il existe un discours étatique qui « continue de revendiquer le monopole de la
sécurité », mais en pratique, 'Etat devient un acteur parmi d’autres, un « facteur
de risque », perdant son role d’ordonnateur au profit d'un réle de régulateur
(Borraz, 2008);

dans le méme temps, les lanceurs d’alerte, les associations et agences non gou-
vernementales, et les privés investissement de plus en plus la place laissée par
I’Etat, agissant par 1a en contre-pouvoir face aux groupes industriels, aux états,
etc. (Beck, 2003).

1.5.2 Psychologie du risque d’apres Tversky

Si l’on prend un sujet commun comme la sécurité routiere, la gestion du risque -
ici la mise en place de politique publique de prévention et de répression des accidents
— peut apparaitre bien fondée ou peu adéquate selon la maniére dont on présente et
interprete les chiffres. Le débat autour de la sécurité routiére se nourrit du clivage net
entre pro- et anti-répression. Les politiques publiques polarisent ’attention sur la vi-
tesse comme facteur premier du risque, et donc la solution est d’imposer un controle
des vitesses sur les routes. La stagnation voire ’augmentation du nombre de tués sur
les routes est considérée par les tenants de ces politiques comme le signe d un relache-
ment, et donc comme la nécessité de renforcer le systéme de contrdle des vitesses. Sans
surprise les opposants a ce durcissement voient 1a le signe d’un échec de la politique
de répression.

10. Voir ’article de Samuel Laurent dans le Monde daté du 19 avril 2010
11. Discours du 16 mars 2010 a la Roche-sur-Yon


http://www.lemonde.fr/politique/article/2010/04/19/xynthia-une-communication-qui-passe-mal_1337353_823448.html
http://www.elysee.fr/president/les-actualites/discours/2010/discours-devant-les-acteurs-de-la-chaine-de.8148.html
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Ce constat avait été fait par un groupe de socio-économistes américains conduits
par Amos Tversky '?, selon qui la perception du risque et I'estimation de la meilleure
facon de s’en protéger dépendent de facon critique de la maniere dont la problématique
est posée. La démonstration apportée par Tversky était la suivante. Il posa a des étu-
diants d’une grande université * la question « en admettant qu’il y ait un risque d’une
épidémie violente sur le sol américain et que deux stratégies de lutte s’offrent a vous: (i)
avec le programme de lutte A, on peut sauver la vie de deux cents personnes; (ii) avec
le programme B, il y a 33 % de chances qu’on puisse sauver 600 personnes, mais 66 %
qu’on ne puisse sauver personne, lequel de ces deux programmes vous semble le plus
pertinent? » 72 % des étudiants ont répondu que le programme A était le plus adapté.
Les étudiants préféraient opter pour une stratégie sans surprise que pour une stratégie
ou un risque apparaissait, alors qu’au final, les deux programmes offraient des perspec-
tives identiques en valeur moyenne. Les étudiants montraient donc une aversion au
risque.

Tversky posa ensuite la question différemment: « on a maintenant le choix entre
deux autres programmes. Avec le programme C, on est sir que 400 personnes vont
décéder des suites de ’épidémie, alors que si on adopte le programme D, il y a 33 % de
chances que finalement, personne ne meure, mais 66 % que 600 personnes ne survivent
pas. » La encore, en termes de valeur moyenne, les deux assertions sont équivalentes et
lune est exprimée comme une certitude, alors que 1'autre prend en compte un risque
d’échec. A cette question, 78 % des étudiants ont répondu par le programme D, mon-
trant qu’ils étaient capables de prendre des risques. Dans la premiere formulation du
probléme, Tversky a présenté les gains escomptés alors que la seconde formulation est
basée sur les pertes possibles.

1.5.3 Remiseen question des approches classiques de gestion
du risque

Sur la base d’études menées dans différentes branches (mais principalement le
risque industriel), des sociologues francais ont brossé un portrait de ce que ’on pour-

12. Amos Tversky (1937-1996) a été un des pionniers des sciences cognitives. Il s’est notam-
ment intéressé a la perception du risque économique et il a développé avec Daniel Kahneman
(prix Nobel d’économie 2002) la théorie des perspectives (prospect theory) selon laquelle les
personnes réagissent différemment aux perspectives de gain ou de perte en fonction des cir-
constances: si elles ont réalisé des gains, elles souhaitent les consolider et évitent donc les
risques. En cas de pertes financiéres, surtout si celles-ci sont importantes, elles sont disposées
a prendre des risques d’autant plus importants puisqu’elles estiment qu’elles n’ont plus rien a
perdre. On pourra utilement se rapporter a Uexcellent ouvrage de Kahneman (2011), qui offre
une belle perspective sur la prise de décision et tous ses biais.

13. Un aspect intéressant des études de Tversky a été de montrer le caractére quasi-universel
des réponses apportées: il y a une certaine stabilité dans les réponses apportées indépendam-
ment des conditions géographiques/sociales ou de I’époque.
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rait appeler le « modéle dominant » en matiére de gestion des risques Gilbert et al.
(2007). Selon ces auteurs, il existe actuellement un paradigme universel employé par les
autorités en charge des dossiers de risque et qui est construit sur 6 prédicats qui s’ar-
ticulent autour des notions de responsabilité, de pouvoir de la technologie, et d’efficacité
des normes:

1. la sécurité des personnes est la priorité absolue;

2. tous les moyens disponibles doivent étre mis en ceuvre pour garantir cette sécu-
rité au travers d’actions de prévention;

3. la maitrise des risques est rendue possible grice a la science et la technologie;

la connaissance des risques sert de fondations a I’élaboration de normes, régles,
et procédures, qui peuvent servir a encadrer et gérer les activités a risque;

5. la sécurité dépend de I’élimination des erreurs et pannes par une stricte applica-
tion des régles et par un suivi de cette application;

6. la sécurité dépend également de la capacité des acteurs et organisations a ap-
prendre des incidents, dysfonctionnements, accidents, ou la sécurité a pu étre
sous-estimée a des degrés divers.

Les premier et second prédicats sont sans doute une conséquence de I’évolution de
I'ordre moral au sein des sociétés occidentales, qui depuis deux générations n’ont pas
connu de fléaux tels que guerre, famine, catastrophe naturelle, ou pandémie. L’accident
en général, et I'accident mortel en particulier sont donc de plus en plus rejetés par nos
sociétés. Une conséquence est que les responsabilités sont recherchées des qu’il y a
accident (voir point 6), ce qui & son tour génére une pression supplémentaire sur les
autorités publiques pour qu’elles mettent tout en ceuvre pour lutter contre les risques.
L’affaire du sang contaminé!* est souvent considérée comme ayant été un tournant
chez les politiques, qui préféreraient lancer des actions cotliteuses que de se voir repro-
cher de n’avoir rien fait.

Les troisiéme et quatriéme prédicats affirment qu’une prévention efficace est ren-
due possible de nos jours grace aux développements technologiques. La technologie
permet d’identifier les dangers, de modéliser les processus, de mesure ou d’évaluer les
parameétres-clés, et de prédire le comportement du systéme. La gestion moderne du
risque se construit en trois phases: (i) si possible, I’élimination du risque a sa source,

14. Au cours des années 1980, des chercheurs ont mis en évidence la transmission du virus
du SIDA par le sang. Cette découverte a amené a modifier le traitement des prélévements san-
guins, mais il y a eu un retard conséquent entre le moment ou la découverte a été diffusée et le
moment ou les autorités sanitaires ont pris leurs décisions. Le scandale est né en France en 1991
lorsqu’une journaliste a révélé que le Centre national de transfusion sanguine avait sciemment
distribué de 1984 a 1985, des produits sanguins dont certains contaminés par le virus du SIDA a
des hémophiles. Le scandale déboucha sur la mise en examen de plusieurs hommes politiques,
dont le premier ministre (Laurent Fabius) et le secrétaire d’état a la santé (Edmond Hervé), et de
plusieurs médecins. Si les décideurs politiques furent reconnus innocents par la Cour de justice
de la république (seule instance qui a le pouvoir de juger des élus en France), le responsable du
CNTS a été lourdement condamné par la justice ordinaire.
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(ii) le suivi des procédures, (iii) la mise en place de barriéres pour atténuer le risque
résiduel et tendre vers le risque zéro. Gilbert et al. (2007) résument ainsi la gestion des
risques:

« La maitrise du risque se rapporte essentiellement a une stratégie
normative qui consiste a modéliser, décrire, et spécifier un monde par-
fait sur le plan opérationnel. Elle implique la prescription d’actions et de
comportements qui sont censés assurer que ’on reste au sein de cet en-
vironnement (régles de bonne conception, procédures opérationnelles),
que des actions sont mises en ceuvre pour prévenir ou garder le controle
sur des événements redoutés, et que les conséquences peuvent étre atté-
nuées. »

Les normes sont par exemple les procédures d’« assurance qualité » ou de « charte
qualité » mises en place par les entreprises et administrations.

Le cinquieme et sixieme prédicats sous-tendent que dans un systéme normalisé
(dont le fonctionnement a fait I’objet de normes) la sécurité dépend principalement du
respect des normes, régles, et procédures. Le non-respect de celles-ci, qu’il soit inten-
tionnel ou accidentel, est une menace a la sécurité du systéme et doit donc étre sanc-
tionné. Les politiques publiques s’attachent donc non seulement a éviter que les regles
de sécurité puissent étre mal exécutées par les intervenants, mais également a définir
des mesures visant a punir les violations manifestes des regles. Un exemple frappant de
cette évolution des politiques de prévention est donné par les débats autour de I'inter-
diction du ski hors-pistes ou bien les poursuites contre les skieurs qui ne tiennent pas
compte des avertissements et mettent en danger la vie des skieurs sur piste. Ainsi, un
responsable de la police cantonale du Valais déclarait aprés ’avalanche sur les pistes
de ski d’Anzere: « Il s’agit d’envoyer un message: les skieurs qui ne respectent pas les
autres peuvent étre poursuivis ».

Selon Gilbert et al. (2007), ce modele de gestion du risque est voué a I’échec sur le
long terme car il méconnait gravement la problématique du risque dans son entier:

— pour la plupart des structures concernées par le risque, le risque est une contrainte
parmi d’autres. Si le risque zéro est un but, il ne constitue pas en soi I'objectif
d’absolue priorité. L’entreprise fait face a une multitude d’impératifs d’ordre éco-
nomique, social, etc., ce qui nécessite de trouver des « compromis » entre toutes
les contraintes;;

— la nécessaire existence de compromis entre différentes contraintes est souvent
occultée car la reconnaissance d’une certaine tolérance en matiére de sécurité
est de moins en moins bien percue par I'opinion publique (ou est supposée moins
bien percue). Tant que la situation ne conduit pas a des problémes qui sont mé-
diatisés ou dénoncés par une des parties, ’arbitrage est maintenu de facon tacite
et implicite, loin de tout regard extérieur. Cette occultation conduit donc a un
divorce entre la gestion ordinaire du risque et I’affichage public;

- la complexité des processus et de leurs interactions ainsi que l'incertitude as-


http://www.swissinfo.ch/fre/societe/Avalanche_de_poursuites_pour_les_fous_du_hors-piste_.html?cid=8016992
http://www.swissinfo.ch/fre/societe/Avalanche_de_poursuites_pour_les_fous_du_hors-piste_.html?cid=8016992
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sociée aux mesures des paramétres sont tellement grandes qu’il est illusoire de
penser qu’on puisse arriver a une description précise des composantes d'un sys-
téme;

- la sécurité ne se réduit pas a la stricte obéissance aux reégles, elle dépend aussi
du degré de développement de la culture de sécurité au sein de entreprise et de
I’établissement d’un lien de confiance entre les intervenants;

- la mise en place de normes a pour conséquence de rigidifier un systéme. Cela
le rend, certes, plus résistant face a un certain nombre de dangers, mais 1’ab-
sence d’adaptation, le manque de souplesse, 'excés d’attention portée a certains
phénomenes peuvent fragiliser le systéme vis-a-vis de nouveaux dangers;

- sur le plan neurologique ou moteur, le fonctionnement humain n’opere pas par
élimination des erreurs a leur source, mais par titonnement, avec des procédures
de détection et de correction de 'erreur;

- les accidents ne sont que rarement la conséquence d’une erreur facilement iden-
tifiable, mais au contraire le résultat d’une « chaine d’événements » ;

- l’analyse de systémes complexes courants (opération chirurgicale, vol d'un avion,
etc.) montre que les opérateurs commettent une multitude d’erreurs, qui sont
rapidement rattrapées. Il y a donc un ajustement permanent du systéme pour
éviter une erreur fatale.

Au final, Gilbert et al. (2007) concluent que « le modéle sécuritaire (...) fondé sur un
cadre de référence idéal (risque zéro, qualité absolue) est donc irréaliste. » Selon ces
auteurs, il est nécessaire de ne pas rechercher un fonctionnement optimal d’un systéme
par rapport aux erreurs et pannes, mais de rechercher une maitrise dynamique des
risques en offrant un meilleur suivi et une plus grande capacité d’adaptation/réponse.

1.5.4 Exemple du reboisement

Problématique

Au cours du x1x° siécle, les pays européens furent frappés par des crues exception-
nelles avec une fréquence telle que les autorités publiques s’interrogerent sur les causes
de ces catastrophes et les moyens de les prévenir. En particulier, a au moins deux re-
prises au cours du x1x°¢ siécle, 'Europe a connu des crues catastrophiques (Cceur, 2004;
Lang & Coeur, 2014; Ford, 2018; Fressoz & Locher, 2020):

— les inondations de 1840 a 1843;
- les crues de 1856 a 1857 (voir figures 1.12 et 1.13).

Ces événements ont poussé les états européens a réagir 1°. En Suisse, jusqu’au mi-
lieu du x1x° siécle, les communautés villageoises géraient de facon autonome leurs

15. Nous ne parlerons pas ici du Japon, qui est un autre pays pionnier en matiere de reboi-
sement. A la suite des conflits incessants entre seigneurs de la guerre, d’un accroissement de la



42 Chapitre 1 ~ Aménagement du territoire et risques

Figure 1.12 - Crue catastrophique de la Saéne a Lyon (France Rhone) avec le quai Saint-
Antoine le long de la Sadne totalement inondé en mai 1856. Source : Louis Froissard
Archives de la ville de Lyon. La crue de 1856 est la premiére crue qui a été documentée
par des photographies, dont certaines séries furent commandées par le gouvernement.
A partir de 13, la photographie deviendra un précieux auxiliaire a la fois pour témoi-
gner de 'ampleur des dommages, mais également comme outil de communication des
collectivités et de I'Etat (voir figure 1.14).

foréts. Dés 1803, on voit apparaitre les premiéres lois cantonales, notamment dans le
Valais. Dans les années 1850 a 1860, plusieurs hommes politiques et ingénieurs ont tra-
vaillé a ce que la Confédération prit en main la question du reboisement comme moyen
de lutte contre les crues; deux professeurs de la toute jeune ETHZ, Elias Landolt et
Carl Culmann, remettent plusieurs rapports au Conseil fédéral, suggérant des pistes.
Toutefois, dans la premiére constitution suisse de 1848, la Confédération n’avait au-
cune compétence en matiére de police forestiére, qui restait du domaine des cantons

population, d’une surexploitation de la forét pour le bois de construction et le chauffage, et du
défrichage pour augmenter la surface agricole, la forét japonaise se trouvait en forte régression.
La mise en place d’'un nouveau systéme politique, trés centralisé (shoguns de 1’ére Tokugawa)
au début du xvir® siécle, changea la donne lorsque les Japonais prirent conscience de I'impact
négatif de la déforestation, notamment en ce qui concerne I’érosion de pentes dominant la zone
cotiére. Au début du xvin® siecle, le pays lanca des programmes de reboisement et de régulation
stricte des espaces forestiers (production et transport du bois, usage du bois) (Diamond, 2005).


https://www.archives-lyon.fr/documents-remarquables/leau-lyon-catastrophes-naturelles
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Figure 1.13 — Crue catastrophique de I'Isére & Grenoble (Isére) en novembre 1859.

(Schuler, 2004). 11 faut attendre 1874 pour voir la révision de la constitution (article 24
relatif 4 la surveillance des eaux et des foréts de montagne) et la création d’un service
tédéral forestier calqué sur le modele des Grisons. En 1876, la premiére loi fédérale
sur la police des foréts entre en vigueur. Elle prévoit 'interdiction des coupes et I’obli-
gation du reboisement dans les foréts de protection. La loi de 1910 compléte le cadre
réglementaire en mettant en place des subventions fédérales, qui lancérent une série
de grands travaux de protection sur tout le territoire national 1°.

Pendant environ trois décennies (1830 a 1860), I'Etat francais a été tenaillé entre
d’un coté les tenants de la politique du reboisement prénée par les administrations et
de l'autre les élus locaux soucieux de donner satisfaction aux agriculteurs peu enclins
a Pamputation de leur terrain (Bravard, 2002), ainsi que quelques rares érudits et in-
génieurs comme Francois Vallés et Maurice Champion, pour qui la forét ne pouvaient
jouer qu’'un role secondaire (Ford, 2018; Fressoz & Locher, 2020). Les crues du début des
années 1840 donnérent 'impulsion a une réflexion plus approfondie sur les moyens de
lutte, avec deux grandes options:

- la correction des riviéres, avec par exemple ’endiguement des principaux cours

16. Voir I'article d’Anton Schuler sur la forét dans le Dictionnaire historique de la Suisse.
Un historique plus complet est donné dans le rapport Wald- und Forstgeschichte par Anton
Schuler, Matthias Biirgi, Wener Fischer, et Katja Hiirlimann publié en 2000 par 'ETHZ.


http://www.hls-dhs-dss.ch/textes/f/F7849.php
http://e-collection.ethbib.ethz.ch/view/eth:28539
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d’eau;
- le traitement des versants, avec principalement le reboisement des versants dé-
nudés, I'interdiction du défrichement, et la limitation du paturage.

En France, deux lois essentielles ont consacré la forét comme moyen privilégié de lutte
contre les crues (Besson, 1996; Brugnot, 2002):

- la loi du 28 juillet 1860 (sous le Second Empire) confia au service des Eaux et
Foréts la mission de corriger les torrents et reboiser les montagnes. Cette loi
faisait suite a d’autres lois promulguées par Napoléon III a la fin des années
1860 pour créer des ouvrages de protection contre les crues;

- la loi du 4 avril 1882 corrigea le cadre d’intervention du service des Eaux et
Foréts. La forét ne devenait plus un outil de prévention, mais une technique
curative. On ne parlait plus de reboisement, mais de « restauration des terrains
en montagne », une expression qui a été figée a travers le nom de 'organisme
qui est né a cette occasion.

En Italie, la loi du 20 juin 1877 engagea I’état italien dans une politique active de protec-
tion des foréts, avec a la fois des limitations fortes des coupes forestiéres et des plans
de reboisement (Bonardi, 2002). Toutefois, compte tenu des difficultés économiques et
du développement industriel dans I'Ttalie réunifiée, la loi fut marginalement appliquée,
ce qui eut pour conséquence, en particulier, un accroissement des surfaces déboisées
(entre 1870 et 1920, la surface forestiére diminua d’environ 15 %). En réaction, le gou-
vernement promulgua la loi du 2 juin 1910 dite Loi Luttazzi, qui a notamment institué
la création d’un Corps royal des foréts regroupant plus de 3000 gardes forestiers.

La forét comme moyen de prévention

La forét a été vue dés le Moyen Age comme une valeur économique, qu’il fallait non
seulement préserver, mais développer (Buridant, 2002). Sous le ministére de Colbert en
France a la fin du xv11° siecle, le corps des Eaux et Foréts se voit ainsi considérablement
renforcer. Il faut attendre le début du x1x° siécle pour voir un fort regain d’intérét pour
la forét en Europe, un intérét croissant qui s’est traduit en France par la création de
I'école forestiere de Nancy en 1824 et la promulgation du Code forestier en 1827. En
Italie, la premiére école forestiére fut créée en 1869 a Vallombrosa (Florence).

La doctrine sur le role de protection de la forét a été élaborée dés le milieu du
x1x° siécle, notamment en France avec la publication en 1840 de 'ouvrage d’Alexandre
Surell'7 ouvrage qui eut un retentissement considérable (Surell, 1870). Surell écrivait

17. Alexandre Charles Surell (1813-1887) était un ingénieur francais des Ponts et Chaussées.
Il a commencé sa carriére dans les Hautes-Alpes, étape importante de sa carriére ou il rédigea
le livre « Etude sur les torrents des Hautes-Alpes » qui le rendit célébre aupres de plusieurs
générations de forestiers et de géographes. Il poursuivit sa carriere dans la Compagnie des
Chemins de fer du Midi, dont il devint le directeur en 1859.
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ainsi:

« Lorsqu’on examine les terrains au milieu desquels sont jetés les
torrents d’origine récente, on s’apercoit qu’ils sont toujours dépouillés
d’arbres et de toute espéce de végétation robuste. Lorsqu’on examine
d’une autre part les revers dont les flancs ont été récemment déboisés,
on les voit rongés par une infinité de torrents du troisiéme genre, qui
n’ont pu évidemment se former que dans ces derniers temps. Voila un
double fait bien remarquable... On peut appeler en témoignage de ces re-
marques toute la population de ce pays. Il n’y a pas une commune ou
Pon n’entende raconter a des vieillards que sur tel coteau, aujourd hui
nu et dévoré par les eaux, ils ont vu se dresser autrefois de belles foréts,
sans un seul torrent. Considérons donc cette influence comme une chose
démontrée, et résumons-la dans les deux propositions suivantes:

1. la présence d’une forét sur sol empéche la formation des torrents;

2. le déboisement d’une forét livre le sol en proie aux torrents.»

L’ingénieur des Eaux et Foréts Paul Mougin '® a analysé dans le détail le role de la
forét. Sa description du réle de la forét dans le cycle de I’eau est toujours d’actualité.
Selon Mougin (1914, 1931), la forét a trois réles majeurs:

- grice au phénomeéne d’évapotranspiration, elle permet d’intercepter une partie
des eaux de pluie;

— elle exerce une résistance au ruissellement, ce qui permet d’étaler les crues et
éviter des pics de crue;

— elle permet de lutter contre ’érosion en maintenant le sol grice au réseau de
racines.

Il défendit la these selon laquelle la forét avait un impact profond sur le climat a travers
plusieurs processus:

la montée des températures;

Paugmentation de la pression atmosphérique;

une fréquence accrue des orages;

18. Paul Mougin (1866-1939) était un ingénieur des Eaux et Foréts francais. Il commenca
sa carriére a Grenoble, mais il fit I’essentiel de sa carriére en Savoie, ou il se spécialisa dans la
correction torrentielle. Son premier travail d’importance a été la dérivation (par une galerie) du
torrent de Saint-Julien en Maurienne, qui marqua son intérét pour les ouvrages de correction
torrentielle (seuils, barrages, galeries). Il a aussi été un ardent artisan du reboisement, s’illus-
trant notamment par des études minutieuses des archives départementales pour prouver sa
théorie du déboisement des Alpes au cours des derniers siécles. Il a été I'un des premiers a
s’intéresser a la collecte de données nivométriques et a 'observation des avalanches, suivant
en cela Pexemple de I'ingénieur forestier suisse Johann Coaz. Il est sans doute 'auteur du pre-
mier modele de calcul du mouvement d’une avalanche. Il a plusieurs ouvrages et rapports, fruit
d’un travail considérable de collecte et d’analyse des informations sur I’érosion torrentielle, les
foréts, et les avalanches.
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- une fonte des neiges plus rapide;

- la modification du régime des eaux de surface et des cours d’eau.

A I'époque de Mougin, on ne parlait pas de réchauffement climatique. Mougin igno-
rait donc que la remontée des températures observée depuis la fin du petit 4ge gla-
ciaire était liée a une modification globale du climat (éventuellement déja avec une
influence anthropique) et donc pour lui, il ne pouvait y avoir qu’une cause: le déboise-
ment. Mougin (1914) affirme donc que « pendant toute la période ou les foréts étaient
détruites on constate une augmentation de la température moyenne annuelle. (...) le
chanoine Vaullet, apres 40 ans d’observations, signalait le méme fait démontré par la
comparaison des températures depuis le début du siécle. Parmi les causes de la modi-
fication du climat, il place au premier rang, le déboisement. » Il avanca également en
comparant le nombre de crues et le nombre d’hectares défrichés qu’il y avait un lien
étroit entre déboisement et nombre de crue: « au xvII® siécle, la Leysse a eu huit crues
dommageables et trente-huit crues au x1x° siecle ; les crues sont donc devenues 4,7 fois
plus fréquentes. Or, en 1738, la forét couvrait 5398 hectares, soit 53,2 % du bassin de ré-
ception; en 1910, elle ne s’étend plus que sur 3945 hectares, c’est-a-dire qu’elle a perdu
26,9 % de son étendue. » Lutter contre les crues, c’est donc avant tout lutter contre
le déboisement. La doctrine frangaise jusqu’a la seconde guerre mondiale, doctrine en
vigueur dans tous les pays alpins, a été de mettre en avant une politique intensive de
reboisement. Une doctrine qui se résume en la phrase lapidaire de Surell, reprise par
Prosper Demontzey : « la forét seule peut venir a bout des torrents » (Demontzey, 1894).

Causes du déboisement

Comme le déboisement était considéré étre la cause des crues que connaissait I’'Eu-
rope en cette fin de x1x° siécle, il fallait trouver un responsable de ce déboisement. Le
coupable fut vite trouvé: c’est le paysan et le berger, dont I'incurie était la cause de
tous les malheurs. Ecoutons Surell (1870) A ce sujet:

« Dans ce magnifique bassin, la nature avait tout prodigué. Les habi-
tants ont joui aveuglément de ses faveurs; ils se sont endormis au milieu
de ses dons. Ingrats, ils ont porté inconsidérément la hache et le feu dans
les foréts qui ombrageaient les montagnes escarpées, la source ignorée de
leurs richesses. Bient6t ces pieds décharnés ont été ravagés par les eaux.
Les torrents se sont gonflés... des terrains immenses ont été engravés...
Bientot Crévoux, Boscodon, Savines et tous les torrents auront anéanti
ce beau bassin qui, naguére, pouvait étre comparé a tout ce que les plus
riches contrées possédent de plus fertile et de mieux cultivé (...) Tous les
hommes qui ne sont pas aveuglés par 'ignorance, ou dont le coeur ne
s’est pas desséché par I’égoisme, expriment la pensée qu’il serait temps
enfin d’arréter les progrés toujours croissants d’une si effrayante dévas-
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Figure 1.14 -

Deux clichés de
la série
domaniale de
Saint-Laurent-
en-Beaumont
(France, Isere):
(a) 1886; (b)
1929.
L’utilisation
intense de la
photographie a
permis non
seulement de
livrer un
témoignage de
I’évolution du
paysage, mais
également de
montrer
efficacité du
reboisement.
D’apreés
(Mougin, 1931).
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tation. Ils gémissent sur les maux sans nombre causés par le déboisement
des montagnes... Entendons les cris de détresse d’une population alarmée
sur son avenir. »

Envoyé par le gouvernement de la Révolution, I'ingénieur Lomet (1795) notait au
cours d’'un voyage a Baréges en 1794, que c’est le déboisement qui est a 'origine des
catastrophes récentes:

« Autrefois, toutes les montagnes qui dominent Baréges étaient re-
vétues de bois de chéne jusque vis-a-vis de la vallée d’Escoubous. Des
hommes actuellement vivants en ont vu les restes et les ont achevés... Les
habitants des plateaux ont tout ravagé eux-mémes, parce que ces pentes
étant les premiéres découvertes par leur exposition et par la chute des
avalanches, ils y ont de bonne heure un paturage pour leurs moutons, et
que, le jour ou ils les y conduisent, ils oublient que pendant I’hiver ils ont
frémi dans leurs habitations de la peur d’étre emportés avec elle par ces
neiges, dont ils provoquent obstinément la chute. »

La littérature des forestiers et des géographes livre un florilege de clichés. Le géo-
graphe Jean-Yves Puyo livre quelques morceaux croustillants (Puyo, 1999): « Le pasteur
n’a pas le sentiment des égards dus aux foréts », « le fond du caractére du montagnard
est 'imprévoyance absolue, I'inertie systématique opposées a toute idée du progres, a
toute tentative d’amélioration, I’esprit est encore plus malade que le sol. », « c’est a
Iimprévoyance des habitants, bien plus qu’a la constitution géologique du sol, qu’il
faut attribuer le rapide écroulement des monts. »

I ne faut toutefois pas croire que ces avis caricaturaux résultaient d’'une analyse
sommaire des causes du déboisement. Paul Mougin a entrepris une ceuvre gigantesque
de collecte d’informations historiques, d’observations naturalistes, et de données scien-
tifiques sur le probléme. Dans sa monographie sur les torrents de Savoie, Mougin (1914)
défendit 'idée que les Alpes étaient a 'époque romaine couvertes de foréts épaisses:
« Que les Alpes aient jadis été plus boisées qu’aujourd’hui, tout le démontre, et d’abord,
la légende et la tradition. ». Le déboisement a commencé étre pratiqué massivement au
Moyen-Age. Il a d’abord été le fait des religieux, pour qui la déforestation était presque
un acte de foi a une époque ou les croyances paiennes considéraient les foréts comme la
demeure des divinités. Puis, les besoins en patures, bois de chauffage, bois de construc-
tion, mais aussi le gaspillage et les guerres ont pendant des siécles amené a la destruc-
tion de la forét. La forte poussée démographique du xvii® siecle et x1x° siécle n’a fait
qu’accroitre la pression sur la forét. Si, a la lumiére des avancées de nos connaissances
sur la protohistoire et I’histoire des populations alpines, il parait exagéré de dire que
les Alpes étaient couvertes d’épaisses foréts, il faut reconnaitre que la forét a connu
une forte régression dans les Alpes entre le xvI® siécle et le x1x°® siecle. Les études
historiques sur les communautés villageoises comme 1’étude sur Vallorcine menée par
Gardelle (1988) témoignent des rapports étroits entre ’homme et la forét. Si la forét
est pergue a la fois comme une richesse et une protection (contre les avalanches), cela
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n’a pas empéché qu’elle soit surexploitée en dépit des réglements communaux (coupe
affouagére !°, droit de pature) et des édits/lois de I'administration. En 1860, le syndic
de Vallorcine dressa un tableau trés sombre de la forét communale, qui représente les
trois-quart des espaces boisés: « I'état des foréts communales et les délits multiples qui
s’y commettent les menacent d’une destruction partielle et prochaine ».

Alternatives au reboisement

A la fin du x1x° siécle, le reboisement n’a pas été I'unique stratégie de lutte contre
les crues. Les états se sont aussi lancés dans de gigantesques travaux de correction tor-
rentielle et d’endiguement des riviéres. Dans un premier temps, les ingénieurs se sont
principalement intéressés aux grands ouvrages de génie civil tels que les digues le long
des riviéres et les barrages pour fixer les sédiments. Cependant, assez rapidement, les
dommages substantiels causés aux ouvrages de protection torrentielle posaient le pro-
bléme de la rentabilité économique des opérations. Dans le canton de Vaud, I'ingénieur
Alexis Chessex écrivait 2

« On a, pendant vingt ans, construit d’'innombrables barrages qui de-
vaient permettre de reboiser les ravins. Nos paysans voulaient s’y op-
poser; ils durent se résigner a payer d’énormes impo0ts pour solder ces
travaux qu’ils savaient inutiles. Heureusement, la société des forestiers
suisses s’est décidée il y a deux ans, a adresser a toutes les municipalités
du pays une brochure dans laquelle elle déclare enfin que le principe des
grands barrages est économiquement faux; 'aveu est complet. »

A la fin du x1x° siécle, les ingénieurs se sont donc orientés vers des ouvrages de plus
petite taille en complément des opérations de révégétalisation: des seuils pour fixer
le lit d’un torrent, les clayonnages?! pour limiter I'érosion des berges, les banquettes
pour réduire le ruissellement et I’érosion sur des flancs de montagne, et les galeries de
dérivation.

Résistance au reboisement

Bien avant la mise en place des grandes lois de la fin du x1x° siécle, les autorités
locales ont tenté de lutter contre la déforestation en promulguant des édits visant a

19. L’affouage est un droit accordé aux habitants d’une commune de pratiquer certaines
coupes de bois dans les foréts communales pour un usage domestique (chauffage, cuisson).

20. Cité par Félix Briot dans « Nouvelles études sur I’économie alpestre: diverses questions
générales et monographies » (Berger-Levrault & Cie, Paris 1907).

21. Assemblage de pieux et de branchages servant a retenir le sol non ou faiblement végéta-
lisé.
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Figure 1.15 — En haut a gauche, travaux de clayonnage sur des berges; en haut a droite,
construction d’un barrage sur le Nant Trouble (Savoie) en 1890. En bas, seuils construits
par le service RTM a la fin du x1x° siécle sur le Nant Saint-Claude (Savoie). Les deux
photographies d’archive sont tirées du livre de Jeudy (2006).

limiter ou interdire 'exploitation du bois. La « mise a ban?? » des foréts ayant une
fonction de protection a été mise en ceuvre dés le Moyen Age. Les plus anciens édits
(lettres de ban) créant des « foréts a ban » datent du x1v°® siécle dans les cantons de
Schwytz et d’Uri; en 1397, la forét (Bannwald) protégeant Andermatt fut mise en ban:
« le profane qui oserait porter la hache sur celui-ci [la forét d’Andermatt] serait puni
de mort » (Rabusseau, 2007).

Au x1x° siecle, les forestiers se plaignaient que les populations locales étaient ré-
tives. Mougin (1914) dénongait 'incivisme des populations, la corruption, et le manque
de gardes forestiers: « Malgré cela, combien de délits demeuraient impunis, a cause du

22. La notion de ban renvoie a la double notion d’un droit féodal et d’exclusion. Le mot
« ban » se retrouve en francgais moderne dans des mots comme forban, verbes comme bannir,
mettre au ban (exclure) ou des expressions publier les bans d’un mariage (proclamation devant
tous), four banal (four a disposition d’'une communauté). Au Moyen Age, le ban désignait sou-
vent le droit d’un seigneur de disposer d’un bien, d’en autoriser ou d’en exclure 'usage. Par ex-
tension, il désigne, principalement en Suisse, mais également dans certaines régions des Alpes
francaises, une forét servant a protéger un village.
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Figure 1.16 — Forét en ban d’Andermatt (UR) en 1848. Aquarelle attribuée a J. Bridges
(Hochschulbibliothek Luzern). D’apreés la thése de Rabusseau (2007).

nombre insuffisant des préposés et de la trop grande étendue de leur triage. (...) Une
multitude de délinquants mal surveillés ou pactisant avec les gardes avaient dilapidé les
foréts communales. (...) Le nombre du personnel subalterne devrait donc étre augmenté
si I’on ne veut pas voir réduire a une simple fiction la surveillance et la protection des
foréts ». Il faut dire que pendant plusieurs décennies, les gardes forestiers étaient assez
complaisants car issus des vallées dont ils avaient la surveillance, ils connaissaient la
pauvreté des gens. L’administration reprochait la connivence entre habitants et gardes.
Ainsi, en 1868 a Vallorcine, le Conservateur des foréts se plaignait que « le garde de
Vallorcine qui est de la commune, éloigné de ses chefs, s’abandonne a toutes les in-
fluences, et principalement a celles des autorités locales qui peuvent en abuser » et il
obligea la commune a engager un garde extérieur a la vallée (Gardelle, 1988).

La mise en place des lois sur la forét a entrainé une forte réaction des populations
montagnardes, trés pauvres. Si les vols de bois sont fréquents, c’est que c’est une condi-
tion de survie pour des populations extrémement pauvres, ce que Gardelle (1988) résu-
mait de la facon suivante: « I’administration, dont les ingénieurs se recrutent dans la
haute bourgeoisie des plaines, ne peut pas comprendre ces Vallorcins si lointains qui
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ne survivent qu’en volant du bois pour faire leurs seilles, en raclant la litiére 2>, en lais-
sant échapper leurs chévres a travers la forét. » L’historien Jérome Buridant concluait
« sur ce plan, 'administration pratique une certaine forme de despotisme éclairé, en
cherchant faire le bonheur des peuples contre leur gré » (Buridant, 2002). Quoique I’ad-
ministration forestiére minimisa la résistance vue tout au plus comme « 'expression
d’intéréts personnels isolés?* », la législation subit plusieurs infléchissements sous les
coups de boutoir des élus locaux (Jeudy, 2006). La loi du 8 juin 1864 autorisa ’engazon-
nement comme alternative au reboisement, ce qui permettait de réintroduire les activi-
tés pastorales. Dés 1876, le gouvernement tenta d’encourager la création de fruitiéres 2>
et le développement de troupeaux bovins au lieu des moutons et chévres, qui causaient
plus de dommages aux foréts. En France, la loi de 1882 avec l'instauration du service
RTM marque un changement de cap dans la politique nationale sans pour autant chan-
ger I'impopularité auprés des populations locales, une situation que Buridant (2002)
résume ainsi: « pour les populations montagnardes, [la restauration des terrains en
montagne] a été imposée par les gens de la plaine, d’abord et avant tout pour défendre
les villes de piémont des inondations. Défaut de dialogue, incompréhension mutuelle,
errements du législateur, manque de politiques d’accompagnement : sur ce plan, il faut
avouer que le reboisement des montagnes est aussi un échec. »

Avec l’exode rural qui débute a la fin du x1x° siecle et s’amplifie au xx° siecle, la
pression sur la forét diminue fortement. La vive opposition qui existait entre popula-
tions autochtones et administration s’apaisa fortement. La premiére guerre mondiale
marqua également la fin de la grande ére de la restauration en montagne.

Critique de la doctrine forestiere

Dans son étude sur l'effet du reboisement, le botaniste Félix Lenoble, farouche ad-
versaire de Mougin, concluait (Lenoble, 1926):

« D’ailleurs les travaux de reboisement et de correction de torrents
ont-ils une efficacité bien sérieuse contre ces paroxysmes des forces na-
turelles en montagne ? C’est douteux. La grandeur des masses en mouve-
ment, 'influence du relief et ’action de la pesanteur ont ici une prépondé-
rance telle que les obstacles qui leur sont opposés artificiellement figurent
de simples fétus. La prétention de '’homme de maitriser ces phénomenes,
formidables a I’égard de sa faiblesse, fait penser a celle d’une fourmi qui
croirait en remuant quelques grain de sable consolider les ruines de la
cathédrale de Reims. »

23. Les seilles étaient des seaux en bois de méléze et servaient au transport de 'eau ou du
lait. Le bois de litiére et le bois mort étaient ramassés pour le chauffage.

24. Expression tirée des « Comptes rendus des travaux de 1862 » (Imprimerie Nationale,
Paris) et citée par Buridant (2002).

25. Une fruitiére est une coopérative formée pour I'exploitation du lait et la fabrication des
fromage; c’est un terme employé principalement dans les Alpes.
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Les géographes, plus particulierement les géographes francais, se sont montrés parti-
culiérement critiques (Veyret, 1943).

Aujourd’hui, les études hydrologiques n’ont certes pas permis de trancher de fa-
con catégorique le débat sur le rdle des foréts sur les crues. Il n’y a pas de réponse
universelle a cette problématique car chaque bassin-versant a ses propres spécificités.
Toutefois, le consensus scientifique est le suivant: s’il est avéré que les foréts ont une
influence positive sur la genése et la propagation des crues en diminuant et étalant le
volume de crue, elles n’ont qu'un réle faible a marginal lors des phénomeénes de grande
ampleur. Par exemple, en Suisse et en France, les crues d’aotit 2005 ont montré que les
foréts n’avaient pas empéché la formation de crues torrentielles et inondations impor-
tantes et que, pis encore, elles avaient contribué a augmenter les dommages a cause des
bois flottants (Schwitter & Bucher, 2009). En outre, la comparaison entre des bassins-
versants avec des couvertures végétales différentes ne montre pas systématiquement
une efficacité plus grande de la forét pour freiner le ruissellement des eaux de surface
(Richard, 2002; Rey et al., 2004; Cosandey et al., 2005): c’est en général la perméabilité
du sol qui est le facteur clé.

Epilogue

La controverse tres vive entre scientifiques et forestiers existe toujours. La forét
joue un role sur le plan hydrologique en interceptant les pluies, en favorisant I'infil-
tration, en maintenant les sols en place grace au réseau racinaire, et en assurant une
humidité de l'air grace a I’évapotranspiration et donc des précipitations plus régulieres
(Spracklen et al., 2012; Meier et al., 2021).

Si certains considérent encore que la forét joue un role déterminant dans la pré-
vention des crues (Combes et al., 1995; Laurance, 2007; Alila et al., 2009; Kirchner et al.,
2020), la plupart pensent qu’il s’agit d’'un réle mineur, voire d’'un mythe. Calder &
Aylward (2006) résument ainsi la situation:

« Il y a un écart croissant entre la perception du public et les preuves
scientifiques concernant les causes des crues, leurs impacts, et les béné-
fices des mesures de prévention. Pour nous, cet écart résulte de 'intense
promotion de certains types d’utilisation du sol et d’interventions tech-
niques par des groupes d’intérét particulier en ’absence de toute diffusion
de données scientifiques qui auraient pu permettre de développer une vue
contraire. Pour nous, cet écart a pu aboutir non seulement a gaspiller des
fonds de développement (jusqu’a 10 milliards de dollars par an) pour des
objectifs irréalisables, mais également a blamer de facon injustifiée des
populations montagnardes de pratiques qui n’ont en général qu'un im-
pact limité sur les crues a I’aval. (...) Ce que 'on peut reconnaitre, avec
certitude, c’est que des solutions de gestion simplistes et populistes telles
que les programmes commerciaux de reforestation qui sont souvent mis
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en avant, ne peuvent pas offrir une solution générale et, dans la plupart
des situations, ont un intérét au mieux marginalement positif et, au pire,
des impacts négatifs. »

Propos exagérés ? Examinons ce que disait Yves Cassayre, alors responsable du service
national RTM, devant les sénateurs en 2002 2°

« Au milieu du siécle dernier, il n’y avait jamais eu autant de po-
pulation en montagne dans I'histoire. Cette population était essentielle-
ment constituée d’agriculteurs-éleveurs qui avaient entrepris pour leur
subsistance d’importants défrichements, ayant pour conséquences du sur-
paturage et une accélération de I’érosion en montagne. Des rapports d’in-
génieurs 'avaient déja relevé dans les années 1840-1850.

« La reprise de I’érosion en montagne a vraiment été constatée dans
la décennie 1850-1860. Cette décennie a en effet été marquée par d’impor-
tantes crues de la Garonne, du Rhone et de la Loire, tous ces fleuves pre-
nant leur source dans les départements de montagne. Les dégats occasion-
nés par ces inondations étaient intervenus non pas uniquement dans les
régions de montagne, mais aussi vers I’aval des fleuves. Le phénoméne
physique était le suivant: la montagne étant déboisée, les sols étaient mis
a nu, entrainant d’une part des crues plus fortes puisque les sols épon-
geaient moins, et d’autre part un entrainement beaucoup plus important
de matériaux solides. Ces phénomeénes d’inondations au cours de cette
décennie ont occasionné un grand nombre de victimes et de dégats.

« L’intervention des pouvoirs publics date de 1860 et du vote de la
premiére loi, une loi sévére de I'Etat centralisateur qui avait fait le rai-
sonnement suivant: « les populations de montagnes ont mal géré leur
terrain, on les exproprie, et I'Etat reboise ». Il est certain que cette me-
sure a engendré des résistances dans bien des campagnes, puisque cette
loi privait certains agriculteurs de paturages. Cette loi a ensuite été mo-
difiée en 1864, 1880 et 1882, amendée a plusieurs reprises, passant d’un
reboisement unique a un reboisement associé a un ré-engazonnement (a
vocation de paturage).

« Ce reboisement a commencé a porter ses fruits, mais vers 1890, les
praticiens se sont apercus qu’il fallait également effectuer des travaux de
génie civil. Ces missions de reboisement ont naturellement été confiées
a administration des Eaux et foréts de I’époque. Cette politique volonta-
riste de I'Etat fut assortie de crédits réguliers et abondants. Les expropria-
tions se sont faites de plus en plus a I’amiable. La réussite des grands reboi-
sements a été patente, surtout dans les Alpes du Nord et les Pyrénées. »

Ce responsable reprend 'antienne du montagnard dont I'irresponsabilité est la cause

26. Audition de M. Yves Cassayre, délégué national aux actions de restauration des terrains
en montagne (RTM) (3 avril 2002). Source senat.fr.


https://extranet.senat.fr/basile/visioPrint.do?id=r812049_4
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des crues majeures du x1x¢ siécle, et de I’action salutaire de I'Etat. S’ils avaient été
prononcés en 1902, ces propos n’auraient pas choqué, mais en 2002, ils illustrent que
les services de I'’Etat ont du mal a reconnaitre leurs erreurs et qu’en dépit de 1’évidence
scientifique qui s’accumule, on maintient des fictions et on récrit I'histoire.






OBJET DE CE CHAPITRE est d’expliquer pourquoi dans une zone a climat tem-
péré comme I’Europe, les conditions météorologiques peuvent donner nais-
sance a des phénomeénes naturels catastrophiques tels que les avalanches, les

crues, les coulées de boue. Dans un premier temps, on cherche a expliquer comment

fonctionne I'atmospheére et quelles en sont les conséquences en termes de variabilité
des conditions météorologiques. Enfin, on passera en revue les différents risques hy-
drologiques.

2.1 Variabilité des précipitations

Les risques hydrologiques tirent le plus souvent leur origine d'un comportement
anormal des conditions météorologiques. Ils sont donc intimement liés aux processus
climatiques et aux variations des conditions atmosphériques (vent, humidité, etc.). Il y
a quelques raisons bien simples pour lesquelles 'atmosphére n’est jamais stable, mais
au contraire toujours agitée et parcourue de courants:

- la terre tourne et ce mouvement de rotation entraine des mouvements d’air qui
sont majoritairement d’ouest en est dans I’hémisphére nord;

- laterre est chauffée par le soleil, mais les poles ne recoivent pas la méme quantité
de chaleur que I’équateur, ce qui crée un flux du sud vers le nord (toujours pour
I’hémispheére nord).

Les conflits de masses d’air entrainent des fluctuations considérables de pression et
d’humidité, dont une conséquence directe est la variabilité des conditions météorolo-
giques sous nos latitudes (climat dit tempéré), avec parfois I’occurrence de conditions
météorologiques particulierement défavorables.

La durée des périodes ol un régime météorologique prédomine sur une région don-
née est généralement cyclique (notamment a cause de I’alternance des saisons), mais

57



58 Chapitre 2  Climat et risques hydrologiques

n’est pas périodique. La transition d’un régime a un autre reste toujours difficile a pré-
voir pour le météorologiste ; cette transition se fait de facon plus ou moins chaotique .
Les caractéristiques (force du vent, intensité des pluies, température, etc.) sont égale-
ment tres variables a cause du nombre de processus en interaction.

2.1.1 Comment marche ’atmosphere?

Dans un premier temps, afin de comprendre de fagon basique comment marche
I’atmosphere, on peut retenir deux idées force:

- il y a des mouvements d’air dans la couche atmosphérique liés d’une part aux
différences de pression (rappelons le théoreme de Bernoulli: il existe un mouve-
ment d’air qui va des hautes vers les basses pressions, les zones de basse pression
étant celles ou la vitesse locale est la plus grande) et d’autre part, a la force de
Coriolis (effet centrifuge da a la rotation de la terre);

- il y a des circulations ascendantes et descendantes dues aux différences ther-
miques: I'air chaud est plus léger et donc a tendance a remonter vers les hautes
couches de 'atmosphére (vice versa pour lair froid).

Ces déplacements d’air a ’échelle atmosphérique peuvent étre décrits par le modeéle
de Palmén-Newton? schématisé sur la figure 2.1. La figure 2.2 montre une perspective
différente des circulations atmosphériques.

Principes généraux de circulation atmosphérique

Le principe général est le suivant: I'air équatorial est fortement chauffé par le soleil
et monte assez rapidement dans les couches supérieures de ’atmospheére jusque vers
la tropospheére. L’air se refroidissant avec ’altitude, il a ensuite tendance a redescendre
vers la surface terrestre. Les montée et descente forment une grosse cellule de convec-
tion dite cellule de Hadley, qui prend place au-dessus des océans entre I’équateur et les
tropiques. Un phénomeéne inverse se produit aux péles: le faible ensoleillement et le
bilan thermique négative (radiation) provoquent un important refroidissement de ’air,
qui a tendance a s’écouler vers le « bas » (le sud pour ’hémisphere nord). Durant sa des-
cente vers le « bas », I'air froid va rencontrer de I'air plus chaud. Cette rencontre n’est

1. La tres grande sensibilité des prévisions météorologiques a la moindre variation des don-
nées prises en compte avait été illustrée dans les années 1970 par un titre de conférence de-
venu célébre du météorologue américain Edward Lorenz, « Predictability: Does the Flap of a
Butterfly’s Wing in Brazil Set off a Tornado in Texas? », qui donna naissance au fameux « effet
papillon » et impulsion a une importante recherche sur le chaos déterministe.

2. Erik Palmén (1898-1985) était un météorologiste finnois. Son livre coécrit avec Chester
W. Newton, « Atmospheric Circulation Systems: Their Structure and Interpretation » en 1969
présente ses travaux sur les fronts d’air, le jet stream, et de fagon générale la circulation atmo-
sphérique.
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Figure 2.1 — Schématisation des circulations atmosphériques selon le modele de
Palmén-Newton dans un plan vertical.

Figure 2.2 — Schématisation des circulations atmosphériques (modele de Palmén-
Newton) selon les hémispheres. Source : University of Oregon.

pas progressive, mais assez brutale et donne lieu a la formation d’une discontinuité
appelée front polaire qui s’étend jusqu’a nos latitudes vers environ le 40° paralléle. Ce
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front est instable; il oscille en permanence en éjectant de I'air en altitude et il est asso-
cié a des vents particuliérement violents au-dessus des océans (les plus connus étant
ceux de I'hémisphére sud, ce qui a valu 'appellation de 40° rugissant). Outre ces mou-
vements dans un plan vertical, il existe des circulations dans un plan transversal, qui
assez étrangement sont confinées dans des couloirs bien délimités appelés les jets (1 km
de haut, 100 km de large) dans lequel le vent s’engouffre et atteint des vitesses élevées
(plus de 250 km/h); ce sont ces couloirs qui sont par exemple recherchés par les vols
transatlantiques de retour d’Amérique.

Il s’agit évidemment d’une vision trés simplifiée du probléme. Bien d’autres para-
metres vont rendre les processus plus complexes. C’est ce que I’on va examiner mainte-
nant. On s’intéresse ici aux principales sources de fluctuations, qui permettent d’expli-
quer la variabilité et les cycles observés. Il existe d’autres causes de variation climatique
liées a I'occurrence de phénomenes géologiques ou astronomiques, dont nous ne par-
lerons pas ici®.

Roéle de ’ensoleillement

L’ensoleillement et donc le bilan thermique varient au cours de I’année. Le cycle
saisonnier joue sur 'emplacement privilégié des centres dépressionnaires et anticyclo-
niques comme le montre la figure 2.3.

Role des océans

L’océan est un réservoir d’énergie. Les échanges thermiques avec 'océan vont
amortir ou bien alimenter les instabilités atmosphériques. Ainsi, les courants océa-
niques comme le gulf stream jouent un réle important sur le plan climatique. Des
phénomeénes étranges comme El Nifio? sont dus & un couplage entre courant marin
et circulation atmosphérique sur tout un hémisphere.

3. Par exemple, on rapporte que explosion du volcan Tambora (Indonésie) en avril 1815 a
entrainé une modification passagére, mais globale de ’atmosphére (cendres, gaz émis), dont les
conséquences se sont fait sentir jusque dans ’hémisphére nord en 1815 et 1816 par une baisse
spectaculaire des températures (Luterbacher & Pfister, 2015). Plus récemment, en 2023, I’érup-
tion du volcan sous-marin Hunga Tonga-Hunga Ha’apai dans le Pacifique a émis de grandes
quantités de vapeur d’eau, que certains scientifiques considérent étre la cause du fort réchauf-
fement planétaire observé en 2023 (Esper et al, 2024; Jucker et al., 2024).

4. Ce phénoméne a été mis en évidence en 1923 par un brillant physicien anglais, Sir Gilbert
Walker (1868-1968), qui cherchait a prévoir la mousson (arrivée et intensité des pluies) qui
s’abat sur les contreforts himalayens chaque année. A partir d’'un travail de dépouillement sta-
tistique titanesque (pour les moyens de I’époque), Walker a montré l'existence d’une corrélation
forte entre les pressions de part et d’autre de ’océan Pacifique. Ce qui se passe au large de I'In-
donésie ou au-dessus du sol indien est fortement dépendant des courants marins le long de
la cote péruvienne. Il proposa un index (qui aujourd’hui porte son nom), qui mesure ’écart
de pression entre 'est et 'ouest de I'océan Pacifique. Quand l'indice (et donc la différence de
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Figure 2.3 — Emplacement des principaux centres anticycloniques (high pression) et
dépressionnaires (low pression) sur les deux décennies 1979-98. Source : University of
South California Dornsife.

Effet du relief

Sur la surface solide, le relief montagneux ou les plaines sont également des para-
metres qui influent sur la circulation atmosphérique. La terre se réchauffe et se refroidit
généralement plus vite que les océans, ce qui provoque des vents plus ou mois forts se-
lon I’écart thermique ainsi généré. L’océan offre également bien moins de résistance au
vent que la terre ferme (en présence de relief).

Durant I’été, lorsque les champs de pression sont plus homogénes sur ’hémisphére

pression) augmente, la pression est élevée le long de la cote américaine, entrainant des vents
forts (alizés). Lorsque l'indice diminue, les alizés sont moins forts, avec pour conséquence des
hivers plus doux sur toute la bordure pacifique du continent nord-américain et une sécheresse
marquée sur une partie de ’Asie, ’Australie, et la cote est de ’'Afrique. El Nifio apparait avec
une fréquence irréguliére (une a deux fois par décennie).
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nord, ce sont le plus souvent ces phénomeénes convectifs qui prédominent alors et de
ce fait, le relief joue un réle trés important. C’est ainsi que des valeurs record de préci-
pitations lors d’orages sont enregistrées sur le sud-est de la France et certaines parties
des Pyrénées espagnoles. Ainsi en Aragon, a Biescas, un orage dont 'intensité dépassa
les 100 mm de pluie en 10 min provoqua une crue d’un torrent, qui balaya un camping,
tuant 87 personnes.

Oscillations polaires et australes

Les courants atmosphériques appelés courant-jet (jet stream en anglais) oscillent
en permanence au gré des saisons (selon le bilan thermique des régions survolées) et
a cause d’une instabilité mécanique, qui donne naissance a des ondes dites ondes de
Rossby®. Certains hivers, ces oscillations sont plus marquées et peuvent amener a la
création de cellules de haute et basse pressions, qui peuvent rester stationnaires, avec
pour conséquence directe des situations de blocage météorologique. Ce sont ces situa-
tions qui peuvent générer des conditions météorologiques extrémes (température trés
basse ou bien succession de passages perturbés). Pour ’Europe, ces oscillations donnent
naissance a trois systémes (voir figure 2.4):

- Panticyclone des Acores (hautes pressions);
- dépression islandaise (basses pressions); et

- l’anticyclone centré sur la Sibérie.

Le mouvement des masses d’air associées conditionnent le temps sur I'Europe. Comme
pour I'indice Walker utilisé pour la mousson, on peut définir un indice d’oscillation po-
laire ou indice NAO (North Atlantic Oscillation index en anglais) comme la différence
de pressions entre la dépression islandaise et ’anticyclone des Acores (en pratique, dif-
férence barométrique entre Reykjavik et Lisbonne ou Gibraltar). L’indice NAO fluctue
d’année en année et montre des cycles, dont la durée moyenne s’étend sur la décennie
comme le montre la figure 2.5 pour la saison hivernale (ou les différences sont les plus
marquées par rapport aux autres saisons). On interpréte généralement 'indice NAO de
la facon suivante.

— Une valeur positive de 'indice NAO indique I'anticyclone des Acores est plus
fort que d’habitude et/ou que la dépression islandaise est plus creusée. Cette dif-
férence accrue de pression favorise donc les vents forts atlantiques, aboutissant
le plus souvent a des hivers humides et doux sur les Alpes et des temps froids
et secs sur le nord de ’Europe (ainsi qu’au Canada et au Groenland), comme
le montre figure 2.6(a). L’axe des vents forts est également décalé vers le nord.
L’hiver exceptionnel de 1995 ou celui de 2007 en offre un exemple.

5. Carl-Gustaf Arvid Rossby (1898-1957) était un météorologue suédois (qui émigra aux
Etats-Unis par la suite), dont les travaux ont porté sur le déplacement a grande échelle des
masses d’air. Rossby a expliqué ces phénoménes en se fondant sur la mécanique des fluides.
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— Dans le cas opposé, lorsque I'indice NAO est négatif, le gradient de pression
entre les régions polaires et subtropicales reste faible, entrainant des vents et
des passages perturbés atlantiques de plus faible intensité et moins fréquents
que d’ordinaire, alors que dans le méme temps, I’anticyclone centré sur la Sibérie
envoie de l'air polaire froid [voir figure 2.6(b)]. Une grande partie de ’Europe est
alors plongée dans un temps sec et trés froid; les vents d’ouest d’altitude sont
non seulement moins forts, mais également décalés vers le sud. Le terrible hiver
1916-17 pendant la grande Guerre en est un exemple typique.

Outre les oscillations australes (indice ENSO pour El Nifio Southern Oscillation) et
nord-atlantiques (indice NAO), il existe des oscillations sur le Pacifique Nord (indice
SPO pour South Pacific Oscillation); toutes ces oscillations sont plus ou moins cou-
plées et également liées a des variations des courants marins comme le gulf stream.
L’essentiel de la variabilité météorologique observée a I’échelle d’un pays peut généra-
lement s’expliquer par ces fluctuations des courants atmosphériques et marins.

Notons que la description faite des oscillations nord-atlantiques et de leur influence
sur les conditions météorologiques ne donne que les grandes tendances. Les régimes
de temps a grande échelle se caractérisent par une grande variabilité, qui rend difficile
toute classification. Cette description est, néanmoins, suffisante a camper le décor.

Influence du soleil

Des phénomeénes astronomiques interviennent également sur le climat. Par exemple,
le champ magnétique solaire varie de fagon assez réguliére avec des cycles de 11 ans® et
des cycles de plus longue période (de ordre de la centaine d’années) (Gray et al., 2010).
L’activité solaire produit une ionisation des couches supérieures de ’'atmosphere, ce
qui peut affecter la structure de ’atmosphére, notamment en favorisant une réduction
de la couverture nuageuse et un refroidissement accru de la surface terrestre. Le Petit
age glaciaire serait en partie dii a une réduction importante de l'activité magnétique
terrestre.

Selon certains auteurs (Hurrell & Van Loon, 1997; Kuroda et al, 2022), I'activité
solaire explique les variations de I'indice NAO et l'existence de cycles. Sur la figure
2.5(a), on a reporté I’évolution de la différence de pression entre Reykjavik et Gilbratar.
Le signal semble trés bruité. Si on ne retient que la saison hivernale (voir 2.5(b)), des
cycles de plusieurs années apparaissent. Pour caractériser ces cycles, c’est-a-dire tirer
une tendance non linéaire d’un signal trés bruité, on peut employer un filtre passe-
bande comme celui de Lancsoz (Trenberth, 1984). C’est ce que I'on fait sur la 2.5(c) en
appliquant un filtre de Lancsoz avec une fenétre de 31 années; la fréquence de coupure
basse est 1/15 an~! tandis que la fréquence de coupure haute est 1/8 an~! en sorte que

6. Le phénomeéne fut mis en évidence par un astronome suisse, Johann Rudolf Wolf (1816-
1893), vers les années 1850. Wolf montra également la corrélation entre champs magnétiques
terrestre et solaire.
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Figure 2.4 — Cheminement du jet stream polaire dans ’hémisphére nord au fil des
saisons. On part d’une situation ou le jet stream part du Tibet (air chaud) puis remonte
vers les régions polaires; c’est la situation classique rencontrée en été (figures a et d).
L’hiver, le courant se met a osciller entre le 60 et le 40° paralleles, avec en général quatre
a cinq ondulations, qui donnent naissance a des centres dépressionnaires (low pressure
= L sur les figures b et c).

I’on retienne principalement les fréquences autour de 1/11 an~! (puisque 11 ans est la
période attendue de l'activité solaire). Pour I’activité solaire, les mesures d’irradiation
solaire ne sont disponibles que depuis quelques décennies. On peut employer comme
substitut le nombre moyen de taches solaires par mois, une donnée disponible depuis
1749. La figure 2.5(c) compare la valeur filtrée de I'indice NAO pour février et le nombre
de taches solaires. On observe que I'indice NAO et I’activité solaire sont bien corrélés,
méme si parfois il y a un décalage d’un an (que les chercheurs attribuent au réle tampon
de 'océan).
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Figure 2.5 — Variation de I'indice hivernal NAO de 1820 a nos jours. (a) Valeurs men-
suelles pour tous les mois de 'année. (b) Valeurs moyennées sur la saison hivernale
couvrant les mois de décembre a mars (compris). (c) Indice NAO pour le seul mois de
février. L’indice est calculé en faisant la différence entre la pression au niveau de la mer
a Stykkisholmur prés de Reykjavik (Islande) et Gilbratar (Espagne). La différence est
ensuite normalisée en prenant I’écart relatif par rapport a la valeur moyenne (sur toute
la série) de telle sorte que les valeurs fluctuent autour de 0. La courbe continue noire
montre la moyenne de I'indice NAO (pour février) calculée a partir d’un filtre passe-
bande de Lancsoz. Les points sont les valeurs de I'indice NAO pour février (en bleu
quand elles sont négatives et rouges dans le cas contraire). La courbe orange montre
I’évolution du nombre moyen de taches solaires (utilisé comme substitut de ’activité
solaire). Source: données NAO East Anglia Climate Research Unit et taches solaires
Source: WDC-SILSO, Royal Observatory of Belgium, Brussels.


https://crudata.uea.ac.uk/cru/data/nao/
https://www.sidc.be/SILSO/datafiles
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(a)

(b)

Figure 2.6 — Conditions climatiques en hiver sur I'Europe. Source: David B.

Stephenson). (a) Indice positif entrainant un hiver humide sur I’Europe et (b) hiver
sec et froid.


http://www1.secam.ex.ac.uk/cat/NAO
http://www1.secam.ex.ac.uk/cat/NAO
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2.1.2 Le passage d’une perturbation

On vient de voir comment a I’échelle de I’atmosphere, le temps s’organise. Il faut
maintenant dire quelques mots sur la facon dont les conditions météorologiques vont
varier a une échelle plus petite (dite synoptique), c’est-a-dire a I’échelle d’un pays comme
la Suisse ou la France. On va principalement s’intéresser ici aux dépressions baroclines
(C’est-a-dire liées aux variations de champ de pression a grande échelle par opposition
aux phénomeénes d’origine convective liés & un gradient de température et se produisant
a une échelle généralement bien plus petite), appelées encore dépressions synoptiques.

Tout d’abord, rappelons qu’en raison de la circulation atmosphérique générale, les
masses d’air froid polaire et chaud tropical se cotoient le long des courants jets. Ce
contact ne reste pas longtemps pacifique. Trés schématiquement, on peut dire que lair
froid, dense, a tendance a s’écouler vers le sud et qu’en échange I'air chaud s’efforce
de progresser vers le nord. Ces zones d’échange constituent les dépressions dont le
centre se comporte comme un véritable tourbillon, lui-méme entrainé par le flux géné-
ral (en majorité d’ouest a nos latitudes). L’effet d’aspiration vers le centre du tourbillon
(convergence) provoque un enroulement en spirale ou en « coquille d’escargot » si
caractéristique sur les images satellite.

Figure 2.7 — La perturbation née de la zone de contact (rencontre des masses d’air
tropical et polaire) provoque un enroulement en spirale caractéristique sur les vues de
satellite.

Dans le méme temps l'air chaud, plus léger que l’air froid environnant, est en per-
manence rejeté en altitude. La zone de contact entre les deux s’établit donc selon des
surfaces (plus ou moins) faiblement inclinées que 'on appelle surfaces frontales dont
Iintersection avec le sol constitue des lignes appelées fronts qui composent la pertur-
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bation proprement dite. On distingue deux types de front:

— Lorsque le déplacement de ces lignes est impulsé par de lair chaud, celui-ci, au
cours de son effort pour remplacer (littéralement laminer) lair froid antérieur,
est obligé du fait de sa faible densité de passer au-dessus de ce dernier, de se
soulever: on parle de front chaud (voir figure 2.8).

- Lorsqu’au contraire I'impulsion vient de Iair froid, celui-ci du fait de sa forte
densité se déplace comme un coin qui serait dirigé vers le sol et il souléve devant
lui lair chaud plus léger: on parle alors de front froid (voir figure 2.9).

Figure 2.8 — Dans le cas d’un front chaud, l'air chaud monte lentement au-dessus
de l'air froid. Comme la surface frontale est faiblement inclinée, le front s’étend sur
plusieurs centaines de kilometres. Les cartes météorologiques ne peuvent pas rendre
compte de I’étalement de la surface frontale en altitude. Pour le représenter sur une
carte, on trace I'intersection de la surface frontale avec le sol. La frontiére ainsi délimi-
tée est appelée front chaud. Source: Météo Suisse.

Figure 2.9 — Dans le cas du front froid, I’air chaud est chassé par l’air froid et rejeté
violemment en altitude. La surface frontale est fortement inclinée, le front s’étend sur
quelques dizaines de kilomeétres. Source: Météo Suisse.


https://www.meteosuisse.admin.ch/meteo/meteo-et-climat-de-a-a-z/front-chaud.html
https://www.meteosuisse.admin.ch/meteo/meteo-et-climat-de-a-a-z/front-froid.html
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Dans les deux cas, le soulévement de I'air chaud en altitude provoque des phéno-
menes de détente et donc une tres forte condensation. En définitive, il y a apparition
le long des lignes frontales de zones nuageuses trés étendues et suffisamment épaisses
pour provoquer des précipitations. Enfin, au cours de I’évolution d'une perturbation
(et notamment la ou air froid se déplace tres rapidement) lair froid rejette tout lair
chaud en altitude et parvient a rattraper une autre masse d’air froid aux caractéristiques
différentes, puis a entrer en contact avec lui: on parle alors d’occlusion.

Chaque perturbation amene son lot de nuages et de précipitations mais aucune
n’est exactement semblable a ’autre. On peut néanmoins décrire le scénario « type »
du passage d’une perturbation océanique, c’est-a-dire circulant dans un flux général de
sud-ouest a nord-ouest, tel qu’il peut étre observé d’un point donné de notre continent.
On peut découper ce scénario en trois phases:

— larrivée de l'air chaud (front chaud);
- la zone de transition entre le front chaud et le front froid;

— larrivée de 'air froid (front froid).

L’arrivée de I’'air chaud (ou si 'on préfere 'approche d’un front chaud) se mani-
feste d’abord a haute altitude par 'apparition de nuages fibreux plus ou moins espacés
(cirrus) qui, sil’aggravation est sérieuse, sont bientdt remplacés par des voiles grisatres
de plus en plus épais de cirrostratus (halo). La pression atmosphérique peut étre déja
en baisse sensible. Le vent généralement se renforce, au moins sur les hauts sommets
ou il s’oriente généralement (tout au moins dans le cas d’une circulation océanique) au
sud-ouest.

Notons que l’apparition de cirrus et de cirrostratus annonce souvent une dégrada-
tion plus ou moins rapide des conditions météorologiques, mais pas toujours. La partie
active du front chaud peut en effet passer nettement plus au nord, cas fréquent dans
les Alpes du Sud dans le cas d’'un régime océanique, ou bien ces nuages ne sont pas
associés a une perturbation organisée et ne font que passer, pris dans un rapide cou-
rant général d’altitude qui peut étre, lui, franchement anticyclonique sur nos régions
et provenant de « champs de bataille » dépressionnaires tres éloignés.

Généralement la concomitance de ces nuages, d’'un renforcement du vent et d’une
forte baisse de la pression constitue un indice assez fiable d’aggravation sérieuse qui va
trouver sa confirmation, au fil des heures, par l'arrivée d’altostratus (voile épais mais
encore translucide par endroit) et (ou) d’altocumulus (appellation générique recouvrant
des nuages pouvant avoir des aspects tres différents: nappes en galets, rouleaux plus
ou moins soudés ou bancs effilés en forme d’os de seiche). Ces nuages évoluent entre
3000 et 5000 m, de sorte que les hauts sommets sont déja pris et recoivent bientot les
premieres précipitations. En région de plaine et de vallée, les conditions sont encore
clémentes malgré la disparition du soleil. La baisse de pression s’accentue.

Lorsque le front lui-méme se rapproche (on parle alors de corps perturbé), le plafond
baisse graduellement ou parfois trés vite jusqu’a noyer la montagne dans des nuages
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trés sombres et aux contours flous (nimbostratus) que I’on peut éventuellement distin-
guer de la vallée tandis que les sommets sont pris dans le brouillard. Les précipitations
se renforcent. Elles sont souvent plus fortes qu’en plaine. C’est d’ailleurs vrai aussi bien
pour le front froid que pour le front chaud. En effet, a 'effet de souléevement frontal, se
superpose celui dii a la présence du relief (on parle alors de soulévement forcé).

A souligner que I'accroissement des précipitations avec ’altitude n’est pas homo-
géne ni d’'un massif a autre, ni méme a I’échelle d’un seul massif. La position de celui-ci
par rapport au flux général mais aussi la topographie locale jouent un réle important.
Les ascendances (et donc l'instabilité) sont renforcées en des endroits privilégiés: par-
ties concaves, resserrements des vallées, cirques, etc.

Du coté des températures, la masse d’air s’est globalement radoucie méme si I'im-
pression ressentie est parfois tout autre. Ce radoucissement peut entrainer, au-dessous
d’une certaine altitude, la transformation de la neige en pluie mais, pour une masse d’air
donnée, ce niveau d’altitude pourra étre trés variable d’'un massif a Pautre. En hiver
dans le nord des Alpes, les massifs préalpins sont soumis de plein fouet au redoux. En
revanche, dans les massifs situés plus a I'intérieur, 'air froid antérieur reste longtemps
prisonnier des vallées et I’air chaud a bien du mal a le remplacer.

Une fois le front chaud passé, on entre dans ce que les météorologistes appellent
le secteur chaud. Les précipitations s’arrétent ou deviennent tres faibles voire spora-
diques. L’air est nettement plus doux. La couche nuageuse se fractionne et des éclaircies
peuvent apparaitre entre des bancs nuageux persistant a plusieurs niveaux.

En fait, la physionomie du secteur chaud va beaucoup dépendre de la position
exacte ou I'on se trouve par rapport au centre de la dépression ou plutdt par rapport a
ce que l'on appelle le point triple de la perturbation et qui n’est que la projection sur
un plan horizontal de I'intersection des fronts chaud et froid avec 'occlusion. Si 'on
s’en trouve assez prés, le secteur chaud ne verra que trés peu d’amélioration sensible
du temps. Seule une légere et temporaire atténuation des précipitations sera observée
avant ’arrivée, souvent rapide, du front froid. Au contraire, plus on est loin du point
triple et plus 'amélioration peut étre belle. Dans certains cas, la masse d’air s’asseéche
considérablement surtout dans sa partie supérieure tandis que I’humidité reste impor-
tante dans les basses couches: brumes et nuages de type stratus (sorte de brouillard
décollé du sol) ou stratocumulus (d’aspect voisin de certains altocumulus mais d’alti-
tude nettement plus basse) persistent en plaine et vallée alors qu’il fait assez beau en
montagne, tout au moins a partir d’'une certaine altitude, avec des voiles nuageux tres
élevés plus ou moins denses.

Dans tous les cas de figure, la pression atmosphérique se stabilise. Le vent général
souffle maintenant de I’ouest. Il reste souvent fort a trés fort dans les secteurs chauds
actifs mais autrement, il a tendance a faiblir.

L’irruption de air froid provoque un nouveau soulévement de I’air chaud qui s’ac-
compagne d’une aggravation nuageuse et pluvieuse souvent brusque, beaucoup plus
rapide en tout cas que celle due au passage du front chaud (la pente du front froid est
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Figure 2.10 - Passage d’une dépression polaire, avec passage dans un premier temps
d’un front chaud, puis d’un front froid. Si ce dernier rattrape le front chaud, il y a
occlusion: I'air chaud se retrouve entiérement rejeté en altitude.

en effet plus forte). Le vent a tendance a revenir temporairement au secteur sud et la
pression recommence a baisser. Au passage du front froid proprement dit, les préci-
pitations sont intenses, accompagnées souvent de manifestations orageuses durant le
printemps et I’été, parfois méme en plein hiver lorsque la poussée froide est suffisam-
ment vigoureuse pour entrainer de rapides ascendances turbulentes qui donnent lieu a
la formation de ces fameux cumulonimbus (nuages trés sombres et trés développés ver-
ticalement, en forme de tours finissant par une enclume, particuliérement redoutables
pour alpiniste).

Dans le cas d’un secteur chaud actif, I’arrivée du front froid ne constitue pas a pro-
prement parler une surprise puisque I'on est déja dans le mauvais temps. En revanche,
si le secteur chaud a été peu actif ou carrément inexistant (puisque certaines pertur-
bations se présentent privées en quelque sorte de leur front chaud), le front froid peut
arriver sans signe annonciateur dans le ciel.

Puis, tout aussi brusquement qu’elle avait commencé, la pluie cesse et un coin de
ciel bleu apparait. L’atmosphere est plus fraiche. La pression connait une hausse, elle
aussi brutale. Le vent s’oriente franchement nord-ouest a nord. Le front froid est passé.
On est déja dans ce que les météorologistes appellent la traine, appellation générique
qui, en région de plaine, se traduit souvent par un temps incertain avec alternance de
belles éclaircies et de passages nuageux plus ou moins denses et parfois accompagnés
d’averses ou bien par un ciel le plus souvent gris et bas. Mais en montagne, surtout
I'hiver, les temps de traine sont ressentis bien différemment. En gros, deux schémas sont
possibles tout en admettant, surtout a partir du printemps, de nombreuses variantes:

- Soit les masses d’air froid postérieures sont relativement homogeénes avec leur
humidité concentrée essentiellement en basse couche. Dans ce cas, méme si la
masse d’air est potentiellement instable, les phénomeénes de convection (liés a
I’échauffement par le bas) sont insignifiants en région de montagne (tempéra-
tures trop froides, sol enneigé) et les nuages s’étalent en stratocumulus consti-
tuant ainsi les fameuses mers de nuages qui, si elles persistent, constituent un
cauchemar pour ceux qui vivent au-dessous, et... un paradis pour les monta-
gnards qui bénéficient d’un ciel bien dégagé et généralement trés limpide. Suivant
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les cas, le sommet de ces mers de nuages se situe entre 1000 et 2000 m. Au-dessus,
il n’y a que le vent, qui peut rester fort au moins sur les crétes, et les avalanches
dues aux récentes chutes de neige pour poser probléme.

— Soit I’air froid postérieur comporte des limites secondaires surtout marquées en
altitude et qui correspondent a des discontinuités d’épaisseur de la couche d’air
froid instable. Alors, dans ce cas, celles-ci vont se comporter en région de mon-
tagne comme de véritables fronts, le vent et le relief provoquant de nouveaux
soulévements. Ainsi, apres les quelques éclaircies qui ont suivi immédiatement
le passage du front, le mauvais temps affecte a nouveau le relief qui reste alors
dans le brouillard et soumis a des précipitations quasiment continues sous forme
de neige jusqu’a des altitudes de plus en plus basses. Ces chutes de neige se pré-
sentent souvent sous forme de neige roulée en raison du caractére instable de la
masse d’air. En résumé, le front froid est passé depuis longtemps et pourtant on
a 'impression que rien n’a vraiment changé.

Les successions de perturbation/traine active (fréquentes dans les régimes d’ouest
a nord-ouest) apportent des précipitations neigeuses souvent importantes sur le nord
des Alpes. Ce sont surtout elles qui favorisent un bon enneigement a basse et moyenne
altitude durant la saison hivernale.

Par ailleurs, bien plus qu’au passage des fronts eux-mémes, les traines donnent lieu
a des effets de foehn assez spectaculaires entre le sud et le nord des Alpes, voire entre
des massifs relativement proches. Par régime de nord-ouest par exemple, on observe
souvent un dégradé du mauvais vers le beau entre les Préalpes du Nord et les massifs
plus intérieurs comme le Valais et plus encore derriére la ligne de foehn, vers le Tessin,
ou la masse d’air, aprés avoir en quelque sorte déversé son humidité sur les massifs
situés en amont du flux, continue son voyage sous une forme nettement asséchée qui
entraine souvent du grand beau temps.

Nous venons de voir le scénario-type d’une perturbation océanique c’est-a-dire
correspondant a une circulation zonale (de secteur ouest au sens large) qui est généra-
lement la plus fréquente sur les Alpes d’octobre a avril. D’autres sont possibles: méri-
diennes (Sud ou Nord), elles apportent dans le premier cas d’importantes précipitations
limitées au sud des Alpes soit, dans l’autre, du froid bien siir mais généralement peu
d’humidité. Enfin, du fait de creusements dépressionnaires importants dans le golfe de
Génes, certaines perturbations océaniques se réactivent en Méditerranée et reviennent
en quelque sorte vers les Alpes ou elles peuvent provoquer en quelques heures d’abon-
dantes chutes de neige sur la chaine frontaliére avec I'Italie). Ce sont les situations dites
de retour d’est.

De mai a septembre, les pulsations d’air froid polaire deviennent moins vigoureuses
et le temps sur les Alpes est plus souvent commandé par des situations moins bien orga-
nisées ou les évolutions convectives prennent le dessus sur celles purement dynamiques.
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2.2 Changement climatique

2.2.1 Apercu sur Uhistoire de la théorie du climat

Au x1x° siecle, les scientifiques prirent conscience que I'histoire de la Terre était
beaucoup plus ancienne que ce que le récit de la Bible - le seul qui jusqu’alors faisait
mention de la formation de la Terre — laissait croire, et que le climat variait. La preuve
la plus évidente des variations climatiques était les glaciers. Dés la fin du xvi® siécle,
I’existence de moraines en Ecosse ou la présence de roches polies et de blocs erratiques’
qui semblaient avoir été transportés par des forces mystérieuses amenérent a I'idée que
les glaciers avaient autrefois eu une extension bien supérieure a ce que 'on pouvait ob-
server de nos jours (Kriiger, 2013). Les glaciers, en voie de disparition dans de nombreux
massifs montagneux a travers le monde, restent la figure emblématique de changement
du climat. La figure 2.11 montre ’exemple du glacier de Schaltenkees au Tyrol, dont la
perte de masse a été spectaculaire en seulement quelques années. La figure 2.12 montre
une série de photographies du glacier du Rhone (VS) sur quelques décennies. Sa proxi-
mité de la route en a fait une attraction touristique depuis le xvii® siecle et a facilité
les relevés topographiques, ce qui a permis de suivre son évolution depuis la fin du
x1x° siécle (voir figure 2.13).

A la méme époque naissait aussi I’hypothése que ’homme pouvait influer sur le
climat. Selon certains, la déforestation avait un effet positif sur le climat, tandis que
d’autres supposaient exactement I'inverse: c’est le défrichement qui conduit a la ruine
de la civilisation (Fressoz & Locher, 2020). En I’absence de mesures fiables des tem-
pératures® et de la pluviométrie, il était difficile de prouver cette action de ’homme
sur le climat et de savoir dans quel sens cette action se faisait. En 1821, le gouverne-
ment francais langait une enquéte aupres des préfets pour collecter les preuves d’'un
changement climatique (Bainville & P., 1995), mais aucune tendance claire n’en fut ti-
rée; le consensus penchait plutdt vers un effet néfaste du déboisement (voir § 1.5.4).
Au xx° siécle, ce n’est plus le déboisement causé par 'agriculture extensive et 1’éle-
vage qui a semblé étre le probleme, mais 'industrie qui en polluant villes et milieux
naturels était accusée de modifier le climat (McNeill, 2010; Fressoz, 2012). C’est ainsi
qu’a la toute fin du x1x° siecle, Svante Arrhenius entrevoit le réle joué par le dioxyde
de carbone dans I'interception du rayonnement terrestre, et que son ami Nils Ekholm

7. En Suisse, notamment, ce fut un berger de Bagnes, Jean-Pierre Perraudin, qui attira 'inté-
rét scientifique du géologue cantonal, Ignace Venetz, puis du directeur des Salines de Bex, Jean
de Charpentier, et finalement du professeur d’histoire naturelle Louis Agassiz, alors en poste a
Neuchatel. Les blocs erratiques étaient alors souvent percus comme la preuve de l'existence du
déluge, mais pour Perraudin, ils pouvaient s’expliquer par la poussée glaciaire dans des temps
anciens.

8. Le thermometre a été créé par le médecin italien Sanctorius en 1608 et a été progressive-
ment perfectionné (Beaurepaire, 1995), mais jusqu’au X1x° siécle, le protocole de mesure a varié
fortement, et un doute subsistait quant a la possibilité d’interpréter les séries de mesures.



74 Chapitre 2  Climat et risques hydrologiques

Figure 2.11 - Le glacier de Schaltenkees dans I'est du Tyrol (Autriche) entre 2020

et 2024. Voir I’évolution depuis 1974 sur le site glacierchange.com. Source: Ingemar
Wibmer.

détaille le role des couches atmosphériques dans le bilan radiatif et son influence sur
le climat (Arrhenius, 1896; Ekholm, 1901). Pour les deux savants suédois, I’accumula-
tion de dioxyde de carbone dans I’atmosphére pourrait amener a un adoucissement du
rude climat suédois, mais dés 1914, 'ingénieur francais Louis de Launay se montrait
plus pessimiste sur cette accumulation. I concluait ainsi son article sur la finitude des
ressources minieres:

« Pour produire quelque 8000 milliards de combustibles minéraux,
combien n’a-t-il pas fallu de végétaux accumulés et trés accidentellement
préservés de la combustion dans la durée des temps géologiques; donc
quelle absorption d’acide carbonique emprunté a ’air ? Et, le jour ou cet
acide carbonique aura été restitué aux couches inférieures de I’air par
nos cheminées d’usines, quels changements (dont nous avons déja le pro-
drome sur les grandes villes industrielles) ne manqueront pas d’étre réa-
lisés peu a peu dans nos climats ? »


https://glacierchange.com/en/schlatenkees/
https://www.instagram.com/p/C-TBy6CtHgA/?img_index=1
https://www.instagram.com/p/C-TBy6CtHgA/?img_index=1
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Au xx° siécle, I'intérét pour ’histoire du climat et la recherche de ses mécanismes
sont allés en grandissant (Weart, 2008). L’hypothése d’Arrhenius sur le role des gaz a
effet de serre dans le climat est en passe d’étre oubliée, voire considérée comme une
fausse piste dans la premiere moitié du xx® siécle (Weart, 2008). La découverte de la
dérive des continents et de cycles astronomiques parait a beaucoup ’explication la plus
raisonnable pour expliquer la variation du climat a I’échelle géologiques (Weart, 2008).
La vision sur le climat et ses mécanismes change dans la seconde moitié du xx° siécle.
Les études historiques et les analyses de reconstitution des climats passés montrent
que méme a une échelle de temps courte (celle du siécle), le climat subit des cycles et
des variations parfois brutales (Le Roy Ladurie, 1967; Casty et al., 2005; Glaser et al.,
2010; Mediero et al., 2015; Ljungqvist et al., 2016; Hanel et al., 2018; Fressoz & Locher,
2020; Ménégoz et al., 2020; Pfister & Wanner, 2021; Renard et al, 2023). Par exemple,
pour le seul xx° siecle et la Suisse, 'intensité et la fréquence des fortes pluies a varié
au fil des décennies quelle que soit la durée de précipitation considérée (Scherrer et al.,
2016; Bauer & Scherrer, 2024). Si I’'on reprend I'exemple des glaciers comme indicateur
climatique, il est manifeste que I’évolution n’est pas réguliere; ainsi, pour le glacier
du Rhone (voir figure 2.13), le glacier a avancé a quelques reprises (durant la décennie
1910, puis entre 1960 et 1980), ou a pu régresser fortement (comme au début des années
1940). De méme pour les températures, si consensus actuel est qu’a partir du milieu du
x1x° siécle, la Terre a commencé a se réchauffer, 'accroissement de températures n’est
pas régulier, mais a connu des cycles de hausse, de baisse et de stagnation (voir figure
2.14).

La tendance globale est qu’a I’échelle de la planéte, le réchauffement a dépassé 1 °C
depuis 1900, tandis qu’a I’échelle de la Suisse, le réchauffement a été plus marqué, avec
en général un accroissement supérieur a 2 °C (Rebetez & Reinhard, 2008; Rebetez, 2011)
(voir figure 2.15). Dans les Alpes, ce réchauffement est encore plus marqué et dépasse
souvent 3 °C en moyenne annuelle (Beniston, 2009; Beniston et al, 2018). Le consen-
sus actuel est que pour P'essentiel, 'augmentation de température résulte de ’activité
humaine, principalement I’émission de gaz a effet de serre (vapeur d’eau, dioxyde de
carbone, méthane, etc.), et que les autres causes naturelles ont joué un réle moindre.
Pour arriver a cette conclusion, les scientifiques ont utilisé des modéles numériques
pour reconstituer le climat passé (Jouzel et al, 2018). L’incertitude dans la reconstitu-
tion des conditions climatiques passées et dans la projection des conditions futures
reste grande (Koonin, 2021); un point sensible reste le calage des parameétres modéles
et le passage de ’échelle globale (les conditions a I’échelle de la planete) a une échelle
régionale (Hourdin et al., 2017). Un gros travail est actuellement réalisé pour affiner les
scénarios de changement de climat.
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Figure 2.12 — Le glacier du Rhone (VS) depuis le xvin® siécle. (a) Aquarelle et encre
de chine par William Pars, 1771. Source: British Museum. (b) Le glacier du Rhone en
aolt 1849. Daguerréotype de Jean-Gustave Dardel. Cette photographie est sans doute le
premier cliché d’un glacier en Suisse. Source : UNIL. (c) Le glacier et la source du Rhéne
en 1855 pres du village de Gletsch (1757 m) dans les Conches. Photographie de Friedrich
von Martens. Source : Alpine Club Collection . (d) Carte postale datée de 1903. Source:
éditions Brennenstuhl, Meyringen et accessible depuis notrehistoire.ch. (e) Le glacier
du Rhéne, Gletsch, et la route du col de la Furka.Source: Albert Emonet et accessible
depuis notrehistoire.ch. (f) La source du Rhéne de nos jours. Source : Dumoulin ef al.
(2010).


https://www.britishmuseum.org/collection/object/P_1870-0514-1219
https://www2.unil.ch/viatimages/index.php?projet=viaticalpes&module=image&action=detail&IDImage=3744&lang=fr
https://notrehistoire.ch/entries/V3Yyw69z84o
https://notrehistoire.ch/entries/gNBpNlp5W2Z
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Figure 2.13 - Variation de la longueur du glacier du Rhéne (VS) depuis 1880. Source:
Glamos; GLAMOS 1881-2023, The Swiss Glaciers 1880-2022/23, Glaciological Reports

No 1-142, Yearbooks of the Cryospheric Commission of the Swiss Academy of Sciences
(SCNAT), ETHZ/VAW, doi:10.18752/glrep_series.


https://www.glamos.ch

78 Chapitre 2  Climat et risques hydrologiques

Figure 2.14 - Indicateurs complémentaires de I’évolution du climat mondial. Source:
figure TS.1 in (GIEC, 2013).
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Figure 2.15 — Evolution de la température dans trois grandes villes suisses et au col
du Grand Saint-Bernard depuis 1860. On a indiqué la température moyenne mensuelle
(points bleus), la moyenne glissante sur 10 ans, et les bornes supérieures et inférieures
des températures mensuelles. (a) Grand Saint-Bernard a 2472 m d’altitude ; (b) Genéve
a 412 m; (c) Berne a 553 m; (d) Sion a 482 m. Données: Météo-Suisse,


https://www.meteosuisse.admin.ch/home/climat/le-climat-suisse-en-detail/donnees-homogeneisees-depuis-1864.html?region=Tableau
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2.2.2 Scénarios de changement climatique

Scénarios considérés par le GIEC

Le climat évolue sous l'effet de nombreux agents dont les plus importants sont:

~ le rayonnement solaire (en moyenne 340 W-m~2);
— le rayonnement infrarouge émis par la Terre (en moyenne 350 W-m~2); et

— leffet de serre di1 ala vapeur d’eau et aux gaz dans ’atmosphere, qui interceptent
une partie du rayonnement traversant ’atmosphere.

Selon le Groupe d’experts intergouvernemental sur I’évolution du climat (GIEC), la tem-
pérature a augmenté depuis 1750 (avant la Révolution industrielle) du fait de I’émission
de gaz a effet de serre, dont le plus emblématique est le CO3; cette augmentation de
température serait équivalente a un « forcage radiatif » (une augmentation du flux
d’énergie entrant dans 'atmosphére) de 2,3 W-m~2. La figure 2.16 montre I’évolution
des températures depuis 1850 et les causes probables de cette évolution. Le consensus
actuel est que cette évolution, tres rapide a I’échelle géologique, est liée aux activités
humaines.

La complexité des processus atmosphériques a conduit le GIEC a formuler des scé-
narios.

- Dans son cinquiéme rapport (2013), le GIEC a décrit trois scénarios majeurs ap-
pelés « profils représentatifs d’évolution de concentration » — ou representative
concentration pathway (RCP) en anglais — qui sont fonction du « forcage radia-
tif », c’est-a-dire le rayonnement supplémentaire a ’horizon 2100 dans la tro-
posphére par rapport a la situation prévalant durant la période pré-industrielle
(avant 1860). Ces scénarios associent forcage radiatif, concentration en dioxyde
de carbone et élévation de température?:

forcage radiatif CO, AT

W-m—2 ppm °C
RCP 2,6 2,6 400 1,0
RCP 4,5 4,5 550 1,8
RCP 8,5 8,5 1200 3,7

- Dans son sixiéme rapport (2019), le GIEC a revu sa grille de scénarios et a pro-
posé a la place des scénarios RCP des scénarios SSP (shared socio-economic pa-
thways en anglais) qui prennent en compte a la fois I'évolution des émissions
des gaz a effet de serre 4 travers des scénarios socio-économiques et le forcage
radiatif. La figure 2.17 montre ’emboitement des différents scénarios, et la rela-

9. On parle de températures moyennes a I’échelle du globe. Comme I'essentiel de la surface
terrestre est composé d’étendues océaniques, qui se réchauffent moins que la terre ferme, une
augmentation de +1 °C de la température moyenne a ’échelle du globe entraine des augmenta-
tions locales de température bien supérieures sur la terre ferme.
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Figure 2.16 — (a) Variations de la température de surface du globe reconstituées a
partir des archives paléoclimatiques (ligne grise continue, années 1--2000) et d’obser-
vations directes (ligne noire continue, 1850--2020), a la fois par rapport a 185-0-1900 et
moyennées sur une base décennale. La barre verticale a gauche montre la température
estimée (intervalle trés probable) sur la période multiséculaire la plus chaude depuis
au moins 100 000 ans, qui a eu lieu il y a environ 6500 ans durant la période intergla-
ciaire actuelle (Holocéne). Le dernier age interglaciaire, il y a environ 125 000 ans, est
la seconde période le plus récente ou les températures furent élevées. Ces périodes de
chaleur passées ont été causées par de lentes variations orbitales (multi-millénaires).
La bande grise avec des lignes diagonales blanches montre les intervalles de confiance
pour les reconstructions de température. (b) Evolution de la température a la surface
du globe au cours des 170 derniéres années (ligne noire) par rapport aux années 1850—
1900 et moyenne annuelle, par rapport aux simulations de modéles climatiques de la
phase 6 du projet de comparaison des modeles couplés (CMIP6), de la réponse clima-
tique (en température) aux facteurs humains et naturels (brun) et aux facteurs naturels
seulement (activité solaire et volcanique, en vert). Les lignes de couleur unie indiquent
la moyenne sur plusieurs modéles, et les nuances de couleur indiquent la plage de varia-
tion des simulations. Source: Masson-Delmotte et al., GIEC Report AR6, figure SPM.1,
2021.

tion entre température moyenne a I’échelle de la Terre et concentration en CO»
(Masson-Delmotte et al., 2021).

Pour connaitre ce qu'impliquent localement ces scénarios climatiques, il faut utiliser
des modeles numériques:

— Une premiére couche de modele est constituée des modeles de circulation géné-
rale (global circulation model ou GCM en anglais), dont la maille de calcul est
grande (typiquement 100 a 200 km).

— Les calculs sont ensuite affinés pour prendre les effets locaux tels que le relief;


https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers/figure-spm-1
https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers/figure-spm-1
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on emploie des modeles de circulation régionale (regional circulation model ou
RCM en anglais) avec des mailles de calcul dont la longueur typique est 10 km.

Chaque pays a donc décliné les scénarios globaux du GIEC en scénarios locaux; on
verra ci-apres les exemples de la Suisse et de la France.

On notera au passage que le GIEC a fait des efforts substantiels de communication
vers les décideurs et le grand public en offrant une synthése accessible des travaux
de recherche du consortium, mais le choix d’appeler les scénarios RCP, puis SSP, et
le recours au forcage radiatif n’est pas trés heureux. En Suisse et en France, les ser-
vices nationaux ont souvent préféré mettre I’accent sur les horizons temporels dans la
terminologie des scénarios.
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Figure 2.17 — Relation (quasi linéaire) entre les émissions cumulées de CO2 et 'aug-
mentation de la température a la surface du globe Les données historiques (ligne noire
mince) montrent 'augmentation de la température a la surface de la planéte observée
en °C depuis 1850-1900 en fonction des émissions cumulées de dioxyde de carbone
(CO2) en milliard de tonnes [Gt] de COy de 1850 a 2019. La plage grise avec sa ligne
centrale montre une estimation correspondante du réchauffement de la surface causé
par ’homme dans le passé. Les zones colorées montrent I'intervalle trés probable des
projections de la température a la surface du globe, et les lignes centrales colorées
épaisses montrent I'estimation médiane en fonction des émissions cumulées de CO»
de 2020 a 2050 pour ’ensemble des scénarios pris en compte (SSP1-1,9, SSP1-2,6, SSP2-
4,5, SSP3-7,0 et SSP5-8,5). Les projections reposent sur les émissions cumulées de COy
de chacun des scénarios respectifs, et le réchauffement planétaire prévu tient compte
de la contribution de tous les facteurs de forcage anthropiques. La relation est illus-
trée pour le domaine des émissions cumulées de COg pour lequel il y a une grande
confiance que la réaction transitoire du climat aux émissions cumulées de CO2 (TCRE)
demeure constante, et pour la période allant de 1850 a 2050 au cours de laquelle les
émissions mondiales de COy demeurent positives dans tous les scénarios représentatifs,
car il existe peu d’éléments qui appuient ’application quantitative de TCRE pour esti-
mer I’évolution de la température en cas d’émissions nettes négatives de CO,. Source:
Masson-Delmotte et al., GIEC Report ARG, figure SPM.10, 2021.


https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers/figure-spm-10
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Déclinaison des scénarios pour la Suisse

En 2011, la Confédération a mandaté Météo-Suisse pour élaborer des scénarios
d’évolution climatique valables pour la Suisse sur la base de 21 simulations de circula-
tion régionale conduites par le consortium Euro-Cordex ', ce qui permet d’aboutir a
la fois 4 une tendance moyenne et a une estimation des incertitudes associées a cette
tendance en comparant les résultats des différentes simulations (Croci-Maspoli et al.,
20018; Schmocker-Fackel et al., 2021).

Les scénarios actuels désignés sous le nom de CH2018!! prennent les trois décen-
nies 1981-2010 comme période de référence et point de départ des simulations numé-
riques. Les scénarios permettent de prospecter ce qui peut se passer a trois horizons
différents:

— avenir proche (horizon 2035), c’est-a-dire la période 2020-2049;
- milieu du siécle (horizon 2060), c’est-a-dire la période 2045-2074;

— fin du siécle (horizon 2085), c’est-a-dire les trois derniéres décennies 2070-2099.

Les scénarios fournissent différents indicateurs (nombre de jours de gel, de canicule,
etc.) et évolution de la température et des précipitations sur une grille de maille fine
2 x 2 km?. Les données sont accessibles en ligne 2. La figure 2.18 montre une série
chronologique de la température

Déclinaison des scénarios pour la France

En 2023, le ministére en charge de 'environnement a choisi de simplifier la présen-
tation de ces scénarios en adoptant des « trajectoires de référence pour ’adaptation au
changement climatique » (TRACC ') et a pris comme période de référence soit les trois
décennies 1976-2005, soit les trois décennies 1900-1930 (au lieu de 1850-1900 pour le
GIEC). Ces scénarios TRACC sont plus ou moins une adaptation des scénarios RCP 2,6,
RCP 4,5 et RCP 8,5:

période Scénario 1  Scénario 2 Scénario 3
Monde 1850-1900 +1,5°C +2,0 °C +3,0 °C
France 1900-1930 +2,0 °C +2,7 °C +4,0 °C
France 1976-2005 +1,4°C +2,1°C +3,4 °C

10. Acronyme de Coordinated Regional Climate Downscaling Experiment — European
Domain.

11. Cet ensemble de scénarios est en cours de mise a jour et sera appelé CH2025 a partir de
2025. Voir le site climat CH2025.

12. Voir le site dédié: National Centre for Climate Services et son atlas web.

13. Voir le site DRIAS Les futurs du climat du ministére de la transition écologique:
https://www.drias-climat.fr/accompagnement/sections/402.


https://www.euro-cordex.net/
https://www.euro-cordex.net/
https://www.meteosuisse.admin.ch/portrait/recherche-et-collaboration/projets/2023/climat-ch2025.html
https://www.nccs.admin.ch/nccs/fr/home/changement-climatique-et-impacts/scenarios-climatiques-suisses/CH2018---scenarios-climatiques-pour-la-suisse.html
https://www.nccs.admin.ch/nccs/fr/home/changement-climatique-et-impacts/scenarios-climatiques-suisses/ch2018-webatlas.html
https://www.drias-climat.fr/accompagnement/sections/402
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Figure 2.18 - Evolution de la température moyenne en Suisse avec la période his-
torique 1860-2018 et les projections suivant les scénarios RCP globaux adaptés dans
les modéles régionaux CH2018. Données: Atlas web CH2018 — Climate Scenarios for
Switzerland. National Centre for Climate Services, Zurich..

Le jeu de données TRACC 2023 comporte plusieurs modéles de circulation générale et
de circulation régionale développés par différents centres de recherche en Europe. Par
exemple, Météo-France a développé:

- un modéle de circulation générale CNRM-CERFACS-CNRM-CM5; et
- un modéle de circulation régionale CNRM-ALADING63,

Ces simulations considérent une dégradation climatique, avec:

- al’horizon 2030, une augmentation de +2,0 °C en France métropolitaine (scénario-
type RCP 2,6),

- al’horizon 2050, une augmentation de +2,7 °C en France métropolitaine (scénario-
type RCP 4,5),

- al’horizon 2100, une augmentation de +4,0 °C en France métropolitaine (scénario-
type RCP 8,5),

par rapport a la période de référence 1900-1930.


https://www.nccs.admin.ch/nccs/fr/home/changement-climatique-et-impacts/scenarios-climatiques-suisses/ch2018-webatlas/zeitreihen.html
https://www.nccs.admin.ch/nccs/fr/home/changement-climatique-et-impacts/scenarios-climatiques-suisses/ch2018-webatlas/zeitreihen.html
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2.2.3 Conséquences hydrologiques

Le changement climatique est attendu a avoir d’importantes répercussions sur le
plan hydrologique:

- augmentation des températures a la surface, avec pour conséquence:

- des étés plus chauds et des sécheresses plus longues et fréquentes (voir
figure 2.19), et

- un accroissement de I’évapotranspiration (Boucher et al., 2015; Patterson,
2023; Russo & Domeisen, 2023) (voir figure 2.20);

— humidité accrue de ’atmospheére: la seuil de saturation de I'air en vapeur d’eau
s’accroit d’environ 7 % par degré de réchauffement, avec pour conséquence des
précipitations bien plus intenses sur les courtes durées (a1’échelle horaire) (Kunkel
et al., 2013; Westra et al., 2014; Giorgi et al., 2016; Scherrer et al., 2016; Lehmann
et al., 2018; Papalexiou & Montanari, 2019; Estrada et al., 2023);

- un changement dans la dynamique des pluies. Il est probable que les cellules
orageuses puissent rester en position stationnaire plus longtemps, ce qui devrait
augmenter le caractére tropical des précipitations en Europe (Kahraman et al,
2021), et que les situations météorologiques favorables a de fortes précipitations
soient plus fréquentes (Blanchet et al, 2021, 2023; André et al., 2024);

- augmentation du niveau des mers, acidification et accroissement de la tempé-
rature de la masse d’eau, avec un accroissement de la vulnérabilité des zones
cotiéres avec pour conséquence un risque de subsidence et d’inondation accru
pour les grandes cités en bord de mer Wu et al. (2022);

— une modification des courants marins, notamment la circulation dans ’Atlan-
tique nord qui conditionne les conditions climatiques en Europe occidentale (van
Westen et al., 2024);

— disparition possible de la calotte glaciaire, disparition de la banquise, fonte du
pergélisol, et retrait glaciaire;

- diminution de 30 % des chutes de neige journaliéres par degré de réchauffement
pour les Alpes (de Vries et al., 2014; Gobiet et al., 2014; Frei et al., 2018). Seul le
domaine de la haute altitude devrait voir le volume de précipitations neigeuses
augmenter (Le Roux et al., 2023);

- une fonte précoce du manteau neigeux, ce qui aura un impact sur le régime des
débits dans les rivieres (Musselman et al.,, 2017; Wang et al., 2024);

- un lien peu évident entre accroissement des précipitations extrémes (en fré-
quence et intensité) et crues que cela soit en Europe ou aux Etats-Unis (Andersen
& Marshall Shepherd, 2013; Slater & Villarini, 2016; Sharma et al., 2018; Berghuijs
et al., 2019b,a; Brunner et al., 20194,b). Les raisons en sont diverses (Horton et al.,
2006; Slater et al., 2015; Sharma et al., 2018):

- moindre saturation des sols a cause des périodes séches,

- modification de la capacité des cours d’eau a laisser transiter des débits
importants,
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- fonte prématurée et plus rapide du manteau neigeux,
- extension moindre des tempétes.

Certaines régions en Europe devraient étre soumises a un risque accru de crue
(c’est le cas de 'Europe sous influence atlantique) tandis que d’autres devraient
voir le risque baisser (ceinture méditerranéenne) (Alfieri et al,, 2015; Bloschl et al.,
2015). Pour la Suisse, les projections laissent entrevoir des débits plus importants
en hiver et bien moindre en été (Addor et al,, 2014). Des études pointent une aug-
mentation de la fréquence et de I'intensité des crues en Europe (Berghuijs et al.,
2017; Wang et al., 2023). L’existence de cycles pluridécennales peut également
rendre la détection de la tendance de fond plus difficile. L’augmentation de la
fréquence d’occurrence des pluies intenses de courte durée laisse penser qu’on
pourrait avoir, sur les petits bassins-versants concernés, des crues plus intenses
et fréquentes qu’actuellement (Westra et al., 2014);

- une modification de la couverture végétale, notamment avec une remontée de
la limite supérieure des arbres (Korner & Hiltbrunner, 2024).

- enmontagne, le réchauffement climatique a modifié 'activité avalanche et accru
la fréquence des éboulements, mais il ne semble que 'activité torrentielle sous
forme de lave torrentielle ait augmenté (Jacquemart et al., 2024; Qie et al., 2024;
Eckert et al., 2024).

Figure 2.19 — (a) Lac de Klontal en avril 2023. Les faibles précipitations hivernales et la
sécheresse du printemps 2023 n’ont pas permis le remplissage du lac de Klontal (Glaris).
Source: Tages Anzeiger; Gian Ehrenzeller. (b) Lac de Sau en avril 2023 (Espagne,
Catalogne). La Catalogne est frappée par une sécheresse historique. Source: Le Temps;
Emiliano Morenatti. L’image de lacs a sec préfigure des scénarios qui risquent de deve-
nir plus fréquents en Europe dans les années a venir.


https://www.tagesanzeiger.ch/der-regen-vom-maerz-bringt-keine-entspannung-340861280629
https://www.letemps.ch/sciences/environnement/secheresse-sabat-deja-certaines-regions-deurope

88 Chapitre 2  Climat et risques hydrologiques

Figure 2.20 - Ecart a la normale calculée sur la période 1981-2010 de la moyenne
globale des températures de surface (°C) représentatif du climat a la fin du xx® siécle
(zone grisée), des scénarios du GIEC RCP2,6 (en vert) et RCP8,5 (en orange). Les ob-
servations historiques HadCRUT4 sont indiquées avec un trait noir. Des résultats de
simulations particulieres des modéles du CNRM et de I'IPSL réalisées dans le cadre du
scénario RCP8,5 sont reportés avec des traits bleu et rouge. Les enveloppes tracées cor-
respondent a un intervalle de confiance de 95 % pour ’ensemble des modeles de climat
ayant participé aux simulations du GIEC. Source: Boucher et al. (2015).
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2.3 Les dangers hydrologiques

On désigne par danger ou risque hydrologique les risques induits par ’eau lors-
qu’elle tombe sous forme de précipitations liquides ou solides. Cette classe de dan-
gers/risques est donc relative a des phénomenes variés tels que:

— les débordements de cours d’eau (crue, inondation) et certains écoulements sou-
terrains (remontée de nappe);

- les crues torrentielles (lave torrentielle, crue avec charriage, lahar, débacle gla-
ciaire);

- les avalanches de neige.

Les risques hydrologiques font partie des risques dits naturels comme les risques mé-
téorologiques (tempéte, gréle) et les risques géologiques/géotechniques (écroulement,
chute de pierres, mouvement de terrain, tremblement de terre, éruption volcanique);
il existe d’autres risques naturels (feu de forét, tsunami) qui n’entrent pas dans des
grandes classes de risques.

Dans cette section, nous allons décrire rapidement les différents phénomenes natu-
rels classés dans la catégorie des risques hydrologiques. Une particularité des risques
hydrologiques est que par définition, ils tirent leur origine des précipitations de pluie
ou de neige, éventuellement en concomitance avec d’autres phénomeénes. Cela rend ce
type de risque reproductible — jusqu’a un certain degré — puisque si les mémes condi-
tions météorologiques a l'origine de I’événement a risque se reproduisent, on peut re-
douter que le méme événement vienne a se produire de nouveau.

Cela rend aussi les phénomeénes induits par les précipitations d’une tres grande
variabilité car comme on vient de le voir dans la section précédente, les conditions
météorologiques fluctuent considérablement au cours du temps. C’est cette variabilité
statistique qui va particulierement nous intéresser dans ce cours en nous permettant
d’utiliser un cadre statistique pour construire une approche cohérente d’étude et de
prise de décision. C’est également cette variabilité statistique qui distingue les risques
hydrologiques d’autres risques comme les risques géologiques, pour lesquels la défini-
tion du risque en termes de probabilité d’occurrence pose plus de problémes en pra-
tique.

Les événements catastrophiques pour ’homme ou le milieu naturel peuvent étre
classés en deux catégories:

Certains événements sont dus a des précipitations extrémes. La plupart des
inondations sont dues a des précipitations trés importantes. Quelques exemples:

— en Suisse, les quatre derniéres décennies ont vu plusieurs épisodes catastro-
phiques ainsi que sont dus a des pluies soutenues durant plusieurs jours, avec
parfois des cumuls journaliers trés importants:

— les crues de juillet et aotit 1987 (Spreafico & Petrascheck, 1991) (voir figure
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2.22),

la crue de la Saltina a Brigue en septembre 1993 (Rothlisberger, 1994) (voir
figure 2.23),

les inondations d’octobre 2000 en Valais aprés la rupture d’une du Rhone
(Hegg & Petrascheck, 2002) (voir figure 2.23),

les inondations d’aofit 2005 en Suisse centrale (voir figure 2.24) (Bezzola
& Hegg, 2007);

- larégion de la Méditerranée occidentale connait des pluies intenses (plus de 200
mm en 24 h) capables de générer des crues-éclair (Llasat, 2004; Boudou et al.,
2016). Pour le sud de la France:

la crue du Tech en octobre 1940 survint aprés des précipitations diluviennes
(840 mm a Llau), qui générérent des débits trés importants (de 'ordre de
3000 m?/s) et un fort transport solide (Pardé, 1941; Jacob, 1997). On compta
47 victimes en France dans le département des Pyrénées-Orientales;

en septembre 1992, la crue de ’Ouveze est consécutive a de fortes pluies
sur le nord du Vaucluse, de 'ordre de 200 mm a 350 mm en 24 h (Piégay &
Bravard, 1997). Elle fit 47 victimes, principalement des campeurs, a Vaison-
la-Romaine (voir figure 2.25);

ennovembre 1999, la crue de ’Aude et de plusieurs cours d’eau du Roussillon
est due a des trombes d’eau: a Lézignan, on mesura ainsi 106,6 mm en une
heure, 192 mm en 2 heures, et 551,2 mm en 24 heures. (Vinet, 2003). La
crue fit 26 morts;

le passage de la tempéte Alex dans le sud de la France et le nord de I'Italie
entraine de trés fortes pluies, avec localement plus de 600 mm de pluie en
24 h. Ces pluies diluviennes entrainent des crues de tous les cours d’eaux
de la Tinée et de la Vésubie (Payrastre et al., 2022; Liébault et al., 2024; Pons
et al., 2024). On dénombre au moins 21 victimes (dont 11 en France et 8 en
Italie) et 1,7 milliard de dommages;

Pour le sud de I'’Espagne:

crue de la Turia le 13 octobre 1957, qui inonde Valence (361 mm de pluie
en 24 h mesurés a Beijis);

épisode du 20 octobre 1982: les fortes pluies (1121 mm de pluie em 24
mesurés a Cortes de Pallas) provoquent de graves inondations et la rupture
dubarrage de Tous au sud de Valence, provoquant la mort de 40 personnes;
crues éclair du 3 novembre 1987: une goutte froide sur I’Espagne pro-
voque de nouveau de fortes pluies (817 mm mesurés a Gandie a 70 km
de Valence);

épisodes méditerranéens de 1996: le 9 aofit, un camping est balayé par
une crue torrentielle a Biescas (Pyrénées centrales) aprées de fortes pluies,
faisant plus de 60 victimes (White et al,, 1998). Un mois plus tard, un nou-
vel épisode touche la région de Valence (520 mm mesurés a La Vall le 11
septembre 1996, 60 km au sud de Valence);



2.3 Les dangers hydrologiques 91

- crues éclair du 29 octobre 2024: de fortes pluies touchent les régions de
Valence et Malaga (772 mm de pluie en 24 mesurés a Turis, 30 km a 'ouest
de Valence, dont 184 mm en 1 h). On dénombre plus de 220 victimes (voir
figure 2.21).

Figure 2.21 - (a), (b) Verger dévasté dans la région de Malaga. (b) Services de secours
a Pceuvre dans le village de Letur. (c) La garde civile évacue des sinistrés par les airs a
Alora. (d) Amoncellement de voitures a La Torre. Source: 20 minutos.

- danslesrégions tropicales, les camuls de pluie et les crues-éclair peuvent prendre
une ampleur spectaculaire. Ainsi, lors du cyclone Denise en janvier 1966, il est
tombé 1144 mm de pluie en 12 h (ce qui semble étre le record mondial) a Foc-Foc
sur I'ile de la Réunion. Et toujours sur I'ile de la Réunion, le cyclone Hyacinthe
s’est maintenu sur l'ile en janvier 1980, amenant 5678 mm de pluie en 10 jours
a Commerson (Rogers et al., 2009).

La fonte rapide du manteau neigeux peut également causer des crues et inonda-
tions:

— février 1990 est assez caractéristique de ce type de crise: il tomba prés de 3 métres
de neige vers 2000 m dans les Alpes francaises, ce qui causa d’importantes ava-


https://www.20minutos.es/imagenes/nacional/5649180-impactantes-imagenes-dana-espana/6/
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Figure 2.22 - (a), (b) Arrivée de 'onde de crue dans la riviere Zavragia (Grisons) le
18 juillet 1987; le débit a été estimé a 600 m>/s. Source: Toni Venzin. (c) Plaine de la
Reuss dans le canton d’Uri le 18 juillet 1987. (d) Le village de Poschiavo dans les Grisons
inondé par la riviére Poschiavino. (e) Gurtnellen dans la haute vallée de la Reuss (UR).

(f) Minster dans les Conches (VS), touché par une crue du Minstigerbach. Source: NZZ
et Swiss Info.

lanches (principalement en Tarentaise); dans les vallées, les précipitations (en-
viron 200 mm d’équivalent en eau pour les Préalpes) et le redoux furent respon-


https://www.nzz.ch/schweiz/vor-30-jahren-die-schweiz-erlebt-einen-katastrophen-sommer-ld.1312661
https://www.swissinfo.ch/eng/life-aging/30-years-ago_severe-storms-cause-scenes-of-destruction/43465650
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Figure 2.23 — (a) Brigue (VS) apres la crue de la Saltina, qui fit deux victimes et 900
millions de dégats. Source: Swiss Info. (b) Saillon inondé aprés la rupture d’une digue
en rive droite du Rhone au niveau de Chamoson. Source: NZZ et P.-A. Bertholet Le
Nouvelliste.

sables de la crue de plusieurs riviéres. La crue du Rhone (a Lyon) et celle de I'Isére
avaient une période de retour de I'ordre de 30 ans. Dans le nord de la France et
en Europe du Nord, les tempétes (fin janvier et du début février) se succédérent
et causérent des dommages conséquents (plusieurs dizaines de victimes).

- enjuin 2024, les pluies soutenues de la fin juin et la fonte rapide du manteau nei-
geux font monter fortement le débit des cours d’eau dans les Alpes. Plusieurs tor-
rents débordent, c’est le cas de la Navisence ou de la Borgne en Valais. Plusieurs
laves torrentielles touchent les routes et les habitations dans les cantons du
Valais et des Grisons (voir figure 2.26).


https://www.swissinfo.ch/fre/il-y-a-25-ans-la-saltine-débordait-tragiquement-à-brigue/44377330
https://www.nzz.ch/schweiz/vor-30-jahren-die-schweiz-erlebt-einen-katastrophen-sommer-ld.1312661
https://www.lenouvelliste.ch/valais/bas-valais/martigny-district/saxon/dangers-naturels-accrus-587349
https://www.lenouvelliste.ch/valais/bas-valais/martigny-district/saxon/dangers-naturels-accrus-587349
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Figure 2.24 — Les crues de 2005 ont occasionné des dommages importants en Suisse
centrale, dont le colit a excédé 3 milliards de francs. (a) Brienz (BE), avec des dépdts de la
lave torrentielle du Glyssibach qui tua deux personnes. (b) Débouché de la Reuss dans le
lac des Quatre-Cantons (UR). (c) Route de Wolhusen a Lucerne (LU). (d) Ennetbiirgen
(NW). (e) Bristen dévasté par la crue du Chirstelenbach (UR). (f) Le vieux Lucerne
inondé. Source: Luzerner Zeitung et P.-A. Bertholet Le Nouvelliste.


https://www.luzernerzeitung.ch/zentralschweiz/luzern/hochwasser-als-das-wasser-kam-und-siegte-ld.93066?reduced=true
https://www.lenouvelliste.ch/valais/bas-valais/martigny-district/saxon/dangers-naturels-accrus-587349
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Figure 2.25 — Le pont romain de Vaison-la-Romaine (Vaucluse, France) lors de la crue
de I’'Ouveéze le 22 septembre 1992. Source: J.-M. Tricart.


http://1dedou84.centerblog.net/5354505-VAISON-LA-ROMAINE-5
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Figure 2.26 — Inondations et crues de la fin juin 2024. (a) Zone industrielle de Chippis
noyée sous les eaux de la Navisence le 30 juin 2024. Source: Olivier Maire, Le Temps.
(b) Saas Grund (VS) touché par une lave torrentielle, qui fait un mort. Source: RTS. (c)
La haute vallée de Bagnes coupée du reste du Valais par une lave torrentielle le 6 juillet
2024. Source: RTS. (d) Val Mesolcina (GR) touché par des coulées torrentielles. Source:
Swiss Info.


https://www.letemps.ch/suisse/valais/en-images-sierre-et-sa-region-sous-les-eaux-du-rhone
https://www.rts.ch/info/regions/valais/2024/minute-par-minute/un-mort-dans-une-lave-torrentielle-a-saas-grund-le-niveau-du-rhone-en-baisse-apres-une-crue-historique-28555099.html
https://www.rts.ch/info/regions/valais/2024/article/de-fortes-pluies-mettent-le-valais-en-alerte-apres-de-nouvelles-laves-torrentielles-dans-la-nuit-28561658.html
https://www.swissinfo.ch/fre/deux-personnes-toujours-portées-disparues-dans-les-grisons/81627548
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D’autres événements résultent d’un concours de circonstances défavorables.
Pris séparément, chaque processus ne revét pas de caractére extréme, mais la combi-
naison de ces processus est exceptionnelle. En matiére de crue, I’état hydrique du sol
est trés important. Si le sol est saturé, toute nouvelle pluie peut conduire a une forte
crue. Quelques exemples:

la plus forte crue de la Seine au xx° siecle est la crue de janvier 1910: aprés
un hiver trés humide, puis rigoureux (sol gelé), deux rapides courants de sud-
ouest causerent un redoux significatif et de fortes précipitations sur les bassins-
versants de 'Yonne, de la Seine, et de la Marne (voir figure 2.27): la fonte rapide
du manteau neigeux et le ruissellement de I’eau expliquent le caractére excep-
tionnel de la crue de la Seine. Une telle combinaison de facteurs n’a pas été re-
vue depuis; la période de retour est de 'ordre de 100 ans pour le débit de pointe,
mais la durée de la crue'* (environ 6 semaines) a été exceptionnelle et explique
Iétendue des dommages (15 % des immeubles touchés, une telle crue causerait
aujourd’hui des dommages estimés a 1 GE€) (Gache, 2013; Lang & Coeur, 2014);

la crue du Tarn et de la Garonne de mars 1930 qui fit plus de 200 victimes sur-
vint apreés de fortes pluies, dont la lame d’eau s’ajouta a la fonte d’'un manteau
neigeux important. A Marmande, la Garonne monta de 11 m. A Moissac, a la
confluence du Tarn et de la Garonne, les digues lacheérent durant la nuit, et la
vague qui balaya le village tua 120 personnes (Pardé, 1930). Pour la crue histo-
rique du Tarn de mars 1930, on estima le débit 4 6000 m?/s contre 160 m3/s pour
le débit de pointe annual;

un autre exemple est I’avalanche de Péclerey en février 1999 qui fit 12 morts a
Montroc (commune de Chamonix-Mont-Blanc); la chute de neige a 'origine de
I’avalanche avait une période de retour estimée a 5 ans, mais elle intervint a une
époque ou le manteau neigeux était particulierement instable a cause du froid et
de sa faible épaisseur (faibles chutes de neige jusqu’a la fin janvier 1999) (Ancey
et al., 2000);

dans le Chablais vaudois, le village de Roche a connu a la fin des années 2000
et au début des années 2010 un trés fort regain de 'activité torrentielle ('Eau
Froide), avec une « crue centennale chaque année » comme titrent les média...
C’est le résultat d’une déstabilisation du lit du torrent plus que d’épisodes plu-
vieux intenses sur le Chablais;

la tempéte atlantique Xynthia a entrainé la mort de 47 personnes et 2,3 milliards
d’euros de dommage en Vendée et Charente-Maritime en février 2010 (Przyluski
& Hallegatte, 2012; Gerard & Lang, 2019). L’effet destructeur est en partie lié a
la concomitance de forts vents et d’'une marée importante qui sont responsables
de submersions sur plusieurs communes du littoral atlantique (voir figure 2.28);
toutefois, qu'on les prenne séparément ou conjointement, ces facteurs ne sont
pas rares (une dizaine d’occurrences depuis le x1x¢ siécle). Les causes de la ca-
tastrophes sont a rechercher dans le changement d’occupation du sol depuis les

14. C’est un parameétre qui n’est pas pris en compte dans le calcul de la période de retour.
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années 1970, 'absence de plans d’alerte fiables, et des décisions d’urbanisation
hasardeuses;

le hameau de la Bérarde (France, Isére) a été dévasté par la crue du torrent des
Etancons en juin 2024. La crue est due a la combinaison de plusieurs facteurs: des
pluies soutenues (de ordre de 100 mm en 34 h), un manteau neigeux abondant
en altitude aprés un printemps arrosé, la subite remontée de I'isotherme 0 °C a
haute altitude entrainant une fonte massive du manteau neigeux, et la possible
débacle glaciaire du lac du glacier de Bonnepierre. La crue a entrainé un volume
impressionnant de sédiment, qui a comblé le lit des Etancons et permis a 'eau
et au sédiment d’envahir le village (voir figure 2.29).

Figure 2.27 — La crue de la Seine de 1910. Source : Paris Match.

Enfin, des événements sont provoqués par des ouvrages de génie civil. La dé-

faillance ou la rupture de tels ouvrages peut libérer des volumes importants d’eau et
créer des crues ou des laves torrentielles. Quelques exemples:

~ le 9 octobre 1963 un glissement de terrain a mobilisé 260 Mm? de terres et de

roches dans la retenue du Vajont barrée par un barrage-voute achevé en 1959
(Panizzo et al, 2005). Deux vagues d’une hauteur prodigieuse (150-200 m) se
sont engouffrées dans I’étroit ravin a ’aval du barrage et ont dévasté les villages
Longarone, Pirago, Rivalta, Villanova et Faé (voir figure 2.30), causant la mort
de 1909 personnes;


https://www.parismatch.com/Actu/Environnement/A-quoi-ressemblait-la-crue-du-siecle-a-Paris-en-1910-1723237
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Figure 2.28 — La Faute-sur-Mer (France, Vendée) noyée par les eaux le 28 février 2010.
Source: Ouest France.

- le 15 octobre 2000, les eaux des lacs de Fully et Sorniot débordent et empruntent
la galerie qui méne a la vallée. Ces eaux se déversent sur le cdne d’éboulis au pied
de la paroi pendant plusieurs et forment plusieurs vagues de lave torrentielle, qui
s’écoulent jusqu’a Fully (Hegg & Petrascheck, 2002).


https://www.ouest-france.fr/environnement/xynthia/xynthia-dix-ans-apres-recit-en-images-du-drame-de-la-tempete-en-vendee-6750841
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Figure 2.29 — Le hameau de la Bérarde (France, Isére) apres la crue des Etancons (un
affluent du Vénéon) le 21 juin 2024. Source : Benoit Lagneux Dauphiné Libéré.

Figure 2.30 — (a) Barrage-votte du Vajont (Italie, Dolomites) aprés la catastrophe. (b)
Village de Longarone.


https://www.ledauphine.com/societe/2024/06/25/julian-assange-libere-quelle-suite-pour-la-berarde-le-suicide-simule-de-kendji-girac-classe-sans-suite-l-essentiel-de-l-actu-de-ce-mardi-25-juin
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Figure 2.31 — (a) Fully apres le passage de la lave torrentielle du 15 octobre 2000. (b)
Vue du dépét.
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Dans le cadre de ce cours, nous étudierons principalement la premiere caté-
gorie de phénomeénes pour laquelle on peut employer la théorie classique des
valeurs extrémes et s’appuyer sur des concepts tels que la période de retour
pour caractériser et prédire des phénomenes hydrologiques extrémes; il suffit
en général d’une seule variable pour caractériser le phénomene et on peut alors utiliser
les données obtenues dans le passé pour inférer ce qui peut se produire par extrapola-
tion statistique. Par exemple, une crue est souvent caractérisée par le débit de pointe,
c’est-a-dire la valeur maximale du débit; a partir des mesures de débit sur les rivieres,
on peut faire des études statistiques en un point donné et estimer ce qui peut potentiel-
lement se produire. On peut déterminer ce qui se passe autour de ce point (I'étendue
des zones inondées, la vitesse de ’eau) en utilisant des outils classiques d’hydraulique.

En revanche, nous n’aborderons pas ici la seconde catégorie car celle nécessite des
outils de calcul plus complexes:

- il existe des généralisations de la théorie des valeurs extrémes pour traiter des
phénomeénes ou plusieurs parametres sont nécessaires pour caractériser le phé-
nomeéne. Par exemple pour une inondation comme celle causée par la crue de la
Seine de 1910, ce n’est pas uniquement le débit de pointe (2400 m?/s, période de
retour autour de 100 ans) qui importe, mais également le volume de la crue et sa
durée (6 semaines). Mathématiquement, il faut chercher a estimer la probabilité
d’occurrence simultanée de plusieurs facteurs. Le probléme pourrait s’apparen-
ter a une analyse statistique multivariée et a la recherche de corrélation, mais
cela n’est pas le cas. Fondamentalement, quand on fait une corrélation entre
deux variables, on recherche une tendance moyenne entre ces variables et on a
tendance a ignorer les points qui s’éloignent de cette tendance. Ce sont précisé-
ment ces couples de points, qui sont hors tendance, qui nous intéressent ici. En
statistique des valeurs extrémes, on parle de copule pour désigner les relations
(probabilistes) entre la probabilité d’observer simultanément plusieurs facteurs
et leur probabilité (dite marginale) de les observer individuellement. Pour une
inondation, on va ainsi chercher a comprendre quel lien il existe entre la pro-
babilité jointe d’observer une crue avec un certain débit de pointe et un certain
volume, la probabilité marginale d’observer un débit de pointe, et la probabilité
marginale d’observer un volume de crue.

- ¢’il faut plusieurs critéres pour définir une inondation, comment déterminer ce
qui se passe aux alentours de mon point de mesure ? Il n’existe vraisemblable-
ment pas une réponse, mais une multitude de possibilités qui sont conditionnées
par d’autres parametres (état du sol, remontée de nappe, etc.)...

Les catastrophes par concours de circonstances offrent toujours un champ considé-
rable de recherche en statistique et en hydrologie. En pratique, les ingénieurs se sont
souvent tournés vers des méthodes ou des directives, qui fixent des scénarios:

— ainsi, en Suisse, les directives du SLF définissent la facon de calculer une ava-
lanche centennale: des régles précises sont préconisées pour déterminer le vo-
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lume de neige et les parameétres de frottement a appliquer dans le modele dyna-
mique;
- en France, la méthode « inondabilité » du Cemagref (devenu INRAE) vise a offrir

un cadre pratique de calcul des zones inondables en fonction de la période de
retour.
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2.3.1 Inondation et crue

Une inondation peut étre définie selon les auteurs comme une « irruption d’eau
sur un terrain normalement sec » comme une « submersion par ’eau débordant du
lit normal d’un cours d’eau », ou comme « une accumulation d’eau provenant de drai-
nages, sur des zones qui ne sont pas normalement submergées ». Il s’agit d’'une situation
temporaire qui peut étre dommageable (destruction d’habitations, par exemple) ou bé-
néfique (apport d’alluvions fertilisants, par exemple). Les causes des inondations sont
multiples et peuvent étre classifiées comme on le montre ci-apres.

Inondation fluviales et crues

On fait la distinction entre crue et inondation:

- Les inondations fluviales sont les plus fréquentes et également les plus domma-
geables. Elles surviennent suite a de longues périodes de pluie ou de la com-
binaison des pluies avec la fonte des neiges et glaces. Elles peuvent concerner
des surfaces trés importantes (plusieurs centaines a milliers de km?). Quelques
exemples:

- la crue de ’Elbe en Tchéquie et en Allemagne en aofit 2002 est un exemple
récent d’inondation sur une vaste échelle,

- plus récemment I’Allemagne a connu des inondations importantes en juin
2021 aprés des pluies intenses et un printemps copieusement arrosé. On
dénombre 135 victimes dans le Palatinat et des dommages importants (voir
Waiithrich et al. (2024)). La figure 2.32 montre les inondations causées par
PAhr a Altenburg;

— Les crues sont des phénomeénes brutaux qui surviennent a la suite de violentes
précipitations sur un périmetre limité et souvent dans un contexte montagneux,
de piémont, ou de collines. Elles sont soudaines, de courte durée et ont un dé-
bit de pointe relativement élevé. Pour souligner leur caractére brutal, on parle
souvent de « crue éclair » (flash flood en anglais). En zone de montagne, elles
peuvent étre extrémement dévastatrices, d’autant plus qu’elles ont une capacité
de charriage trés importante, pouvant conduire aux laves torrentielles. Quelques
exemples:

- L’été 1987 a été globalement humide, avec des périodes orageuses accom-
pagnées de pluies intenses. Plusieurs crues-éclair dévastent des vallées al-
pines:

— le 14 juillet 1987, le Borne entre en crue et emporte 23 campeurs au
Grand Bornand (Meunier, 1990),

— deux dépressions balaient la suisse en juillet et aott 1987. L’épisode
du 18-19 juillet se caractérise par des pluies intenses sur de longues
durées (de 30 h dans le Tessin a 84 h dans la vallée du Rhin) amenant
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a de nombreuses crues et laves torrentielles (Zeller & Rothlisberger,
1988; Spreafico & Petrascheck, 1991; Rickenmann & Zimmermann,
1993). Une seconde dépression touche les vallées méridionales de
Suisse: les Conches (VS) — ou Miinster est sévérement touché -, et les
vallées d’Urseren et de Goschenen dans le canton d’Uri. Les cumuls
de pluie dépassent souvent 200 mm en 48 h. La figure 2.22 montre
quelques images des événements de I’été 1987. Les dommages ont
été évalués a 1,3 milliard de francs;

— Les crues de I’automne 2000 sur le Val d’Aoste, la haute Maurienne, et le
Valais (Gondo, Fully pour le Valais) sont des exemples de crues quasi conco-
mitantes sur une période de temps courte (Hegg & Petrascheck, 2002).

— Les crues du sud-est de la France offrent des exemples dramatiques de
crues éclair sur de grands bassins-versants dans un contexte de colline:

la crue du Tarn de mars 1930 fit environ 220 victimes,

la crue d’octobre 1988 a Nimes fit 10 morts dans le département du
Gard,

la crue de I’Ouvéze a Vaison-la-Romaine fit 41 morts en 1992,
la crue de I’Aude fit 35 victimes en 1999,

la tempéte Alex en octobre 2020 a causé la mort d’au moins 21 per-
sonnes et 1,7 milliard de dommages dans les Alpes-Maritimes (voir
figure 2.33).

Ces crues font souvent des victimes compte tenu de leur soudaineté et de
la force du courant (Gaume et al., 2009).

Figure 2.32 — Altenburg avant et pendant les inondations de 'Ahr le 14 juin 2021
(Rhénanie-Palatinat, Allemagne). Source: Bild.


https://www.bild.de/news/inland/news-inland/hochwasser-in-der-eifel-altenburg-von-der-idylle-zum-wasser-hoelle-77093154.bild.html
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Figure 2.33 - La situation avant/aprrés la tempéte Alex dans la ville de Roquebilliere
(Alpes-Maritimes, France) frappée le 4 octobre 2020. Images pré-catastrophe (Esri
World Imagery, 2016), images post-catastrophe (Pléiades, CNES 2020, distribution
Airbus DS), images post-catastrophe au format carte (Sertit 2020). Source : France 3.

On peut relier les inondations a des scénarios météorologiques, qui sur ’Europe
sont bien établis:

- les inondations hivernales, causées par des dépressions d’ouest associées a un
front chaud, qui apportent des précipitations pouvant étre longues, continues et
intenses. Le sol se sature et de grands volumes d’eau ruissellent ;

- les inondations dues a la fonte des neiges se produisent lorsque le stock neigeux
est encore important au printemps et lorsque du vent chaud provenant du sud
traverse les Alpes. Si des précipitations accompagnent ce vent, les volumes d’eau
ruisselée sont également importants;

- les inondations dues aux précipitations convectives d’été peuvent avoir des ef-
fets catastrophiques sur des régions fortement urbanisées. Elles sont de type
« crue-éclair » (voir les exemples ci-dessus dans le sud de la France et en Espagne);

- les inondations dues aux grandes marées, qui affectent principalement les Pays-
Bas (tempéte de janvier 1953).

Remontées de nappe et ruissellement en zone urbanisée

Les remontées de nappe surviennent a la suite de la saturation du sol en eau soit
par un apport direct (pluie), soit par un apport indirect (écoulement souterrain, ruissel-
lement a partir des versants). Le sol n’est alors plus en mesure d’absorber de nouvelles
quantités d’eau et I'eau reste en surface (voir figure 2.34). Quelques exemples:

- dans les zones urbanisées (I’Oise en France) ou certaines régions géologique-
ment favorables (avec des terrains aquiféres calcaires ou crayeux comme dans
la Somme), ces remontées de nappe causent des inondations assez fréquentes. Au
printemps 2001, apres un hiver trés humide, plus de 3000 personnes sont sinis-


https://france3-regions.francetvinfo.fr/occitanie/haute-garonne/toulouse/photos-tempete-alex-ampleur-inondations-alpes-maritimes-photographiees-satellites-pleiades-du-cnes-1881818.html
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trées dans la région d’Abbeville (Somme), leur maison restant inondée pendant
deux a trois mois.

- en janvier 2024, les pluies sont incessantes sur le nord de la France. La ville
d’Arques (France, Pas-de-Calais) reste inondée pendant plus d’une semaine (voir
figure 2.35). L’eau provient a la fois du fleuve Aa, qui s’écoulent nonchalam-
ment a cause des faibles pentes, mais également du plateau de la forét Rihoult-
Clairmarais. Le secteur est voisin du marais audomarois. La nappe est donc af-
fleurante en de nombreux endroits. La forte urbanisation de la vallée de I’Aa a
entrainé I'imperméabilisation de la surface et imposé un gabarit trop limité au
fleuve (canalisé) et aux canaux de dérivation.

Figure 2.34 — L’eau de pluie s’infiltre dans le sol et ruisselle a sa surface. Elle peut
s’accumuler dans des dépressions soit parce que la nappe d’eau est affleurante, soit
parce que de ’eau ruisselle des versants. Source : DREAL Basse-Normandie .

Dans les zones urbanisées, le ruissellement sur les chaussées lors de violents orages
peut provoquer des inondations dans les maisons attenantes. Ces problémes sont sou-
vent associés a un dysfonctionnement ou une insuffisance du réseau d’évacuation des
eaux pluviales, a des obstructions de cours d’eau ou de drain, ou a des orages particu-
lierement intenses. Quelques exemples:

- un violent orage s’abat sur le Morclan (Chablais) en juin 2000. Les eaux d’'un
petit cours d’eau drainant le versant sud du Morclan transportent sédiments et
débris végétaux, ce qui provoque 'obstruction d’un passage busé. Les eaux du
torrent quittent alors le lit et ruissellent le long des chaussées goudronnées de
Chatel et inondent plusieurs chalets (voir figure 2.36);

— en septembre 2014, le Genevois est touché par un violent orage et des pluies
diluviennes. Dans ce secteur fortement urbanisé, le réseau d’eaux pluviales ne
parvient a évacuer les eaux, et celles-ci ruissellent sur les chaussées et sont re-
foulées du réseau d’évacuation (voir figure 2.37).


https://sigessn.brgm.fr/spip.php?article164
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Figure 2.35 — Inondations de janvier 2024 a Arques (France, Pas-de-Calais). Source:
AFP .

Figure 2.36 — Inondations lors de l'orage du 5 juin 2000 a Chéatel (Haute-Savoie).
Source: Thierry Hauteville.

Débordement de lac

Les lacs, lorsque leur exutoire a une capacité d’évacuation (naturelle ou artificielle)
limitée, peuvent voir leur niveau d’eau augmenter de plusieurs metres. Quelques exemples:

- I'inondation historique est celle de 1868 pour la région du lac Majeur (voir figure
2.38), causant la mort de mort d’environ 50 personnes (Brénnimann et al., 2018).

- lelac Majeur déborde de nouveau en 1993 ou plus récemment en novembre 2014;


https://www.youtube.com/watch?v=mfJMCD8uJrU&ab_channel=AFP
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Figure 2.37 - Inondations lors de l'orage du 10 septembre 2014 a Saint-Julien-en-
Genevois (Haute-Savoie). Source : Dauphiné Libéré.

- enjuillet 2021, les pluies persistantes et la fonte des neiges font monter les eaux
dans plusieurs lacs suisses dont le lac des Quatre Cantons et le lac de Neuchétel
(Bezzola & InderWili, 2023). Quoique les grands lacs soient régulés depuis la fin
du x1x° siécle, la montée de quelques dizaines de centimetres a été suffisante
pour inonder des berges (voir figure 2.39).

Rupture de barrage et de digue

Les ruptures de barrage sont également des accidents exceptionnellement rares.
Leurs effets peuvent se révéler conséquents lorsque le lac d’accumulation est d’une
grande contenance. C’est le cas notamment des barrages pour la production hydro-
électrique; quelques catastrophes ont causé des dommages considérables et fait des
centaines ou des milliers de victimes:

- Malpasset (Var, France): le 2 décembre 1959, le barrage-voite barrant la riviére
Reyran cede a cause d’un défaut géologique dans le massif ou s’ancrait la votite
(Carrere, 2010; Duffaut, 2010). C’est le seul barrage-votte qui a cédé sous la pres-
sion de l’eau. Une vague de 40 metres déferle sur la vallée et atteint la ville de
Fréjus. Des blocs rocheux (jusqu’a 600 t!) sont entrainés et détruisent le quartier
de Malpasset. En tout, ce sont 423 victimes qui sont déplorées (voir figure 2.40).

~ Vajont (Italie) : le 9 octobre 1963 un glissement de terrain a mobilisé 260 Mm? de
terres et de roches dans la retenue du Vajont barrée par un barrage-votte achevé
en 1959 et haut de 150 métres (Crosta et al., 2016). La vague d’impulsion passe


https://www.ledauphine.com/haute-savoie/2014/09/10/30-minutes-de-deluge
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Figure 2.38 — La Piazza Grande de Locarno, pendant I'inondation de 1868. Source:
archives de MétéoSuisse.

au-dessus de la votite du barrage et suit la gorge qui méne jusqu’a Longarone. La
masse d’eau dévaste de nombreux petits villages en aval du barrage (voir figure
2.30). On estime a 1909 le nombre de personnes tuées. Le barrage n’a subi que
de trés légers dommages.

— Le barrage de Molare (bordure sud des Alpes italiennes au nord-est de Génes)
céda en aofit 1935 aprés des pluies diluviennes. Les évacuateurs de crue furent
dans I'impossibilité d’évacuer le débit de crue généré par des pluies d’une in-
tensité exceptionnelle (environ 500 mm dans la journée du 13 aott 1935), ce qui
entraina la rupture de la digue de Zerbino. Une vague d’une hauteur de 20 métres
dévasta la vallée de 'Orba, causant environ la mort de 100 personnes (Visentini,
1936).

Si la plupart des barrages cedent par accident, ils peuvent étre aussi la cible d’at-
taques lors de conflit. Quelques exemples:

— durant la guerre de Hollande (1672-1678) opposant la France de Louis X1v aux
Provinces-Unies de Guillaume d’Orange, les troupes hollandaises étaient bous-
culées par les troupes du Roi Soleil. Les Hollandais rompirent les écluses de
Muyden et provoquérent I'inondation de leur pays pour arréter la progression
des armées francaises;

— En 1943, durant la Seconde Guerre mondiale, les Alliés bombardérent les bar-
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Figure 2.39 — Le Kappelbriick a Lucerne le 15 juillet 2021, lors du débordement du
lac des Quatre Cantons. Source: archives de MétéoSuisse et Le Temps (cliché Arnd
Wiegmann/Reuters).

rages de Mohne et d’Edersee situés dans la Ruhr. Ils pensaient limiter le potentiel
industriel allemand;

- plusrécemment, en juin 2023 les troupes russes ont miné le barrage de Kakhovka
sur le Dniepr en Ukraine afin d’inonder la vallée du Dniper jusqu’a Kherson et
ainsi couvrir leur retraite. Lors de la montée des eaux, le Dniepr a non seulement
inondé son lit majeur et une partie de Kherson, mais également refoulé les eaux
de ses affluents, qui ont inondé a leur tour leur lit majeur (voir figure 2.41)

Certains phénomeénes assimilés a des ruptures de barrage concernent des ruptures
de terrils miniers:

- catastrophe de I'usine d’Ajka (Hongrie): le 4 octobre 2010, une digue haute de
30 m s’effondre et laisse s’échapper environ 1 Mm? de boues contenant des mé-
taux lourds et résultant du traitement de I'uranium. La crue a dévasté Kolontar,
le village le plus proche, et plus en aval Devecser et Somlévasarhely. En tout,
9 personnes sont tuées, plusieurs sont briilées par les boues toxiques, des bati-
ments sont endommagés sur plusieurs hectares pour un coiit estimé entre 5 et 10
M€ (voir figure 2.42). Le sol et les eaux sont gravement pollués pour plusieurs
années;


https://www.letemps.ch/monde/lac-bienne-un-niveau-historique-lucerne-yverdon-inondees-enorme-glissement-terrain-allemagne
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Figure 2.40 — Le quartier des Arénes a Fréjus (France, Var), le 3 décembre 1959, apreés
que les eaux du barrage de Malpasset ont dévasté la zone. Source: IRMA.

— catastrophe d’Aznalcéllar (Andoulousie, Espagne): le 25 avril 1998, la rupture
d’une digue libére un volume considérable (8 km?) d’eau contaminée par des
métaux lourds et de résidus miniers. La rupture a généré une onde de crue dans
les rivieres Guadiamar et Guadalquivir et a pollué le parc naturel de Dofiana;

- catastrophe du Val de Stava (Trentin-Haut-Adige, Italie): le 19 juillet 1985, un
barrage retenant les boues de décantation d’une mine céde sous la pression de
I'eau aprés qu’'un drain vétuste s’est bouché. En environ une trentaine de se-
condes, ce sont quelque 200 000 m?* de boue qui sont libérés et s’écoulent dans
le Rio di Stava. La coulée de boue a tué 268 personnes et détruit 62 batiments
dans le village de Stava, prés de Tesero;

— catastrophe de Bento Rodrigues (Minas Gerais, Brésil) : le 5 novembre 2015, deux
digues en remblai ont cédé pour une raison inconnue, libérant 60 millions de
tonnes de débris miniers. Le fleuve Rio Doce a été contaminé. La vague de boue
toxique a balayé une partie du village de Bento Rodrigues et a causé la mort
d’environ 20 personnes.

Il existe de nombreux ouvrages de génie civil de type digue qui sert a contenir les
eaux d’une riviére ou d’une mer. Dés le Moyen Age, on construisit des ouvrages d’endi-
guement des riviéres et des canaux pour amener de ’eau aux moulins a roue, tandis que
sur le front, on érigea des digues pour gagner de la terre sur la mer et créer des polders.


https://www.irma-grenoble.com/01actualite/01articles_afficher.php?id_actualite=713
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Figure 2.41 — Lors de la guerre entre la Russie et 'Ukraine, les Russes ont partielle-
ment détruit le barrage de Kakhovka sur le Dniepr afin de couvrir leur repli sur la rive
gauche du fleuve le 6 juin 2023. Les images (a)—(c) montrent des vues en infrarouge du
satellite Sentinel-3 le 5, 6 et 7 juin 2023. La photographie (d) est une capture d’écran
montrant ’eau s’engoufirer dans la bréche. La rupture du barrage a entrainé une inon-
dation conséquente du lit majeur du Dniepr. Les eaux de la riviére Inhoulets, affluent
en rive droite du Dniepr, ont reflué et provoqué également une inondation de son lit
majeur. Source: Copernicus et Le Monde. Voir aussi la page de Simon Gascoin sur le
sujet.

C’est le cas dans le nord de la France, la Belgique, et les Pays-Bas (Van Koningsveld et al.,
2008); au x1v° siécle, les Hollandais construisent ainsi la Westfriese Omringdijk (litté-
ralement, digue circulaire de Frise occidentale), ouvrage monumental pour 1’époque
qui permit de gagner 800 km? de terrain. Au x1x° siécle, on a construit de nombreux
barrages pour le stockage de I’eau et des systemes de digues pour contenir les riviéres.
Lors de fortes marées et/ou de grandes tempétes en mer du Nord, les digues peuvent
céder et ’eau qui s’engouflre dans les bréches peut inonder durablement les zones dont
Paltitude est inférieure au niveau de la mer. Des inondations de la Toussaint 1170 au raz-
de-marée de 1953, I'histoire des Pays-Bas est une récit d’une lutte de ’homme contre
la mer.


https://browser.dataspace.copernicus.eu/?zoom=13&lat=46.76884&lng=33.3744
https://www.lemonde.fr/international/article/2023/06/06/barrage-de-kakhovka-ce-que-l-on-sait-apres-sa-destruction-partielle_6176448_3210.html
https://labo.obs-mip.fr/multitemp/suivi-du-reservoir-de-kakhovka-par-satellite/
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Figure 2.42 — Zones inondées par la rupture du bassin de décantation de 'usine d’Akja
en Hongrie. Photographie satellitaire prise le 9 octobre 2010. Source: NASA.

Sur le continent, la rupture de digue peut avoir des conséquences dramatiques.
Quelques exemples récents:

- le 15 octobre 2000, une digue de contention du Rhéne rompt 4 ’aval de Chamoson,
entrainant des inondations de la rive droite du fleuve jusqu’a Fully (Hegg &
Petrascheck, 2002);

— le 29 décembre 2001, une digue du systéme de protection des crues de la Savoureuse
(France, Territoire-de-Belfort) constitué d’une série de neuf bassins de stockage
céde et inonde la région avoisinante !°. Si la hauteur d’eau dans les bassins était
faible (de 'ordre du métre), les volumes stockés étaient importants (voir figure
2.43) (Huet et al., 2002).

Autres phénoménes

D’autres types d’inondations, plus anecdotiques pour nos contrées, sont également
possibles. Parmi ceux-ci, mentionnons:

- le phénomene de seiche, due a des phénomenes oscillatoires dans les grandes
étendues d’eau fermées (par exemple les grands lacs aux Etats-Unis);

- les tsunamis affectant fréquemment les cotes japonaises (voir figure 2.44) et les
pays bordant 'océan Indien;

15. Le proceés qui s’ensuivit montra que la rupture était la conséquence d’une série d’erreurs
tant dans la conception de I'ouvrage que dans sa réalisation.


http://earthobservatory.nasa.gov/IOTD/view.php?id=46360
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Figure 2.43 — La rupture d’une digue sur le systéme de bassins d’écrétement des crues
de la Savoureuse en décembre 2001. Source: L’Est Républicain.

— les marées a fort coefficient associées a des tempétes;

- les cyclones tropicaux, les pluies abondantes accompagnées de vents tempé-
tueux et de vagues de grande ampleur frappant, par exemple, les Etats-Unis ou
le Japon (voir figure 2.45)


https://www.estrepublicain.fr/justice/2012/10/01/digues-l-heure-des-comptes
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Figure 2.44 — Tsunami du 11 mars 2011 frappant la ville de Shinkawa (Miyako, pré-
fecture d’Iwate). Un séisme d’une magnitude de 8,8 sur I’échelle de Richter a créé une
vague, qui s’est abattue sur les cdtes du nord-est du Japon, dans la région industrielle
de Sendai. Source: Shinya Kumagai.

Figure 2.45 — Le typhon Jebi classé « trés puissant » a balayé une partie du Japon en
septembre 2018, causant la mort de 11 personnes. Source: Keystone (Le Nouvelliste).


https://www.lenouvelliste.ch/photos/monde/japon-le-plus-puissant-typhon-jamais-vu-depuis-25-ans-en-images-781968?image=2
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2.3.2 Crues torrentielles

Les crues torrentielles sont des écoulements d’eau avec un fort transport solide, qui
se produisent dans les torrents et les riviéres de montagne ou de piémont. On distingue :

— les crues avec charriage: le cours d’eau transporte du sédiment grossier par roule-
ment, glissement, saltation le long du lit (processus appelé charriage). Ce type de
crue se produit dans les cours d’eau des que le débit est suffisamment fort pour
mettre en mouvement les matériaux composant le lit de la riviére. Contrairement
aux rivieres de plaine, ou le sédiment est relativement fin et transporté en sus-
pension dans l'eau, les riviéres torrentielles et les torrents peuvent transporter
des volumes importants de matériaux, avec une échelle granulométrique éten-
due (du micrométre a plusieurs décimétres). Des crues comme celle de Brigue en
septembre 1993 (Valais) peuvent provoquer des dommages importants en provo-
quant 'obstruction des ponts, 'exhaussement du lit, I'inondation des berges, et
un important dépdt solide (voir figure 2.23);

— les laves torrentielles: lorsque la pente est forte, le transport par charriage est in-
stable. La gravité est en effet suffisante a maintenir les particules en mouvement
une fois qu’elles ont été érodées. Une lave torrentielle est donc un transport en
masse d’un mélange de blocs, de terre, et d’eau; la concentration solide est trés
importante (de 'ordre de 70-80 %). Le mélange prend alors souvent ’apparence
d’une boue ou d’un béton. Les laves torrentielles ont donc un comportement mé-
canique trés différent des crues liquides avec charriage et, d’une certaine fagon,
elles sont plus proches d’une avalanche que d’une crue. La plupart des torrents
peuvent produire avec une fréquence plus ou moins importante des laves torren-
tielles. Certains torrents comme le Pissot au-dessus de Villeneuve (voir fig. 2.46)
ne fournissent des laves qu’en moyenne une fois par siécle; ce sont souvent des
torrents a clappiers: le matériau mobilisé par les laves torrentielles provient de
I’éboulement de falaises (les éboulis sont les « clappiers » ou clappes) et il faut
plusieurs années a décennies pour former un stock suffisant de matériau mo-
bilisable. D’autres torrents sont plus actifs car le terrain présente souvent une
instabilité a un niveau local (berges) ou étendu (mouvement de terrain affectant
une grande partie du bassin-versant). C’est le cas par exemple de I'Illgraben, qui
peut produire plusieurs laves torrentielles chaque année.

Signalons que certains écoulements naturels sont trés proches des laves torren-
tielles que nous rencontrons dans les Alpes:

— les lahars sont des écoulements d’'un mélange d’eau et de cendres, que I'on ren-
contre dans les régions volcaniques. Les éruptions volcaniques peuvent en effet
déposer des quantités colossales de cendres, qui sont ensuite trés facilement éro-
dables. Parmi les catastrophes récentes:

- Aux Philippines, les fortes pluies entrainerent des dépéts de cendres du
volcan Pinatubo en octobre 1991,
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Figure 2.46 — Lave torrentielle du Pissot le 14 aofit 1995 avec ses dépdts sur le vignoble
de Villeneuve (VD) et 'autoroute A9 entre Lausanne et Martigny. Source: canton de
Vaud.

- en Europe, la catastrophe de Sarno et Quindici (Italie) en mai 1998 est due
a un mouvement de terrain affectant des sols volcaniques formés par le
Vésuve; elle fit 137 morts et environ 300 M€ de dommages;

- au cours des éruptions volcaniques, le mélange de cendres et d’eau (par exemple
résultant de la fusion d’un manteau neigeux ou d’un glacier) peut provoquer des
coulées froides de cendres, semblables aux lahars. Quelques exemples:

— en novembre 1985, le volcan Nevado del Ruiz en Colombie entra en érup-
tion; la fusion de la glace forma une coulée de cendres, qui engloutit la
ville d’Armero et d’autres villages (23 000 morts environ),

— en mai 1980, I'éruption du volcan Mount Saint Helens aux Etats-Unis pro-
voqua un affaissement complet du versant nord du volcan et causa la for-
mation de lahars dévastateurs; la vallée de la riviéere North Fork Toutle
fut comblée de sédiments sur une longueur d’environ 22 km et sur une
épaisseur moyenne de 45 m (épaisseur pouvant localement atteindre les
200 m.

- certains mouvements de terrain ou écroulements peuvent se mettre a accélérer

brutalement et causer des écoulements proches des laves torrentielles lorsque la
teneur en eau est suffisante. En juillet 1965, le glissement de terrain de la Ravoire
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Figure 2.47 - (a), (b) La Navisence en crue avec un fort charriage le 21 juin 2024. Source:
Bob de Graffenried (EPFL/LHE). (c) Lave torrentielle dans I'Illgraben (VS). Source : WSL.

(d) Lave torrentielle de Chamoson le 7 aolit 2018 dans le torrent du Saint-André. Source:
Le Nouvelliste.

de Pontamafrey (France) accéléra soudainement apreés un printemps humide et
forma une lave torrentielle de plusieurs centaines de milliers de m®, qui coupa la
route nationale et la ligne de chemin de fer, isolant toute la vallée de Maurienne.


https://www.lenouvelliste.ch/photos/valais/valais-coulee-de-boue-monstre-a-chamoson-775383
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2.3.3 Débacle glaciaire

Les lacs glaciaires se forment généralement lors d’un retrait glaciaire (on a alors
le plus souvent affaire a des lacs morainiques), lorsqu’un glacier ou un écroulement
de glace barre une vallée drainée par un cours d’eau, ou bien lorsqu’une éruption vol-
canique touche une zone glaciaire (on parle de jokulhlaup). Comme les barrages na-
turels sont formés de matériaux grossiers, perméables et de masse volumique trés va-
riable (glace ou mélange glace/rocher), leur stabilité est relativement médiocre. Tous les
lacs glaciaires ne connaissant pas nécessairement une rupture ; pour plusieurs lacs gla-
ciaires, on a en effet observé des vidanges partielles (avec souvent une périodicité des
vidanges) sans destruction du barrage (Costa, 1988; Walder & Costa, 1996). Lorsqu’il y
a rupture, celle-ci résulte

- soitde I’érosion interne par la création de tunnels drainant le lac (en hydraulique
on parle de « renard » car on a longtemps cru que les trous observés étaient le
fait de mammiferes),

- soit sous leffet d’érosion externe en cas d’une surverse ou a cause de la poussée
des eaux, avec pour conséquence la création d’une bréche qui entaille progres-
sivement le remblai glaciaire.

Pays de montagne avec encore une large couverture glaciaire, la Suisse est par-
ticuliérement concernée par les débacles glaciaires et, de facon plus générale, les acci-
dents liés aux glaciers (effondrement de glacier, poche glaciaire). Le tableau 2.1 recense
quelques-unes des catastrophes les plus marquantes des deux derniers siecles. Avec le
réchauffement climatique, la fréquence des débacles a augmenté, les régions les plus
touchées et documentées sont I’Alaska, ’Europe, et 'Islande (Carrivick & Tweed, 2016;
Harrison et al, 2018), mais naturellement toutes les montagnes glaciaires du monde
sont concernées. Le probleme des débacles glaciaires reste donc d’une grande actua-
lité.

Les ruptures de poche glaciaire peuvent provoquer des dommages importants en
zone de montagne a cause des fortes vitesses, mais également des nombreux débris et
sédiments charriés par 'onde de crue. Quelques exemples:

- en Suisse, le glacier Giétro 16 dominant aujourd’hui le barrage de Mauvoisin
dans le val de Bagnes (Valais), a connu plusieurs débéacles meurtrieres (1595 et
1818) (Gard, 1988; Payot & Meilland, 2018; Ancey et al., 2019) (voir figure 2.48);

16. La catastrophe de Giétro en 1818 a endeuillé le Valais: en plein petit 4ge glaciaire, des
blocs de glace se détachent continuellement du glacier du Giétro et s’accumulent dans le lit de
la Dranse de Bagnes jusqu’a faire obstacle a I’écoulement de la Dranse (au niveau actuel occupé
par le barrage de Mauvoisin). C’est ainsi qu’entre 1806 et 1818, un lac de 3,5 km de long se forme
a ’amont de ce cone. Malgré le percement d’une galerie pour drainer le lac, le barrage naturel
cede sous la pression de ’eau, provoquant la vidange rapide du lac et causant la mort d’environ
40 personnes.
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Tableau 2.1 — Quelques événements de débacle glaciaire survenus en Suisse au cours
des deux derniers siécles. Les volumes drainés V' sont exprimés en millions de m? et
les débits de pointe en m?3/s. Source: (Haeberli, 1983; Raymond et al., 2003; Walder &

Costa, 1996; Worni et al., 2014).
Date Lieu %4 Qp
1818  Glacier du Giétro (VS) 20 8000 a 20 000
1878 Lac de Mirjelen, glacier d’Aletsch (VS) 10,7 300
1913 Lac de Mirjelen, glacier d’Aletsch (VS) 45 195
1943  Glacier de Ferpécle (VS) 1,6 400
1944 Lac de Gorner, glacier du Gorner (VS) 6 200
1951 Lac de Grindelwald (BE) 0,135 74,6
1952  Glacier de Ferpecle (VS) 0,25 230
1968 Lac de Gorner, glacier du Gorner (VS) 2,9 29
2008 Lac de Grindelwald (BE) 0,57 111
2018 Lac des Faverges, glacier de la Plaine Morte (BE, VS) 2 80

en France, en 1898, la débacle du glacier de Téte-Rousse a entrainé un mélange
d’environ 300 000 m? d’eau, de glace ainsi que 800 000 m® de matériaux sur son
parcours; 175 personnes furent tuées a Saint-Gervais-les-Bains;

plus récemment, en juin 2001, le petit lac du Weingarten a rompu sa digue mo-
rainique et s’est déversé dans un torrent dominant le village de Tasch (Valais),
remobilisant les laisses de crues (dépots de lave de I'automne 2000) et causant
d’importants dommages au village (voir figure 2.49).

2.3.4 Deébacle due a des écroulements

Les ruptures de barrage non glaciaire (naturel) sont aussi des causes de crue tor-

rentielle dévastatrice. Quelques exemples:

en 1191, un écroulement rocheux dans le défilé de la Vaudaine (France) barra
la Romanche entre Bourg-d’Oisans et Grenoble; un lac se forma, mais la digue
naturelle se rompit en 1219 et la vidange du lac entraina une crue torrentielle
d’ampleur exceptionnelle, qui détruisit en partie Grenoble (a I’époque une petite
bourgade) (Berlioz, 1998);

en 563, un écroulement du Grammont dans le Chablais (Valais) a causé une
vague, dont les effets dévastateurs se firent sentir jusqu’a Genéve (Frei & Marongiu,
2019). Certains pensent que 1’écroulement aurait obstrué le Rhone a hauteur des
Evouettes (voir figure 2.50). Aprés quelques mois, le barrage aurait cédé, causant
une crue gigantesque du Rhone et un tsunami sur le Léman. D’autres auteurs
indiquent que I’éboulement serait parti des Dents du Midi et non du Grammont
(Mariétan, 1925; Montandon, 1925, 1931), ce qui semblerait plus logique compte
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Figure 2.48 — Eau-forte attribuée a Théophile Steinlen montrant le lac sous le glacier
du Giétro le 16 mai 1818. Source : Médiatheque du Valais.

tenu de la configuration de la vallée du Rhone entre Martigny et Noville. Tres
récemment, la discussion autour de emplacement exact du mont Tauredunum
(Grammont? Dents du Midi?) a été relancée avec 'exploration des fonds du
Léman (Kremer et al, 2012; Frei & Marongiu, 2019).
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Figure 2.49 — Le village de Tésch apres la crue du Taschbach en juin 2001. Source:
Crealp.
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Figure 2.50 — Quelle est l'origine du tsunami qui balaya les rives du Léman en 5637
D’aucuns pensent qu’il s’agit de I’écroulement du versant oriental du Grammont qui
est la cause de la catastrophe. Source : Justin Favrod (Favrod, 2009, 2011).
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2.3.5 Avalanches

Les avalanches sont des écoulements rapides de neige. Elles surviennent en géné-
ral aprés des chutes de neige plus ou moins intenses ou bien lors d’un redoux; elles
peuvent étre aussi déclenchées accidentellement par des skieurs ou d’autres causes
(engins motorisés, animaux, etc.). Au cours du xx° siécle, plusieurs avalanches de trés
grande ampleur ont rappelé que bien des villages étaient soumis a un risque peu fré-
quent, mais fort d’avalanche. Quelques exemples:

- en 1951, une crue avalancheuse d’ampleur exceptionnelle sur deux jours (20 et
21 janvier) endeuille de nombreuses vallées dans le haut Valais, la Valteline, le
Tyrol, la Carinthie, et 'Engadine, causant la mort de 231 personnes dont 75 en
Suisse (Vaudaux, 1951);

- le village d’Airolo (Tessin) est fortement endommagé en février de la méme
année (10 morts). Plus récemment, Evoléne (Valais), Galtiir (Tyrol autrichien),
Chamonix ont été endeuillés par des avalanches dévastant des habitations; en-
viron 60 personnes trouveérent la mort dans leur habitation en février 1999 sur
Pensemble des Alpes (voir figure 2.51) (Ammann, 2000).

Les avalanches causent de temps a autre des dommages aux infrastructures. Les remon-
tées mécaniques et les chalets d’alpage sont particuliérement concernés (voir figure
2.51).
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Figure 2.51 — (a) Avalanche de la montagne de Péclerey qui a dévasté le hameau de
Montroc dans la commune de Chamonix-Mont-Blanc le 9 février 1999, faisant 12 vic-
times dans les chalets. Source: Philippe Revol (Cemagref). (b) Avalanche d’Evoléne le
21 février 1999, qui fit 12 victimes. Source Fabrice Coffrini, RTS. (c) Avalanche du Van-
d’En-Haut (commune de Salvan, VS) en mars 2017. Source: Sensefly. (d) Avalanche
du télésieége de ’'Arcelle le 15 avril 2024 a Valcenis (France, Savoie). Source: archives
Toraval.


https://www.rts.ch/info/regions/valais/2024/article/il-y-a-25-ans-deux-avalanches-meurtrieres-s-abattaient-sur-evolene-tuant-12-personnes-28411899.html
http://www.sensefly.com

2.4 Cout des dommages

2.4.1 Inondations
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Tableau 2.2 — Nombre annuel moyen de morts dus aux inondations en fonction des
continents et des décennies depuis 1980 ; le nombre en parenthéses indique le nombre
relatif de morts par rapport a toutes les victimes de catastrophes naturelles. Cott an-
nuel moyen en milliards de dollars (G$) des inondations en fonction des continents et
des décennies depuis 1980; le nombre entre parenthéses représente le coiit relatif des
inondations par rapport au coflit des dommages causés par des événements naturels.
Les événements naturels considérés sont: inondation, sécheresse, activité volcanique,

séisme, et mouvement de terrain. Source: Our World in Data.

Nombre annuel de morts

continents 1980-89 1990-99 2000-09 2010-19 2020-
Europe 80 (3 %) 96 (22 %) 96 (64 %) 89 (68 %) 74 (78 %)
Asie 4194 (75%) 5293 (34 %) 3709 (8%) 3723 (43 %) 3513 (20 %)
Afrique 165(0%) 732(86 %) 795(63%) 723 (24%) 1811 (74 %)
Océanie 16 (82 %) 42% 9(22%)  12(20%)  15(59 %)
Amérique duSud 397 (12%) 3158(89 %) 308 (66 %) 389 (63%) 374 (78 %)
Amérique du Nord 248 (18 %) 257 (81%) 471(74%)  130(1%) 99 (12 %)
Cotit économique annuel en G$
Europe 10 (18%) 28(53%) 54(86%) 48(61%) 13,1(75%)
Asie 20(85%) 143(46%) 7,7(31%) 264(44%) 23,7 (55 %)
Afrique 0,1(14%) 01(17%) 03(35% 04(49%)  2.1(82 %)
Océanie 0,0(2%  01(33%) 05 (69 %) 1(26%)  3,6(99 %)
Amérique du Sud 08(55% 07(64%) 0,7(69% 1,4(24%) 009 (27 %)
Amérique du Nord 0,2 (12 %) 3,1 (47 %) 0 (67 %) 5,1 (45 %) 2,8 (22 %)

Le tableau 2.4.1 fournit le nombre moyen annuel de personnes tuées par des inon-
dations pour chaque continent. Nous donnons des valeurs moyennées a 1’échelle de
la décennie. Nous indiquons également le colit économique des dommages dus aux
inondations. Quelques commentaires:

- les inondations représentent chaque année un pourcentage important des pertes
économiques dues aux catastrophes naturelles (56 % du total mondial en moyenne

depuis 2020);

— depuis 2020, elles représentent en moyenne 27 % du nombre de morts a des ca-
tastrophes naturelles a I’échelle de la planéte dues;

- parmi ’ensemble des continents, I’Asie est celui qui paie le plus lourd tribut aux
inondations: cette situation est évidemment a mettre en relation avec les grands


https://ourworldindata.org/natural-disasters
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fleuves chinois !” et le role particulier joué par la mousson;

- depuis les années 2020, I’Afrique paye un tribut encore plus lourd aux inon-
dations que I’Asie quand on rapporte le nombre de victimes a sa population
(UAfrique est quatre fois moins peuplée que I’Asie).

2.4.2 Avalanches

Risque mineur en termes de dommages a 1’échelle d’un pays, les avalanches repré-
sentent une contrainte certaine pour les vallées alpines dés lors qu’on souhaite assurer:

— la sécurité des personnes dans les habitations;
— la mobilité des personnes et des biens par la route et le rail;

- le développement des activités touristiques.

Sur ’ensemble de I’arc alpin ce sont quelque onze millions de personnes qui vivent de
maniére permanente. Durant la saison hivernale, ce nombre est plus que doublé. Le
trafic automobile ne cesse d’y croitre: 150 millions de personnes franchissent chaque
année les Alpes. Pour garantir la plus grande sécurité possible, les autorités publiques
ont largement promu des politiques de prévention du risque.

Les avalanches sont emblématiques pour le grand public de I’Alpe homicide. La
menace représentée par les avalanches en quelques chiffres:

- Historiquement en France et en Suisse, comme pour les autres pays alpins, les
avalanches ont constitué I'une des principales menaces naturelles pour les hommes
et les activités humaines. Elles ont profondément marqué la vie et I’architecture
des villages alpins.

- Chaque année, en moyenne, 30 personnes en France et 23 en Suisse périssent
par avalanche, mais le plus souvent lors d’une pratique de loisir (en moyenne, il
y a 1 mort par an dans une habitation au cours des 20 derniéres années). Dans
les pays alpins, elles constituent le plus souvent I'un des risques naturels les plus
dangereux avec les crues et les inondations (voir tableau 1.3).

- Les assurances cantonales suisses ont remboursé quelque 140 millions de francs
(voir tableau 1.4) pour les dommages au bati consécutifs a des avalanches sur la
décennie 1999-2008. L’année 1999 reste I’année noire pour les assureurs, avec 50
millions d’euros de remboursements. Le cofit total des dommages sur la Suisse
a été estimé a 585 millions de francs, dont 180 de pertes indirectes (annulation
de réservation, baisse de fréquentation touristique, etc.). Pour fixer un ordre de
grandeur, les assurances versent sur 'ensemble de la planéte en moyenne envi-

17. En Chine, les plaines inondables ne représentent qu’une partie infime du territoire, mais
elles concentrent la population et I’activité agricole. Par exemple, pour le Yangtse, elle repré-
sente 1,5 % de la surface du pays, mais elle est habitée par 250 millions d’habitants; 45 % de la
production du riz et des autres céréales y est produite.
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ron 17 milliards de francs par an de dommages a la suite de catastrophes natu-
relles.

— En France, il existe 400 communes soumises a un risque d’avalanche 18 52 com-
munes en France ont bénéficié depuis 1982 d’un arrété de catastrophe natu-
relle 1°. En Suisse, 312 communes sont concernées par les avalanches.

18. 23500 communes sont menacées par un risque naturel en France.
19. Cet arrété permet le remboursement par I'Etat de dommages subis sur des biens lorsque
de vastes zones du territoire national ont été soumises a une calamité naturelle.






Q .. ANS CE CHAPITRE, on s'intéresse 2 la gestion des dangers hydrologiques dans

%? Paménagement du territoire. On présente tout d’abord le principe général de
—# Tlanalyse des dangers hydrologiques. Quoique les méthodes différent signifi-
cativement selon les pays et les praticiens, il existe un ensemble de concepts qui sont a
peu pres partagés par I’ensemble de la communauté. On découpe cette analyse en trois
phases: une premiére phase de caractérisation des phénomeénes, qui permet d’arriver —
en fonction des enjeux sur le territoire étudié — a formaliser une crue (ou une avalanche)
de projet. A partir de 13, on peut arréter une stratégie de protection; c’est I'objet de la
seconde phase. Enfin, dans la troisieme phase, le détail des techniques de protection a
mettre en ceuvre est défini en fonction des contraintes du projet. Parmi les stratégies
de protection, une gestion raisonnée de I’occupation du sol est de premiere importance
et justifie 'emploi d’un zonage, qui permet a la fois de présenter une cartographie syn-
thétique des dangers et des risques, mais également d’imposer des prescriptions selon
les contraintes du milieu naturel. Dans la derniére partie du chapitre, on passe en revue
les principales stratégies de protection paravalanche et contre les crues.

3.1 Démarche générale

La lutte moderne contre les dangers hydrologiques emprunte son vocabulaire au
domaine militaire. Il est commode de distinguer trois grands processus a mettre succes-
sivement en ceuvre dans cette lutte:

1. Il faut tout d’abord savoir contre quel ennemi on cherche a se défendre. Les dan-
gers hydrologiques se caractérisant par une intensité variant selon la fréquence
d’occurrence, la premiére étape est de chercher a définir les caractéristiques du
danger contre lequel on cherche a se prémunir. Cette recherche aboutit a la for-
malisation d’un phénomeéne de référence ; on introduit la notion de crue de projet
ou d’avalanche de référence (ou de projet). Se protéger contre le phénomene de

131
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référence nécessite d’évaluer la liste des enjeux que ’on souhaite protéger et de
définir ’objectif de protection, c’est-a-dire le niveau de protection souhaité pour
les enjeux identifiés.

2. Quand on connait le danger, on peut arréter une stratégie qui permet de définir
un angle d’attaque du probléme. La sélection d’une stratégie répond & une mul-
titude de criteres assez éloignés tels que la vulnérabilité des enjeux, le degré de
risque accepté, les normes et autres dispositions réglementaires, les contraintes
spécifiques (politiques, du milieu naturel, architectural, etc.), le cotit financier, la
planification de 'occupation du sol, etc. La sélection d’une stratégie doit donc
concerner une multitude d’acteurs.

3. A chaque stratégie on peut associer des tactiques différentes de lutte ; on parle
le plus souvent de techniques de protection. Pour répondre a un objectif de pro-
tection, on peut faire appel a un catalogue relativement vaste d’outils, qu’il
faut choisir et assortir en fonction du probléme a traiter, des contraintes éco-
nomiques, des choix du maitre d’ouvrage, et des différentes contraintes régle-
mentaires.

3.1.1 Phénomene de référence

La premiére phase du diagnostic des dangers consiste a étudier les phénoménes
sur un territoire donné. Le plus souvent, cette étude est de nature qualitative. En effet,
I'analyse des crues/avalanches est réalisée a partir

- d’unrecensement des phénomeénes historiques majeurs, principalement au cours
du xx° siécle, mais également au x1x° siécle quand les données sont disponibles.
Il s’agit principalement d’évaluer les emprises maximales connues et les dom-
mages subis;

- une analyse naturaliste du bassin-versant afin de se faire une analyse qualita-
tive du mode de fonctionnement (nature des crues/avalanches, emprises, effets
prévisibles, fréquence) (Delgado, 2006; Ancey, 2006).

Cette analyse qualitative peut étre complétée par des analyses quantitatives telles que
des simulations numériques (propagation d’une crue ou d’une avalanche), des essais
sur modeles réduits, des tests statistiques.

L’objectif final est d’arriver a une estimation entre intensité et fréquence des phé-
nomeénes sur le territoire étudié. Si en théorie, cette relation est une équation liant un
parametre d’intensité ¢ et une période de retour 7' (voir § 4.1.6), en pratique on se
contente de catégoriser la relation intensité-fréquence compte tenu

— d’une part du nombre de parameétres nécessaires a décrire finement l'intensité
d’un phénomene. Par exemple, pour caractériser 'intensité d’une crue, il faut au
moins trois parametres: vitesse, durée, et hauteur de submersion;
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- d’autre part de l'incertitude assez conséquente dans toute évaluation de la pé-
riode de retour d’'un phénoméne, incertitude qui résulte du manque de don-
nées et d’une connaissance imparfaite des phénomenes (physique des processus,
conditions initiales, etc.)

Il est donc plus commode d’introduire des classes d’intensité et de fréquence. Le ta-
bleau 3.1 fournit les catégories considérées. La classe ¢ — f comporte un premier indice
spécifiant 'intensité du phénomeéne (i) et un second se référant a la fréquence d’occur-
rence (f). On note tout de suite que le choix des bornes des classes et leur désignation
ne sont pas innocents ou sans conséquence. Ils sous-tendent en fait que 'intensité et
la fréquence sont considérées relativement a un enjeu a protéger. Par exemple, une
crue centennale est un phénomene extréme si I’enjeu est un champ a vocation pure-
ment agricole, mais c’est une crue ordinaire pour un barrage hydroélectrique de grand
volume. Dans le tableau 3.1, I’élément de référence est une habitation.

Assez rapidement dans I’évaluation pratique de la relation intensité-fréquence, ap-
parait donc la notion d’enjeu a protéger. Cela peut sembler quelque peu contradictoire
avec ce que I'on a énoncé plus haut puisque la théorie veut que cette relation soit in-
dépendante de tout enjeu. C’est toutefois a ce prix que la méthode est applicable et
compréhensible par le plus grand nombre.

Le choix des catégories dans la typologie donnée ci-dessus est fortement dépen-
dant de I’ objectif de protection assigné a chaque type d’enjeu, que celui-ci concerne un
espace naturel (ou agricole) ou un espace urbanisé. On peut définir 1’objectif de protec-
tion comme une description de la relation entre I'intensité maximale admissible pour un
enjeu et la période de retour (Borter, 1999); cette relation n’est pertinente que pour une
catégorie donnée d’enjeux ou d’occupation du sol. Le tableau 3.2 suggeére des valeurs
guides pour des enjeux placés en zone urbaine ou péri-urbaine et soumis a des crues.
Ces valeurs sont définies dans la méthode inondabilité développée par le 'INRAE (ex.
Cemagref) en France; intensité est traduite a travers le triplet durée, vitesse, hauteur
de submersion. La figure 3.1 fournit les objectifs de protection préconisés par I'OFEG en
Suisse. Ils se présentent sous la forme d’une matrice liant débit de projet et nature des
enjeux; dans ce cas-la, le paramétre d’intensité est fixé par le débit de pointe de la crue.
Comme on le voit a travers ces deux exemples, il n’y a pas encore de méthode claire-
ment établie et universellement appliquée, mais plusieurs méthodes selon les écoles de
pensée, les pays, les domaines techniques. Ici, plus quune méthode bien précise qu’il
faudrait apprendre, c’est l'esprit de la méthode qu’il convient d’appréhender.


http://www.irstea.fr/

Tableau 3.1 - Diagramme intensité/fréquence quand l'enjeu a protéger est une maison.

période de retour 7" > 300 ans T': 80-300 ans T':30-80 ans T':10-30 ans
fréquence potentiel: 1 exceptionnel a rare: 2 peu fréquent: 3 moyennement fréquent: 4

intensité
faiblement intense: 1 i1-f1 i1-f2 i1-f3 i1-f4
moyennement intense: 2 i2—f1 i2—f2 i2—f3 i2—f4

trés intense: 3 i3—f1 i3—f2 i3—f3 i3-f4
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Tableau 3.2 — Valeur typique d’objectif de protection en zone urbaine. Adapté de la
méthode inondabilité, voir (Gilard, 1998). Sont indiquées: la nature de 'occupation du
sol, la durée au-dela de laquelle des dommages sont probables (instant = instantané), la
hauteur et la vitesse de submersion.

Occupation du sol durée  hauteur vitesse période de retour
m m/s ans

Service névralgique:

service de secours instant 0 0 1000

centre de communication instant 0 0 1000

Résidence:

cave instant —2 0,5 10

rez-de-chaussée instant 0,5 0,5 100

étage instant 3 0,5 1000

Activité:

commerce instant 0,6 5

industrie instant 0,6 1-100

camping instant 0,5 0,5 10

Voies de communication:

route >1h 0,1-0,2 0,5 1

autoroute instant 0,1 1 10

voie ferrée instant 0,3 5

On note que parmi les différences qui apparaissent entre la définition employée par
I'INRAE (ex. Cemagref) et celle de 'OFEG, il y a le nombre et la nature des parameétres
décrivant 'intensité de la crue. Il s’agit la d’une question a priori difficile a trancher. Par
exemple, qu’est-ce qui est le plus contraignant ou dommageable: une crue décennale,
avec une hauteur de 1 m et une vitesse de 1 m/s ou bien une crue trentennale, avec
une hauteur de 1,5 m et une vitesse de 80 cm/s ? Doit-on chercher a se protéger contre
des crues fréquentes et peu intenses? La réponse adoptée par beaucoup de réglemen-
tations en Europe est que parmi les différentes combinaisons du triplet (durée, vitesse,
hauteur), il faut retenir la combinaison la plus défavorable en termes de dommages et
lui attribuer une période de retour. Cela revient a dire qu’on peut synthétiser toutes
les variables d’intensité sous la forme d’une variable équivalente. C’est par exemple ce
qu’on appelle la variable Top dans la méthode inondabilité: T pour période de retour et
Or pour objectif de protection (Gilard, 1998). En général, les méthodes hydrologiques
permettent d’aboutir a une relation entre variables (durée, vitesse, hauteur) puisque ce
sont des variables hydrologiques classiques; la variable équivalente est alors le débit
de pointe puisque lorsqu’on a cette information, on peut calculer la durée de submer-
sion a aide d’'un hydrogramme synthétique — défini dans la plupart des méthodes de
type SCS, QdF, etc. — ainsi que la vitesse et hauteur de submersion a I'aide d’un jeu
d’équations de type Saint-Venant (calcul hydraulique); se reporter au chapitre 5. C’est
pour cette raison que pour les crues, la variable la plus souvent utilisée est le
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Figure 3.1 — Objectifs de protection selon les enjeux. D’apres (Willi et al., 2001).

débit de pointe. Il faut noter que cette facon de faire n’est pas unique; certaines mé-
thodes sont ainsi fondées sur une évaluation monétaire des dommages pour définir ce
qui est économiquement acceptable. Dans ce cas particulier, la principale difficulté est
liée a l'estimation des biens fonciers (qui varie au cours du temps) et du prix de la vie
humaine.

Pour les dangers hydrologiques autres que les crues liquides, la situation est un peu
plus délicate car contrairement aux écoulements d’eau, il n’y a pas de relation simple
et systématique entre variables; c’est le cas des écoulements avec transport solide ou
bien des avalanches. Ainsi pour les avalanches, les directives du Schnee- und Lawinen
Forschung considérent que la période de retour de I’avalanche équivaut a celle des
chutes de neige sur les trois derniers jours (plus exactement, ’accroissement du man-
teau neigeux durant les 3 jours précédant ’avalanche) (Salm, 1993) alors que certains
auteurs préconisent de faire des statistiques sur les distances d’arrét (Keylock, 2005;
Meunier & Ancey, 2004). Pour les crues torrentielles avec transport solide (dont les
laves torrentielles), c’est principalement le volume de sédiment qui sera le parametre
physique pertinent.
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3.1.2 Stratégies de protection

11 existe plusieurs stratégies de protection contre les dangers hydrologiques. Ici
nous proposons les deux critéres de classification suivants:

— existence ou non d’une intervention humaine:

- défense permanente réalisée sans intervention humaine,

— défense temporaire fondée sur une prise de décision et une intervention;

- point d’intervention:

— défense active dans la zone de formation des phénoménes,

— défense passive dans la zone de propagation (ou d’arrét) des phénomenes.

On peut synthétiser les grandes stratégies de protection comme suit:

1.

empécher les phénoménes de se produire. Par exemple dans le cas des ava-
lanches, on peut chercher a stabiliser le manteau neigeux par des ouvrages de
retenue dans les zones de départ (paravalanche de type claies, rateliers, filets). La
forét a également longtemps été vue comme un moyen d’empécher la formation
des crues;

arréter les phénomeénes en cours d’écoulement. En construisant des digues
d’arrét, on peut forcer les avalanches ou les laves torrentielles a s’immobiliser
dans un périmeétre donné. Un barrage peut également recueillir tout un volume
de crue et annuler le danger a I’aval;

arréter/freiner localement les écoulements a proximité de l’enjeu a sécuri-
ser. Une étrave permet de protéger un équipement contre un écoulement. Le
laminage des crues par une succession de barrages et de champs d’expansion
entre aussi dans cette catégorie;

. forcer le déclenchement des écoulements en espérant qu’ils restent de taille

modeste. C’est typiquement ce que I’on fait dans le déclenchement préventif des
avalanches, par exemple pour protéger un domaine skiable;

. dévier/contenir les écoulement en modifiant/maitrisant leur trajectoire et

emprise par des digues. C’est la défense classique contre les crues ou, pour
éviter la divagation et le débordement, on construit des digues le long des cours
d’eau. On peut faire de méme pour se prémunir contre les laves torrentielles et
les avalanches;

adapter et renforcer les équipements a protéger, de maniere a établir leur
auto-protection. Par exemple, pour se protéger des crues, on peut monter les
maisons sur pilotis ou bien n’aménager que les étages;

engager des mesures réglementaires temporaires (interdiction momentanée
d’occupation ou de circulation, procédure d’évacuation et plans de secours, etc.). ;
placer les enjeux menacés hors de la zone menacée. C’est tout 'enjeu du zo-
nage du risque.
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Chacune de ces actions est caractérisée par

— un degré de fiabilité et de sécurité;
— un domaine et des limites d’utilisation;

— d’une maniére générale, des avantages et des inconvénients, dont ’appréciation
varie selon les acteurs concernés par le probléme.

3.2 Zonage des risques

Dans cette section, on passe en revue les grands notions utilisées dans la réalisation
de plans de zonage. Compte tenu de la diversité des conditions de réalisation d'un
zonage (en fonction de la réglementation, du contexte, de I’objet a protéger, etc.), nous
n’irons pas plus loin dans la description des techniques de zonage.

3.2.1 Aléa, danger, vulnérabilité, et risque: vocabulaire em-
ployeé

Le zonage fait appel a un certain nombre de notions qu’il est utile de rappeler
(Wilson & Crouch, 2001; Wilhelm, 1998; Borter, 1999). Ces notions sont reconnues sur
Pensemble des pays occidentaux puisque la plupart de ces pays ont adopté la méme
démarche. Au passage, il faut noter que les principes employés aujourd’hui ont été
définis et mis en pratique par les Suisses au cours des années 1960 dans le cas particulier
des avalanches (Salm, 2004), puis étendus aux autres dangers. Nous renvoyons sur les
recommandations formulées par l'office fédéral de I'environnement (Bundesamt fiir
Umwelt, BAFU) pour la pratique en Suisse et le guide méthodologique générale des
plans de préventions des risques (MATE, 1997) pour la pratique en France.

Risque. — Le risque représente la probabilité de dommages matériels, de blessures,
et/ou de déces liée a 'occurrence d’'un phénomeéne naturel. En zonage de risque hydro-
logique, le risque se caractérise par trois composantes:

- la fréquence d’occurrence du phénomeéne naturel en un lieu donné;

- lintensité du phénomene en termes d’effets potentiels sur des hommes, des ani-
maux, ou tout autre enjeu;

— le degré d’exposition, c’est-a-dire la proportion de temps durant lequel I’enjeu est
exposé .

Le risque estimé est souvent mis en relation avec le risque accepté (voir tableau 3.3).

1. Le degré d’exposition d’une maison dans une zone menacée par une crue ou une ava-
lanche est 1; le degré d’exposition d’une route est la proportion de temps durant lequel il y a
au moins un véhicule sur un tron¢on menacé.


http://www.bafu.admin.ch/publikationen/index.html?lang=fr&action=show_publ&id_thema=24&nr_publ=7516&series=VU
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Tableau 3.3 — Risque accepté selon la nature de ’enjeu.

Nature de 'enjeu Risque accepté R Période de retour T'
Equipement <3% T < 30 ans
Habitation permanente <1-3% T < 30 — 100 ans
Grandes retenues” < 0,1 -0,01 % T < 1000 — 10* ans

¢Sans vocation a habitation permanente.
bSelon la jurisprudence actuelle, il s’agit des barrages intéressant la sécurité publique.

Pour quantifier le risque, on écrit souvent la relation (Wilson & Crouch, 2001):
risque = probabilité d’occurrence x intensité.

Dans un contexte socio-économique, on peut étendre cette notion en prenant en compte
d’autres parametres comme la vulnérabilité ou le degré d’exposition:

risque = probabilité d’occurrence X intensité X exposition x vulnérabilité.

Risque résiduel. - Le risque résiduel représente le risque subsistant une fois qu'un
systéme de protection a été mis en place.

Fréquence d’occurrence. — La fréquence d’occurrence est souvent introduite a
travers la notion de période de retour. La période de retour est le temps moyen entre
deux événements dont I'intensité est supérieure ou égale a un certain seuil?; elle est
généralement exprimée en années. La fréquence est le nombre d’événements d’intensité
donnée (ou supérieure a un certain seuil) par unité de temps. Ainsi une crue centennale
est une crue dont la période de retour est 7' = 100 ans, c’est-a-dire dont la fréquence
moyenne d’occurrence est de 1/7 = 0,01 chaque année.

Intensité. — L’intensité d’une crue (ou d’une avalanche) est généralement caracté-
risée a travers un, deux, ou trois parameétres qui permettent de quantifier la capacité de
dommage:

— pour les crues, les parameétres importants sont: la hauteur de submersion (voir
tableau 3.4) et la vitesse/débit de I'eau. D’autres parametres peuvent étre des
facteurs aggravants, mais ils ne sont pas souvent pris en considération: la charge
sédimentaire (risque d’exhaussement du lit et d’obstruction des ponts, risque
d’érosion des berges), transport de flottants, la contamination de I’eau par des
polluants, etc.;

— pour les inondations, outre la hauteur de submersion, la durée de submersion
peut étre un critere important a considérer;

2. Cette notion peut étre définie rigoureusement sur le plan mathématique, mais son emploi
pratique est souvent difficile.
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- en zonage d’avalanche ou de lave torrentielle, ce sont surtout la distance d’arrét
(ou plus généralement ’extension) et la poussée/pression d’impact qui servent a
spécifier 'intensité de ’écoulement et ses conséquences potentielles (cf. tableau
3.5 pour les avalanches).

D’une fagon générale, on postule qu’il existe une relation entre intensité I et période de
retour 1" d’un phénomeéne hydrologique: plus le phénomene est rare (1" grande), plus
son intensité I(T') est potentiellement grande.

Tableau 3.4 — Capacité de dommage d’une crue en fonction de la hauteur de submer-
sion d’aprés ’OFEG (Loat & Petrascheck, 1997).

hauteur d’eau A (m) Potentiel de dommage

h <0,5m peu de danger pour les personnes (adultes),
caves inondées

00<h<2m des personnes non abritées peuvent étre em-
portées ou se noyer, dommage au bati

h>2m la sécurité des personnes n’est plus assurée

dans les batiments, ruine possible du bati

Tableau 3.5 — Capacité de dommage d’une avalanche en fonction de la pression exer-
cée. D’aprés (McClung & Schaerer, 1993).

Pression d’impact P, (kPa) Potentiel de dommage

1 brise une vitre

5 défonce une porte

30 détruit des structures en bois

100 déracine de vieux arbres

1000 déplace une structure en béton
armé

Vulnérabilité. — La vulnérabilité représente le degré de dommage d’un enjeu sou-
mis a une crue ou une avalanche d’intensité donnée. Pour traduire cette notion, on
peut introduire un nombre v compris entre 0 et 1. Une vulnérabilité v = 1 pour une
crue (ou une avalanche) d’intensité [ signifie la ruine de 'aménagement ou la mort
des personnes concernées si la crue (ou ’avalanche) d’intensité égale ou supérieure a
I se produisait. La vulnérabilité est donc étroitement liée a I'intensité du phénomeéne:
v=uv(I).

Aléa. — L’aléa d’inondation, ’aléa torrentiel, et ’aléa d’avalanche représentent les
phénomenes physiques indépendamment de ses effets potentiels sur I’environnement
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et les activités humaines. On associe a I’aléa une probabilité d’occurrence (par le biais
de la période de retour). C’est un terme employé essentiellement en France.

Phénomeéne maximal. — Certains pensent qu’il existe une borne supérieure a I'in-
tensité d’'un phénomeéne physique et donc que la relation intensité/fréquence ne peut
pas croitre indéfiniment quand la période de retour devient tres grande; il doit exis-
ter des limitations d’ordre physique qui contraignent 'intensité a tendre vers une va-
leur limite. On introduit ainsi la crue maximale probable (en anglais PMF pour probable
maximum flood) qui est la plus forte crue extréme que peut connaitre un bassin-versant
(Dumas, 2006; ICOLD, 1998). En France, le projet de guide PPR avalanche a introduit la
notion d’avalanche maximale vraisemblable (Liévois, 2006).

Phénomeéne de référence. — La crue de référence (appelée encore crue de projet)
est la crue retenue pour le dimensionnement d’un ouvrage, le plus souvent un ouvrage
de protection. L’ouvrage doit pouvoir résister et protéger contre toutes les crues dont
I'intensité est inférieure ou égale a celle du phénomeéne de référence. Pour des crues
d’intensité supérieure, on tolére des dommages partiels ou complets (ruine de I'ouvrage
et dommages sur les enjeux a protéger). Pour les avalanches et les laves torrentielles,
on parle parfois aussi d’avalanche (ou de lave torrentielle) de référence.

Magnitude. - Comme pour les tremblements de terre ou les ouragans, on peut qua-
lifier les effets destructeurs d’un phénomeéne hydrologique et certaines caractéristiques
physiques a ’aide d’une échelle de magnitude. Ainsi pour les avalanches, McClung et
Schaerer en ont proposé une, reproduite au tableau 3.6.

Cartes de phénomeénes et de risque (danger). — Dans les études modernes du
danger hydrologique sur un secteur donné, on procede de la facon suivante:

1. calcul/estimation du danger naturel, c’est-a-dire recherche des caractéristiques
des crues/avalanches sur un bassin-versant en fonction de la période de retour;

2. détermination des effets potentiels de la crue/avalanche, dommages possibles
sur des aménagements existants ou pouvant exister;

3. prescription des regles d’urbanisme s’il s’agit d’un dossier d’urbanisme.
Chacune de ces étapes peut étre traduite sous forme de cartes.

— Pour I'étape (1), on produit des cartes inventaires de phénoménes ou des « ca-
dastres » ou sont recensés les principaux événements historiques connus. Ces
cartes servent ensuite a établir des cartes d’intensité ol sont reportées les em-
prises des crues/avalanches et la distribution du parametre d’intensité pour une
période de retour donnée (ou les phénomeénes exceptionnels et extrémes connus).
Ces cartes peuvent synthétiser I'information historique connue ou des résultats
de calculs numériques; elles peuvent également combiner différentes sources
d’information. La figure 3.3(a) fournit un exemple de carte de danger pour des
avalanches (menagant un hameau en Haute-Savoie) obtenue a partir de simula-
tions numériques; les codes de couleur renseignent sur la pression cinétique au
sein de I’avalanche. On peut également synthétiser 'information en fournissant
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Tableau 3.6 — Echelle de magnitude des avalanches. M masse de ’avalanche, L lon-
gueur parcourue par I’avalanche depuis la zone de départ, et P ordre de grandeur de
la pression d’impact. D’aprés (McClung & Schaerer, 1993).

Magnitude Capacité de dommage M(@) L(m) P
(kPa)
1 généralement inoffensive < 10 10 1
2 peut ensevelir, tuer ou 102 100 10
blesser une personne
3 peut ensevelir une voi- 103 1000 100

ture, détruire un petit ba-
timent? ou casser des
arbres
4 peut détruire un wagon, 10% 2000 500
un grand camion, plu-
sieurs batiments, ou jus-
qu’a 4 ha de forét
5 plus grandes avalanches 10° 3000 1000
connues, peut détruire un
village, raser une forét de
40 ha

¢ par exemple, un chalet en bois.

un zonage des phénomeénes, ou 'on se contente d’un découpage en quelques
zones (par exemple danger négligeable/nul, faible, moyen, fort dans le cas d’un
zonage d’avalanche). Les cartes sont généralement a une échelle allant du 1:
1000 au 1: 25 000.

— Pour I’étape (2), on produit une carte de danger ou carte de risque (selon le pays),
ou les enveloppes des zones de risque sont schématisées a ’aide d’un code de
couleur. La figure 3.3(b) fournit un exemple de carte de danger, ou le découpage
en zones fait appel a quatre codes de couleur selon I'effet des avalanches (pres-
sion, hauteur de sollicitation, type d’effort, etc.) sur le bati et la fréquence des
avalanches. L’usage international est d’utiliser un code de trois ou quatre cou-
leurs: zones blanche, jaune, bleue, et rouge. La figure 3.2 propose une définition
des zones de risque en usage dans la plupart des pays occidentaux.

- L’étape (3) concerne uniquement les cartes établies a des fins réglementaires
(zonage réglementaire par exemple). Le document final doit inclure une carto-
graphie synthétique du risque selon le code de couleur blanc/jaune/bleu/rouge
et un réglement fixant les prescriptions d’occupation du sol.

Des bases de données a acces gratuit ou sécurisé existent en Suisse et en France et
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permettent d’accéder a différentes sources d’information, notamment le cadastre des
événements. Pour la Suisse, la base de données StorMe recense les événements domma-
geables documentés. En France, il existe plusieurs initiatives. L’INRAE de Grenoble met
a disposition les carnets d’avalanche de 'Enquéte Permanente des avalanches, les fiches
de renseignement et les cartes d’inventaire des avalanches (CLPA). Certains départe-
ments frangais comme I'Isére fournissent également des informations via le site des
préfectures ou bien des instituts spécialisés (Institut des risques majeurs pour I'Isére).

30

blanche

pression d'impact P (kPa)

3

1

(=]

30 100 300
période de retour T (ans)

Figure 3.2 — Définition des zones de risque en fonction de I'échelle d’intensité 7 et de
la fréquence d’occurrence f. Adapté de (Salm et al., 1990).

En Suisse et en France, les autorités nationales ont lancé de grands programmes de
révision et/ou d’établissement de plans de zonage pour chaque commune du territoire
national. En Suisse, le Bundesamt fiir Umwelt (BAFU) fournit un état d’avancement ré-
gulier du zonage dans les différents cantons. En France, le ministeére en charge de envi-
ronnement publie une information sur les plans de prévention sur le site www.gouver-
nement.fr/risques. Une information plus compléte est généralement disponible sur le
site de chaque préfecture.

Zone blanche. — Dans les cartes de risque, la zone blanche regroupe les lieux
pour lequel le risque est nul ou trés faible, c’est-a-dire la période de retour d’éventuels
phénomeénes est trés grande (100-300 ans, voire plus, selon les pays) et/ou le niveau
d’intensité trés faible. Il n’y a pas de contre-indication a la construction de batiments
liée au risque.

Zone jaune. — Il s’agit d’une zone a risque résiduel (effet de souffle, par exemple,
dans le cas d’une avalanche) ou bien potentiellement concernée par des phénomeénes
extrémes (par exemple, la crue maximale probable). Le risque y est faible, mais des
mesures de consignation/évacuation peuvent concerner de telles zones en cas de situa-
tions météorologiques critiques. Ces mesures d’ordre temporaire ne sont en général
pas doublées de mesures permanentes comme des prescriptions architecturales.


http://www.bafu.admin.ch/naturgefahren/01922/01926/01927/index.html?lang=fr
http://www.avalanches.fr
www.irma-grenoble.com
https://www.bafu.admin.ch/bafu/fr/home/themes/dangers-naturels/info-specialistes/situation-de-danger-et-utilisation-du-territoire/donnees-de-base-sur-les-dangers/cartes-de-dangers--cartes-d-intensite-et-cartes-indicatives-des-.html
https://www.gouvernement.fr/risques/risques-naturels
https://www.gouvernement.fr/risques/risques-naturels
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Figure 3.3 - (a) Exemple de simulation d’une avalanche coulante centennale sur le
couloir de la Villette (Saint-Gervais-les-Bains, Haute-Savoie) par le modéle AVAC 2. (b)
Carte de phénomeénes (aléas). Source: Toraval.

Zone bleue. - 11 s’agit d’'une zone a risque moyen. La construction de nouveau
batiment (accueil permanent ou temporaire de personnes) y est réglementée (renforce-
ment du bati, ouvrage de protection, etc.); des mesures temporaires (plan de secours,
d’évacuation, de consignation) sont généralement prévues.

Zone rouge. — La zone rouge est I’enveloppe des secteurs a fort risque. La zone
rouge est généralement inconstructible.

L’inconvénient de cette classification du risque est que la zone bleue va en fait du
« bleu trés foncé » — c’est-a-dire des zones a fort risque — au « bleu trés clair » — ou
Peffet de la crue ou de ’avalanche peut se traduire par des effets secondaires causant
des dommages légers —. Il est alors indispensable de subdiviser la zone bleue en secteurs
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ou les moyens de protection (tels que les prescriptions architecturales) sont adaptés a
la menace réelle.

3.2.2 Des cartes de phénomenes aux plans de zonage

Lorsqu’on fait du zonage, on cherche a traduire sous des formes simples les consé-
quences des crues ou de Pactivité avalancheuse sur I'occupation des sols et le dévelop-
pement d’activités humaines. L’idée est:

— de dresser des cartes inventaires des phénoménes qui synthétisent sous une
forme condensée et cohérente les résultats des différentes analyses de la phase
de diagnostic. Ces cartes inventaires sont appelés également « carte d’aléa » ou
« carte de danger », mais cette terminologie est ambigué car le sens d’aléa ou de
danger varie selon les personnes et les pays;

— d’établir des cartes de zonage ou est classifié le risque encouru.

Dans le tableau 3.4, on a transformé le tableau 3.1 en transcrivant les caractéris-
tiques intensité-fréquence en termes de risque (classement en zone rouge/bleue/jaune).
On va ici considérer les régles suivantes:

- zone rouge : phénomenes de forte intensité et phénomeénes d’intensité modérée,
mais de fréquence élevée (i3 f1, i3 fo, i3 f3, et iaf3);

- zone bleue: phénomenes d’intensité modérée et de fréquence basse a moyenne
(i2f1 et iz fa);

— zone jaune ou bleu clair: phénomeénes d’intensité faible (¢ f et i1 f2).

Les phénoménes fréquents d’intensité faible i1 f5 seront classés soit en zone bleue, soit
en zone rouge.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, fréquence
_____________ intensité basse (1) moyenne (2) élevée (3)
Faible (1) if, ifs i fy
Modérée (2) i, f, i, f,

Forte (3)

Figure 3.4 — Définition schématique des zones de risque en fonction de la pression
d’impact et de la période de retour.
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3.3 Stratégies de protection

Nous allons maintenant passer en revue les principales stratégiques et voir com-
ment elles peuvent étre déclinées en différentes techniques de protection.

3.3.1 Empeécher les phénomeénes de se produire

Une facon de se protéger est d’attaquer le probléme a sa source. Une stratégie de
défense permanente active est d’empécher le phénomeéne de se produire dans la zone
de départ. En pratique, cela peut se faire:

- en reboisant des versants dénudés pour protéger contre les crues et les
avalanches. C’est une des premiéres stratégies a avoir été mise en place. En
Suisse, mais aussi dans le duché (puis royaume) de Savoie, 'administration avait
mis a ban des foréts, qui assuraient un role de protection de village contre les ava-
lanches (voir § 1.5.4). La figure 3.5(a) montre le village d’Argentiére (vallée du
Mont-Blanc) protégé des avalanches en rive droite de ’Arve par une forét de
résineux; la forét est aussi rayée par des couloirs d’avalanches, ou seule une
végétation arbustive pousse. Au cours du xx° siécle, la doctrine prénant la fo-
rét comme principal moyen de lutte contre les dangers hydrologiques trouva de
plus en plus de détracteurs. Si la forét a un role indéniable sur certains bassins-
versants (par exemple, sol marneux dénudé du sud de la France), elle peut aussi
n’avoir qu'un role modeste pour d’autres configurations de terrain (terrain per-
méable) (Rey et al, 2004). En effet, une fois que la capacité d’interception par
la végétation est saturée et dans le cas de sols peu perméables, la forét n’a plus
aucun effet sur les pluies soutenues. Dans le cas des avalanches, des départs sont
possibles si la forét n’est pas suffisamment dense. Lorsqu’une forét de protection
peut également étre exploitée pour la production du bois, les coiits d’entretien
sont diminués; dans le cas contraire, une forét de protection demande un entre-
tien permanent, qui peut étre cotiteux. La modification du climat amenera aussi
un changement dans les populations d’arbres. Une forét de protection peut égale-
ment subir des dommages importants a cause d’une tempéte (la tempéte Lothar
en décembre 1999 causa de nombreux chablis dans les foréts alpines) ou bien de
maladies®.

- en construisant des ouvrages de génie civil pour soutenir le sol ou le
manteau neigeux. L’idée de base est de fixer le sol ou le manteau neigeux. Le
procédé a été expérimenté tres tot. On rapporte ainsi qu’aprés la terrible ava-
lanche de 1784, les habitants de Bonneval-sur-Arc (Maurienne) ont creusé des

3. Les foréts de mélézes et d’épicéas dans les Alpes sont trés sensibles a des maladies comme
la tordeuse grise (papillon dont la larve cause une défoliation du méléze) généralement non
mortelle, de champignons parasitaires (parfois mortels), d’insectes (des coléoptéres comme le
bostryche), et d’attaques bactériennes.
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terrasses et construit des murets de pierres sur les pentes de la Grande Feiche.
A Baréges, le Génie militaire disposa des murets et une forét de pieux métal-
liques... sans grande efficacité sur le départ des avalanches. Pour empécher le
creusement des torrents, des seuils maconnés étaient placés dans le lit torrentiel
a distance réguliere [voir figure 3.5(d)]. De nos jours, ces techniques existent tou-
jours: pour empécher le départ des avalanches, on peut disposer des ouvrages
charpentés (claies, rateliers) ou souples (filets) [voir figure 3.5(c)] ou bien des
panneaux vire-vent pour éviter les accumulations de neige par le vent et favo-
riser des répartitions hétérogenes de neige au sol afin d’éviter les ruptures sur
de grandes distances [voir figure 3.5(b)]; les banquettes larges ont été abandon-
nées car sans efficacité. Pour fixer le lit d’un torrent, la construction de seuil en
béton est toujours d’un emploi courant. La principale difficulté de cette straté-
gie est son colit devenu trés important (le cott de la main d’ceuvre n’a plus rien
de commun avec ce qui était pratiqué au x1x° siecle) et la nécessité d’entretenir
les ouvrages (ce qui demande un budget de fonctionnement). L’efficacité des ou-
vrages de soutien n’est pas compléte; des départs d’avalanche ont été observés
dans des lignes de rateliers ou de filets, notamment pour des manteaux neigeux
sans cohésion.

() (b)

(©) (d)

Figure 3.5 — (a) Forét de résineux protégeant le village d’Argentiére (Haute-Savoie) ; (b)
panneaux vire-vent au milieu d’une pessiére au-dessus des Marécottes (VS); (c) réseaux
de rateliers et de filets protégeant Belle-Plagne (Savoie); (d) seuils en cascade fixant le
lit torrentiel a Schlans (Grisons).
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3.3.2 Arréter les écoulements

Une parade classique en défense passive consiste a arréter les écoulements. Cela
se fait classiquement a ’aide de digue offrant un obstacle suffisant pour casser la dy-
namique de I’écoulement et stocker son volume une fois arrété. Un grand barrage de
montagne comme Cleuson-Dixence dans le Valais a un volume d’accumulation suffi-
sant pour stocker le volume de crue de tous les torrents s’y déversant; c’est pour cette
raison qu’il ne dispose pas d’un évacuateur de crue, qui est un organe obligatoire pour
les barrages situés plus en aval.

Pour les avalanches, il est parfois possible de construire des digues qui peuvent
briser I’énergie des avalanches et stocker le volume déposé. Taconnaz dans la vallée
de Chamonix est I'un des plus grands paravalanches au monde et fonctionne selon ce
principe; la digue haute de 15 m est précédée a 'amont d’une série de terrasses, de
dents déflectrices, de tas freineurs. L’idée est de forcer I’étalement de ’avalanche confi-
née dans une gorge (torrent de Taconnaz), pour favoriser la dissipation d’énergie [voir
figure 3.6(a)]. La digue frontale doit en principe arréter complétement le flux de neige
sous réserve que I’avalanche soit coulante (pas de composante aérosol significative) et
que son volume ne soit pas trop important (moins de quelques centaines de milliers de
m?>).

Pour les crues torrentielles, en particulier les laves torrentielles, on peut construire
des plages de dépot fermées a 'aval (et souvent latéralement) par des digues filtrantes
(Peau peut passer, mais pas la charge solide). La plage de dép6t de Tours-en-Savoie est
ainsi constituée d’une digue a travers laquelle une ouverture munie d’'une rangée de
poutrelles a été aménagée [voir figure 3.6(b)]. L’idée est d’arréter le volume de lave
torrentielle tout en permettant a 'eau de s’écouler librement. Sur le torrent du Pissot
au-dessus de Villeneuve (Vaud), un principe similaire a été suivi, mais la digue est un
barrage-fente en béton armé [voir figure 3.6(c)]. Pour des crues avec charriage, I'idée
est similaire: on piege les sédiments et les flottants dans des plages de dép6t fermées
par des digues ou seuils plus ou moins perméables (grille, fente, déversoir). D’autres
techniques ont été employées pour séparer le sédiment de 1’eau. Ainsi, au Japon, cer-
tains torrents sont équipés de grilles placées le long du lit torrentiel ; au moment ou
le front de la lave torrentielle passe au-dessus de la grille, 'eau est essorée et le front
s’arréte.

Un probléme commun a tous ces ouvrages est le colit de construction souvent
conséquent. La maitrise du foncier et I'insertion dans le paysage (place disponible)
peuvent poser probléme dans les zones de montagne, en particulier pour des ouvrages
de grande taille ou la capacité de stockage doit étre importante. Le curage des volumes
déposés est également cotteux et difficile techniquement si ’accés a la plage est pé-
nible. Enfin, une fois remplies, les plages de dépdt n’offrent plus de réelle protection en
cas de nouvel événement. Pour certains événements (lave torrentielle de la Ravoire-de-
Pontamafrey en Savoie en 1965, les avalanches de 'hiver 1999 dans les Alpes comme
a Geschinen dans le Valais), plusieurs phénomeénes peuvent se produire dans un court
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intervalle de temps, ce qui rend les ouvrages inefficaces.

(a) (b)

(© (d)

Figure 3.6 — (a) Plage de dépot du torrent de Saint-Clément a Tours-en-Savoie (Savoie);
(b) dispositif paravalanche de Taconnaz entre les Houches et Chamonix-Mont-Blanc
(Haute-Savoie); (c) construction du barrage de rétention sur le torrent du Pissot (Vaud)
au-dessus de Villeneuve apres la crue de 1995; (d) barrage-grille format un « dépotoir »
a sédiment a Sachseln (Obwald) cliché Andreas Go6tz (OFEG).
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3.3.3 Deévier localement les éecoulements

Une stratégie fréquemment mise en ceuvre en défense passive est la protection
rapprochée des enjeux. Il est en effet délicat d’arréter ou de dévier complétement un
écoulement, alors qu’une action locale est souvent plus facile techniquement et moins
onéreuse a mettre en place. Dans cette stratégie, on compte

— les étraves et les tournes, placées a ’amont immédiat des enjeux, qui permettent
de dévier de facon trés localisée le flux des avalanches [voir figure 3.7(a, b)]. C’est
une technique ancienne, qui a été utilisée pour protéger des chalets d’alpage. Elle
est de nos jours encore couramment employée pour protéger des pylones élec-
triques ou de remontée mécanique, des habitations isolées, etc. Si les ouvrages
sont constitués de terre compactée, le colt est relativement modéré, mais des
qu’on emploie des techniques spécifiques (terre armée, pneusols, enrochements,
etc.) pour raidir la face amont et qu’on accroit la hauteur, le cotit croit trés rapi-
dement;

— les galeries, qui coiffent les troncons routiers exposés a des avalanches ou des
crues torrentielles [voir figure 3.7(c)]. La protection est souvent trés efficace,
mais le colit est également considérable, notamment si la galerie doit étre fer-
mée latéralement par un mur ou des claustras. L’ancrage de la galerie, le vieillis-
sement, I'impact possible de blocs peuvent également poser probléme. Certains
équipements sont congus de telle sorte que les écoulements passent par des-
sus, comme a Lanslevillard ou la piscine construite dans une zone de souffle de
I'avalanche est protégée puisque les écoulements peuvent transiter par dessus
la toiture [voir figure 3.7(d)].
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(a) (b)

(©) (d)

Figure 3.7 - (a) Etrave devant I’église de Vallorcine (Haute-Savoie) construite au début
du xvi® siecle pour protéger I’église et le presbyteére; (b) étrave accolée au batiment
a protéger (Bessans, Savoie); (c) galerie protégeant la route de Mieussy (Haute-Savoie)
contre les avalanches et les chutes de blocs; (d) a Lanslevillard (Savoie), la piscine est

protégée des avalanches par sa toiture.
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3.3.4 Modifier la trajectoire des écoulements

Plut6t que de modifier la trajectoire au niveau d’un enjeu particulier a I’aide d’une
protection rapprochée, une stratégie plus globale consiste a dévier I'’écoulement a I’aide
d’une digue de déviation, appelée également tourne. Pour infléchir la trajectoire d’écou-
lements, il faut que 'ouvrage soit de longueur suffisante et que 'angle d’incidence
entre I’écoulement et la digue ne soit pas trop fort. C’est une stratégie assez couram-
ment mise en ceuvre pour se prémunir contre des avalanches et des laves torrentielles
[voir figure 3.8(a, b)]. La stratégie de déviation a fréquemment été employée pour les
cours d’eau ou 'on a déplacé parfois le lit de la riviere de fagon trés conséquente. Par
exemple, apres la crue du Dorfbach a Sachseln (Obwald) en aotit 1997, la communauté
de communes a décidé de déplacer le lit du torrent entre la sortie de la gorge torrentielle
et son débouché dans le lac de Sarnen afin que le torrent ne traverse plus le village. C’est
la solution classique de creusement d’un nouveau lit, conforté par un endiguement, qui
a été mise en ceuvre. D’autres solutions existent, comme au Tour dans la haute vallée
de ’Arve (Haute-Savoie), ou le torrent a été dévié en creusant une galerie souterraine
[voir figure 3.8(c, d)] (Lefebvre & Demmerle, 2004).

Quand on dispose de suffisamment de place, cette stratégie a généralement une
bonne efficacité. Son inconvénient majeur est le colit parfois conséquent quand la digue
est longue et que le parement amont doit étre raidi et armé. Face a des écoulements
a répétition ou bien rapides, la digue peut étre de moindre efficacité car il y a un fort
risque de surverse; c’est par exemple ce qui s’est passé en décembre 1991 a Belle-Plagne,
ou une partie de 'avalanche est passée au-dessus de la digue de déviation, qui était
d’une hauteur insuffisante sur toute sa portion amont.
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() (b)

(c) (d)

Figure 3.8 — (a) Tourne de Belle-Plagne (Savoie) aprés sa rénovation en 2002; les ava-
lanches partent de la zone équipée de rateliers, située plus haut. (b) tourne du Saint-
Antoine a Bourg-d’Oisans (Isére); la tourne sert a dévier des laves torrentielles (issues
des clappiers sous les falaises dominant le torrent du Saint-Antoine) des zones urbani-
sées du Bourg-d’Oisans, en particulier un collége. (c, d) dérivation de I’Arve au niveau
du glissement des Posettes au-dessus du Tour (commune de Chamonix-Mont-Blanc,
Haute-Savoie): quasiment a sa source, Arve traversait le pied du mouvement de ter-
rain des Posettes, sapait le versant, et entrainait de grandes quantités de matériaux fins.
Pour empécher ce processus, le maitre d’ouvrage a opté pour une solution originale:
le torrent est dévie de son lit en empruntant un syphon (cliché c), puis en suivant une
galerie qui conduit les eaux plusieurs centaines de metres plus en aval.
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3.3.5 Freiner localement les écoulements

S’il est rarement possible d’arréter un écoulement quand celui-ci est puissant et/ou
volumineux, il est parfois possible de le freiner ou d’amoindrir son intensité. L’exemple
typique est fourni par le laminage de crue, qui consiste a réduire le débit de pointe d’une
crue en stockant une partie de ’eau dans des lacs d’accumulations, des bassins de réten-
tion, des bassins d’écrétement, ou en la versant dans des champs d’inondation, c’est-a-
dire en permettant ’expansion de ’eau dans des zones jugées d’un intérét économique
moindre en cas d’inondation (typiquement des zones agricoles) [voir figure 3.9(a)]. Il
est parfois nécessaire de freiner localement un écoulement pour éviter des problémes
tels que I’érosion des berges; par exemple, dans I'extrados d’une courbe d’un lit fluvial
ou torrentiel, 'eau est accélérée et peut éroder les berges, favorisant leur rupture et
une inondation des terrains. Pour éviter cela, une solution consiste a placer des ran-
gées d’épis, le plus souvent en enrochements maconnés, qui recentrent I’écoulement et
le freinent tout en évitant une érosion des berges. Le cliché (b) de la figure 3.9 montre
une série d’épis paralleles placés dans le lit de ’Arve au niveau des Houches (Haute-
Savoie).

Pour les avalanches et les laves torrentielles, il est également parfois possible de
freiner les écoulements en dissipant une partie de leur énergie. Dans le cas des ava-
lanches, I'objectif est de dissiper le plus possible d’énergie afin de réduire la hauteur
de la digue frontale servant a arréter ’écoulement car le coit d’une digue s’éléve tres
rapidement avec sa hauteur (grosso modo le cott croit comme le carré de la hauteur).
Les tas freineurs placés a Taconnaz [voir figure 3.9(c)] remplissent cette fonction.

A elle seule, cette stratégie ne permet que rarement d’offrir un niveau de sécurité
suffisant, mais elle est trés utile en complément d’autres stratégies. Par exemple, le la-
minage de crue par des champs d’inondation est souvent un complément de mesures
d’endiguement du lit d’une riviére. De ce point de vue, cette stratégie est utile car elle
permet de gagner en sécurité et d’amoindrir le cotit des protections (voir 'exemple de
Taconnaz plus haut). Toutefois, comme toute solution ou des ouvrages de génie civil
sont disposés dans I’écoulement, le vieillissement prématuré de la protection peut étre
un probléme. Pour les épis, I’érosion peut amener rapidement a la ruine de la protec-
tion au cours d’une seule crue; a Taconnaz, en moins de 15 ans, deux avalanches ont
provoqué des dommages significatifs a la structure en terre armée des tas freineurs.
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(@)

(©)

Figure 3.9 — (a) Principe des champs d’inondation (source : www.symbhi.fr). (b) Série
d’épis dans 'extrados de I’Arve aux Houches (Haute-Savoie); on note aussi le viaduc
permettant au torrent de la Griaz de franchir la voie expresse reliant Chamonix-Mont-
Blanc au Fayet. (c) Tas freineur du dispositif de Taconnaz (Haute-Savoie) apres I’ava-
lanche du 5 avril 2006 ; voir cliché (b) de la figure 3.6 pour avoir une vue d’ensemble du
dispositif.


http://www.symbhi.fr
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3.3.6 Forcer le déeclenchement des écoulements

Le déclenchement préventif concerne uniquement les avalanches, qui se prétent
assez bien a ce type d’action. En défense active, le déclenchement préventif est une
stratégie opposée a la stratégie vue précédemment de confortement du manteau nei-
geux. L’idée est de déclencher de petites avalanches a I'aide d’explosifs ou de mélanges
détonants (gazex) pour provoquer artificiellement le départ de avalanche. On espére
ainsi pouvoir éviter le déclenchement inopiné d’avalanches ou bien le départ d’une ava-
lanche de grande taille. Lorsqu’on emploie de explosif et qu’on tire a la main, le cotit
d’utilisation est modique, mais il y a toujours des problemes de sécurité du personnel
et des difficultés de mise en ceuvre des tirs lorsque les conditions nivo-météorologiques
ne sont pas favorables. Ces problémes sont nettement amoindris si on met en place des
dispositifs automatiques (de type catex ou gazex), qui déclenchent I’avalanche a dis-
tance ; I'inconvénient est alors le cotit d’investissement et d’entretien. C’est une tech-
nique d’un emploi trés courant pour la sécurisation des pistes de ski et de certains
acces routiers d’altitude. Des procédures de gestion temporaire (fermeture de la route
au moment du tir par exemple) sont obligatoires.

L’efficacité de cette stratégie n’est pas totale, notamment au printemps pour des
neiges humides, mais dans ’ensemble, les résultats sont satisfaisants pour des routes
et des domaines skiables. Cette stratégie est a éviter lorsque ’'enjeu est constitué d’ha-
bitations compte tenu des risques ou bien si des batiments peuvent étre concernés par
I’avalanche. Ainsi, en février 1999 a Loéche-les-Bains (Valais), une erreur de tir lors
d’un déclenchement depuis un hélicoptére provoqua une avalanche qui endommagea
fortement un batiment et coupa la route, heureusement sans faire de victimes.

(a) (b)

Figure 3.10 — (a) Tube déclencheur appelé Gazex: un mélange détonant d’hydrogéne
et d’oxygene est réalisé dans une chambre souterraine, puis un arc électrique provoque
une explosion. Le tube — appelé dragon — guide ’onde de choc vers la surface du man-
teau neigeux. L'onde de surpression est généralement suffisante a déclencher I’ava-
lanche quand le manteau neigeux est instable. (b) Déclenchement d’un pain d’explosif
lancé a la main.
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3.3.7 Contraindre la trajectoire: contenir les écoulements

Parmi les stratégies de défense passive, la stratégie d’endiguement est 'une des plus
anciennes pour se prémunir contre les crues. Il s’agit de contenir le flux a travers deux
digues paralléles, appelées digue de contention.

La correction du Rhone dans le Valais au x1x° siécle offre un exemple historique
d’endiguement d’une riviére pour protéger contre les crues et certains autres problémes
liés aux bras morts (eaux stagnantes, maladies, moustiques). La plupart des grandes
villes en Europe sont traversées par des rivieres endiguées par des levées de terre, des
enrochements, ou des perrés magonnés. Le cliché (a) de la figure 3.11 montre une por-
tion de la digue qui protege 'agglomération grenobloise contre les crues de I'Isere;
on note l'existence d’un enrochement en rive gauche, dans ’extrados pour protéger
la digue en terre de I’action érosive du courant. L’endiguement des cours d’eau sur de
longues distances est aujourd’hui considéré comme une stratégie de défense probléma-
tique compte tenu des nombreux problemes qu’elle induit:

modification du transport solide, avec localement des exhaussements ou des en-
foncements du lit qui peuvent poser probléme;

- impact écologique assez fort;

- accélération des crues (par exemple, les crues du Rhin se propagent de nos jours
beaucoup plus vite compte tenu des travaux d’endiguement sur le Rhin suisse
et ses tributaires dont la Thur);

- vieillissement ou faiblesse structurelle des digues en terre, avec des accidents
nombreux comme la crue de la Savoureuse (Territoire de Belfort) — qui inonda
les communes d’Eloie et de Valdoie apres la rupture d’une digue en décembre
2001 - ou la crue du Rhéne - qui inonda de 1000 ha de plaine dans la région de
Saillon (Valais) aprés la rupture ou la submersion de digues en octobre 2000;

— colt des ouvrages, notamment lorsque la digue doit étre surélevée ou bien pro-
tégée par des enrochements.

Les travaux actuels visent a redonner aux riviéres une certaine largeur et un degré
de liberté qu’elles avaient perdue avec les travaux d’endiguement du x1x° siecle et
xx¢ siécle: on parle de restauration des rivieres (Wohl et al., 2005).

Les digues de contention peuvent étre utilisées pour endiguer des avalanches ou des
laves torrentielles. Le cliché (b) de la figure 3.11 montre deux digues de contention per-
mettant de concentrer le flux des avalanches menacant la route départementale reliant
Clavans a Mizoén (Isére); le dispositif est complété par un détecteur routier d’avalanche
(DRA), dont le bon fonctionnement nécessite que la largeur de ’avalanche soit a peu
pres fixe. Le cliché (c) de la figure 3.11 montre le systéme de contention placé sur le
torrent traversant le village de Schlans (Grisons) aprés la lave torrentielle de 2002. On
cherche la a éviter les divagations des laves torrentielles sur le cone de déjection. Le
cliché (d) de la figure 3.11 montre un viaduc endiguant le torrent de Saint-Bernard et
enjambant Pautoroute A43 en Maurienne (Savoie); un systéme similaire avait été ex-
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périmenté sur le torrent de la Griaz aux Houches [Haute-Savoie, voir cliché (b) de la
figure 3.9].

(c) (d)

Figure 3.11 — (a) Digue de I'Isére (ici, vers Grenoble); (b) digue de contention de
la route de Clavans (Isére); (c) digue de contention a Schlans (Grisons); (d) digue de
contention et viaduc du torrent du Saint-Bernard (Savoie) enjambant 1’autoroute de la
Maurienne.
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3.3.8 Renforcer les équipements

Il n’est pas toujours possible d’assurer la protection désirée d’équipements ou bien
la mise en sécurité a I’aide de stratégies globales n’est économiquement pas réaliste.
Il est parfois possible d’assurer la protection griace a une conception appropriée de
I'équipement. Par exemple, pour se protéger contre les avalanches, il est possible de
prévoir des murs sans ouverture, en béton armé, capables de résister a des pressions
de quelques dizaines de kPa; on parle de murs aveugles. Le cliché (a) de la figure 3.12
montre des facades d’immeubles résidentiels a Lanslevillard (Savoie), rendues aveugles
et renforcées pour résister au souffle de ’avalanche.

Le plus souvent, le renforcement des équipements passe par un dimensionnement
et une conception appropriés de telle sorte que I’équipement puisse résister a I’écoule-
ment sans dommage significatif. Une maison sur pilotis est un exemple d’équipement
auto-protégé que 'on peut construire dans les zones inondables. D’autres solutions
ont été mises au point pour assurer une protection contre les crues: ainsi, le pont au-
dessus de la Saltina a Brigue (Valais) est maintenant un pont levant: le tablier s’éléve
automatiquement lors d’une crue, évitant I'obstruction du canal [voir cliché (b) de la
figure 3.12].

Le colit est nettement réduit en comparaison des ouvrages de génie civil (de type
digue), mais la charge financiére reste conséquente pour le maitre d’ouvrage, le plus
souvent des particuliers, lorsque celui-ci se trouve dans I'obligation (légale) de mettre
en place une telle protection. Ce type de protection peut également poser des problémes
architecturaux, notamment a cause de I’absence d’ouverture sur une ou plusieurs fa-
cades.

(a) (b)

Figure 3.12 — (a) Murs aveugles d’une résidence menacée par le souffle de ’avalanche
(commune de Lanslevillard, Savoie) ; (b) le pont auto-levant de Brigue (Valais) au-dessus
de la Saltina; apres la crue de septembre 1993 [voir cliché (a) de la figure 2.23], ou
la Saltina avait débordé au niveau d’un pont, les ingénieurs ont conc¢u un ingénieux
dispositif de pont auto-levant: c’est la force hydraulique induite par la riviére en crue
qui assure la levée du pont (source : OFEG).
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3.4 Mesures réglementaires

Les mesures réglementaires sont de deux natures:

- les mesures permanentes qui fixent I’occupation du sol (voir § 3.2);

- les mesures temporaires qui visent a interdire ’accés a une zone pour une durée
finie (généralement courte) ou a interdire les déplacements en dehors des zones
jugées sires (consignation).

On ne parle ici que du second type de mesure réglementaire. Si le principe est simple
et 'usage courant (par exemple, gestion des pistes de ski ou des routes de montagne
par ouverture/fermeture), la mise en ceuvre est délicate et, en pratique, seuls quelques
enjeux bien précis peuvent étre protégés ainsi: il s’agit principalement d’enjeux sans
risque majeur sur les biens, mais ou la sécurité des personnes n’est pas assurée com-
plétement. Pour assurer cette sécurité, on interdit ’accés ou le déplacement au sein du
secteur concerné. Cette stratégie dépend donc d’une décision humaine, qui elle-méme
doit s’appuyer sur un certain nombre d’éléments qui permettent de prévoir ’occurrence
d’une période a risque. L’exemple typique est donc la piste de ski, ou selon les prévi-
sions météorologiques du risque d’avalanche, le responsable de la sécurité des pistes
peut fermer une partie d’'un domaine skiable. Dans certains cas, la décision peut étre au-
tomatisée. Par exemple, les détecteurs routiers d’avalanche (DRA) ou de lave torrentielle
(DLT) sont des systémes mécaniques (cible tendu a travers un couloir d’avalanche) ou
sonores (géophone mesurant les ondes sonores a travers le sol ou Arfang détectant
les infrasons dans l’air) qui permettent de détecter 'occurrence d’un événement, puis
de transmettre un signal a un feu de signalisation placé en contrebas sur la route a
protéger. La circulation est alors bloquée pendant un certain laps de temps.

En pratique, cette solution est bien adaptée aux domaines skiables et parfois aux
routes secondaires. Elle a ’avantage du cotit puisque hormis le systeme de détection
ou de prévision, elle ne requiert aucun moyen lourd de génie civil. Reposant sur une
décision humaine, elle n’offre pas de garantie totale de sécurité comme 'ont montré de
nombreux accidents d’avalanche survenus sur des pistes de ski.
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Figure 3.13 - Feu de signalisation d’un détecteur routier d’avalanche (ici sur la route
départementale menant a Clavans, Isére).






@Q c‘%’ RES GENERALEMENT, dans |’étude des risques, on souhaite déterminer les pré-
% cipitations ou les crues extrémes, or cette détermination est difficile car:

— par définition, les extrémes sont rares, donc on posséde peu de données obser-
vées;

- on dispose souvent d’une série limitée de données (20-50 ans dans la plupart
des cas) et on souhaite déterminer des phénomenes tres rares, dont l'intensité
peut dépasser tres largement le maximum observé;

- si on dispose de distributions de probabilité qui interpolent les données obser-
vées, il est difficile d’accorder crédit aux valeurs extrapolées. En effet, en pra-
tique, il est souvent possible de caler plusieurs lois de probabilités sur un méme
échantillon mais comment déterminer la loi la plus crédible ?

La théorie des valeurs extrémes (cf. § 4.1.3) nous fournit une indication précieuse:
quelle que soit la distribution de la population originelle, des lors que les événements
sont tirés d’'une méme population, la distribution des maxima d’un échantillon de va-
leurs observées appartient a la classe des familles des lois de valeur extréme, qui com-
prend trois lois: lois de Gumbel, de Fréchet, ou de Weibull. Ce résultat est essentiel
car il va nous permettre de caler une loi et de I'extrapoler pour déduire les quantiles
extrémes. Reste a savoir comment ajuster les parametres d’une distribution de valeurs
extrémes a partir d’un échantillon de données. Nous verrons plusieurs méthodes a cet
effet. La plus employée en ingénierie est la méthode des maxima annuels, mais c’est
assurément la moins précise. Nous verrons que la méthode du maximum de vraisem-
blance ou l'inférence bayésienne lui sont préférables.

1l faut d’ores et déja insister sur 'importance de I'hypothése initiale: il faut que
les événements soient tirés d’'une méme population pour que la théorie des valeurs
extrémes s’applique. En pratique, on observe que pour certaines régions, le compor-
tement des pluies (ou des débits) est plus complexe, et il faut alors considérer que les
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événements ne sont pas décrits par une unique loi de probabilité. C’est en particulier
le cas en Suisse de la région sous influence méditerranéenne (en particulier, le Tessin),
et de facon plus générale du pourtour méditerranéen ; dans de tels cas, des lois comme
la loi de log-Pearson III ou a deux exponentielles peuvent sont mieux adaptées a dé-
crire le comportement des événements extrémes (Bois et al., 2007; Gado et al, 2021,
Montes-Pajuelo et al, 2024). On ne peut donc pas se contenter de voir la détermina-
tion des événements extrémes comme un simple exercice de calage. Il existe un gros
travail préparatoire d’analyse des données, qui vise notamment a vérifier le caractere
stationnaire de la série et le comportement statistique des événements.

L’accent sera mis sur la théorie des valeurs extrémes dans ce chapitre, mais les
méthodes de calage que 'on va voir sont générales et s’appliquent a tout ajustement
d’une loi de probabilité sur un jeu de données observées.

4.1 Maxima d’une série temporelle et théorie des
valeurs extrémes

» Voir ’annexe A pour un rappel des principales notions en probabilité.

4.1.1 Objectif du chapitre

Dans ce chapitre, on s’intéresse aux valeurs extrémes d’un processus hydrologique.
Par exemple, si on étudie les crues sur une riviére comme 1’Areuse a Boudry (BE), on
dispose en général d’une chronique quotidienne de débits telle que celle reportée sur la
figure 4.1. A partir de I'information observée, on veut estimer les débits extrémes que
peut connaitre le cours d’eau, par exemple le débit de pointe de la crue centennale.

Nous allons donc voir ici:

1. la théorie des valeurs extrémes, avec des extrémes définis sur un bloc temporel
(en général une année) ou a partir d’un critére de dépassement de seuil;

2. le travail préparatoire d’analyse de la série temporelle;

3. les méthodes d’ajustement des parameétres d’une loi de probabilité sur des don-
nées;

4. les alternatives a la théorie des valeurs extrémes;

5. des problémes pratiques rencontrés en inférence bayésienne et dans I’estimation
des intervalles de confiance.
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Figure 4.1 — Exemple de série temporelle: débits journaliers de ’Areuse a Boudry
(Neuchatel), période couverte: 1924-2024). Source: OFEV.

4.1.2 Rapide apercu historique de la recherche sur les ex-
tremes

La théorie des valeurs extrémes a pour objet ’étude des valeurs extrémes a partir
de 'information observée. Malgré les résultats obtenus au cours des dernieres décen-
nies, il s’agit toujours d’'un domaine de recherche trés actif. Voici quelques dates qui
permettent de mettre en perspective les développements antérieurs:

- années 1920 : fondation des arguments asymptotiques par Ronald Fisher et Leonard
Tippett, deux mathématiciens anglais;

— années 1940: théorie asymptotique développée par Boris Gnedenko, un étudiant
de Andrei Kolmogorov, puis Richard von Mises;

- années 1950: Emil Gumbel, un mathématicien allemand émigré aux Etats-unis,
unifia les approches en montrant notamment que toutes les lois utilisées jusque
lors pour décrire des valeurs extrémes constituaient des cas particuliers d’une
loi générale;

— années 1970: travaux de James Pickands sur les lois limites;;

— années 1980: travaux de Leadbetter (entre autres) avec I'extension de la théorie
aux processus aléatoires stationnaires;

— années 1990: extension de la théorie des valeurs extrémes aux processus a plu-
sieurs variables aléatoires notamment en statistique financiere, développement
et application des techniques d’inférence (maximum de vraisemblance, inférence
bayésienne);

- années 2000: développement de nouveaux champs tels que I'interpolation spa-
tiale des valeurs extrémes, la prise en compte de la non-stationnarité, etc.


https://www.hydrodaten.admin.ch/fr/seen-und-fluesse/stationen-und-daten/2480
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4.1.3 Loi de valeurs extrémes (Gumbel, Fréchet, Weibull)

Problématique

Dans un grand nombre de situations, on ne s’intéresse pas a toute la distribution
de probabilité d’une variabilité mais seulement a une partie. Ainsi, pour étudier des
situations de crise (fortes précipitations, crues de grande ampleur), on s’intéresse aux
fortes valeurs. La théorie des valeurs extrémes est une théorie qui s’intéresse a ce point
particulier. Elle fournit un résultat d’une trés grande utilité en pratique.

Considérons une variable aléatoire X distribuée selon une loi P(X). Supposons
que 'on ait un échantillon de n valeurs indépendantes de X et on introduit M, la
valeur maximale de cet échantillon: M,, = max{X;};<i<n.On s’intéresse a la maniere
dont est distribuée cette nouvelle variable. La distribution de M,, est donnée par

Prob(M,, < x) = [Prob{X; < z}|" = P(x)".

Si P est connu, alors on peut calculer la distribution de M,,. Le probléme est qu’en
pratique P n’est pas connu. On peut certes supposer qu’il soit possible de trouver une
distribution empirique P qui approche P raisonnablement bien, mais comme on calcule
P" pour déterminer la distribution de M, les erreurs s’additionnent de telle sorte que
Ierreur d’estimation commise en substituant P™ par P" est généralement grande.

Une démonstration peu rigoureuse est la suivante: on a P = P(1 + ¢) avec
e < 1Terreur d’estimation que ’on suppose ici fixe. On a donc P = Pr1+e)" =
P"(1+ ne+ O(¢)), ce qui montre que I'erreur dans 'estimation de P" est ne. Comme
n est généralement grand, ne n’est pas petit. Par exemple pour une chronique de débits
journaliers, si estimation de P est précise a € = 0,1 % pres, alors 'erreur sur le débit
maximal annuel est précis a ne = 36 %!

Lois des valeurs extrémes

¢ Théoréme. — La théorie des valeurs extrémes démontre que, sous réserve que
X vérifie quelques conditions, cette loi tend vers une loi de forme générique quand
N — o0, dont la fonction de répartition s’écrit ! (Coles, 2001):

_ )\ g
P(x; p,0,&) =Prob(X < x)=exp [— <1 —l—fx . ,u) ] , (4.1)

dont le support est 'ensemble z : 1 + &(x — p) /o > 0. On l'appelle la distribution gé-
néralisée des valeurs extrémes, notée souvent GEV dans la littérature technique pour

1. On prendra garde qu’il n’y a pas de convention unanimement appliquée quant a la dé-
finition de ces lois. Par exemple, le logiciel Mathematica et la bibliothéque Scipy de Python
adoptent des formes qui s’éloignent un peu de la présentation adoptée ici.
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Generalized Extreme Value. Attention, le terme élevé a la puissance —1/¢ et le para-
métre £ peuvent étre négatifs, donc le support varie selon le signe de £. La densité de
probabilité est

4P 6—(@“)_1/5 (f(xa—ﬂ) + 1>_€j5—1
f(x;/%o-)é):i_ (42)

de o

La distribution généralisée des valeurs extrémes dépend de trois parameétres:

- un parametre de position x (1 > 0 en hydrologie),
- un parametre de forme &, et

- un parametre d’échelle o (o > 0 en hydrologie).
En fait, cette forme générique synthétise trois distributions élémentaires:

1. la loi de Gumbel est une loi a deux paramétres définie sur R %, obtenue en prenant
la limite de I’équation (4.1) quand £ — 0:

Gu(x; p, o) = exp [— exp <—H>] . (4.3)
o
La densité de probabilité prend une forme plus simple que la formulation géné-
rale (4.2):
e e "
fsp o) = ——r (4.4)

La moyenne est: E(X) = p + oy avec v la constante d’Euler?; la variance est:
Var(X) = o272 /6.

2. la loi de Fréchet est une loi a trois paramétres définie sur |y — o /&, + 00|, obtenue
en prenant £ > 0:

1
Fr(x; p,o0,f)=exp | — . 4.5
(@5 p, 0, €) p( (1+£(x—u)/0)1/§> (4.5)

3. la loi de Weibull* est une loi a trois paramétres définie sur | — oo, u + o /|||,
obtenue en prenant £ < 0. On peut utiliser la méme fonction de répartition que

2. méme si le plus souvent dans les applications pratiques, on suppose que la variable X
varie sur R4

3. Appelée encore constante d’Euler—-Mascheroni, la constante d’Euler est définie comme
lalimite de y = 3752, [ —In (1 + 1)] =~ 0,5772.

4. Attention, il existe aussi dans la littérature technique des lois de distribution dite de
Weibull mais qui se présentent sous une forme canonique d’une loi a deux parameétres (il
manque un parametre dit de positionnement, ici ) qu’il ne faut pas confondre avec la forme
générale donnée par la théorie des valeurs extrémes présentée ici. Il faut également préter une
attention particuliere & la définition utilisée dans les bibliothéques de calcul et les langages de
programmation. Ainsi dans la bibliothéque Scipy de python, le signe de £ différe de ce qui est
employé ici.

®
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précédemment ou bien 'arranger un peu:

_ 1/1¢
We(; 0, €) = exp (— <5|“"/'5’””> ) R

o

Les moments des lois de Weibull et Fréchet sont indiqués au § 4.1.4.

Figure 4.2 — Fonction de répartition (prob) et densité de probabilité (ddp) de (a) la loi
de Gumbel de paramétres p = —1 et ¢ = 0,5, (b) la loi de Fréchet de parameétres
pw=—-10=005etf = 0,5 et (c) laloi de Weibull de paramétres 4 = —1, 0 = 0,5
et £ = —0,5. (d) Relation entre quantiles et période de retour T' = (1 — P)~! pour les
trois lois montrées précédemment.
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Sur la figure 4.2, les densités de probabilité des trois distributions sont reportées. A
noter les points suivants:

- La figure 4.2(a) montre une distribution particuliére de la loi de Gumbel. Par
rapport a la loi de Gauss-Laplace, on notera la forme dissymétrique de la courbe
puisque la queue vers les grandes valeurs est épaisse: il y a une convergence
lente vers 0 de Gu(x) pour z — o0. Cela a des répercussions trés importantes car
cela veut dire que des fluctuations de grande amplitude par rapport aux valeurs
les plus fréquentes ne sont pas rares.

- La figure 4.2(b) montre que la convergence de la densité de la loi de Fréchet vers
0 - quand x croit — est encore plus lente que celle de Gumbel, ce qui implique
que la fonction de répartition tend lentement vers 1. En pratique, cela signifie
que pour des événements distribués selon une telle loi, des phénomenes rares
peuvent étre observés avec une amplitude sans commune mesure avec ce qui est
observé ordinairement.

- Laloi de Weibull tend vers une valeur limite, puisqu’en zoc = p+0/[¢| [z00 = 4
sur la figure 4.2(c)], on a We(xs) = 1 et la densité de probabilité nulle. En
pratique, la loi de Weibull peut servir a décrire des phénomeénes qui tendent
vers un palier (en I'atteignant pour les quantiles au-dela de z).

Remarque. Un point que nous n’abordons pas ici mais qui a son importance: la
théorie des valeurs extrémes garantit que les valeurs maximales d’un échantillon de va-
leurs indépendantes et identiquement distribuées sont distribuées par une loi de forme
générique donnée par I’équation (4.1), mais nous n’avons pas précisé ici la vitesse de
convergence. Celle-ci peut étre assez lente, ce qui a une conséquence pratique impor-
tante : pour un échantillon de valeurs empiriques de taille réduite, une partie des valeurs
sera effectivement bien distribuée selon une loi de valeurs extrémes, mais les valeurs
les plus fréquentes peuvent s’éloigner tres sensiblement de cette loi asymptotique.

4.1.4 Moments centreésde la loi généralisée de valeurs extrémes

On peut obtenir une expression analytique des trois premiers moments centrés pi;
d’une loi de valeurs extrémes = ~ f(z ; u, o, £) avec f donnée par I’équation (4.1):
espérance (ou moyenne) E[X], variance Var X, et coefficient d’asymétrie Skew X .
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Ces moments se calculent par simple intégration sur le support de f:

i =B[X] = [ af(eop o do =+ T O1-€) 1), (@7)
R4
H2 = VarX = (ZL' - X)2f(l‘, K, o, f)diﬁ = 2-22 (F(l - 25) - F2(1 - g)) s (48)
R+
f]R+ (SL‘ - X)?)f(x’ W, o, é)dl‘

= Skew X =
fa = SREW (VarX )3/2

_ -T(1 =384 30(1—2)I(1 — &) —2I(1 — &) (49)
- (D(1—2¢8) —T2(1 - ¢))%2 ’ '

oul'(z) = [;~ ¢* e "dt la fonction gamma.

Remarque. Ces moments ne sont définis que pour { < 1/3. C’est une condition
le plus souvent vérifiée en pratique°.

On trouve que pour la loi de Gumbel, la moyenne et la variance théoriques sont

données par:

o’n?

X =p+oyetVarX = 5

avec v ~ 0,577 la constante d’Euler; on a eneffet I'(1 — §) = 1 4+ 7§ + O(&) quand
E—0. DO

4.1.5 Quantile

On peut inverser la loi généralisée des valeurs extrémes (4.1) pour obtenir les quan-
tiles en fonction des probabilité de non-dépassement P = Prob(X < z):

X - {,u— % (1 - (—lnP)_é) pour £ # 0,

uw—oln(—InP) pour { =0,

(4.10)

ce qui s’avere tres pratique dans les applications en ingénierie. Toutefois, ce n’est pas
cette forme qui est la plus usitée. Plut6t que de parler de probabilité de non-dépassement,
on préfere introduire le concept de période de retour.

4.1.6 Période de retour
Définition pragmatique

Jusqu’a présent on a considéré des suites d’événements sans se soucier de la période
sur laquelle ils s’étendaient. Il est intéressant d’introduire un temps caractéristique afin

5. Plus précisément: comme I'(z) diverge en © = 0, —1, —2, etc., la moyenne n’existe que
si €| < 1, la variance que si |[£] < 1/2, le coefficient d’asymétrie || < 1/3, ainsi de suite.
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de rendre I’analyse statistique plus parlante. On définit la période de retour 75 comme
étant 'intervalle de temps moyen entre deux événements, dont l'intensité atteint ou
dépasse un certain seuil s (voir figure 4.3). Cela veut dire que sur un intervalle de temps
T, il y a en moyenne un événement d’intensité supérieure ou égale a s. Ts est comptée
dans une unité de temps arbitraire ; en hydrologie c’est le plus souvent I’année.
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Figure 4.3 — Définition de la notion de période de retour. On sélectionne toutes les
observations au-dessus d’un seuil s. On mesure le temps 7; entre ’événement i et
I’événement ¢ — 1. La moyenne de ces temps entre deux événements au-dessus du seuil
s est la période de retour.

Un événement de période de retour 7" a en moyenne une probabilité 1/7" de se
produire chaque année. Ainsi la crue centennale ® sur une riviére donnée est:

— une crue qui se produit en moyenne tous les cent ans;
- il y a en moyenne chaque année une probabilité de 1 % qu’une crue centennale
ou plus rare se produise.

On relie la période de retour a la probabilité de dépassement P(x) = Prob[X > z]
ou de non-dépassement P’ = 1 — P = Prob[X < z] de la facon suivante:

1 1
T=—=—"_,
P 1-P

L’avantage de la période de retour est de rendre plus « parlante » la notion de
probabilité d’occurrence. Les phénoménes extrémes sont en effet associés a des proba-
bilités d’occurrence trés petites et pour le commun des mortels, il y a peu de différence
entre 0,01 et 0,001, alors qu’en termes de probabilité des phénomenes extrémes, c’est
une différence colossale. Le tableau 4.1 donne les correspondances entre périodes de
retour et probabilité de dépassement et non-dépassement.

6. L’adjectif numéraire traduisant une idée de fréquence se termine toujours en al/-ale. Un
phénomene centenaire est un phénomeéne dont I’dge est de 100 ans, alors qu'un phénomeéne
centennal est un phénomeéne qui se produit tous les cent ans en moyenne.
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Tableau 4.1 — Relation entre période de retour " (en années), probabilité de dépasse-
ment P = 1/T, et de non-dépassement P’ =1 — P.

T (ans) P P’

1 1 0

10 0,1 0,9
100 0,01 0,99
1000 0,001 0,999

Par la suite, on cherchera a exprimer le quantile C' en fonction de la période de
retour 7T sous la forme d’une loi C' = F(1 — T~ 1), avec F l'inverse de G: F = G~ 1.

& Exemple. - Par exemple pour la loi de Gumbel: F(T) = a—bIn(—In(1-T1)).
Asymptotiquement (c’est-a-dire pour les grandes périodes de retour) la loi de Gumbel
est proche d’une loi exponentielle. En effet, on a 1 — 7! qui est trés petit devant 1,
doncIn(—In(1 —T7!)) ~ —InT,doa C ~ a+bInT quand T >> 1.

& Exemple. - La figure 4.4 montre un exemple de relation entre quantiles et pé-
riodes de retour pour les débits de ’Areuse a Boudry.

Figure 4.4 — Relation entre maxima annuels des débits journaliers de ’Areuse a Boudry
en fonction de la période de retour (points bleus). On a aussi calé une loi de Gumbel et

une loi de Fréchet sur ces données. Les données sources sont celles montrées a la figure
4.1.
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Définition statistique de la période de retour

Considérons une série temporelle de données, par exemple N précipitations (F;)1<i<n
observées pendant n années. Pour simplifier le probléme, on va considérer, pour chaque
année civile, la chute de pluie maximale observée que 'on notera (C;)1<;<p. Considérons
également une période de retour de T; années associée a un seuil s; en moyenne sur
une durée T on a une valeur C; > s et toutes les autres Cj,; < s. La probabilité
d’observer une telle période de retour est:

Prob(7Ts) = HProb(C’j < 8) X Prob(C; > s) = (Prob(C < s))" ' Prob(C > s).
J#

On reconnait une suite géométrique’. Il s’ensuit que la moyenne E[T] vaut:

1

E[TL] = Prob(C' > s)’

La période de retour est donc définie comme I'inverse de la probabilité de dépassement
du seuil s. D’aprés la théorie des valeurs extrémes, Prob(C) est distribué selon une loi
de valeurs extrémes (Gumbel, Fréchet, ou Weibull) que I'on note ici G(C'). On tire donc:

1

ST =Gy

qui est généralement écrit sous une forme plus explicite « quantile en fonction de la

période de retour »:
1
C=F(1—-—
(-7),

ot I'on a substitué par commodité d’écriture T & E[Ts] et avec F = G~!. On notera le
probléme de dimension: P est sans dimension (c’est une probabilité , donc un nombre
compris entre 0 et 1) alors que 7’ est en années.

4.2 Travail préparatoire

Avant de s’intéresser a I’ajustement d’une loi de valeurs extrémes sur des données,
on va examiner un probléme général ou 'on cherche a déterminer la loi de probabi-
lité qui décrit au mieux un échantillon de N valeurs (x;)1<i<n, c’est-a-dire que I'on

7. Dans un modéle d’urne, o 'on possede une proportion p de boules blanches et 1 — p
boules noires, la probabilité de tirer une boule blanche est p; la probabilité de tirer une boule
noire est 1 — p. La probabilité de tirer une boule blanche aprés n — 1 tirages (avec remise) de
boules noires est P(n) = (1 —p)"~!p.

8. Attention cela n’est pas vraie pour la densité de probabilité qui peut avoir une dimension
physique puisque f(z) = dP/dz.
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cherche si I’échantillon est issu d’une loi de Gauss—-Laplace, de Gumbel, etc. La procé-
dure générale consiste souvent a faire une hypothése sur la forme de la loi, puis a tenter
de caler les parametres de cette loi sur I’échantillon, enfin a vérifier, quand cela est pos-
sible, la pertinence de I'’hypothése en tracant la loi théorique ajustée et les données
sous la forme d’histogrammes ou de fonctions de répartition empiriques.

Les histogrammes sont utiles en ce qu’ils donnent une idée de la densité de probabi-
lité (voir § 4.2.1), mais quand on travaille avec des séries courtes, déterminer le type de
loi de probabilité sur cette seule base est délicat. Les fonctions de répartition empirique
peuvent étre plus utiles a cet effet (voir § 4.2.2).

Il existe des tests statistiques qui permettent de vérifier si I’échantillon de données
est bien issu de la loi de probabilité ajustée, ou plus précisément de déterminer la proba-
bilité que I’échantillon soit bien tiré de la loi considérée. Les plus connus sont les tests
du 2 (voir A.7.1) et de Kolmogorv-Smirnov (voir A.7.2). Ici, on va donner la préférence
a des examens visuels qui permettent de mettre en évidence les éventuels problémes
dans ’adéquation entre loi considérée et échantillon observé. L’examen visuel proposé
ici est constitué des diagrammes quantiles—quantiles et probabilités—probabilités (voir
§ 4.2.3).

Une fois qu’on maitrise tous ces outils, on peut s’attaquer au probléme principal qui
nous occupe ici: quand on dispose d’une série temporelles, comment s’assurer que cette
série est stationnaire et qu’elle est composée de valeurs indépendantes toutes issues de
la méme loi de probabilité ? On verra au § 4.2.4 qu’il existe une multitude de tests a cet
effet. Il s’agit de voir cela comme une boite a outils plutdét que comme un cadre fixe
d’analyse critique des données observées.

Cette section sera illustrée par un cas traité au § 4.2.5: les précipitations sur Lausanne.

4.2.1 Histogramme

Construction

Si 'on posséde un nombre suffisant de données, une technique possible pour dé-
terminer la forme générique de la distribution de probabilité est de faire des histo-
grammes :

— On considére un échantillon de N événements (x;)1<i<n, que I'on a classés
par ordre croissant. On considére une partition de l'intervalle [x1, zn] en n
intervalles® égaux de longueur § = (xy — x1)/n et on note les bornes de ces
intervallesyy =21+ (k— 1) (1 <k <n+1).

9. Le choix de n est délicat; il convient en général de choisir n de telle sorte qu’il y ait
suffisamment d’éléments dans chaque intervalle.
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— On compte le nombre d’événements dans chaque intervalle:
mj = nombre de x; compris dans [y;, ¥j4+1].

— La densité de probabilité empirique peut alors se définir comme:

m;
Pi= 5N

Pour les échantillons de petite taille, on se reportera utilement au § A.5, ou la mé-
thode des champs de probabilité est présentée (Holy, 1997). Les langages de programma-
tion proposent souvent de tracer des courbes qui approchent ’histogramme empirique
a I'aide de fonctions continues appelées noyaux de densité® (Reiss & Thomas, 2001).

Exemple

On tire 100 valeurs de la loi exponentielle £(1). On forme un échantillon de N =
100 valeurs ici compris dans 'intervalle 0,012 a 4,12. On forme I’histogramme en fai-
sant un décompte des valeurs parmi des sous-intervalles de largeur identique 6 = 0,25.
L’histogramme unitaire qui donne une idée grossiére de la forme de la distribution de
probabilité. On voit clairement sur cet exemple que méme avec 100 valeurs, il est dif-
ficile de se faire une idée de la forme de la loi de probabilité sur la seule base d’un
histogramme.

Figure 4.5 — Histogramme des cent valeurs simulées; la courbe continue représente la
loi théorique £(1) simulée.

10. En anglais, les noyaux de densité sont appelés kernel density estimates (kde). Par exemple,
la function kdeplot de la bibliothéque seaborn de python permet de tracer le noyau de densité
d’un échantillon de données.


https://seaborn.pydata.org/generated/seaborn.kdeplot.html
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4.2.2 Fonction de répartition empirique
Définition

Outre la densité de probabilité (sous forme d’histogramme), on peut tracer la fonc-
tion de répartition empirique. En pratique, si I'on dispose d’'un échantillon & de N
événements, on procede comme suit:

- On considére un échantillon de N événements (z;)1<i<n, que 'on a classés par
ordre croissant: 1 < 29 < ... < znN. A chaque élément ordonné, on affecte
une probabilité de non-dépassement empirique égale a

, ]

; — . 4.11
"N +1 (411)
- La fonction de répartition empirique (de non-dépassement) peut alors se définir
comme:
Osiz < 2
p— 1
P(z) = Zif+ LSl S @ < (4.12)
lsiz>an

On pourrait tout aussi bien travailler avec la probabilité de dépassement en
définissant la probabilité empirique comme P = 1 — i/(N + 1) au lieu de
I’expression (4.11).

Il est souvent commode de travailler dans un diagramme semi-logarithmique
(probabilité en coordonnées logarithmiques) pour mettre en évidence les parti-
cularités de la distribution empirique.

Exemple

On reprend I'exemple précédent. On trace la fonction de répartition empirique de
dépassement P = Prob(X > x) dans un diagramme semi-logarithmique [voir figure
4.6(a)] et dans un diagramme linéaire, on reporte la variation de la probabilité empirique
de non-dépassement P’ = Prob(X < x) = 1 — P [voir figure 4.6(b)]. Sur les deux
diagrammes, on reporte la loi théorique simulée (courbe a trait continu).

Variantes

Quand la loi de probabilité est connue a ’avance, il est plus intéressant de travailler
avec une fonction de répartition empirique modifiée afin d’améliorer la robustesse et
réduire le biais. La procédure est alors la suivante:

— On considére un échantillon de N événements (z;)1<i<n, que 'on a classés par
ordre croissant.
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Figure 4.6 — (a) Fonctions de répartition empirique et théorique. On a reporté ici la
probabilité de dépassement dans un diagramme semi-logarithmique. (b) Fonctions de
répartition de non-dépassement P’ dans un diagramme linéaire.

— On a précédemment défini la fonction empirique comme:

Osix < x
1—1

P(z) = N+15|x¢_1§w<xi
lsiz>xN

Il s’agit d’'une définition générale, qui se justifie théoriquement quand on a beau-
coup de données (Davison, 2003). D’autres définitions peuvent étre utilisées si
on a une idée de la forme de la distribution de probabilité et que 'on a peu de
données. Elles sont généralement de la forme: P(z;) = (i — a)/(N +b), ol a
et b sont choisis selon la loi (Rao & Hamed, 2000):

- a = —0,28 et b = 0,28 pour une loi de Gumbel (De, 2000),
- a=0,375 et b = 0,25 pour une loi de Gauss-Laplace.

De plus si on préféere travailler avec des probabilités de dépassement, il suffit de
définir P comme P =1— (i —a)/(N + b).

— On reporte la distribution empirique. Pour un certain nombre de lois, il existe
une forme spécifique de présentation. Par exemple, pour une loi de Gumbel on
trace la distribution dans un diagramme semi-logarithmique et pour une loi
puissance, on trace la distribution dans un diagramme logarithmique.
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4.2.3 Diagrammes de quantile et de probabilité

Les diagrammes quantile—quantile (QQ) et probabilité—probabilité (PP) sont des
méthodes graphiques utiles pour vérifier ’adéquation d’une loi de probabilité ajustée
sur un jeu de données.

Définitions

On considére un échantillon de N événements (z;)1<i<n, que l'on a classés par
ordre croissant. Admettons que I'on ait une idée de la fonction de distribution. On
appelle f sa densité de probabilité et F' sa fonction de répartition. On définit:

- un diagramme de probabilité comme le tracé des points dans un diagramme
(i/(N+1), F(x;)) pouri = 1--- N.Si F est un modéle adéquat, alors les points
doivent se trouver alignés sur une droite diagonale (premiére bissectrice);

— un diagramme de quantile comme le tracé des points dans un diagramme (z;, F'~'[i

1)]) pour i = 1--- N.Si F est un modeéle adéquat, alors les points doivent se
trouver alignés sur une droite diagonale (premiére bissectrice) comme précédem-
ment.

Le principe de deux constructions graphiques est identique, mais 'information fournie
est différente.

Exemple

On reprend encore 'exemple précédent. La figure 4.7 montre le diagramme de pro-
babilité (a) et de quantile (b) pour I’échantillon des 100 valeurs simulées selon une loi
exponentielle. Le diagramme de probabilité reporte des couples de points (Peyp., i =
i/(n+1), Pepp., i = 1—exp(—Az;))avecici A = 1, tandis que le diagramme de quantile
reporte les couples (z;, — In(1 — Peyy,p. i)/ A) puisque le quantile de la loi exponentielle
est la valeur z solutionde P = 1 — exp(—Az). O

4.2.4 Echantillon indépendant et identiquement distribué

Une hypothése fondamentale dans I’ajustement d’une loi de probabilité est que
I’échantillon de données soit une collection d’événements qui appartiennent bien a
la méme population d’événements et que les événements soient indépendants les uns
des autres. Les statisticiens introduisent souvent ’abréviation iid pour qualifier un tel
échantillon (indépendant et identiquement distribué).

Qu’est-ce qu'un échantillon identiquement distribué? Il s’agit d’'un échantillon
d’événements appartenant a la méme population et qui peuvent étre décrits a I’aide de
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Figure 4.7 - (a) Diagramme de probabilité et (b) diagramme de quantile; la courbe a
trait continu représente la premiére bissectrice (parfait accord).

la méme loi de probabilité. Mathématiquement, cela implique que pour un échantillon
(xi)1<i<n, il existe une loi f paramétrée par 6 telle que z; ~ f(6).

Qu’est-ce qu’un échantillon d’événements indépendants ? Par définition, c’est une

,

collection d’événements qui, pris deux a deux, vérifient:
Prob(z;, x;) = Prob(x;)Prob(z;).

Cela signifie qu’il n’existe aucune corrélation entre deux événements distincts.

& Exemple. — Admettons que I'on cherche a faire une statistique des débit de crue
d’un cours d’eau. On recueille pour cela dans les archives une série de débits mesurés,
mais les événements ne sont pas bien documentés. Les débits reportés peuvent corres-
pondre a des crues trés différentes du point de vue de leur genese (forte pluie suite a un
orage, fonte du manteau neigeux, etc.). A-t-on le droit de faire une étude statistique ?
A priori, non car les crues n’appartiennent pas a la méme population et il est vraisem-
blable qu’il faille considérer différents sous-échantillons; en pratique, cela n’est pas fait,
faute de données suffisantes. O

& Exemple. — Certains cours d’eau sont aménagés (barrage, dérivation, etc.), et ces
aménagements peuvent modifier le débit du cours d’eau, ce qui peut rendre caduque
I'exploitation statistique des données de tout I’échantillon. On verra a travers 'exemple
du Rhéne a la figure 4.27 que méme dans ces cas, il est souvent possible d’ajuster une
loi de probabilité, mais que cette loi a une pertinence toute relative et 'estimation des
quantiles rares est vraisemblablement fortement biaisée. O
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En pratique, il n’existe pas une méthode standard pour tester si un échantillon est
composé d’événements indépendants et identiquement distribués, mais il existe une
multitude de tests qui servent a examiner a quel point I’hypothése de stationnarité ou
d’homogénéité statistique est pertinente. Voici quelques-uns des tests les plus courants:

- test de Student: il permet de vérifier si deux populations d’événements sont bien
issus de la méme loi de probabilité de moyenne m et variance 0. On calcule
la moyenne et la variance empiriques de chaque échantillon et on examine la
probabilité d’occurrence d’une combinaison de ces moments a I’aide de la loi de
Student;

— recherche de corrélation: on trace la fonction d’autocorrélation de la série tem-
porelle. Cette fonction donne acces a un temps de corrélation. Si les valeurs sont
mesurées a des dates d’occurrence séparées par des temps plus grands que le
temps de corrélation, les données sont le plus souvent indépendantes;

- calage d’'un modéle AR ou ARMA (voir A.4.6 et A.4.7): si on peut caler un pro-
cessus de type AR ou ARMA, on peut étudier 'existence d’un état stationnaire
et les caractéristiques autour de cet état stationnaire. Des tests comme celui de
Dickey-Fuller permettent d’estimer la vraisemblance d’un état stationnaire pour
un processus AR (Box et al,, 2015). Des tests comme ceux de Durbin-Watson ou
Ljung-Box vérifient que les résidus (différences entre modele et observation)
sont bien du bruit blanc (Bras & Rodriguez-Iturbe, 1993; Box et al., 2015).

On va ici voir des tests graphiques qui permettent de fournir rapidement une informa-
tion visuelle sur la stationnarité et les corrélations au sein d’une série temporelle.

Stationnarité

On reporte ici un test pratique qui consiste a:

- classer chronologiquement la série d’événements;

- reporter sur un graphe les points correspondent a cette série, avec en abscisse la
date (en jours) et en ordonnée le rang (chaque événement étant ordonné chro-
nologiquement) de I'événement.

Si tous les événements étaient régulierement distribués dans le temps, alors les points
devraient s’aligner sur une droite dont la pente correspondrait au nombre d’événe-
ments par unité de temps. Il peut y avoir une variabilité statistique et, dans ce cas, la
courbe des événements doit serpenter autour de la droite théorique. En pratique, si
l'on dispose d’un échantillon de N événements (datey)i<x<n ordonnés chronologi-
quement sur une durée 7', on procédera ainsi:

— on reporte sur un graphe le i*™€ point (date;, 7);
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— on trace la droite théorique y = xN /T (le point (0, 0) doit correspondre au
1¢" événement). Si I’échantillon est stationnaire, alors la courbe des dates d’oc-
currence doit serpenter autour de la droite théorique;

— on peut également tracer le résidu ¢; = i — y (distance entre le i€Me point et
la droite théorique) en fonction de 4. Si on a E[g;] = 0, alors I"échantillon est
stationnaire.

Comportement poissonien

Il est intéressant d’examiner la distribution du nombre de précipitations sur une
période donnée (typiquement une saison ou une année). Si cette distribution est sta-
tionnaire, on s’attend a ce qu’elle constitue un processus de Poisson homogéne dont
le parametre A est égal au nombre moyen de précipitations sur la période considérée.
Comme assez souvent pour des processus légerement non stationnaires, on trouve que
la loi binomiale négative donne de bons résultats (Cunnane, 1979). En pratique, on pro-
cédera ainsi:

— pour chaque année on comptera le nombre n; d’événements pour les N années
de la série. On peut se fixer éventuellement un seuil;

- on trie la suite n; par ordre décroissant: (m;)i<i<ny = tri[(ni)1<i<n]| et &
chaque valeur m; on attribue la probabilité empirique (de dépassement) i /(N +
1);

- on reporte sur un diagramme (m;, i/(N + 1)) ou bien (i/(N + 1), m;);

- on trace sur le méme diagramme la loi de Poisson P () de paramétre A = m (on
égale la moyenne empirique de I’échantillon et celle de la loi) et la loi binomiale
négative N'eg(n, p), avec (n, p) (o n € Net p € Ry) solution approchée du
systéme n(1 —p)/p = metn(l —p)/p?> = >, (m; — m)?/N;

— on peut de la conclure, en général, quelle est la loi la mieux adaptée a décrire
I’échantillon.

Autocorrélation

L’autocorrélation empirique d’une série temporelle est définie a partir de la défini-
tion de la fonction d’autocorrélation (voir § A.4.2):

N
> (wk — ) (@n—k — T))
p(i) = h=itl ~ pour i € N, (4.13)
> (wp — )
k=1

avec p(0) = 1 (Brockwell & Davis, 1991; Box et al.,, 2015). Elle mesure le degré de
corrélation entre deux valeurs dont les occurrences sont espacées de i. Si les données
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observées ne sont pas corrélées, alors p(i) — 0 de facon exponentielle pour ¢ > 0. En
regle générale, 'autocorrélation au pas ¢ n’est pas nulle, mais petite; il faut donc se
fixer un seuil a partir duquel on considére que ’autocorrélation n’est pas significative.
Dans les langages de calcul, on fait souvent I’hypothése que la série temporelle peut
étre décrite par un modéle ARMA, et dans ce cas-la le seuil est de 'ordre de +1/ VN
(Box et al., 2015, voir § 2.1.6).

Il peut étre intéressant de regarder également ’autocorrélation partielle de la série
temporelle (voir § A.4.3) afin de voir si la série temporelle peut étre vue comme la
réalisation d’un processus autorégressif AR(p) ou ARMA (p, q), ce qui permet a la fois
d’étudier la corrélation temporelle et la stationnarité de la série.

4.2.5 Exemple traité: précipitations sur Lausanne

La figure 4.8 montre un exemple de test conduit sur les précipitations journaliéres a
Lausanne (VD) sur la période longue 1900-2024, et répété sur une courte période 2020-
2024 pour voir les effets de taille de I’échantillon sur I’allure de la courbe. Lorsque la
pente locale de la courbe (date;, ) est inférieure a la pente moyenne, cela indique qu’il
y a eu moins de précipitations que ce qui est observé en moyenne. Inversement, si la
pente locale est plus grande que la pente de la tendance moyenne, alors on a plus de
précipitations que ce qui a été observé en moyenne sur la période étudiée. A 1'échelle du
siécle, la figure 4.8(a) montre que 'occurrence des précipitations est stationnaire, mais
a I’échelle de quelques années, la figure 4.8(b) montre une légérement instationnarité.

On peut étudier la distribution du nombre annuel de précipitations et voir s’il a
un comportement poissonien. Naturellement, il faut prendre des précipitations au-dela
d’un certain seuil car la loi de Poisson décrit la distribution des événements rares, donc
avec une intensité suffisamment grande. La figure 4.9 montre la distribution du nombre
annuels de précipitations a Lausanne selon que 'on prend un seuil de 1 mm (donc
presque tous les événements) ou 20 mm (les événements rares).

La figure 4.10 montre la fonction de répartition empirique et I’histogramme des
pluies sur Lausanne. Afin d’examiner si les précipitations sont distribuées selon une
loi exponentielle, on a adopté une échelle logarithmique en ordonnée pour tracer ’his-
togramme des précipitations. L’histogramme de la figure 4.10(b) semble donner crédit
a I’hypothése d’'un comportement exponentiel des précipitations; on note que dans la
queue de distribution (pour les précipitations P > 70 mm), on semble s’éloigner d’'un
comportement exponentiel, mais cela peut étre dit a un effet de taille finie. La figure
4.10(a) montre en fait que I'on est assez loin d’'un comportement exponentiel quand on
examine la fonction de répartition.

Quand on a un nombre suffisant de données, on peut examiner le comportement
statistique en prenant des valeurs issues de différentes périodes afin de tester I’hypo-
thése de stationnarité de la série temporelle. Par exemple, la figure 4.11(b) montre la
fonction de répartition empirique des précipitations a Lausanne pour trois périodes
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Figure 4.8 — Test de stationnarité de la série temporelle composée des pluies journa-
lieres P > 1 mm a Lausanne (601 m) (a) depuis le 1% janvier 1900 ou (b) depuis le
1¢" janvier 2020 (jusqu’a octobre 2024). En moyenne, il y a eu 119 chutes de pluie jour-
naliéres P > 1 mm par an a Lausanne sur la période 1900-2024 contre 116 sur la
période récente 2020-2024. Source: données Météo Suisse.

de quarante années: 1900-1939, 1940-1979, et 1980-2019. On a également reporté la
fonction de répartition empirique d’une série temporelle plus courte (2020-2024). Il ap-
parait qu’il y a trés peu de différences entre les séries 1900-1939 et 1940-1979 alors que
pour la période récente, on a des différences significatives pour les précipitations com-
prises entre 4 mm et 20 mm. Dit autrement, il y a un peu plus de pluies dans la tranche
4-20 mm qu’auparavant. Pour les précipitations rares (P > 50 mm), il est difficile de
se prononcer car il y a peu d’événements, mais un simple examen visuel montre que la
densité de points au-dessus de 50 mm augmente a partir des années 1990.

Un autre regard peut étre apporté en examinant le comportement statistique des
cumuls annuels de pluie. La figure 4.12(a) montre la variation du cumul annuel depuis
1900. Les figures 4.12(b, c) montrent ’autocorrélation p et autocorrélation partielle
¢. La figure 4.12(b) tend a montrer que la corrélation chute vers zéro (p est contenu
dans lintervalle de confiance a 95 %), donc les cumuls annuels ne sont pas corrélés
et I’échantillon peut étre considéré comme un jeu de valeurs indépendantes. La figure
4.12(c) montre que pour k = 7 et k = 17, 'autocorrélation partielle ¢ est a la limite
ou juste au-dessus de l'intervalle de confiance, ce qui semble accréditer I'idée que des
corrélations existent ou plus précisément que deux cycles de 7 et 17 ans peuvent affecter
la série temporelle.

Pour visualiser ces deux cycles, on peut appliquer des filtres de Lanczos avec une
composante passe-bas et une composante passe-haut (Duchon, 1979). La figure 4.13
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Figure 4.9 - Distribution du nombre annuel de pluies d’intensité (a) P > 1 mm et (b)
P > 20 mm a Lausanne (601 m). On trace la fonction de répartition empirique et les
lois de Poisson et binomiale négative (ajustées par la méthode des moments). Source:
données Météo Suisse.

montre qu’il est en effet tentant de considérer que la série temporelle comprend deux
cycles (un court de 7 ans et un plus long de 17 ans) qui se superposent, et auxquels
s’ajoutent des fluctuations.
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Figure 4.10 — (a) Fonction de répartition empirique (probabilité de dépassement) des
précipitations P > s mm avec s = 1 mm et (b) histogramme des précipitations en
échelle semi-logarithmique a Lausanne. On a également reporté une loi exponentielle
(ajustée par la méthode des moments). Pour la loi exponentielle, il faut prendre garde
au fait que les précipitations étant non nulles et supérieures a s, il faut définir la densité
de probabilité de la loi exponentielle de la facon suivante: f(p) = exp(—(p—s)/P)/P
avec P = 9,14 mm la pluie journaliére moyenne. Source : données Météo Suisse.

Figure 4.11 - (a) Série temporelle des précipitations P > 1 mm sur Lausanne. (b)
Fonction de répartition empirique (probabilité de dépassement) des précipitations pour
des périodes différentes depuis 1900. Source: données Météo Suisse.
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Figure 4.12 — (a) Série temporelle des cumuls de précipitations P, mm sur Lausanne.
(b) Autocorrélation et intervalle de confiance a 95 %. (c) Autocorrélation partielle et
intervalle de confiance a 95 %. Source: données Météo Suisse.

Figure 4.13 — Série temporelle des cumuls de précipitations FP,,, mm sur Lausanne
avec superposition des deux cycles: un cycle court de 7 ans et un cycle plus long de 17
ans.



43  Ajustement de lois 187

4.3 Ajustement de lois

Un probléme pratique courant est le suivant: on dispose d’un échantillon de don-
nées et on aimerait bien connaitre la loi de probabilité de la population dont sont issues
les données. Mathématiquement, cela peut se formuler de la fagon suivante. Soit une loi
de distribution f(x ; #) ol 6 représente le ou les paramétre(s) a déterminer. On note p
le nombre de paramétres: p = dim 6 et [a, b] = supp f le support de f (a ou b pouvant
prendre des valeurs infinies). On désigne par F’ la fonction de répartition de cette loi.
On dispose d’un jeu de n données = (x;)1<i<n. De ce jeu, on cherche & obtenir une
estimation des parametres ; on note ici 0 cette estimation de 6.

1l existe plusieurs méthodes qui permettent d’ajuster les parameétres d’une loi. On
va en voir:

- la méthode des moments (voir § 4.3.1),

- la méthode du maximum de vraisemblance (voir § 4.3.2), et

- Pinférence bayésienne (voir § 4.3.3).
Notons que des méthodes de calage telles que la méthode des moindres carrés ne sont
jamais utilisées en statistique, surtout pour les valeurs extrémes tant le biais introduit

par ces méthodes important. On donnera également quelques indications sur des alter-
natives comme:

- la méthode de maximisation des espacements (voir § 4.4.1), et

- la méthode des L-moments (voir § 4.4.2).

Rappel. Il y a encore quelques années, un tel ajustement se faisait a 'aide de
papiers spéciaux (feuille de Gauss, de Gumbel, etc.). Aujourd’hui, les moyens infor-
matiques permettent de faire des ajustements en quelques secondes. Cette facilité et
I’abondance de routines disponibles sur les ordinateurs ne doivent pas enlever toute
réflexion a ce travail. On a vu au § 4.2 qu’avant d’ajuster une loi, nous devons mener
un travail critique les données:

— les données sont-elles indépendantes et distribuées selon la méme loi?

- quelle forme de loi puis-je a priori utiliser ?

- comment ajuster les paramétres de cette loi (probléeme d’inférence)?

- comment vérifier la pertinence du choix d’une forme particuliére de loi de pro-
babilité ?

- quelle incertitude ou quelle confiance ai-je dans I’ajustement des paramétres ?

Une fois que 'on a répondu a ces cinq points, on a en principe en main une loi de
probabilité qui permet de représenter sous forme synthétique les données existantes
(interpolation) et de faire des prévisions du comportement du phénomeéne étudié (ex-
trapolation).
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4.3.1 Meéthode des moments

C’est une méthode qui est couramment employée car trés simple dans son principe.
Pour la plupart des lois d’intérét pratique, les moments de la loi existent et on sait les
calculer analytiquement. On détermine les p premiers moments de la loi; on a déja
introduit les deux premiers moments: la moyenne M; = E[f] et le moment d’ordre 2
My = Var[f] + E2[f]. Les autres moments M, se définissent de la méme maniére:

b

My, = /xkf(x)dx.

a

On peut également raisonner a partir des moments centrés:

b
mi= [ (o= m) o

avecm = E[f].

Pour déterminer une estimation des p paramétres 0, il suffit d’égaler les moments
théoriques M}, et les moments empiriques My (1 < k < p). On aboutit alors a p
équations (linéaires ou non) liant les p parametres 6.

& Exemple. — En utilisant la méthode des moments, calculer I'estimateur \ du
parameétre A d’une loi exponentielle.

La densité de probabilité de cette loi s’écrit:
E(z; ) = he™ 7,

donc la moyenne théorique (espérance) est:

e A zA+ 1) OO_ 1
o A

E(X) Z/ Aze Mdr = [—
Ry A

L’estimateur de \ est obtenu en égalant moments théorique et empirique d’ordre 1:

4.3.2 Maximum de vraisemblance

La notion de vraisemblance est un concept-clé en statistique, qui peut se présenter
de différentes facons (Bernier et al., 2000; Tanner, 1996; Sornette, 2000). Nous I'introdui-
sons de la maniere suivante. Considérons la probabilité jointe d’observer un échantillon
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de n valeurs tirées selon la loi f(x; 0); nous avons d’aprés les propriétés des probabi-
lités conditionnelles (cf. chapitre A):

Prob(zy, z9, - - x,|0) = Prob(ze, 3, - - xy|x1 ; 0)Prob(x; ; 0),
or siles valeurs x2, x3, - - - x,, sont indépendantes de x1 alors on peut écrire
Prob(xg, x3, - xp|z1 ; 0) = Prob(xg, 3, 2y ; 0).
En itérant, on trouve:

Prob(x|0) = H (g ;

Si au lieu de regarder cette expression comme une fonction de &, mais comme une
fonction de 6, on peut définir une fonction L(6) que 'on appelle la vraisemblance de
I’échantillon x:
n
= st

Le principe de maximum de vralsemblance affirme que les valeurs de 6 ajustées a
I’échantillon sont celles qui maximalisent la fonction L(6). Si 6 est un maximum de
L, alorson a:

OL(0) =0pourl <7 <p.
00; |p_p
En résolvant ce systéme, on trouve les valeurs estimées de 6. Pour certaines lois, une
solution analytique générale existe ; dans la plupart des cas, il faut procéder a une réso-
lution numérique pour déterminer le maximum de L.

Notons qu’en pratique il est plus agréable de travailler avec la log-vraisemblance :

((0) =InL = Zlnka, ,

principalement pour travailler avec des nombres qui ne sont pas des infiniment petits
et éviter les erreurs numériques de troncature.

Quelques commentaires supplémentaires :

~ T'estimateur du maximum de la vraisemblance peut ne pas exister ou quand il
existe, peut ne pas étre unique;

- la vraisemblance n’est pas la densité de probabilité de 6;

- la méthode du maximum de vraisemblance est intéressante car elle est rapide
(par rapport a I'inférence bayésienne) et permet également de calculer des inter-
valles de confiance (cf. § 4.3.4);

- attention la méthode du maximum de la vraisemblance ne marche pas pour £ <
—1 dans le cas de la loi des valeurs extrémes, mais ce cas ne se rencontre pas en
hydrologie.



190 Chapitre 4 Introduction a la théorie des valeurs extrémes

Localement autour du pic de vraisemblance, la courbe a généralement une forme
parabolique (voir figure 4.14); un développement limité a I'ordre 2 donne en effet:

£(6) ~ 10) + 3" (6)(6 — )

puisque E’(é) = 0. Plus il y a de données, plus le pic sera effilé (car plus la courbure ¢”
sera grande), plus « certaine » sera la détermination du bon parametre 6. On va le voir
un peu plus loin avec l'intervalle de confiance (cf. 4.3.4), que la courbure de la para-
bole - c’est-a-dire le terme dérivée d’ordre 2, noté ici ¢” (é) — joue un grand roéle dans
la précision de 'estimation. La courbure va croitre (la précision également) quand le
nombre n de données est augmenté (voir figure 4.15). On lui donne un nom spécifique:
Uinformation observée. Notons que la valeur du pic (le maximum de vraisemblance)
n’est en elle-méme pas importante tant qu’on cherche a déterminer le parameétre 6
d’une loi, mais que si on souhaite comparer la pertinence de différentes lois f sur un
jeu de données, la valeur du maximum peut servir a cet effet.

05—+ 1
0.0F
-0.5
— -10
)
<0

Figure 4.14 — Approximation locale de la courbe de log-vraisemblance (courbe a trait
discontinu) par une fonction quadratique (parabole: courbe a tiret).

& Exemple. — En utilisant la méthode du maximum de vraisemblance, calculer
Pestimateur A du paramétre A d’une loi exponentielle.

Cette loi s’écrit:
E(x; \) =de™?,

donc la log-vraisemblance d’un échantillon x est:

() =nlnA =AY ;.
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L’estimateur de A est obtenu en recherchant ¢'(\) = 0, soit encore:

n

X: =
> Ti

K|~

Dans ce cas particulier, méthodes des moments et du maximum de vraisemblance
donnent la méme chose. O

& Exemple n° 1 (suite) - On trace la log-vraisemblance de I’échantillon de 100 va-
leurs tirées selon laloi £(1). On trouve Z & 0,07. L’estimateur de X est A = 1/Z ~ 0,93.
Notons que la forme de la courbe va fortement dépendre de la taille de I’échantillon:
plusil y a de données, plus la courbe prend la forme d’un pic (et parfois plusieurs pics).
Voir figure 4.15. O

Figure 4.15 — (a) Log-vraisemblance d’un échantillon de cent valeurs tirées selon une
loi exponentielle. La barre a trait discontinu localise I'estimation A = 1 /T ~ 0,93
du parameétre A par la méthode du maximum de vraisemblance. (b) log-vraisemblance
d’échantillons de n = 10 valeurs, n = 100, et n = 1000 valeurs tirées selon une loi
exponentielle.

4.3.3 Inférence bayésienne

En général, on introduit dans un cours de probabilité la seconde relation ou théo-
réme de Bayes, qui énonce I’égalité que nous écrivons ici pour des densités de probabilité
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(Robert, 2001; Ulrych et al, 2001; Davison, 2003) (voir chap. A, § A.1.2):

[f(x|0)=(6)
b

J d0f(x|0)(6)

m(0|z) = (4.14)

Une interprétation est la suivante: admettons qu’avant de faire n observations, on ait
déja une petite idée de la forme de la loi f selon laquelle x est distribué et méme une
idée sur la valeur des parameétres de f. Dans le cas contraire, on peut toujours faire
une hypotheése sur la forme de f et supposer que les paramétres € peuvent prendre
n’importe quelle valeur sur un intervalle donné; dans ce cas, on supposera que ces
valeurs de 6 sont distribuées selon une loi de probabilité uniforme 7(6) = U(0).

Dans tous les cas de figure, on est capable de faire une hypothése sur la forme de f
et sur la densité de probabilité de ses parametres € ; on appelle prior ou loi de probabilité
a priorilaloi 7(0). On fait maintenant n observations x. Le théoréme de Bayes dit que
cet apport d’information va modifier notre connaissance a priori (fiit-elle trés grossiére)
de la valeur possible de 6. La distribution a posteriori de 6 connaissant 'information «
est notée 7(0|x); elle est proportionnelle au prior 7 () et a la fonction f(x|f), or on
a vu juste avant (méthode du maximum de vraisemblance) que cette probabilité jointe
d’observer x (sachant ) pouvait s’interpréter comme une fonction L de 6 que I'on
appelle la vraisemblance:

L(0) = f(z; 0) = Hf(wi; 0).

On a donc en résumé:

w(0|x) o< L(0)7(0).

La seule différence entre cette expression et I’équation (4.14) est le terme intégral au
dénominateur qui sert a normaliser et a s’assurer que la probabilité calculée est bien
une probabilité (donc que son intégrale vaut 1).

Notons ici que nous avons en quelque sorte utilisé un raccourci dans les notations:
chaque observation est supposée étre distribuée selon une loi de probabilité f, ce que
I'on écrira de fagon synthétique par = ~ f(x; ). La notation f(x; 6) signifie la pro-
babilité d’observer I’échantillon = (z;)1<i<n, ce qui n’est rien d’autre que la vrai-
semblance de I’échantillon «. On a également utilisé f(x; #) = f(x|0) pour souligner
le caractére « conditionnel ».

On pourra en fin de compte retenir'! comme paramétre la valeur 6:

— celle qui maximise 7(6|x), c’est-a-dire son ou ses mode(s). A noter que dans ce
cas précis, il n’est pas nécessaire de calculer le terme intégral au dénominateur

11. On ne présente pas ici toute la démarche de ’approche bayésienne. Le choix de la valeur
0 se fait a partir d’un critére dit de perte ou d’utilité (voir des ouvrages spécialisés comme celui
de Robert (2001)). Nous donnons ici les deux alternatives les plus fréquentes.
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de I’équation (4.14) car c’est une constante de normalisation. Les calculs sont
alors plus simples. Cette facon de faire peut s’apparenter a une pondération de
la méthode du maximum de vraisemblance puisqu’au lieu de minimiser la vrai-
semblance L, on minimise la vraisemblance L et une contrainte représentée a
travers 7(6) (Coles & Dixon, 1999);

- ou bien la valeur moyenne obtenue en calculant E[7(6|x)]. C’est le choix (pari)
souvent fait par la plupart des bayésiens, mais les calculs sont plus longs et il
faut alors souvent faire appel a des algorithmes spécifiques (Metropolis, échan-
tillonnage de Gibbs) (Robert, 1996).

4.3.4 Intervalles de confiance et de crédibiliteé

Les méthodes d’inférence vues précédemment ont permis d’arriver a une estima-
tion 6 des paramétres 6 de la loi f(x; 0) a partir de la connaissance d’un échantillon
x. Plutot que de se contenter d’une valeur, il peut étre plus intéressant de fournir un
intervalle [, 62] entourant 6, qui permette se faire une idée sur I'estimation de 6. Cela
a une grande importance dés lors qu’on souhaite extrapoler la loi ajustée. Comme pour
les tests d’ajustement, I'idée est de se fixer un intervalle de probabilité 1 — «, puis de
rechercher 6, et 0 tels que Prob(6; < 0 < f2) = 1 — «. En pratique, toutefois, la
détermination de I'intervalle [f;, 03] dépend fonciérement du cadre conceptuel dans
lequel on s’est placé.

Dans le cadre de I'inférence dite classique, le point de départ est le suivant: I’échan-
tillon & dont on dispose est aléatoire et tiré d'une population de loi f(z; #), mais on
ne connait pas 6. Si on disposait d’un grand nombre N d’échantillons similaires & 2(*)
(1 €9 < N)etd’un estimateur robuste de 6, alors on serait en mesure de procéder a un
ajustement de f pour chacun de ces échantillons. A la fin, on disposerait d’un échan-
tillon () (1 < i < N). Le théoréme de la limite centrale nous garantit que la moyenne
arithmétique 6 de cet échantillon () tend vers la valeur exacte 0 et, de plus, elle précise
que la variable réduite /N (6 — ) /o, avec 02 la variance de la population 0, converge
vers la loi de Gauss-Laplace N(0,1). De 13, on déduit que §; = 6 — za/gSN/\/N et
0y = 0+ 242N/ VN, avec S, la variance empirique de §() et z, /2 le quantile *?
de la loi AV(0,1) associé a la probabilité 1 — a//2. Le nceud du probléme est qu’on ne
posséde pas N échantillons similaires; il faut donc étudier théoriquement comment
seraient distribués 6 et Sy, ce qui constitue un probléme ardu dés que la loi f n’est
pas une distribution standard. On se reportera a (Saporta, 1990; Davison, 2003) pour
une définition des intervalles de confiance des distributions classiques. Pour la loi de
Gumbel, on peut se reporter, par exemple, a I’abaque donné dans (Miquel, 1984).

Dans le cadre de 'inférence bayésienne, le raisonnement est trés différent car on
suppose que I’échantillon x est fixe mais que 6 est une variable aléatoire, dont la densité

12. La notation zg comme [3-quantile de la loi normale doit étre examinée avec attention
selon le contexte. En effet, selon la définition employée, zg peut le quantile de 5 ou 1 — 3.
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de probabilité a posteriori est conditionnelle a &, comme le montre ’équation (4.14). Le
théoréme de Bayes nous fournit directement cette densité de probabilité a posteriori et
donc les moyens de calculer 0, et 05 ils vérifient I1(6; < 0 <f0)=1—a,avecllla
fonction de répartition a posteriori associée a la densité 7(6|x). Pour distinguer cette
procédure, on parle d’intervalle de crédibilité ; on renvoie a (Bernier et al., 2000) pour une
plus ample discussion sur les différences entre points de vue classique et bayésien. La
grande force de 'inférence bayésienne est son universalité ; toutefois, si pour calculer
0, on peut se contenter de rechercher le mode de 7(0|x) sans réellement calculer cette
derniére (voir 'exemple donné au § 4.3), il faut calculer 7 (f|x) pour déterminer les
deux quantiles 6; et 0, ce qui peut étre, dans certains cas, assez coliteux en calcul et
requérir des méthodes numériques spécifiques (Robert, 2001).

Ici, on propose une méthode de construction de l'intervalle de confiance lorsqu’on
emploie la méthode du maximum de vraisemblance. Il y a en fait plusieurs méthodes,
que 'on va décrire succinctement juste apres; les deux premiéres sont les plus recom-
mandables. Si 'on emploie la méthode d’inférence bayésienne, il faut le plus souvent
procéder a des simulations de type Monte Carlo pour déterminer la distribution a pos-
teriori de 6; 'intervalle de confiance peut donc étre estimé directement a partir de
I’échantillon simulé.

On se reportera au § 4.9 pour des estimations de 'intervalle de confiance pour les
quantiles.

Approximation de I’estimateur 0 par une loi normale

Admettons qu’on possede un échantillon de n valeurs observées z; tirées selon une
loi f(x;60°). En utilisant la méthode du maximum de vraisemblance, on peut obtenir
une estimation du bon paramétre 6°: on note 0 cette estimation. On souhaite détermi-
ner l'intervalle de confiance (de niveau 1 — ) dans lequel se situe la bonne valeur 6°.
Cet intervalle peut étre déterminé en se servant du théoréme central limite.

Nous commencons par le cas ou la densité de probabilité ne dépend que d’un para-
meétre 6, puis nous généraliserons le résultat aux lois a d paramétres. Nous cherchons a
avoir une estimation de I'intervalle de confiance associé a la valeur observée  du maxi-
mum de vraisemblance d’'un échantillon; cet intervalle de confiance nous permet de
déterminer dans quel intervalle doit se trouver la bonne valeur du parameétre 6, bonne
valeur qui sera notée ici 6°.

4 Théoréme. - Soit un échantillon de n valeurs * = zy, ..., représentant des
réalisations indépendantes d’une distribution f(-; 8°) ot §° est la bonne valeur que
Pon cherche a cerner. ¢ est la log-vraisemblance de ’échantillon et 0 est 'estimateur
du maximum de vraisemblance. Alors pour n suffisamment grand, on a:

VIa(09) (0 —6°) ~ N (0, 1),
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soit encore:

0
0= v, (4.15)

1//TaA(0)

avec
0 62 0
1) = (- 5 t0lo)).

I'information attendue (ou encore information de Fisher)!3. On peut écrire cette rela-
tion sous la forme équivalente:

0~ N(0°, 14(0°)71).

Ce résultat montre que Pestimateur 0 se comporte comme une variable aléatoire
normale (ou gaussienne) centrée sur le « bonne » valeur §°, avec une variance donnée
par le paramétre I, '. Ce théoréme peut étre démontré assez facilement a l'aide du
théoréme central limite [voir § B.1 ainsi que (Davison, 2003, pp. 124-125)]. On peut en
déduire un intervalle de confiance pour #°. On a vu précédemment qu’un intervalle de
confiance de niveau 1 — « se définissait comme I'intervalle de quantiles vérifiant

1 — «a =Prob [%/2 < VI4(00)(0 —6°) < zl_a/Q} ,

ou 23 est le 3-quantile de la loi normale (c’est-a-dire Prob(z3) = /3). Des manipulations
algébriques simples montrent que

1 — o = Prob |:é — Zl—a/2121/2(90) § 00 § é - Za/2121/2(00)i| 5

qui est donc un intervalle de confiance pour #°. Notons au passage que la loi normale
N(0,1) étant symétrique, on a z, /2 = —Z1_q/2, ce qui montre que l'intervalle de

confiance de 00 est symétrique par rapport a 6:
[é - Zlfa/2If_11/2(90)7 0+ Zlfa/zfglﬂ(eo)]‘

En pratique, toutefois, on ne connait pas 74(6°), mais on peut remplacer ce coefficient

par Iinformation observée Ip(0) = —¢"(6) quand n — oo. Le plus souvent on consi-
dére un intervalle de confiance a 95 % (soit & = 0,05 et zp 975 = 1,96), ce qui donne

6° € (6 —1,961,"%(6), 0 + 1,961, "/*(6)].

13. L’information de Fisher est le pendant théorique de la notion d’information observée
abordée a la p. 190. Les statisticiens 'interprétent comme la quantité d’information que trans-
porte une variable aléatoire a propos de 6. En pratique, il faut retenir que la valeur attendue de
la courbure et que plus la valeur est grande, plus étroit sera le pic autour de la bonne valeur.
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¢ Théoréme. — Soient x; ...x, des réalisations indépendantes d’une distribu-
tion f(-; 0) ou § = (0;)1<i<q désigne I'ensemble des d paramétres de f, ¢ la log-
vraisemblance, et 0 Iestimateur du maximum de vraisemblance. Alors pour n suffi-
samment grand, on a:

0 ~ Na(6o, T4(6°)7),

ou l'on introduit la matrice d’information attendue (ou de Fisher)

€11 " €14

€i,j
€d1 - €dd

9%4(0)
¢ij = K (aaiae) '

La matrice I 4 mesure la courbure de la surface « log-vraisemblance ».

avec

Conséquence. — Ce théoréme peut servir a obtenir un intervalle de confiance pour
6°. On introduit pour cela I'inverse de la matrice (ou du scalaire 14 sid = 1) I 4

My = Zla
dont les composantes sont notées m;;. D’apres le théoréme précédent, on a
Il s’ensuit que si m;; était connu, un intervalle de confiance a 1 — « pour éz serait

éi + Za )24/ Mig (4.16)

avec 2,/ le quantile de 1 — /2 pour la loi de Laplace-Gauss centrée (moyenne 0,
variance 1). En général, comme on ne connait pas I 4(#), on la remplace par la matrice
d’information observée I(f), c’est-a-dire la matrice I 4(0) évaluée empiriquement
pour 6 = 6.

Deux points importants a noter:

- par construction, l'intervalle de confiance est symétrique par rapport a la va-
leur estimée 6 comme le montre I’équation (4.16). Certaines courbes de vraisem-
blance montrent une asymétrie autour du maximum et il est alors judicieux de
disposer d’'une approximation moins rudimentaire; c’est ce que permettent de
faire les théorémes suivants.

- enthéorie, il faudrait calculer la moyenne des dérivées d’ordre 2 de la log-vraisem-
blance, ce qui impliquerait en pratique d’avoir un grand nombre d’échantillons,
ce qui est rarement (voire jamais) le cas. En pratique donc, on substitue la ma-
trice d’information I 4 par I'information observée I, qui est une réalisation
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particuliére
o2%(0) . 0%(0)
902 90,00,
A . 820(0) .
Io(0) = : 90,00, -
o) 9%(6)
90400, 962

& Exemple. — On trace la log-vraisemblance pour plusieurs échantillons de 100
valeurs tirées selon la loi £(1). L’estimation de A pour le premier échantillon est A =
z~1 &~ 1,00563 et I'information observée est (A1) = 101,12. Sur la figure 4.16(a), on
trace dix courbes de log-vraisemblance correspondant a dix échantillons différents tirés
selonlaloi £(1). On note que les courbes sont trés similaires, mais décalées légérement
le long de I’axe A. Sur la figure 4.16(b), on reporte ’histogramme d’un échantillon de
10 000 valeurs de ) estimées  partir de 10°000 échantillons de 100 valeurs. On reporte
sur cet histogramme la gaussienne N'(Aq, [¢”(A1)|7/2). Le relativement bon accord
entre la densité de probabilité empirique et la densité théorique est conforme au résultat
du théoréme énoncé plus haut. Ce dernier montre bien qu’avec un seul échantillon, on
peut obtenir une estimation de A et un intervalle de confiance. Par exemple, 'intervalle
de confiance a 95 % est:

b
NG
car Prob(z = 41,959) = 0,025 si z ~ N[0, 1], £(\) = —n/X%, et —£"(\)~1/2 =
YN

|

A=£20,0250" (A1) 72 = A (1 +1,95996 > = 1,00563(140,1959) = [0,808, 1,202],

Approximation a I’aide de la fonction déviance

Une approche fondée sur lexploitation du maximum de vraisemblance permet
d’aboutir 4 une estimation fiable et plus universelle des intervalles de confiance. Le
théoréme suivant établit que si 'on a obtenu une estimation fa partir d’un échantillon
de n éléments, alors la quantité D(6y) = 2(¢(6) — £(6y)), o £ = log L est la log-
vraisemblance et 0y la « bonne » valeur, est une variable aléatoire distribuée selon la

loi x? quand n — cc.

¢ Théoréme. — Soient 7 . .. x,, des réalisations indépendantes d’une distribution
f(-5 0) ou O désigne le paramétre de f, ¢ la log-vraisemblance, et 6 I'estimateur du
maximum de vraisemblance. Alors pour n suffisamment grand, on a:

D(6o) ~ i
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Figure 4.16 — (a) Log-vraisemblance de 10 échantillons de cent valeurs tirées selon
une loi exponentielle. (b) Histogramme des estimations \ obtenu en simulant 10 000
échantillons de 100 valeurs selon la loi £(1); la courbe a trait continu est la densité de
probabilité A'(Ar, €/(A1)~1/2) ot A; et £”()\;) représentent I'estimation et I'informa-
tion observée pour I'un des 10 000 échantillons. (c) Diagramme probabilité—probabilité.
(d) Diagramme quantile—quantile. La loi exponentielle a pour paramétre \g = 1.

Ce théoréme peut étre démontré a partir des résultats précédents [voir § B.2 ainsi que
(Davison, 2003, pp. 126—-127)]. Ce théoréme se généralise a des fonctions a d parametres.

¢ Théoréme. - Soient x; ...z, des réalisations indépendantes d’une distribu-
tion f(-; 0) ou § = (0;)1<i<q désigne I'ensemble des d parametres de f, ¢ la log-
vraisemblance, 8 'estimateur du maximum de vraisemblance, et 8y la « bonne » valeur.
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Alors pour n suffisamment grand, on a:

D(60) ~ X3-

Conséquence. - Il s’ensuit que si I'on définit cg le 3-quantile, c’est-a-dire la va-
leur vérifiant Prob[Z < cg] = f3 (avec Z ~ X2, alors on a asymptotiquement I, =
{0 tel que D(0) < c1_24} qui est un (1 — 2«) intervalle de confiance (5 = 1 — 2«). En
effet, puisque D ~ X?l’ on a par définition du quantile

Prob(D < cg) = f3,

donc D < cg peut étre interprété comme I'intervalle ou il est plausible de trouver 0,
avec un niveau de confiance de /3, ce qui veut également dire que
- 1
0 tel que £(0) > £(0) — 568

est le 3 intervalle de confiance pour le parametre recherché 6. Par exemple, pour un
intervalle de confiance a 95 %, on a 3 = 0,95, soit cg = 3,84; il suffit alors de tracer la
log-vraisemblance et de rechercher les valeurs de 6 telles que D(0) = 3,84, ce qui four-
nit deux valeurs de part et d’autre de € (pas nécessairement symétriques) qui constitue
la valeur maximale.

& Exemple. — Si l'on trace le diagramme de quantile de la loi de Gauss ajustée sur
les données de la figure 4.16(b), on note que la loi de Gauss est une approximation cor-
recte, mais pas parfaite puisqu’aux extrémités du domaine, des écarts significatifs entre
quantiles théorique et empirique apparaissent [voir figure 4.16(d)]. L’idée est alors de
faire une statistique sur la déviance, qui d’apres le théoréme ci-dessus doit étre distri-
buée selon une loi du y2. Dans le cas de la loi exponentielle, la déviance d’un échantillon
est:

D(Xo) = 2(6(X) — £(Xo)) = 2n <ln);) —1+ Ao:f> ,
avec T la moyenne empirique de I’échantillon. La figure 4.17(a) montre que la déviance
est effectivement bien distribuée selon la loi du x? et que I'accord entre quantiles théo-
rique et empirique est meilleur que pour la figure 4.16(a) pour laquelle on avait supposé
que X suivait une loi normale N'(Ay, £/(A1)~1/2). O

& Exemple. — On reprend I'exemple d’un échantillon de n = 100 valeurs tirées
selon la loi £(1). On a tracé sur la figure 4.18 la log-vraisemblance. Pour cet échan-
tillon particulier, on avait trouvé que la moyenne empirique valait z = 0,993, soit une
estimation du parametre A= 1/z ~ 1,007; I'information observée I, = —K”(;\) =
n/ A2 ~ 98,6. On cherche 4 déterminer un intervalle 4 95 % de la bonne valeur \ du
paramétre de la loi exponentielle utilisée pour la simulation. Cet intervalle est obtenu
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Figure 4.17 — (a) Histogramme d’un échantillon de 10 000 valeurs de déviance. On a
également reporté la loi du x?. (b) Diagramme probabilité—probabilité pour la déviance
supposée varier selon la loi du x?2. La premiére bissectrice indique le parfait accord. (c)
Diagramme de quantile-quantile.

graphiquement en tracant une ligne horizontale a une distance de %00’95 = 1,92 du
maximum (co 95 = 3,84 correspondant au quantile de 0,95 pour la loi du x?); I'in-
tersection de cette droite avec la courbe de log-vraisemblance fournit les bornes de
lintervalle de confiance. Cela peut ici se calculer également de facon analytique; la
log-vraisemblance s’écrit:

(A) = n(log A — ZA),

avec une valeur maximale obtenue pour A = A = 1/Z

Umaz = n(log A — Z\) = —n(1 + log 7).
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Les bornes de I'intervalle de confiance sont donc solution de
1
—n(l+logz) — 50,95 = n(log\ — z\),

soit encore

A —logA =1+ logZ + 63’95.

La résolution numérique de cette équation fournit deux racines: A;,;y = 0,822 et
Asup = 1,217, ce qui fournit un intervalle de confiance assez proche de I'intervalle
trouvé précédemment avec le premier théoréme. Notons que grosso modo, la précision
va croitre ici en puissance de 1/n (un développement limité 4 I'ordre deux montre que
la taille de I'intervalle de confiance varie comme 1//n). O

Figure 4.18 — Détermination graphique de 'intervalle de confiance.

Approximation de la vraisemblance par la fonction profil de
vraisemblance

A la section 4.3.4, nous avons vu que 1’on peut approcher localement I’allure de la
courbe 60;, un des parameétres du jeu 8 a’aide d’une loi de Laplace-Gauss. L’inconvénient
de cette méthode est due a la symétrie de la Laplace-Gauss autour de la valeur moyenne.
Sila fonction log-vraisemblance est dissymétrique autour de g, alors cette méthode est
peu précise. On peut alors lui substituer la méthode dite du profil de vraisemblance.

L’idée de base est de séparer les effets de différentes composantes ; dans la log-
vraisemblance /(). On écrit formellement

00) = £(0;, Opz).
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Le profil de vraisemblance est la fonction du parameétre 6; définie par

La fonction ¢,,(6;) définit une courbe qui est le profil de la surface de log-vraisemblance
vu depuis 'axe 6;.

4.4 Autres méthodes de calage

La méthode des moments, la méthode du maximum de vraisemblance et I'inférence
bayésienne sont les méthodes les plus couramment employées, mais il existe d’autres
méthodes qui peuvent s’avérer intéressantes pour le calage des lois de valeurs extrémes
ou d’autres lois a une variable aléatoire.

4.4.1 Maximisation des espacements

Principe. Laméthode de maximisation des espaces est une généralisation de la mé-
thode du maximum de vraisemblance proposée entre autres par Cheng & Amin (1983)
et Ranneby (1984). On considére une loi de probabilité de densité f (fonction de répar-
tition F') a une variable aléatoire X ; on suppose ici que le support de f est R;. Les
parametres de la loi de probabilité sont notés € (prenant ses valeurs dans un espace ©
). On a un échantillon de n valeurs x; tirée de cette loi. On classe par ordre croissant
cet échantillon et on obtient un nouvel échantillon (appelé statistique d’ordre) ;) pour
1<1<n:

T ST S S Tno1) S T

On pose également :
To) = 0et T(n+1) = 0.

On appelle espacement d’ordre ¢ la différence d; entre deux valeurs de la fonction de
répartition (voir figure 4.19):

di = F(x)) — F(wg_yy) pour 1 <i <n+1. (4.17)

On note M, (0) le logarithme de la moyenne géométrique des espacements:

n

1
M, =1In "V/didy - dns1 = —— Y Ind;. (4.18)

n+1 P
L’estimateur 6 de 6 est celui qui maximise M, :

0 = argmax M,,(0) (4.19)
e
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Figure 4.19 - Fonction de répartition F'(x). On considére un échantillon que I'on a
ordonné par ordre croissant et que 'on note ;).

La méthode de maximisation des espacements est le plus souvent plus performante
que la méthode du maximum de vraisemblance lorsqu’on s’intéresse aux lois de valeurs
extrémes, surtout si elles sont appliquées a des échantillons de petite taille (Abdulali
et al., 2022). Elle peut étre plus difficile & mettre en ceuvre quand I’échantillon de don-
nées a plusieurs valeurs identiques (z(y) = (,_1) = ...) puisque dans ce cas-la, l'es-
pacement est nul (dy = F(z()) — F(2(x—1)) = 0).

Idée de démonstration. Pour comparer & quel point une densité de probabilité g
est proche ou éloignée d’une densité-cible f, on peut se servir de ’entropie relative — ap-
pelée encore « divergence * de Kullback-Leibler » — qui est une extension du concept
d’entropie de Gibbs ou de Shannon pour des lois de probabilité (MacKay, 2003):

D(f,g) = /f(ac) In gJ;Egdx. (4.20)

Si les deux distributions sont identiques alors D = 0 et quand elles sont raisonnable-
ment proches alors D tend vers 0. L’idée est donc de minimiser D.

Dans les problémes d’inférence, on ne connait pas f (plus précisément on ne connait
pas son jeu de parametres ) et on peut estimer une densité empirique de probabilité g

14. On parle de divergence car la quantité D sert a mesurer a quel point deux distributions
sont dissemblables. Il ne s’agit pas d’'une distance entre deux fonctions puisque généralement
la relation n’est pas symétrique: D(f, g) # D(g, f).
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a partir d’un échantillon x de n valeurs. Notons que

D(fg) = [ r@mlifa
:/f lnfxd:z:—/f )Ing(z

— (nf)— (Ing) (4.21)

ou on a introduit I'opérateur moyenne (par rapport a la mesure f(z)):

pour toute fonction h. Comme un estimateur de la moyenne est la moyenne arithmé-
tique:
1 m
(h) = — > h(&)

m 4
Jj=1

ou &; est un échantillon de m valeurs tirées de la loi f, on peut proposer I'estimateur
suivant pour 'entropie relative D'

1 ¢ 1<
= — 1 i) — — | i)l i10). 4.22
n;nﬂx) n;nﬂx)ng(xr) (4:22)
Si on minimise D(6), cela veut dire que I'on recherche la maximum de:
—lng (x4]0) lnHlng x;|0) = In L(0),

c’est-a-dire on recherche le maximum de vraisemblance. De ce point de vue-la, on peut
considérer que la méthode maximum de vraisemblance est une méthode qui vise a
chercher I’entropie minimale.

Ranneby (1984) propose d’aller plus loin dans la recherche d’un bon estimateur D.
Si on fait un développement de Taylor a I'ordre 1 de F'(7(j11)) et G(z(j11))

F(zgyy) = Flag) + (@) —2) fzg) + O(Az?),
Glagry) = Glog) + (@ — 2())g() + O(Ax?),
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alors on peut transformer I’équation (4.22):

D) = %Z (In f(z@)) — Ing(z;0))
=1

n ” F Glzian|0) — Glai]0

_ 1 <ln F(z@g1) — Flog )—ln (z(i41)10) (2] )> +O(A),

n-3 L(i+1) = L) L(i4+1) = L(5)

1< F(zit1)) — F(za) >
= - In + O(Ax

221G ($(1+1 DETERT

n+1
F(J,‘Z 1)

_ A 2

n+1Z Gaalt) =G Tl )

Il est alors clair que minimiser D(Q) revient a maximiser:

n+1

M, (0) =In "/didg - dpy1 = —— Zlnd (4.23)
avec dz(g) = G(flw) — G(fzflw)

& Exemple. — Considérons un échantillon « de n = 10 valeurs tirées selon la loi
exponentielle de parameétre A\ = 2, et trions le par ordre croissant:
x = {0,0122; 0,09598; 0,1293; 0,1538; 0,1886; 0,3346; 0,3621; 0,5529; 0,6692; 1,097}.
Les espacements sont définis par I’équation (4.17):

di = F(x;))—F(zi-1)) = 1—exp ) (1 — exp_m(i*)) = exp M1 —exp M) |

On calcule le logarithme de la moyenne géométrique des espacements:

Mg =1n Y/dids---dpi1 = Zlnd

Pour trouver le maximum, il suffit de différentier par rapport a A:

dMy 1 = dlnd; 1 11 T(i—1) exp_/\x(i—l) —) exp_mm

dA n+1 P dy 11 P exp_>‘$(i*1) — exp_Aw(i)

On recherche pour quelle valeur de A la dérivée est nulle. On trouve ici:
A\ = —2,443.

On a donc approché la valeur théorique A = 2 4 21 %. la A titre de comparaison, la
méthode du maximum de vraisemblance ou la méthode des moments aurait fourni:
- 1
A=z l= ——
0, 359696

Cela montre que la méthode de maximisation des espacements permet d’obtenir un
estimateur plus précis du parameétre .

2,780.
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4.4.2 Meéthode des L-moments

Un des problémes avec la méthode des moments est qu’elle nécessite que les mo-
ments existent, ce qui n’est pas assuré pour toutes les distributions. Ainsi pour la loi
de valeurs extrémes, si on veut appliquer la méthode des moments avec les trois pre-
miers moments, il faut que |£| < 1/3. De plus, lorsqu’on travaille avec de petites séries
temporelles, la méthode des moments est imprécise (Coles & Dixon, 1999; Katz et al,
2002). 1l existe des variantes telles que la méthode des L-moments !> et la méthode des
moments pondérés ' Nous présentons ici la méthode des L-moments.

Statistique d’ordre

Pour bien comprendre le principe, il faut donner quelques indications sur les statis-
tiques d’ordre et leurs propriétés statistiques. Considérons une variable aléatoire conti-
nue X distribuée selon une loi de densité f(x) et de fonction de répartition F. On
considére un échantillon de n valeurs X; (1 < 7 < n). On appelle statistique d’ordre
I’échantillon des valeurs classées dans un ordre croissante de X; (David & Nagaraja,
2003; Casella & Berger, 2001):

Xy =X s <X

On veut calculer la densité de probabilité que la iéme valeur X ;) soit égale a z. On
commence par calculer la probabilité Prob(.X ;) < x). On définit I'événement « succes »
par X(;) < z, et faisons un tirage d’urne (Casella & Berger, 2001, p. 186). La probabilité
p de succeés est p = F'(z) = Prob(X < x). Le nombre de fois que 'on a un succeés lors
d’un tirage de n valeurs est une variable aléatoire U distribuée selon la loi binomiale
B(n, p). La probabilité qu’on ait X(;) < x équivaut a la probabilité a ce qu'on ait au
moins 4 succés dans le tirage d’urne:

F(z) = Prob(X(i) < H?) = PI'Ob(U > Z) = i (Z) Fk(x)(l — F((L‘))n—k (4'24)
k=1

Pour calculer la densité de probabilité f(;), il suffit de différencier I'équation (4.24) par
rapport a x. Pour éviter un calcul fastidieux, on peut utiliser la relation entre loi bino-
miale et fonction béte incompléte définie par (David & Nagaraja, 2003):

B(z; a,b) = /x 2711 — )’ Ldt. (4.25)
0

L’équation (4.24) peut alors s’écrire:

B(F(z),i,n—i+1)
B(1,i,n —1) ’
15. Le L dans L-moment signifie qu’on travaille avec des combinaisons linéaires de moments.

16. Cette méthode est dans le principe similaire a celle des L-moments. On peut se référer a
Greenwood et al. (1979).

(4.26)

F(i) (z) =
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dont la dérivée est la densité de probabilité recherchée:

n!
(1 —D(n—1a)”
(4.27)
Ce résultat peut se retrouver en faisant une analyse combinatoire (David & Nagaraja,
2003, p. 38).

F(z) (1= F(z)"™"

S = @@ R )

fay(x) = f(z)

On peut calculer la moyenne E(X;)):

n!

(i—1D)l(n—1i)

et si on fait le changement de variable p = F'(z) et qu’on introduit la fonction quantile
Q = F(=1, alors on peut reformuler cette équation:

E(X() = /Suppfxﬂa:)F(x)“(l — F(z) d,

n!

X0 = i

1
/ Q-

Définition des L-moments

On peut combiner les moments de statistique d’ordre pour obtenir des quantités
qui nous renseignement sur la forme de la loi étudiée. On définit le L-moments d’ordre
r comme étant la combinaison linéaire des moyennes des statistiques d’ordre d’échan-
tillons de taille r (Hosking & Wallis, 1997):

Ar = % i(_l)k (T ; 1> E(Xr—k:r)7 (4‘28)

ou X, ., désigne le (r — k)iéme élément d’une statistique d’ordre d’un échantillon de
r valeurs.

On observe que les L-moments existent dés lors que la moyenne E(X) existe et est
finie. On percoit donc ici 'intérét de la méthode des L-moments puisque contrairement
a la méthode des moments qui requiert que les moments soient finis jusqu’a un certain
ordre, la méthode des L-moments n’exige que l'existence du premier moment de X.

Les trois premiers L-moments sont:

1
A = E(X1;1)=/0 Q(p)dp:E(X>, (4.29)

E(X22) — E

1
N = 2 = Qe - 1) (430)

e = E(Xs:3) — 2B(Xa:3) + E(X1:3) /1 Q(p)(6p® — 6p + 1)dp. (4.31)
0

3
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Ces trois L-moments jouent le méme réle que les moments classiques: A; fournit la
moyenne de la distribution, g est la L-échelle, qui renseigne sur I’écart moyenne entre
deux valeurs, et A3 est la L-forme, qui donne une indication sur la distribution des
valeurs d’un échantillon.

& Exemple. — Les trois L-moments de la loi généralisée des valeurs extrémes de
paramétres (u, o, £ # 0) sont (Hosking, 1990):

I u—%(l—m—é)), (4.32)

Ny = %( (1 €)(2¢ 1), (4.33)
£ _

A3 = <22§_1—3> A2, (4.34)

tandis que pour la loi de Gumbel de parameétres (i, o), on a:

A= p—no, (4.35)
Ao = In20, (4.36)
(4.37)

avec v =~ 0,5772 la constante d’Euler.

L-moments empiriques

On dispose d’estimateurs des L-moments empiriques d’un échantillon de n valeurs
(Hosking & Wallis, 1997):

0, = )™ BN oE(" T N x, 4.38
SO

1<ip <<

<

Certains langages ont des bibliotheques calculant les L-moments d’un échantillon ; par
exemple, la bibliothéque Imoments3. Dans les autres cas, il faut programmer 1’équation
(4.38).

Méthode des L-moments

Quand on cherche a ajuster les m parametres d’une loi de probabilité a partir d'un
échantillon de n valeurs, la méthode des L-moments consiste a constituer un jeu de m
équations ou 'on égale L-moments théoriques (4.28).

& Exemple. — Considérons une série courte de 14 valeurs des maxima des débits
journaliers sur I’Areuse a Boudry @) = 53,9 m3/s; 68,3 m3/s; 80,8 m3/s; 53,8 m>/s; 75,6


https://lmoments3.readthedocs.io/stable/index.html
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Figure 4.20 — Comparaison de la méthode, la méthode de maximisation des espace-
ments, et la méthode des L-moments sur une série courte de données (14 valeurs) issue
de la série temporelle des débits journaliers de ’Areuse a Boudry (voir figure 4.1).

m?3/s; 68,2 m3/s; 56,5 m®/s; 90,5 m?/s; 63,7 m3/s; 60,9 m?/s; 80,4 m>/s; 72,5 m3/s; 98,3
m?/s; 54,8 m3/s (série 2011-2024). On a calé une loi de Gumbel de paramétres (i, o)
sur ces données en utilisant la méthode du maximum de vraisemblance, la méthode des
moments, celle de maximisation des espacements et celle des L-moments:

I o l
méthode du maximum de vraisemblance 63,1 10,2 -55,456
méthode des moments 63,8 10,5 -55,463
maximisation des espacements 63,3 12,5 -55,450
méthode des L-moments 63,1 11,7 -55,455

Quoique les paramétres soient différents et I’estimation des quantiles différe (voir
figure 4.20), la comparaison de la performance des différentes al’aide de lalog-vraisemblance
¢ montre que les méthodes aboutissement a la méme valeur de ¢ jusqu’a la deuxiéme
décimale aprés la virgule. Il faut aller au troisiéme chiffre apres la virgule pour les dé-
partager.
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4.5 Maxima sur des blocs de valeurs

4.5.1 Problématique

En hydrologie statistique, on cherche a ajuster des lois de valeurs extrémes sur des
données. Le plus souvent, on cherche a exprimer les lois de probabilité sous la forme

L =1 I ),
quantile période de retour

avec T"la période de retour exprimée en années et C le quantile étant la variable étudiée
(chute de pluie, débit de pointe, etc.). On trace cette relation dans un diagramme de
période de retour, ou est reporté le quantile (en ordonnée) en fonction de la période de
retour (en abscisse). Lorsqu’on travaille avec des lois de valeurs extrémes, il est plus
agréable de travailler dans un diagramme semi-logarithmique. Dans un tel systéeme de
représentation (voir figure 4.23)

- laloi de Gumbel (¢ = 0) apparait alors comme une droite;
- laloi de Fréchet (¢ > 0) comme une courbe convexe (orientée vers le haut);
- laloi de Weibull (¢ < 0) comme une courbe concave (orientée vers le bas).

Le tableau 4.2 recense ’ensemble des distributions de loi de valeurs extrémes.

Tableau 4.2 — Densité de probabilité, fonction de répartition P (dépassement), et quan-
tiles C pour les lois de valeurs extrémes. On introduit la période de retour comme

T=pP!

fonction EF£0 £=0
densité de probabilité %e_(%ﬂ) . M +1 - %eu;cie#;c
fonction de répartiti = <(c PE 1) e =
partition P=e P=e
quantile (C(P)) - (1—(=In(1—P))~¢) C=p—oln(—In(l - P))
quantile (C(T)) C = —%(1—(—In(1——)) ) C=p-oln(-In(1-4))

En pratique, quand on veut appliquer la théorie des valeurs extrémes a un échan-
tillon de données, il faut sélectionner les maxima. Il existe deux classes de méthodes:

— on prend les r plus grandes valeurs d’'un bloc (voir figure 4.22). En général,
comme on utilise la période de retour (comptée en années), un bloc unitaire
représente une année de mesures. La méthode des maxima consiste a prendre la
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valeur maximale observée chaque année (r = 1); on peut prendre les maxima
mensuels (r < 12) également (sous certaines conditions);

- on se fixe un seuil s suffisamment élevé et on prend toutes les valeurs au-dessus

de ce seuil. On désigne ces méthodes par les méthodes de seuil (voir figure 4.21).

A année i année‘i+1 anneée i+2
C I I | I
) | |
e, )
| ! | |
° ° ®
[ ]
| . | ° |0 ‘l )
o |® ° o ©
AU S P
| | | | >
t
A
[ ]
C [}
[} ° . °
S - —o_ - _o_ o T
[ J
° ° L °
° o ° o °©
[ ] . o ° ... ® . )
Tt

On détaille la méthode des maxima dans cette section pour la loi de Gumbel pour
laquelle les moments sont assez simples a calculer, puis au § 4.6 la méthode de seuil de
facon générale pour toute loi de valeurs extrémes.

Le role de 'exposant £ est capital car il conditionne le comportement des valeurs
extrémes comme le montre le schéma de la figure 4.23. Trés souvent, on posséde des
données et on cherche a caler une loi de la forme donnée ci-dessus mais la moindre
erreur sur le calcul de I'exposant £ entraine des valeurs significativement différentes
dés que l'on va chercher a extrapoler la courbe pour déterminer les valeurs extrémes.

Notamment le cas & > 0 est tres critique car il implique une forte augmentation
des valeurs extrémes pour les phénomenes les plus rares. La figure 4.23 schématise la
difficulté de l'extrapolation en dehors d’'un domaine d’interpolation (I'intervalle pen-
dant lequel on a fait des observations). Ainsi, si on a 30 ans de données, on considére

Figure 4.21 -
Sélection des
données par
blocs de valeur
sur une
période.

Figure 4.22 -
Sélection des
données par
dépassement
d’un seuil s.
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domaine d’extrapolation
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40 . . .
domaine d’interpolation
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qu’approximativement le domaine d’interpolation correspond a 1-30 ans (en termes
de période de retour) et que, pour des périodes de retour plus grandes que 30 ans, on
entre dans le domaine de extrapolation.

4.5.2 Méthode des maxima annuels

La méthode des maxima annuels consiste a:

Dans un échantillon  de n valeurs couvrant n, années, retenir les plus fortes
valeurs annuelles (pour chaque année civile). On obtient un nouvel échantillon
de valeurs notées (Y;)1<i<n,-
On classe les valeurs par ordre croissant que I'on note (C;)1<;<n,. On note C
la moyenne empirique de cet échantillon et VarC'sa variance.
A chaque valeur de rang i, on affecte la probabilité empirique d’occurrence et
la période de retour:

1 — 0,28 1 ng + 0,28

LT T — = :
T e+ 028 T TP T na—i+056

On calcule par la méthode des moments les paramétres de la loi de Gumbel
Gulp, ol:

o= {F\/Var(] ~ 0,7796v/VarC,
u=0C—~o~C —0,45VVarC,

avec v ~ 0,577 la constante d’Euler .
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- On reporte dans un diagramme (7', C) la variation du quantile C' en fonction
de la période de retour. On peut reporter a la fois les données (T}, C;)1<i<n, et
la loi de Gumbel ajustée Gu[T ; p, o] afin de vérifier visuellement ’adéquation
de l'ajustement.

Remarque: la méthode des moments s’applique aussi avec des lois de type Fréchet
ou Weibull, mais la détermination des coefficients yu, o, et £ n’est pas directe; elle né-
cessite de résoudre numériquement les équations (4.7), (4.8), et (4.9).

4.5.3 Méthode des maxima mensuels

Le probleme des maxima annuels est que 'on a souvent peu de données, les sé-
ries étant courtes, ce qui conduit a des erreurs d’estimation parfois importantes. Pour
améliorer la précision, on peut considérer les maxima mensuels au lieu des maximal
annuels. La seule difficulté est que 'on raisonne en années et non en mois. Il faut donc
pour passer de probabilités exprimées en mois a des probabilités en années, il faut
connaitre le lien entre probabilités mensuelle et annuelle. Le cas le plus simple se ren-
contre quand il y a équidistribution des précipitations, c’est-a-dire la probabilité que
le maximum soit en janvier est identique a la probabilité qu’il soit observé en février,
mars, etc. En termes de probabilité, la loi de composition des probabilités nous donne

P, (C) = Prob[X < C sur une année|] = Prob[X < C en janvier, X < C en février,...

12
P, (C) = HProb[X < C' sur le mois i| = P2, (C).
i=1

Considérons maintenant une loi de Gumbel (exprimée en non-dépassement) que 'on
ajusterait sur les maxima mensuels

C =p—oln(—InPs).

Pour repasser a une relation exprimées en années, on utilise la relation P, (C) =
P2 (C)et Py, =1 —1/T; on déduit

mois

C=p—ocln(—In(Peis)) = p—oln(—In(1 =T HY'?) x p+oln12+olnT.
La méthode des maxima mensuels consiste a:

— Dans un échantillon x de n valeurs couvrant n, années, retenir les plus fortes
valeurs mensuelles (pour chaque année civile). On obtient un nouvel échantillon
de valeurs notées (Y;)1<i<n,,, avec ny, = 12n,.

- On classe les valeurs par ordre croissant que I'on note (C;)1<i<n,,. On note C
la moyenne empirique de cet échantillon et VarC' sa variance.
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— A chaque valeur de rang i, on affecte la probabilité empirique d’occurrence et
la période de retour:

i—0,28 . 1 Nm + 0,28
———et; = = - .
N + 0,28 1-P ng,—140,56

P =

La période de retour T ainsi introduite est comptée en mois.
— On calcule par la méthode des moments les paramétres de la loi de Gumbel
Gulu, o:

o= @ VarC =~ 00,7796V VarC,

T
p=C—~o~C—+/045VarC.

- On reporte dans un diagramme (T, C) la variation du quantile C' en fonction
de la période de retour. On peut reporter a la fois les données (TZ, Ci)i<i<n,, et
la loi de Gumbel ajustée Gu[T"; u, o] afin de vérifier visuellement I’adéquation
de I'ajustement. On peut repasser a une période de retour exprimée en années
en faisant une translation dans le sens vertical de valeur 40 1In12.

Lorsque le principe d’équidistribution n’est pas vérifié, la statistique sur les r plus
grandes valeurs est bien plus complexe a mettre en ceuvre (voir Coles, 2001, pp. 66—68).

4.6 Modéeles a seuil

Par modéles a seuil, nous entendons un ensemble de méthodes (renouvellement,
modele POT Y, etc.) qui ont pour élément commun '® de se fonder sur un échantillon
de valeurs x; dépassant un certain seuil s. Nous considérons tout d’abord la méthode
du renouvellement qui est la plus connue et si elle n’est pas la plus performante, elle
fournit généralement de meilleurs résultats que la méthode des maxima annuels pour
les échantillons de petite taille. Nous continuerons avec des résultats plus généraux
basés sur la loi de Pareto.

Un défaut majeur des modeéles a blocs est qu’ils n’exploitent qu'une partie des va-
leurs extrémes disponibles et comme en hydrologie, on travaille souvent avec des séries
relativement courtes, la précision des estimations n’est pas trés bonne. Les modéles a
seuil permettent d’utiliser un plus grand nombre de données (toutes les données supé-
rieures a un seuil), mais c’est au prix de calculs un peu plus complexes a mener (Lang
et al., 1999).

17. Abréviation pour Peak Over Threshold.

18. Le statut des modéles différe par construction. La méthode du renouvellement est une
construction a priori ou 'on fait une hypothése sur la distribution de la fréquence des événe-
ments et une autre sur leur intensité (Cox & Miller, 1965; Miquel, 1984). La méthode POT résulte
de l'application du théoréme de Pickands, qui donne la distribution de probabilité de z; — u.
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4.6.1 Méthode du renouvellement

Processus de Poisson et de processus de Poisson composé

On appelle processus de Poisson est un processus de comptage ou I'on compte le
nombre N d’éléments ou d’événements !’ au cours t. On suppose que:

1. N ne peut croitre que de 1 a chaque événement. La probabilité qu’il y ait deux
événement dans un laps de temps court ¢t tend vers 0 quand 6t — 0;

2. Poccurrence d’un événement au temps ¢t donné ne dépend pas de 'historique
des événements passés. Autrement dit, les occurrences des événements sont in-
dépendantes;

3. en moyenne, le nombre d’événements sur une période At est égale AAt, ou
A > 0 est un réel positif appelé coefficient (ou taux) de Poisson.

La figure 4.24 montre un exemple de processus de Poisson.

Figure 4.24 — Exemple de processus de Poisson. Calcul effectué avec A = 1,5.

Le processus de Poisson jouit des propriétés suivantes:

- le nombre d’événements d’événements sur une période At > 0 est décrit par
une loi de Poisson de parameétre \. Autrement dit:

e OAL
Ko

- le temps T entre deux événements survenus aux temps tj et {1 est distribué
selon une loi exponentielle de paramétre A:

Prob(N (¢ + At) — N(t) = k) = P(AAL) (k) =

Prob(T' <t) =1—e M,

19. Cela peut étre le nombre de photos touchant une surface, le nombre de clients passant
par une porte, le nombre d’impressions lancées sur une imprimante, etc.
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Par extension, on introduit la notion de processus de Poisson composé lorsque I'in-
crément entre deux événements ne vaut plus 1, mais peut prendre une valeur aléatoire
distribuée selon une densité de probabilité g. On suppose que cette loi g décrit 'ampli-
tude des sauts et qu’elle est indépendante du nombre d’événements N. Les sauts de N
peuvent donc étre positifs ou négatifs selon la loi g. La figure 4.25 montre un exemple
de processus de Poisson.

ol T T T
50|
Zsof
2of

10}

Figure 4.25 — Exemple de processus de Poisson. Calcul effectué avec A = 1,5 et une
loi de Laplace Gauss N (2,4) pour les sauts.

Si on suppose que chaque année, le nombre annuel N de précipitations ou de crues
est distribué selon une loi de Poisson (de paramétre \) dés que I'intensité X du phéno-
mene est suffisamment grande (c’est-a-dire dépasse un certain seuil s) et que 'intensité
du phénomene est décrite par une loi de probabilité g (et de fonction de répartition G)
a une seule variable positive (indépendante de V), alors le maximum annuel défini
comme

C = max X; (4.39)
1<i<n

est distribué selon une loi (Todorovic & Zelenhasic, 1970):

Prob(C < ¢) = exp (—A(1 — G(c))) pour ¢ > 0. (4.40)
Supposons par exemple que g soit une loi exponentielle de paramétre 6, alors:
Glc)=1—e%,
et donc
Prob(C < ¢) = exp (—)\e_ec> , (4.41)

Sil'on rapproche cette forme avec loi de Gumbel (4.3) de parameétres p et o, cela revient
amontrer que les deux formes sont identiques asymptotiquement (pour ¢ suffisamment
grand) sil’on pose:

p=0etoc=~0InA\.
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De ce point de vue-la, on voit qu’il existe un lien fort entre théorie des valeurs extrémes
et processus de Poisson composé, un lien que I’on va éclairer plus complétement par la
suite.

On peut encore étendre le concept de processus de Poisson en supposant non seule-
ment que I’amplitude des sauts de IV es distribuée selon une loi de probabilité g, mais
également le nombre d’événements suit une loi de probabilité f (a une seule variable
discréte positive), qui n’est pas nécessairement une loi de Poisson. On parle alors de pro-
cessus de renouvellement. Nous allons voir comment les processus de renouvellement
sont une boite a outils commode pour dériver des lois de probabilité a partir d’une
connaissance de la dynamique des événements.

Processus de renouvellement

Quand on examine la distribution statique de la variable aléatoire C' au-dessus d’'un
seuil s (cf. figure 4.3), il y a deux éléments a prendre en compte :

- la fréquence d’occurrence f(k) ou le temps T; entre deux événements. Si le
processus est stationnaire, alors le processus de Poisson P(\) est souvent bien
adapté a décrire le nombre d’événements par unité de temps et la loi exponen-
tielle £(1/\) traduit la distribution des temps entre événements (cf. § A.2.4). On
appelle ci-aprés f(k) la probabilité d’observer k événements dépassant le seuil
5. Quand la loi de Poisson ne marche pas bien, la loi binomiale négative est une
alternative souvent efficace (voir ci-aprés);

- lintensité des phénoménes G(c|s) conditionnée par 'existence du seuil. G(c|s)
désigne la probabilité que la variable aléatoire C' soit supérieure au seuil s mais
ne dépasse pas une valeur C (C' > s). Une loi de valeurs extrémes est généra-
lement bien adaptée a décrire les valeurs fortes observées. En pratique, on peut
souvent tenter d’abord d’utiliser une loi simple de type loi exponentielle car pour
les précipitations en climat tempéré, I’approximation par une loi exponentielle
marche assez souvent (rappelons que la loi exponentielle est une approximation
de la loi de Gumbel pour les grandes périodes de retour).

Quand on applique les régles de composition des probabilités d’événements indé-
pendants, on peut écrire (Cox & Miller, 1965):

Prob[C' < ¢|C' > s] =Prob[au cours de I'année, il y a 0 chute C' > s]+
Prob[au cours de I'année, il y a 1 chute telle que C > s et C' < ¢|+

Prob[au cours de I'année, il y a k chutes telles que C' > set C' < ]+

(4.42)
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ce qui sous forme condensée s’écrit:

Prob[C < ¢|C > s] = Z Problau cours de 'année, il y a
k=0
k chutes d’intensité C telles que C' > set C' < .
(4.43)

Comme les événements sont indépendants, on déduit alors:

P(c|s) = Prob[C < c|C' > s] =Y _ f(k)G(c|s)".
k=0

A noter que derriére cette formule complexe se cache un comportement bien plus
simple et compatible avec les résultats de la théorie des valeurs extrémes. En effet quand
G(c|s) est proche de 1, alors?° G(c|s)* ~ 1 — k(1 — G(c|s)). On en déduit par somma-
tion que:

Prob[C < ¢|C > s] =~ 1—A(1—-G(c|s)), (4.44)

car A = Y kf(k) () est le nombre moyen d’événements par unité de temps qui dé-
passent le seuil s) On retrouve donc, a des constantes preés, un lien simple (linéarité)
entre la loi de renouvellement Prob[C' < ¢|C > s] et laloi G(c|s).

La question est maintenant d’ajuster f et G sur des données. On considére que 'on
aun jeu de ng données couvrant n, années; parmi ces ny données, il y a ng valeurs qui
dépassent le seuil s. Si comme on 'a suggéré plus haut, on choisit f(k) = P(k;\) =
NeemA Kkl et G(C|s) = E(x — s;pu) = 1 — exp[—u(C — s)], alors on montre par la
méthode du maximum de vraisemblance que:

Ng 1
A= —etp=—=—,
o H C—s
avec C' = > %, ¢;/n; la moyenne des n valeurs de C' dépassant s (Miquel, 1984).

~> Démonstration. — Notons tout d’abord qu’avec le choix de f et G, il est possible
de calculer la probabilité conditionnelle P(c|s)

P(c|s) =Prob|C < ¢|C > s] = exp [(1 - e_(c_s)“) A — )\} . (4.45)

Il ne s’agit toutefois pas de la fonction de répartition et on ne connait pas la densité de
probabilité pour les valeurs au-dessous du seuil s, ce qui rend délicate I’application de
la méthode du maximum de vraisemblance. On peut toutefois construire une fonction
de vraisemblance de I’échantillon en se servant des hypotheéses a la base du modele. La

20. Rappel: au premier ordre, on a (1 + €)¥ = 1 + ke + O(e) lorsque € < 1. En posant ici
€ = G — 1, on trouve le résultat recherché: G* = (1+ G- 1)k = 1+k(G—1) = 1—-k(1-G).



4.6 Modéles a seuil 219

fonction de vraisemblance d’un échantillon de ng valeurs ¢; observées sur n, années
et dépassant le seuil s peut se décomposer en deux contributions:

- la probabilité que sur n, années, on observe ns événements au-dessus du seuil
s: f(ng; Ang) = Prob(k = ng) = (Ang)™ exp(—Ang)/ns!;

— la probabilité que les ns valeurs C' = (¢;) soient distribuées selon la densité g
Ns
g«lub%=[lm@wb)=u“en{—M§:%—8ﬂ-
i=1

La log-vraisemblance est donc

¢ =1n[f(ns; Ang)g(C; nls)] = nsIn(Ang) — Ang —In(ng!) +ns lnu—,u(z Ci —NsS),

ce qui permet de déduire les estimateurs de A et

or Mg Ng
9 _ms i 0= = ' _ 1! (4.47)
o G s = M_Zci—nss C-—s '

En se servant de la relation (4.45), on peut calculer la relation entre quantile et

période de retour
1 1 1

ce qui permet d’aboutir a une loi approchée de la forme (pour 7" assez grand):

Inx 1 1
C=s+—+4+-InT— —+0(T7?. (4.49)
I 2uT T

Il faut remarquer qu’en pratique, on se limite souvent a un développement au premier
ordre ce qui permet d’aboutir a une loi approchée de la forme (pour 7' trés grand):

A 1
C—s+ A Lo, (4.50)
pwooop

qui est également la relation trouvée en faisant un développement limité de la relation
(4.44). On note par ailleurs que le modéle de renouvellement dérivé ici (4.48) est struc-
turellement identique a une loi de Gumbel, ce qui montre le lien fort entre modeles a
seuil et a blocs.
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Figure 4.26 — Variation de C' en fonction de T" d’aprés la relation (4.48) (courbe conti-
nue) et approximation a 'ordre 2 (courbe a tiret) donnée par ’équation (4.49) et a ’ordre
1 (courbe pointillée) donnée par I’équation (4.50). Calcul effectué avec s = 1, u = 1, et

A=1.

Application avec une loi binomiale négative

Au lieu d’une loi de Poisson, on peut choisir une loi binomiale négative pour f
(celle-ci donne des résultats un peu meilleurs que la distribution de Poisson lorsqu’il
y a peu de données): f(i;k, p) = C*'p*(1 — p)""*. En prenant toujours une loi
exponentielle pour G, on trouve alors

> A —k
P(c|s) =Prob[C < ¢|C > s] = Z f(isk,p)G(c|s)’ = p* (e(s_x)“ (e(w_s)“p —p+ 1)) .
i=0

La relation quantile/période de retour est obtenue en inversant cette équation et en
posantT'=1/(1 — P)

qui peut étre approchée par 'expression suivante au second ordre:

In k(1—p)
M i BT o, (4.51)

C =
ot 7 10 2kTp

On note qu’avec la distribution binomiale négative, la distribution conditionnelle P(c|s)
n’est plus de type Gumbel, mais elle ne s’en éloigne pas trop.
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Mise en pratique

En pratique:

Dans un échantillon & couvrant n, années, dont ns valeurs dépassent un seuil
s, on retient les valeurs dépassant ce seuil. On obtient un nouvel échantillon de
valeurs notées (Y;)1<i<n,.

On classe les valeurs par ordre décroissant que I'on note (C;)1<i<n,. On note
C la moyenne empirique de cet échantillon.

A chaque valeur de rang i, on affecte la probabilité empirique d’occurrence et
la période de retour:
] ng ns+1
ety = o ML
ns +1 ngng +1—1

[

On calcule le nombre moyen d’événements dépassant s et le coefficient yi:

N 1
A= —etpu=—= .
Ng H=c—s
On reporte dans un diagramme (7, C) la variation du quantile C' en fonction de
la période de retour. On peut reporter a la fois les données (T3, C;)1<i<n, et laloi
du renouvellement ajustée (Eq. 4.50) ou bien (4.51) afin de vérifier visuellement
’adéquation de 'ajustement.

L’incertitude d’échantillonnage est (Miquel, 1984):

Var[C] = — ((C - )2 + (C — 5)?).

Ns

4.6.2 Loi généralisée de Pareto

Définition

Il existe un pendant au théoréme des valeurs extrémes pour les maxima. Ce nou-
veau théoréme fait appel a la distribution de Pareto. Ce type de méthode est souvent
désigné par le terme Peak Over Threshold (POT).

On considére une série de données X, Xo, etc., indépendantes et identiquement
distribuées, dont la fonction de répartition marginale est F'. Sélectionner des événe-
ments extrémes revient a se fixer un seuil s assez élevé et a retenir toutes les valeurs
de X qui dépassent s. La probabilité conditionnelle est alors pour y > 0

1—F(s+vy)

H(y) = Prob[X X >s=
(y) = Prob[X > s +y|X > s T F(s)
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par définition des probabilités conditionnelles. Ce que ’'on montre, c’est quand on pos-
séde un nombre suffisant de données et pour s suffisamment grand, alors, H peut étre
approché par une distribution généralisée de Pareto.

¢ Théoréme. — (Théoréme de Pickands) Soient X1, Xo, etc., un échantillon de
valeurs indépendantes et identiquement distribuées. On considére les valeurs dépassant
un certain seuil s suffisamment élevé. La distribution de X — s sachant que X > s
est donnée approximativement par la loi généralisée de Pareto Pa(zx; 5, ¢ |s), dont la
fonction de répartition s’écrit

f N\ /€
Glz)=1— (1 + 5“5) : (4.52)

o

pour x > —& /& et dont les paramétres sont notés £ et 5. On peut relier ces parametres
a leurs équivalents dans la loi des valeurs extrémes

7825
I

3 (4.53)

Gg=0+&(s—p). (4.54)

Les lois de Pareto généralisées et des valeurs extrémes sont duales, ce qui implique
notamment que comme pour la loi des valeurs extrémes, le comportement de G est
entiérement dicté par le signe de &:

- si & < 0, les quantiles associés a la loi de Pareto généralisée sont bornés par
5 —06/&;

- si & = 0, la distribution tend vers une loi exponentielle de parameétre 1/5
T
G =1- <_T> ’
(r)=1-ep (-2

- si £ > 0, les quantiles croissent indéfiniment vers I'infini.

Choix de s

Le probléme principal est la détermination du seuil s:

— si s est trop petit, les valeurs ne sont pas extrémes et on ne peut pas espérer que
la densité de probabilité de I’échantillon s’approche d’une loi de Pareto;

- si s est trop grand, il y a peu de données dans I’échantillon et la variance de
Pestimateur est grande.

La solution mathématique a ce probleme de sélection de s est apportée par le résultat
suivant; en pratique, d’autres techniques peuvent étre mises en ceuvre (Lang et al,
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1999). Si les dépassements Y (Y = X — s) sont distribués selon le modéle de Pareto de
parameétres o et £ alors

°° o
E[Y] = / G (y)dy =
0 s
sous réserve que £ < 1:si & > 1 la moyenne est infinie. Considérons maintenant un
échantillon X, X, etc., dont les dépassements par rapport a un seuil sg sont distribués

selon la loi de Pareto généralisée. On a donc

o
E[X — 80|X > 80] = %0 s
1-¢
ou o, désigne le facteur d’échelle associé a s. Si la loi de Pareto décrit les exces de X
par rapport a sg, elle décrit également les dépassements pour tout autre seuil s > sp.
Dong, pour tout s > sg, on trouve en se servant de la relation (4.54)

EX —s|X > s] = L i G SO). (4.55)

1-¢ 1-¢
Il s’ensuit que pour tout seuil s > sp, alors E[X — s|X > s| doit étre une fonction
linéaire de s. L’idée est donc de tracer la courbe E[X —s| X > s] = f(s) et de rechercher
le domaine sur lequel la fonction f est linéaire. La connaissance de ce domaine linéaire
permet également de déterminer la valeur de . Notamment si E[X — s| X > s] = f(s)
ne varie pas quand s croit (domaine linéaire horizontal), alors & ~ 0 et un modele de
Gumbel est bien adapté a décrire les extrémes de I’échantillon.

Obtention de la période de retour

Il reste encore un peu de travail si I'on veut interpréter le résultat en termes de
période de retour. Pour y arriver on procéde de la facon suivante (voir Coles, 2001, pp.
81). La loi généralisée de Pareto Pa(x|o, &; s) s’écrit:

x—s\ V¢
G(z) =Prob[X > z|X > 5] = (1 +¢ > .

g

On peut transformer cette probabilité conditionnelle en probabilité de dépassement en
introduisant (s = Prob[X > s]: Prob[X > x|X > s] = Prob[X > xz]/(s, c’est-a-dire:

z—s\ V¢
Prob[X>x]:Cs<l+§ . ) .

1l s’ensuit que le quantile x,, associé a la pseudo-période?! m (c’est-a-dire a la proba-
bilité de dépassement Prob[X > x] = 1/m) et défini tel que Pa(x,,|o, ;) = 1/m
est

T = S+ % ((mCS)§ — 1),

21. On dit ici pseudo pour différencier avec la période de retour calculée en années.
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pour m suffisamment grand (de telle sorte que z,, > s) et a condition que £ # 0. Dans
le cas £ = 0, alors on a

Tm = s+ oln(md(s).

Si maintenant on veut transformer cette équation en faisant intervenir la période de
retour 7" (échelle de temps = année) plutdt que la pseudo-période m (échelle de temps
= arbitraire), il faut faire coincider les observations: I’événement de période de retour
T est celui qui se produit en moyenne une fois toutes les 7" années. S’il y a en moyenne
n, observations?? par année, cet événement correspond a un événement de pseudo-
période m avec m = T'n,, d’ou 'on déduit la loi

2(T) = s + % ((Tnogs)5 - 1) : (4.56)
si§#0et
z(T) = s+ oln(TneCs), (4.57)

si £ = 0. Reste maintenant a évaluer (. L’estimateur naturel est la proportion de don-
nées dépassant le seuil s; autrement dit, si on a ng données et que ns parmi ces données

dépasse le seuil s, alors
~ ns

Cs =
ng
Il est possible de faire un lien entre la loi généralisée des valeurs extrémes (4.1) et
loi généralisée de Pareto (4.52) pour les grandes périodes (I' > 1). En effet, pour les
grandes périodes, on a —In(1 — 1/7") = 1/T de telle sorte que le quantile s’écrit

siép >0, p+ g (—1+T¢) ~p+ ¢TI,
a(T)=q si& <0, p+§(-1+T%)=pu—§, (4.58)
si{, =0, p+olnT.

On prendra garde que les coefficients y, £, et o qui apparaissent dans I’équation (4.58)
et dans les équations (4.56-4.57) sont différents. Pour les différencier, on emploiera
lindice p pour se référer aux exposants de Pareto. La comparaison des deux systémes
d’équation améne a (si £ > 0)

§ =& (4.59)

~sa 2P £ _
st (oG 1), (4.60)
0 = 0p(1n6Cs)°. (4.61)

22.11 s’agit ici d’observations quelconques, sans que le seuil soit nécessairement dépassé.
Toutefois, en pratique, pour se simplifier la vie, on ne prendra que les valeurs dépassant le seuil
de telle sorte que (s = 1. Voir ci-dessous la « mise en pratique ».
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Mise en pratique

En pratique:

— Dans un échantillon « de ng données, couvrant n, années et dont ng valeurs
dépassent un seuil s, on retient les valeurs dépassant ce seuil. Le nombre annuel
d’observations et le paramétre (s sont alors

Nq Ns

ne=—et(s=—.
Nq ng

On obtient un nouvel échantillon de valeurs notées (Y;)1<i<p,.
’ . bl
- On classe les valeurs par ordre décroissant que I'on note (C;)1<i<n,-
- A chaque valeur de rang i, on affecte la probabilité empirique d’occurrence et
la pseudo-période:
1 ng +

. = etm; = .
Y ong+1 ! i

- On calcule la log-vraisemblance ¢(£, o) de I’échantillon et on recherche les coef-
ficients notés &, et 0, maximisant cette function. L’incertitude peut étre calculée
a laide de la méthode vue au § 4.3.4 ou § 4.3.4.

— La courbe quantile = f(T') est la suivante

sié, #£0, s+ g—; ((TnoCs)® — 1)
sié, =0, s+ o0pIn(Tne(s)

o) = {

4.7 Alternatives aux lois de valeurs extrémes

La théorie des valeurs extrémes est un outil puissant pour faire des estimations de
quantiles extrémes, mais elle repose sur des hypothéses (en particular la stationnarité
et 'indépendance des événements) qui peuvent étre mises en défaut dans certains cas.

4.7.1 Loide log-Pearson III

La loi de log-Pearson III est une loi de probabilité a trois parameétres (m, o, A):

flz;m,a,\) = ol exp =) (o (Inz — m))* ! pour z > ™. (4.62)
xl'(N)
Elle est d’un emploi commun dans le monde anglo-saxon pour décrire les crues (Benson,
1968; Rao & Hamed, 1997); les études sur des riviéres américaines ont montré qu’elles
décrivaient mieux la statistique des crues que d’autres lois. On se reportera au § A.2.10
pour la forme de cette loi et le calcul de ses moments.
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Lorsqu’une variable aléatoire X est distribuée selon une loi de log-Pearson I, cela
est équivalent a dire que In X est distribué selon la loi de Pearson III (qui peut étre vue
comme une généralisation de la loi gamma):

o
()

—oe(x—m)(

glz; m,a, \) = exp oz —m)) ! pour & > m. (4.63)
Il peut étre plus commode de travailler avec le logarithme de I’échantillon Y = In X et
caler les paramétres (m, a, A) a l'aide de la méthode des moments (Bobée, 1975; Bobée

& Robitaille, 1977):

uw = EY = 2 + m, (4.64)
o2 = VarY = %, (4.65)
e
o= 2
v = E [ = =5 (4.66)

avec 7 le coefficient d’asymétrie.

& Exemple. — La figure montre 4.27(a) montre 1’évolution du débit journalier du
Rhéne avant son débouché dans le Léman (a la Porte de Scex). Manifestement, on
voit un effet des barrages sur les débits maximaux du Rhoéne a partir des années 1960.
Quoique la série temporelle ne remplisse pas les conditions d’application de la théorie
des valeurs extrémes, on peut tenter de caler une loi de valeurs extrémes. Si on sup-
pose que & = 0 et que cette loi de valeurs extrémes est une loi de Gumbel, on voit que
cette loi a tendance a surestimer les débits aux grandes périodes de retour. Une loi de
Weibull (£ < 0) donne de meilleurs résultats, mais elle sous-estime considérablement
les débits aux petites périodes de retour.

A T’opposé la loi de log-Person III fournit une description correcte de toute la série
des maxima annuels. Une approche plus physique consiste a considérer que le chan-
gement hydrologique résulte des ouvrages hydroélectriques. Il conviendrait donc de
considérer que les événements sont issus d’au moins deux populations. Une loi de mé-
lange combinant deux lois de Gumbel (voir ci-dessous) donne un résultat correct.

4.7.2 Meélange de lois

Contexte

Dans certains cas, les événements ne sont pas distribués selon une seule et méme
loi, mais de deux (ou plus encore) lois. Par exemple, dans la zone d’influence méditerra-
néenne, la plupart des pluies sont dues a des dépressions atlantiques, mais quelquefois
il y a des flux de sud amenant des précipitations importantes. De méme, quand on
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Figure 4.27 — Chronique des débits journaliers du Rhéne a la Porte du Scex (Vouvry,
VS) depuis le 1°¥ janvier 1905. Les points rouges indiquent les maxi annuels. On a calé
quatre lois de probabilité par la méthode du maximum de vraisemblance : loi de Gumbel,
loi de Weibull, loi de log-Pearson I1I, et loi de mélange (combinant deux lois de Gumbel).
Données: OFEV.

examine les débits dans une riviére, on peut étre amené a distinguer les crues dues a la
fonte des neiges, aux orages d’été ou a des dépressions automnales ou hivernales. Dans
de tels cas, ’hypothese de « variable identiquement distribuée » n’est plus vérifiée, et
il faut réfléchir a d’autres approches. Parmi celles-ci, il y a les lois de mélanges (Evin
et al., 2011; Kjeldsen et al.,, 2018).

Définition a travers un exemple

Par exemple, intéressons aux pluies maximales observées chaque année sur un
bassin-versant et supposons qu’on ait deux types de pluies sur ce bassin-versant, cha-
cune caractérisée par une loi de probabilité dont la densité est noté f; et les paramétres
sont 6;. La densité f de la loi de mélange s’écrit alors:

flx; 0) =mfi(x; 01) +mafo(z; O2) (4.67)


https://www.hydrodaten.admin.ch/fr/seen-und-fluesse/stationen-und-daten/2009
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ou les facteurs 7; et m représentent, respectivement, la probabilité qu’un événement
X; appartienne a la premiere ou a la seconde famille d’événements. On a donc:

m +me = 1. (4.68)

On note § = (6, 62) I'ensemble des paramétres de f. Comme 7 et 72 sont liés, on
peut poser 1y =petmy =1—pavec0 <p < 1.

En pratique, cela revient a procéder de la sorte:

— pour 'année 4, on tire un nombre 7 selon la loi de Bernoulli de parametre p. Si
t; = 1 alors la chute de pluie est de type 1, et si t; = 2 elle est de type 2;

— sila chute de pluie est de type 1, alors on tire un nombre aléatoire x; selon la loi
f1(01);
— sila chute de pluie est de type 2, alors on tire un nombre aléatoire x; selon la loi

J2(02).

La série obtenue combine donc deux informations: le type de pluie ¢; et son intensité
fi. En pratique, le type t; n’est pas connu?; on dit que c’est une variable latente (c’est-
a-dire cachée).

Définition générale

Quand une variable aléatoire X décrivant un phénomene est tirée d’'une popula-
tions comprenant m différentes sous-populations d’événements — sans qu’on sache
préciser a quelle sous-population appartient un événement particulier —, alors X est
décrit par une loi de mélange a m composantes, dont la densité de probabilité (appelée
densité de mélange) s’écrit:

fla; 0)=> mfi(z; 0;), (4.69)
ou 7; désigne la probabilité que I’observation x appartienne a la iéme sous-population
dont la loi de probabilité est f;(x ; 6;), avec les contraintes suivantes:

m

Zmzlet0<m<1pour1§i§m. (4.70)
i=1

23. On pourrait certes se dire que dans Pexemple traité ici, on pourrait étudier les conditions
météorologiques a l'origine de la pluie et décider de quel type elle est, mais en pratique, on ne
dispose pas d’une telle information, et de ce fait on doit la considérer comme une variable
aléatoire latente.
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Moments

Les moments de la loi de mélange sont:

po= E[X]=mpur + mops (4.71)
mp = E[(X —p)f] = Zﬂ-iE[(X — pi 4 i — )] (4.72)
2
= EB(X - = (’;) E(X —wifli -l @73)
=1

ou /1; est la moyenne de f;(6;). Par exemple, la variance s’écrit:

2
o =E[(X —p)’) = mili +07) — . (4.74)
i=1

Quoique la densité f soit une combinaison linéaire de f; et fa, les moments d’ordre
supérieur a 1 sont une combination non linéaire des moments de f; et fs. La situation
est fort différente si on définit une variable aléatoire Z comme la somme de deux autres
variables aléatoires: Z = m Z; + maZ5 puisque dans ce cas-la, on a:

Var Z = mVar Z1 + myVar Zs.

En pratique, la méthode des moments est peu précise et n’ameéne pas a de bons
résultats. On lui préfére la méthode du maximum de vraisemblance.

Vraisemblance

Vraisemblance d’un échantillon. Lavraisemblance d’un échantillon x de n va-
leurs x; est obtenue en faisant le produit de la densité de mélange (4.69):

L(x; 0) =[] f(ai; 6 HZ mifi(Xi 5 6;). (4.75)
=1 i=1 j=1

Le probléme est que cette expression fait intervenir les variables latentes 7; qui sont
inconnues. On calcule donc la vraisemblance compléte, c’est-a-dire la probabilité d’ob-
server I'échantillon (z, t) ou t = (¢;)1<i<y désigne les valeurs latentes (certes toujours
inconnues a ce stade):

L(x,t; ©) Hf it ; ©) = l_If(acZ | ti, ®)Prob(t; | ©), (4.76)
i=1
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ou l'on s’est servi de la propriété (A.2) et ot ® = (6;, m;)1<i<n désigne 'ensemble
des paramétres. Pour développer cette expression, il faut distinguer la contribution de
chaque sous-population:

- la probabilité conditionnelle peut s’écrire en fonction de la fonction indicatrice
I;(t) définie telle que:

I, =1sit =k etsinon I, =0,

ce qui permet d’associer un nombre 0 ou 1 a la variable ¢ selon le type d’évé-
nement auquel elle se référe. Avec cette notation, on peut écrire la probabilité
conditionnelle:

flai | ti, ®) = T fulw) )
k=1

f coincide avec fj;, uniquement si 'observation x; est tirée de la kéme sous-
population.
— la probabilité marginale Prob(t; | ®) d’observer ¢; est tout simplement la loi de

Bernoulli généralisée ?*:

Prob(t; | ©®) = HT['

La vraisemblance compléte peut donc s’écrire aussi:

L(x, t; ©) =[] f(zi | t:;, ®)Prob(t; | ©) = [ [[ (x o) kG (4.77)
=1 =1 k=1
et sa log-vraisemblance :
(=InL(x,t; ©)=> Y ILt:)(n fr(z;) + Inmp). (4.78)
i=1 k=1

Vraisemblance conditionnelle. 1lpourrait sembler qu'on n’ait guére avancé dans
la recherche d’une expression de la vraisemblance libre de paramétre indéterminé puis-
qu’on a toujours les variables latentes ¢; qui apparaissent dans I’expression de la log-
vraisemblance (4.78). Pour contourner cette difficulté, on calcule la moyenne condi-
tionnelle de ¢ par rapport a la densité conditionnelle Prob(¢; | , ®’). Notons que I'on
conditionne la moyenne par rapport 4 un ensemble de paramétres ®' qui différe de
celui qu'on cherche a calculer. La raison de cette procédure va apparaitre plus bas
lorsqu’on va chercher a implémenter una algorithme de calcul sous la forme d’une

24. Elle n’a pas de nom spécial en francais a ma connaissance. En anglais, elle s’appelle
categorical distribution.
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méthode itérative appelée espérance-maximisation (EM). Puisque le jeu de parameétres
©’ est supposé connu, on peut calculer explicitement la probabilité conditionnelle
Prob(T = i | X = x, ©'); par définition de la probabilité conditionnelle (A.2), on

a:
, Prob(T =i,z | ©®") 7wlfi(z; ©)
Prob(T =i | X =2, O) = ! =2 ! 4.79
rob(T = | z, ®) Prob(z | @) f(z; ©) (4.79)

pour 1 < < m et ot la densité de mélange (4.69) est f(z; ©) = >_7" | m} fr(x; ©).

Pour alléger les équations, on introduit les deux notations suivantes:

- la probabilité conditionnelle (4.79) est notée w;(x ; ©’):

. ! f(:z . @/)
w! =Prob(T =i | X =z;,0) = SR A : (4.80)
' ! >k T fr(zy 5 ©)
Elle peut étre interprétée comme la probabilité que I'observation x; soit issue de
la sous-population .

- Lamoyenne conditionnelle de la log-vraisemblance peut alors s’écrire sous forme

Q(G)? G)I) = E[E ‘ t, 6/}

= ZE(Q}, t; ©)Prob(ty | z, ©),
k=1

= > wil(X=2,T=k; ©). (4.81)
k=1 i=1

Repartant de la définition (4.77) de la vraisemblance et en utilisant la moyenne
conditionnelle (4.81), on aboutit a la moyenne conditionnelle de la vraisemblance ou
I'on suppose que I’on connait le jeu de paramétres ©’:

Q©,0) = > Y wilnfi(zi; ©)+Inm),

=1 k=1
- ZlnﬂkzwiﬂLZZlenfk(wi; ). (4.82)
k=1 =1 k=1 i=1

En comparant les équations (4.78) et (4.82), on note que la fonction indicatrice Iy (t;) est
remplacée par la probabilité conditionnelle wj,, qui est supposée connue. La moyenne
@ fournit donc une approximation locale de la log-vraisemblance (voir figure 4.28).

Algorithme d’espérance-maximisation (EM). L’algorithme EM est une mé-
thode itérative pour obtenir le maximum de vraisemblance de la log-vraisemblance
observée /(®,x) — définie a I'équation (4.75) — d’un échantillon & de n valeurs. Le jeu
de parameétres © que 'on cherche a estimer comprend les parameétres ¢; de chaque
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O Op1r Orpo

Figure 4.28 — Recherche du maximum de vraisemblance par un processus itératif. On
suppose qu’a I’étape k, on connait une estimation du jeu de parameétres 6, estima-
tion que I'on note ). On construit la moyenne conditionnelle de la log-vraisemblance
Q(0, 0;), et on recherche le maximum de cette fonction. La nouvelle estimation 6y 1
est la valeur qui maximise (. Ce faisant, le processus tend vers le maximum (qui peut
étre local) de la log-vraisemblance /.

distribution de la loi de mélange ainsi que les probabilités 7; donnant le poids relatif
de chaque sous-population.

Les étapes du calcul sont les suivantes (Davison, 2003; Robert & Casella, 2010):

1. On suppose qu’a I'étape k, on a une estimation ®y, du jeu de parametres ©.

2. On calcule le poids relatif de chaque sous-population w;(x ; @) a 'aide de
I’équation (4.80).

3. On en déduit la moyenne conditionnelle de la log-vraisemblance Q(®, ©y) en
servant de ’équation (4.82).

4. On définit la nouvelle estimation @1 comme étant la valeur qui maxime Q) :

O 1 = argmax Q(O, Oy)
5)

Pour cela, on différentie () par rapport a chaque parametre du jeu @. On note que
les probabilités 7; n’apparaissent que dans le premier terme de () dans I'équation
(4.82). Il y a une petite subtilité dans le calcul puisque les probabilités sont reliées
entre elles par la contrainte (4.70). Une facon rapide et élégante d’arriver au
résultat est d’utiliser la méthode des multiplicateurs de Lagrange. On obtient:

1 i
= — E 4.83
Tk n 4 Wy, ( )

c’est-a-dire la valeur moyenne du coefficient de pondération wy. Les autres pa-
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rametres §; de © sont obtenus en résolvant les équations

=0. 4.84

5. On continue le calcul jusqu’a ce que la différence |@y 1 — O] soit en-deca d’un
seuil fixé e.

L’idée de I'algorithme EM est donc d’approcher la log-vraisemblance de I’échantillon
0(®, x) par la fonction Q(®, O), qui lui est tangente au point O et reste systé-
matiquement au-dessous d’elle (Do & Batzoglou, 2008). L’estimation a I’étape suivante
©;.11 tend un peu plus vers la valeur ® qui maximise (0, x).

& Exemple. — Revenons a I'exemple o I'on suppose que les maxima annuels des
précipitations sont issus de deux distributions distinctes. Par exemple, quand on exa-
mine les maxima annuels des chutes de neige journaliéres sur la haute Tarentaise (a Val
d’Isére), on note que la plupart des chutes de neige sont modérément intenses (moins de
60 mm en équivalent en eau liquide), mais il peut y avoir de temps a autre des chutes
de neige bien plus importantes. En effet, les chutes de neige ordinaires résultent du
passage d’une dépression atlantique, dont la vigueur est fortement atténuée quand elle
arrive vers la bordure frontaliére. Il peut y avoir des « retours d’est », c’est-a-dire des
flux de sud qui viennent de Méditerranée, puis qui se mettent a circuler d’est en ouest
quand ils viennent heurter les Alpes. L’air humide et chaud de Méditerranée se refroidit
brutalement et se condense, ce qui cause de fortes chutes de neige sur toute la chaine
frontaliére allant du Mercantour au Tessin.

Nous cherchons a caler une loi de mélange combinant deux lois de Gumbel sur un
échantillon « de n» maxima annuels:

f(@)=pfi(z; p1,01) + (1 = p)fa(x; p2, 02), (4.85)

avec 0 < p < 1 et la densité de probabilité de la loi de Gumbel de la forme:

il ]
—e o,

_Tm
e i
filz s pis 05) =
i

Initialement, on peut obtenir une premiére estimation des parametres p, (111, 01) et (12,
09) en séparant |’échantillon en deux groupes, I'un au-dessus du seuil de 70 cm (chutes
de neige rares) et 'autre au-dessous de ce seuil (chutes de neiges ordinaires). La fraction
p est estimée en calculant le nombre relatif de chutes de neige ordinaires, tandis que
les paramétres (p1, 01) et (12, 02) sont estimés a ’aide de la méthode des moments ou
du maximum de vraisemblance.

On suppose qu’a I'étape k, on ait une estimation @y, = (pg, ft1.k, T1 ks H2k> O2k)-
On calcule facilement w] a I’aide de 'équation (4.80), et on déduit p comme la moyenne

E?:l w]. Pour calculer les autres paramétres, on cherche un maximum de Q(®y1,
Oy).
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La figure 4.29 compare la loi de Gumbel, la loi de Fréchet et la loi de mélange (4.85).
Sans surprise, la loi de Gumbel ne décrit correctement que les événements ordinaires,
mais sous-estime considérablement les événements associés a 7' > 20 ans. Le meilleur
accord semble étre obtenu avec la loi de mélange, mais comme c’est une loi a cinq
parameétres, il est également naturel qu’elle soit plus performante que la loi de Fréchet.
Si on examine le score AIC, qui permet de classer la performance des modeles au regard
du nombre de paramétres — voir équation (4.105) —, c’est le modéle de Fréchet qui offre
la meilleure performance.

Figure 4.29 — Comparaison des lois de probabilité ajustées sur les maxima annuels
des chutes de neige a Val-d’Isére (France) sur la période 1959-2023. Les données sont
issues des données journalieres du modele Safran (Météo-France). On compare la loi de
Gumbel et la loi de Fréchet calées a ’aide de la méthode du maximum de vraisemblance
alaloi de mélange (4.85) ajustée a l’aide de ’algorithme EM. Les scores AIC sont: 578,3
pour Gumbel, 566,4 pour Fréchet, et 569,9 pour la loi de mélange. De ce point de vue,
le modéle de Fréchet - le modele avec le score le plus bas — serait le plus performant.
Données: Météo-France.

Formulation alternative: loi exponentielle a deux composantes

On avait noté au § 4.6.1 qu’on pouvait voir la loi de Gumbel comme un processus de
Poisson composé ou les événements ont une occurrence décrite par une loi de Poisson
et une intensité par une loi exponentielle (dés lors que cette intensité excéde un certain
seuil s). On pourrait sophistiquer le modéle en prenant des lois d’intensité plus com-
plexes comme la loi de Gumbel. Au lieu de considérer que I'intensité des événements
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suit une seule loi exponentielle, on peut supposer qu’elle suit une loi de mélange de
deux distributions exponentielles £; de paramétres 6; (i = 1, 2):

G(c) = p&i(c) + (1 = p)&a(o),

avec 0 < p < 1unnombre décrivant la part relative des événements C' suivantlaloi &;.
Le nombre d’événements par an est toujours décrit par une loi de Poisson; on note A; le
parametre de Poisson décrivant le nombre annuel d’occurrences des événements C; de
type 1, et de facon similaire, Ao représente le nombre annuel moyen d’événements Cs;
on a naturellement p = Ao /(A1 + \2). Alors en généralisant I’équation du processus de
Poisson composé (4.40), on trouve que la probabilité d’observer annuellement C' < ¢
est donnée par (Rossi et al., 1984):

Prob(C <¢) = exp(—A1(1—¢&1(c)) — Aa(1 — &2(0))),
= exp(—Arexp—0ic)exp (—Ayexp —bac). (4.86)
Il s’agit d’une loi a quatre paramétres (A1, 6;, A1, 0;) appelée loi exponentielle a deux com-
posantes?®, parfois appelée double exponentielle ou bi-exponentielle. On peut montrer

qu’asymptotiquement, cette forme est équivalente au produit de deux lois de Gumbel
G; (Gumbel, 1958, voir § 5.3.6):

Prob(C <¢) = max(Cy, Cy),

Il
J
8
@]
o

puisque les événements C] et C'y sont considérés indépendants.

25. Two component extreme value distribution (TCVE) en anglais
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4.8 Algorithmes de Metropolis et simulations de
Monte Carlo

4.8.1 Principe des simulations stochastiques (Monte Carlo)

Les méthodes stochastiques que nous présenterons ici s’appuient sur le théoréme
de Bayes (voir § A.1.2). Nous le reformulons sous une forme adaptée au présent contexte.
Nous disposons:

— d’une distribution de probabilité f qui dépend de p paramétres § = (61,62, -- ,6,);
— de n données (par exemple le débit de pointe sur plusieurs années), que I'on note
génériquement sous la forme d = dy, do, - - - , dy.

Le modeéle f est censé reproduire la distribution de probabilité des données observées.
On suppose par ailleurs que nous disposons d’une information a priori sur les para-
meétres, information qui est traduite sous la forme d’une loi de probabilité (probabilité
que les parameétres soient les « bons » paramétres du modéle) Prob(P). Cette loi de pro-
babilité est appelée prior. Elle est déduite d’une connaissance experte, d'un précédent
calage, etc. S’il n’y aucune connaissance a priori, on choisit un prior plat, c’est-a-dire
une loi de probabilité uniforme (les parametres peuvent prendre n’importe quelle va-
leur sans préférence aucune).

Dans notre cas, le théoréme de Bayes nous permet d’écrire:

Prob(6]d) — Prob(d|0)Prob(0) 7 (4.87)
| d6Prob(d|6)Prob(6)

ce qui peut s’interpréter de la facon suivante: la probabilité d’avoir des valeurs de pa-
rametres 0 est égale a la vraisemblance P(d|f) multipliée par la probabilité a priori
d’avoir . Le dénominateur ne sert ici qu’a garantir que le résultat final est bien une
probabilité (I'intégrale de Prob(6|d) doit étre égale a 1). Il s’agit d’'un terme intégral
complexe a calculer théoriquement dans la plupart des cas et difficile a évaluer numé-
riquement; sa connaissance n’est toutefois pas requise dans les simulations de type
Metropolis—Hastings que nous allons voir par la suite. Nous avons déja vu la notion de
vraisemblance d’un échantillon au § 4.3. Cette quantité renseigne en quelque sorte sur
le degré de vraisemblance d’un échantillon de données si la valeur des parameétres € du
modeéle est connue.

Comment cela marche en pratique ? On géneére aléatoirement un jeu de parameétres
0 d’aprés leur loi a priori. On calcule la vraisemblance de I'’échantillon de données
P(d|0) par rapport aux valeurs de 6, puis en se servant de I’équation (4.87), on dé-
duit la probabilité que le jeu de parametres P et I’écart-type o soient les « bonnes »
valeurs. Si la vraisemblance de I’échantillon et le prior sont petits, la probabilité résul-
tante Prob(d|6) sera également petite. Si au contraire, le produit des deux nous donne
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une quantité suffisamment grande, il y a de bonnes chances que le jeu de parameétres
0 soit effectivement proche des « bonnes » valeurs.

Les avantages de I’approche apparaissent clairement:

- il s’agit d’'une méthode étonnamment souple puisqu’elle n’exige aucune connais-
sance des propriétés de f ou de f(_l) :

- lincertitude de 'estimateur 6§ peut étre déterminée puisqu’on géneére une densité

de probabilité Prob(6);

- le nombre de paramétres et de données peut étre quelconque.

Un point qui peut laisser le lecteur dubitatif est le poids relatif laissé aux priors.
Que se passe-t-il sil’on part d’un prior faux, c’est-a-dire sans pertinence avec la réalité ?
De simples applications numériques montrent que le poids du prior est trés important
quand on a peu de données; I'utilisation des données pour le calage ne produit qu'un
léger ajustement des parameétres du modele. En revanche, au fur et & mesure que I'on
prend en compte des nouvelles données, 'influence du prior devient plus faible jusqu’a
devenir négligeable.

Si le principe est simple, la mise en ceuvre de la démarche peut sembler délicate
car il faut générer des valeurs selon des lois de probabilité plus ou moins simples et
parce que ’équation (4.14) fait appel a un dénominateur complexe (terme intégral a
calculer) surtout quand la dimension du probléme est grande. Heureusement, il existe
des algorithmes trés performants comme 1'algorithme de Metropolis—Hastings (appelé
plus simplement Metropolis) ou I’échantillonneur de Gibbs, qui permettent de réaliser
cette tiache. Ces algorithmes entrent dans la classe des algorithmes de Monte Carlo
par chaine de Markov (Markov chain Monte Carlo simulation en anglais), qui utilisent
certaines propriétés de séries dites chaines de Markov?®. L’avantage majeur de ces mé-
thodes est qu’elles ne requiérent pas le calcul du terme intégral de I’équation (4.14), qui
n’est vu que comme un facteur de proportionnalité.

4.8.2 Algorithme de Metropolis—Hastings

L’idée de base de ’algorithme d’Metropolis—Hastings est d’introduire une distribu-
tion de probabilité a partir de laquelle il est simple de générer des valeurs aléatoires ; une
loi de Laplace-Gauss est un bon exemple. On parle de loi de probabilité instrumentale
et on la note ici (). On va explorer 'espace de probabilité engendré par P = Prob(6|d)
en simulant des valeurs de 6, puis en retenant ces valeurs si elles sont cohérentes avec
I’équation (4.14). Cette exploration se fait par saut successif; la transition d’un état a

26. Rappelons que de maniére trés sommaire, une chaine de Markov est une suite de valeurs
Ty ;le passage d’'une valeur x,, a une valeur z,, 11 peut étre décrit al’aide d’une loi de probabilité
unique. Par exemple, x,11 = z,, + € avec € tiré selon une certaine loi.
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Pautre se fait a ’aide de la loi ) et en fixant un certain taux de transition, que nous
appellerons taux d’acceptation. En pratique, on procéde ainsi

1. On part d’'un état P,, = x, on tire une valeur « candidate » y* selon la loi

Q(y|x).

2. On définit un taux d’acceptation comme suit

Py Q) *
o { if P(x)Q(x|y*) >0 (4.88)

P(z)Q(x|y*)
1 if P()Q(aly") = 0

3. On accepte la valeur y, avec une probabilité r. En d’autres termes, on tire une
valeur aléatoire u d’une distribution uniforme /[0, 1]; si» > u ou biensir > 1,
alors on accepte y* et on pose P,,;+1 = y*, sinon on rejette y* et on pose
P, =P,

4. On répete la procédure.

Pour assurer une bonne convergence, le noeud de la difficulté réside dans la sélec-
tion d’une bonne loi instrumentale. Il est souvent avantageux d’opter pour la variante
dite « marche aléatoire » de l’algorithme de Metropolis (Robert, 1996), qui implique
de choisir une loi de probabilité symétrique @ = Q(|z — y|); cela permet notam-
ment de simplifier Pexpression du taux d’acceptation r dans 1’équation (4.88): r =
min[l, P(y*)/P(x)]. La convergence de la distribution empirique de (X,,) vers P est
ici garantie a cause de la décroissance exponentielle de la queue de distribution de P.
Un choix fréquemment fait est de prendre une loi de Laplace-Gauss. Dans le cas d’un
probleme multidimensionnel p > 1, cette loi est supposée non corrélée et avoir une
matrice de covariance p:

Q(lz) : y < N(x, p).

La matrice p doit étre ajustée de telle sorte qu’il y ait un bon compromis entre le taux
d’acceptation et la capacité de 'algorithme a explorer tout 'espace de probabilité. Si p
est trop grand, une proportion extrémement large de valeurs candidates sera rejetée,
ce qui conduit & une convergence trés lente. A I'opposé, si p est trop petit, I'algorithme
acceptera quasiment toutes les valeurs candidates, mais le mouvement relatif d’un état
a lautre dans 'espace des probabilités sera tres petit, ce qui de nouveau conduit a une
faible efficacité. Une régle empirique pour cette version de I’algorithme est d’ajuster p
de telle sorte que le taux d’acceptation r soit compris dans l'intervalle 0,25-0,5.

4.9 Intervalle de confiance des quantiles

4.9.1 Problématique

Quand on cale une loi de valeurs extrémes C' = F'(T ; ) (ou tout autre loi de pro-
babilité) sur des données, on peut étre intéressé a connaitre I'intervalle de confiance
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des quantiles C' pour une période de retour donnée, surtout lorsqu’on travaille sur de
petites séries temporelles. Jusqu’a présent, on a montré que ’on pouvait estimer I'in-
tervalle de confiance des parameétres @ = (u, o, &) de cette loi si on utilise la méthode
du maximum de vraisemblance ou 'inférence bayésienne. En quoi cette connaissance
de 'incertitude sur 6 peut-étre utile ?

Une approche naive serait de dire qu’en obtenant 'intervalle de confiance [0, 03]
du paramétre 6, l'intervalle de confiance du quantile C serait [F(T, 01), F(T, 02)].
Cette approche est erronée car la loi de valeurs extrémes F' est non linéaire, et donc les
incertitudes ne se propagent pas de facon linéaire.

On peut mettre en ceuvre deux approches pour estimer les incertitudes sur les quan-
tiles:

- La premieére consiste a faire un développement de Taylor afin de linéariser la
relation C = F(T' ; 0). Quand la variance de 6 est faible, on peut se conten-
ter d'un développement au premier ordre; dans le cas contraire, il faut pousser
Pordre du développement de Taylor, ce qui rend la méthode un peu plus labo-
rieuse dans son emploi. Malheureusement, quand on travaille avec des séries
courtes de données hydrologiques, on est rarement dans le cas ou la variance de
0 est petite.

- La seconde méthode consiste a utiliser la distribution a posteriori du calage de
C = F(T ; 0) lorsqu’on emploie I'inférence bayésienne.

Il existe d’autres approches plus ou moins simples a utiliser (Kite, 1975; Stedinger, 1983;
Chowdhury & Stedinger, 1991; Ba et al., 2001). On pourra aussi se reporter a Meylan
et al. (2008) (pp. 105-118) pour une revue de certaines des ces méthodes en hydrologie
et Smith (2013) pour un cadre mathématique et physique plus général.

4.9.2 Approximation par développement de Taylor
Principe

Un probléme courant en statistique est de déterminer comment se propagent les er-
reurs ou incertitudes. Supposons que I'on ait une variable aléatoire X dont on connais-
sance la distribution f ou ses moments. On définit une nouvelle variable

Y = U(X)7

ou v est une fonction continue et différentiable. La question est d’obtenir une informa-
tion sur les moments de Y ou sa loi de probabilité g a partir de 'information connue
sur X. En théorie, on sait que la loi de g est liée a f (voir § annexe A.1.4):

dx

g(y) = f (x>@ = fx)[' (=), (4.89)
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En pratique, les choses sont plus compliquées: il est difficile de généraliser cette équa-
tion aux distributions multivariées; le calcul de la fonction inverse z = v(~1)(y) peut
étre impossible a faire analytiquement; on ne connait pas f, mais uniquement des mo-
ments (empiriques) de X.

On peut contourner cette difficulté en linéarisant la relation Y = v(X') autour de
la moyenne m (moyenne empirique m = X ou bien espérance m = E(X) selon le
probléme considéré) de X :

1
v(X) =v(m) + (X —m)v'(m) + 5(1’ —m)%" (m)+---, (4.90)
d’ou l'on tire en appliquant I'opérateur moyenne
1
E(Y)=E(w(X)) =v(m)+ 51}”(m)VarX. (4.91)

La variance peut se calculer en élevant I’équation (4.90) au carré, en retranchant E(Y)?,
et en simplifiant I’expression en ne retenant que les termes d’ordre 2. Le résultat peut
étre obtenu plus rapidement en utilisant Iidentité sur la variance d’une combinaison
linéaire

Var(aX +b) = a*VarX, (4.92)

qui se généralise a deux variables
Var(aX +bY + ¢) = a*VarX + b*VarY + 2abCov(X,Y). (4.93)

ou plusieurs variables

n

n n
Var <Z aiXZ-> = Z a?VarXi +2 Z a;a;Cov(X;, X;). (4.94)
i=1

i=1 1<i<j<n
De I’équation (4.92), on tire immédiatement qu’au premier ordre on a:

VarY = v*(m)VarX. (4.95)

Lorsque X est distribué selon la loi normale (ou asymptotiquement distribué selon la
loi normale), ce résultat est appelé en statistique « méthode delta ».

& Exemple n° 2 - Supposons que X soit tiré d’une loi normale N de moyenne
1 et d’écart-type s. On définit le changement de variable:

Y =v(X) = aX?
L’équation (4.89) nous permet de calculer la densité de probabilité de Y :

otr) = AL )
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qui appartient a la famille des lois du y? non centré. L’espérance et variance théoriques
sont donc:
E(Y) = a(u?® + s%) et VarY = 2a%s%(2p* + 52).

Le développement de Taylor (4.91) a 'ordre 2 nous donne:
- 1
Y =v(u) + iv”(,u)VarX = ap® + as® = a(p® + s%),

ce qui correspond a la moyenne théorique. Pour la variance, le développement de Taylor
(4.95) a Pordre 2 fournit la relation:

VarY = v?(m)VarX = 4a’p?s?,

et on en déduit que I'erreur par rapport a la valeur théorique est 2a?s*, soit une erreur
relative:
2a2s* 52

°= 4a2p2s? 2’

Cette erreur relative est petite tant que s < . O

Application aux lois de valeurs extrémes

On peut maintenant appliquer la méthode par développement de Taylor a la loi de
valeurs extrémes (Coles, 2001, pp. 56-57):

cormost(-(n(2)) )

On s’intéresse ici a calculer la variance VarC connaissance les valeurs de 8 = (u, 0, €)
et la variance Var@ = (Varp, Varo, Varg). On suppose que 'on a une estimation des
parametres 6, de la variance empirique Var, et éventuellement de la covariance des
paramétres Cov(6;,0). L’ensemble forme la matrice V' de variance-covariance ou tout
simplement covariance (puisque Cov(X;, X;) = VarX;).

On introduit les variables intermédiaires pour le cas £ # 0:

oC
_ 1 4.96
Cu 3M 0—b ) ( )

o0 1 1) ¢
C”:f%g_g:§<1_<_ln<l_T>> ) (4.97)

oo oCm= ) ((mi- ) - énm- ) 1)

3 0—0 2
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La variance du quantile C' s’obtient en utilisant la relation (4.94)
VarC' :C’ELVaru + C%Varo + CgVarS (4.99)
+2C,CsCov(p, o) +2C:C,Cov(§, o) + 2C,CcCov(p, §). (4.100)
Il existe une formulation compacte sous forme tensorielle de I’équation (4.99):
VarC' =VC -V -VC, (4.101)

ou VC = (0,C, 0,C, 0¢C) est le gradient de C par rapport a 6, évalué en 6, dont les
composantes sont données par les équations (4.96)—(4.98).

& Exemple n°2 - Prenons 'exemple d’une série courte de données de pluie
journaliére d’oll on extrait les maxima annuels sont: d = {46, 59,2, 60,4, 74,8, 77,6,
83, 91,4, 94,2, 100,6, 100,8, 108, 108,2, 129,2} mm. Admettons que I'on cale une loi de
Gumbel par la méthode du maximum de vraisemblance ¢(6)

1
C—u—aln<1—T>.

= 75,86 mm et 6 = 21,49 mm.

On obtient:

On calcule la matrice d’information observée I :

(925 826
I — 8TL2 Pudo | _ 0,0281 —0,013
920 920 —0,013 0,056 |’
oudo do?
La matrice de covariance s’en déduit
40,01 9,42
_ -1 _ ) )
V=I, = [9,42 19,91] '

Le gradient de la fonction C' s’écrit

ve=[3e] = Lnatyn)

On peut reformuler I’équation (4.94) sous la forme tensorielle plus compacte
VarC =VC -V -VC.

On peut utiliser les résultats énoncés au § 4.3.4 pour calculer I'intervalle de confiance.
Par exemple, si on considére l'intervalle de confiance a & = 95 %, on introduit le
quantile 2z, /5 associé a la probabilité 1-« /2 de la loi de normale centrée (moyenne
0, variance 1): z, /5 = 1,96. L’intervalle de confiance a 95 % du quantile C' s’écrit donc

C(T)=VC -V -VC+ z,/9y/VarC(T).

La figure 4.30 montre la variation de la pluie journaliére maximale en fonction de la
période de retour ainsi que I'intervalle de confiance a 95 %.
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Figure 4.30 — Variation de la pluie journaliere P (en mm) en fonction de la période de
retour sur le poste de Chabanon (commune de Selonnet, France) sur la période 2011~
2023. La bande colorée montre I'intervalle de confiance a 95 %. Données: ROMMA.

4.9.3 Approximation par inférence bayésienne

Au § 4.8.1, on a vu I’équation (4.87) qui permet de déduire la probabilité a poste-
riori d’observer le parameétre @ a partir d’un jeu de données d et de la vraisemblance
Prob(d|@) de ce jeu de données

Prob(d|@)Prob(0)

Prob(6]d) = T d6Prob(d|0)Prob ()’ (4.102)

En pratique, la probabilité a posteriori est estimée numériquement al’aide d’algorithme
comme celui de Metropolis-Hastings. Plusieurs options sont alors possibles pour dé-
terminer un intervalle de confiance du quantile C'(7T").

Une facon de faire est de calculer un échantillon de quantiles F'(T, ;) a partir de
0; dans l'algorithme de Metropolis—Hastings, puis lorsque cette étape est achevée, de
calculer les quantiles associées aux probabilités /2 et 1 — «/2 afin d’avoir une esti-
mation plus précise de I'intervalle de confiance & 100 %. En effet, contrairement a la
méthode utilisée pour la méthode du maximum de vraisemblance, on ne fait pas de dé-
veloppement de Taylor, et donc I'estimation ne nécessite pas d’hypothese particuliere.

& Exemple n° 2 (suite) - Reprenons les données des maxima annuels de pluie
journaliére du poste de Chabanon et calons maintenant les paramétres 8 = (u, o, &)
d’une loi de valeurs extrémes a l'aide de 'inférence bayésienne et de ’algorithme de
Metropolis—Hastings. Nous prenons comme estimateurs 6 la médiane?’ de I’échan-

27. La médiane est le quantile associé a la probabilité 0,5.


https://www.romma.fr/

244 Chapitre 4 Introduction a la théorie des valeurs extrémes

tillon 9, :
4 ="T770 mm, 6 = 25,60 mm et £ = —0,24. (4.103)

La matrice de covariance est

64.55 —4.51 —0.27
V= |-451 39.86 —0.14]. (4.104)
—0.27 —0.14 0.04

La figure 4.31 montre les histogrammes de I’échantillon ;. Comme £ < 0,laloi est
une loi de Weibull. On la compare sur la figure 4.31(d) cette loi avec la loi de Gumbel
calée précédemment.

Pour savoir quelle est la loi qui offre la meilleure représentation des données, on
peut se servir du critére d’information d’Akaike?® A:

A=2k—2InL, (4.105)

avec k le nombre de paramétres de la loi et L la vraisemblance de la loi calée. Selon ce
critére, le meilleur modéle est celui qui obtient le score A le plus faible. Ici pour la loi
de Gumbel (k = 2), on a:

A=2k—-2InL =2(2+1n59,7) = 123,4
alors que pour la loi de Weibull (k = 3) on a:
A=2k—-2InL =2(3+1n59,1) =124,3.

Selon le critere d’Akaike, le modele de Gumbel est le plus approprié, mais I’écart entre
les deux modéles est trop ténu pour qu’on en tire des conclusions nettes.

La figure 4.32 montre la loi de Weibull calée sur les données d ainsi que I'intervalle
de confiance a 70 % (o = 0,7). Pour la méthode fondée sur le développement de Taylor,
le résultat est facile a établir a ’aide de I’équation (4.99) ol la matrice de covariance est
donnée par I’équation (4.104). Pour la méthode fondée sur 'inférence bayésienne, on
construit pour différentes valeurs de la période de retour 7}, un échantillon C(T, 6;),
puis on calcule les quantiles associés a /2 = 0,15 et 1 — /2 = 0,85 de cet échan-
tillon. La figure 4.32 montre que pour les petites périodes de retour, les deux méthodes
donnent des résultats similaires, mais on note des écarts sensibles pour 7' > 10 ans.

28. souvent abrégé par son acronyme anglais AIC: Akaike information criterion.
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Figure 4.31 — Résultat de 'algorithme de Metropolis—Hastings. (a) Histogramme de 1 ;
la courbe bleue montre une loi empirique calée sur I'histogramme de ’échantillon 6;.
(b) Histogramme de o. (c) Histogramme de &. (d) Variation du quantile de pluie journa-
liere P4 (T') en fonction de la période de retour 7. On a reporté la courbe de Weibull
calée par inférence bayésienne et la courbe de Gumbel calée par la méthode du maxi-
mum de vraisemblance. La simulation a été réalisée en prenant de lois instrumentales
normales pour les parameétres y et 7, et une loi normal tronquée pour i (en sorte que
—0,5 < ¢ < 0,5). Un échantillon de 5 x 10° valeurs a été généré.
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Figure 4.32 — Variation du quantile de pluie journaliere P avec la période de retour 7.
On a reporté les intervalles de confiance a 70 % (o = 0,7) tels qu’établis par développe-
ment de Taylor ou bien par estimation des quantiles empiriques.



—N\) N COMMENCE par passer en revue les principales notions d’hydrologie né-
cessaires a comprendre et calculer les caractéristiques d’une crue. On s’in-
£7 téresse ensuite au cas des petits bassins-versants de montagne et piémont,
qui présentent une trés grande variété de comportement hydrologique; on passe en
revue les différentes classes de comportement. Dans la derniere partie du chapitre, on
présente les différentes stratégies de détermination du débit de pointe et de I’hydro-
gramme de crue. L’accent est surtout mis sur les méthodes de prédétermination en
I’absence d’observations sur un bassin-versant

Fournir une vision générale du comportement hydrologique d’un bassin-versant
est une entreprise délicate. Il existe en effet une multitude d’échelles de taille: du petit
bassin-versant de montagne de quelques hectares au bassin-versant d’un fleuve cou-
vrant plusieurs milliers de km?. A chaque échelle sont en général associés des phé-
nomenes qui peuvent différer grandement et donc des méthodes de calcul différentes.
On s’intéressera ici plus particuliérement aux petits bassins-versants de montagne tels
qu’on peut les trouver en Suisse et sur l'arc alpin.

5.1 Quelques rappels d’hydrologie

On fournit ici quelques définitions utiles pour comprendre la suite du cours. Pour
approfondir ou réviser les notions importantes, on pourra se reporter utilement au livre
Brutsaert (2005) plutdt orienté sur les aspects physiques et celui de Musy & Higy (2004)
donnant un apergu général et plutdt centré sur une approche d’ingénieurs.

5.1.1 Définitions

Hyétogramme: un hyétogramme est une représentation de l'intensité de la pluie
tombée en fonction du temps. Comme en général, la pluie est recueillie par un pluvio-

247
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graphe, 'intensité est intégrée sur un pas de temps de quelques minutes. Les courbes
ont en général I'allure d’un histogramme (voir figure 5.1). Les précipitations ont géné-
ralement des intensités aléatoirement distribuées dans le temps et en conséquence, les
hyétogrammes présentent des formes complexes qui sont difficiles a caractériser. Le
plus souvent on se contente de définir le cumul de pluie P sur un pas de temps de fixe
d et 'intensité moyenne associée I,,, = P/d. Il existe des méthodes plus sophistiquées
qui permettent de fournir des hyétogrammes synthétiques qui cherchent a reproduire
les caractéristiques principales des hyétogrammes observés. On peut citer:

- les méthodes analytiques de Keifer, de Normand, LHM, etc.;

- les méthodes numériques de générateur de pluie, fondées sur un tirage aléatoire
des pluies sur un pas de temps donné.

On verra la méthode Shypre dans ce cours (voir la section « Simulateur des pluies » en
fin de chapitre). Un pluviogramme est une courbe représentant la somme des précipi-
tations depuis un temps initial de référence; c’est donc une courbe croissante au cours
du temps.

%k
%

N

Figure 5.1 — Hyétogramme.

Pluviometre et pluviographe: les eaux de pluie sont collectées dans des récep-
tacles. Un pluviomeétre est un récipient normalisé qui recueille les eaux de pluie jour-
naliéres ; la mesure se fait de 7 h TU! a 7 h le lendemain. Dans un pluviographe, la
hauteur de précipitation est mesurée en continu au cours du temps (et non plus sur
une durée journaliére). En zone de montagne ou l'acces est difficile, on place parfois
des totalisateurs qui enregistre le cumul annuel de précipitations (de début octobre a
fin septembre).

Pluie brute/nette/utile: la pluie brute est la quantité de pluie mesurée par un
pluviographe sur une certaine durée ¢. Une partie de la lame d’eau tombée contribue
directement a la crue (ruissellement), une autre partie sera infiltrée, interceptée par les

1. TU: temps universel.
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végétaux. Selon I’état du sol (saturation du sol) et 'intensité de la pluie, un écoulement
superficiel (ruissellement) est en effet provoqué par la pluie; la quantité de pluie qui
participe a ’écoulement direct est appelée pluie utile. Si la pluie dure suffisamment
longtemps, une partie de l'eau infiltrée peut également participer a la crue (écoule-
ment hypodermique). La quantité de pluie qui participe a la crue par ruissellement ou
écoulement hypodermique est appelée pluie nette.

Intensité: Iintensité est la vitesse de précipitation, en général mesuré en mm/h,
d’une pluie. On peut définir une intensité moyenne I, d’une pluie P tombée pendant
un temps 0t : I,,, = P/dt. On peut aussi définir une intensité instantanée: I = dP/dt.
Il existe des lois intensité-durée pour les pluies comme la loi de Montana (voir § 5.2.1).

Hydrogramme: un hydrogramme est une représentation graphique montrant la
variation du débit « instantané » dans un cours d’eau en fonction du temps. Ce débit
instantané est généralement moyenné sur un pas de temps (10 min, horaire). Pour les
besoins des calculs hydrauliques, on introduit souvent un hydrogramme synthétique,
qui vérifie un certain nombre de propriétés (débit de pointe, volume de crue, tarisse-
ment, différents temps caractéristiques) similaires aux crues de la riviére étudiée, mais
présente une forme beaucoup plus simple (en général, courbe avec un seul pic de crue).
Un hydrogramme unitaire est ’hydrogramme d’une crue générée par une pluie unitaire,
c’est-a-dire une pluie d’intensité constante sur une certaine durée et dont le cumul est
de 1 mm; cette notion sert dans les méthodes de transformation pluie-débit.

Crue: il existe plusieurs définitions du mot crue. Ici, crue désigne un événement
caractérisé par une rapide augmentation du débit. Plusieurs parametres sont utilisés
pour décrire une crue

— le débit de pointe: c’est le débit maximal de la crue. Le débit de pointe est un débit
instantané, qui est difficile a estimer si ’on dispose de chroniques de débits avec
des pas de temps longs (de quelques heures a la journée). Il est parfois possible de
déterminer le débit de pointe instantané (), a partir du débit moyen journalier
(); aTl'aide de formule:

2,66\ "
Qp:eravecr:1+<’S> ,

avec S la surface du bassin-versant en km?. Le coefficient r est appelé coefficient
de pointe. En pratique, r n’est pas une constante, mais varie selon la période
de retour. Dans le cadre de la synthese nationale sur les crues de petit bassin-
versant, les hydrologues du Cemagref ont proposé I’expression suivante pour
des crues décennales (1" = 10 ans) (CTGREF, 1979; Laborde, 1999)

9,1 [ Q1o >
r=14 oo (20 1)),
dg’84<Q2

ou Q19 est le débit moyen journalier décennal, ()2 le débit moyen biennal, d; la
durée spécifique (en h). Si la durée spécifique n’est pas connue, on peut utiliser
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la relation

275 QlO 2/3
7“:1"'50,36 (Q2_1> 7

avec S la surface du bassin-versant en km?;

le volume de crue: c’est le volume d’eau mobilisé durant la crue. On introduit
souvent le volume d’eau V' correspondant au débit () supérieur a un seuil s

V= Qdt.
Q>s

Le temps de montée est en général assez rapide: c’est le temps entre le débit
avant la crue (débit de base) et le débit de pointe. Le temps entre la fin de la pluie
et le débit de pointe est appelé temps de réponse; parfois, on préfére définir
le temps de réponse du bassin par rapport a la pluie utile. Plus couramment, on
introduit le temps de concentration qui est le temps que mettrait une goutte entre
le moment ou elle tombe et le moment ou elle franchit les limites du bassin-
versant apres avoir rejoint le cours d’eau. C’est une quantité difficile a estimer
car elle se mesure entre la fin de la pluie utile et la fin de I’écoulement direct
(ruissellement). La durée caractéristique ds est le temps durant lequel le débit
instantané est supérieur a un seuil s = %Qp fixé a la moitié du débit de pointe.
Ce temps peut se mesurer facilement dés lorsqu’on a un hydrogramme de crue.

débit

Qp

Qp/2

Qv

pluie

—_ |
e

tm tq

Figure 5.2 — Définition des temps et débits lors d’une crue.
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Surface: la surface du bassin-versant est la superficie de toutes les parcelles drai-
nées par le bassin-versant (c’est-a-dire une goutte d’eau qui tombe sur une parcelle se
retrouve apres un certain laps de temps dans le cours d’eau du bassin-versant). Quand
on emploie des méthodes de prédétermination, la surface mesurée sur la carte est la
surface projetée; si on connait un angle moyen de pente, on peut estimer la surface du
bassin-versant.

Pluie centrée/non centrée: les mesures a ’'aide d’un pluviographe sont réalisées
a pas de temps fixe (en général de 7h TU a 7 h TU le lendemain). Quand on s’intéresse
aux pluies maximales de durée 24 h, il n’y a aucune raison pour que cette pluie soit
observée durant un créneau de mesures J a J + 1; il est plus vraisemblable que cette
pluie maximale soit a cheval sur deux journées. Il s’ensuit que si I'on recherche les
maxima journaliers avec un pas de temps glissant ou bien au contraire avec un pas de
temps fixe, on aboutit a des valeurs différentes: les valeurs « glissantes » sont appelées
pluie centrée (sur le maximum de pluie en 24 h) et sont systématiquement supérieures
a celles obtenues sur une grille de temps fixe, appelées pluies non centrées. L’étude
statistique montre qu’il existe une relation linéaire stable entre les pluies de n jours
centrées et celles non centrées:

Pe = anPhe,
avec o, = (1 — 1/(8n))~! le coefficient de Weiss. Pour les pluies journaliéres, on a
o] = 1,14.
P - Pluiecentrée

Figure 5.3 — Pluies centrée et non centrée.

Abattement et épicentrage : la pluie est un phénomene complexe qui varie dans
Pespace a un instant donné. La distribution spatiale instantanée de I'intensité de pluie
peut étre mesurée a’aide de la signature radar des précipitations; a plus grande échelle,
le réseau de pluviographes permet également de connaitre la distribution spatiale de
la pluie intégrée sur un certain pas de temps. Le plus souvent, pour un bassin-versant
donné, on ne dispose pas d’informations sur la distribution des pluies; dans le meilleur
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des cas, on a une information ponctuelle et il faut tenter de savoir comment cette me-
sure ponctuelle renseigne sur ce qui se passe a I’échelle de tout le bassin-versant. On
définit un coefficient d’abattement k, comme le rapport entre la lame d’eau précipitée
Ppy sur tout un bassin-versant et la mesure locale de la pluie P

P
kaz%.

En général, k, est dans la fourchette 0,9 4 1 pour les petits bassins-versants (S < 5 km?),
mais diminue jusqu’a atteindre des valeurs de 0,5 pour les grands bassins-versants (S >
100 km?). Pour de petits bassins-versants de montagne, il est possible que k, > 1. 11
existe plusieurs études visant a fournir des estimations de k, selon la taille du bassin-
versant et la période de retour de la pluie. Par exemple, le coeflicient d’abattement
employé dans la méthode Socose est

1
1+ VS
30v/d

avec S la surface du bassin-versant en km? et d la durée de la pluie en h. Laborde (1999)

ko =

arrive a une expression assez similaire pour le coefficient d’abattement

VS

ha=1- g5

L’épicentre d’une pluie est le lieu du bassin-versant ou la quantité de pluie précipi-
tée sur une durée d est maximale. On observe en générale une diminution de P en loi
puissance en fonction de la distance depuis ’épicentre. Le coefficient d’épicentrage k.
est le rapport entre la pluie a I'épicentre P, etla pluie locale P mesurée a une distance

r de I’épicentre
P, ep.

D
Une formule, calée sur le bassin-versant de ’Orgeval dans la région parisienne, fournit
I'estimation suivante

ke =1+ (0,03 +0,026InT + O,32ed/20> In(1+ 9),

ke(r) =

avec d la durée de la pluie en h, S la surface du bassin-versant en km?, et T la période
de retour en années.

5.1.2 Effet de l'altitude

L’altitude est un facteur de complexité dans I'intensité et la distribution spatiale
des pluies sur un bassin-versant. En altitude, les pluies dépendent d’une multitude de
facteurs:

- la position du relief par rapport aux océans et leur orientation générale par rap-
port aux flux;
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Figure 5.4 — Echo radar des précipitations sur I’Arc alpin lors des crues observées en
aolit 2007 sur la Suisse centrale. Source : Météo Suisse.

- les conditions météorologiques a I’échelle synoptique (interaction des courants
avec les massifs, phénomene de blocage);

- les conditions météorologiques a une échelle locale (phénomeéne de convection
le long des reliefs lors de journées chaudes).

La figure 5.5 montre la répartition des cumuls annuels de précipitations pour les pays
alpins. S’il y a clairement plus de précipitations sur les zones d’altitude, le relief et la
proximité avec la mer Méditerranée jouent un réle primordial.

Il existe en général un lien entre pluie et altitude, mais ce lien n’est ni systématique,
ni univoque:

— pour les longs pas de temps (pluie sur un a plusieurs jours, cumul annuel ou
mensuel de précipitations), on note en général que les précipitations augmentent
avec l'altitude. Le gradient hypsométrique est généralement dans la fourchette
23-60 mm par tranche d’altitude de 100 m (moyenne autour des 30 mm/100 m)
(Castellani, 1986);

- toutefois, dans des régions de collines ou des montagnes a faible pente (par
exemple région cévenole dans la partie méridionale du Massif central), les pluies
peuvent diminuer avec I’altitude surtout aux petits pas de temps. Il y a alors sou-
vent une altitude limite (quelques centaines de meétres) en piémont, au-dessus
de laquelle les précipitations diminuent;

- pour les petits pas de temps (pluie de quelques heures), le gradient hypsomé-
trique est faible quand il existe (0,5 — 5 mm par tranche d’altitude de 100 m
pour la pluie horaire). Il est alors possible d’utiliser un poste en fond de vallée
pour estimer les pluies de faible durée en altitude.
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Figure 5.5 — Distribution des cumuls annuels de précipitations dans les Alpes (valeur
moyenne en mm/j); la carte a été établie par krigeage de stations de mesures. Source:
Frei et al. (2003). Voir aussi le site du projet EURO4M-APGD (Météo Suisse).

De 1987 a 1995 a été menée une expérience intéressante dite TPG (transect de plu-
viographes pour I’analyse et la modélisation des gradients d’intensité en altitude), qui
consistait a étudier une série de 23 pluviographes placés le long d’une ligne quasiment
droite entre le Lyonnais et le Grésivaudan sur une distance d’environ 60 km (Desurones
et al., 1993). Ce transect traversait une région de collines et le massif de la Chartreuse,
puis venait buter contre le flanc occidental du massif de Belledonne. sa direction est
nord-ouest, c’est-a-dire celle des grosses dépressions atlantiques. On reporte les pluies
journaliéres décennales (extrapolées) ainsi que les valeurs des coefficients d’une loi
intensité-fréquence (loi exponentielle + loi de Montana) dans le tableau 5.1. La figure 5.6
montre la variation de pluie journaliére décennale avec I’altitude. On note clairement
un effet de l’altitude entre les postes du Bas Dauphiné et deux de Chartreuse, toute-
fois il s’agit plus d’une tendance que d’une corrélation forte. Si on prend des postes
en particulier, par exemple Perquelin ou La Diat (tous deux prés de Saint-Pierre-en-
Chartreuse), c’est plus le relief (blocage lié au relief abrupt) que l'altitude qui explique
Pintensité des précipitations.

Sevruk (1997) a analysé 340 postes sur toute la Suisse. Il a également trouvé que les
cumuls annuels de précipitations étaient fortement corrélés avec laltitude:

— Suisse orientale: P, = 1,57z 4+ 415 mm;

— Suisse occidentale et septentrionale: P, = 0,866z + 773 mm;

— Tessin: P, = 0,226z + 1711 mm.

Schwarb et al. (2001) ont analysé les données issues de 5831 pluviometres classiques
et 259 totalisateurs a travers les Alpes. L’interpolation des données a permis d’établir


https://www.meteoswiss.admin.ch/home/services-and-publications/produkte.subpage.html/en/data/products/2015/alpine-precipitation.html
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Tableau 5.1 — Pour les 23 stations du transect Chartreuse-Belledonne, on reporte I’al-
titude, les coefficients du couplage d’une loi exponentielle et d’une loi de Montana:

P(T,d) = (u+ oInT)d'~?, et la pluie journaliére décennale.

station altitude mode x  gradex ¢ coefficient de Montana b P
m mm/h®~!  mm/h®~! mm
Bas Dauphiné
Ruy 395 16,84 4,74 0,567 85
Cessieu 320 24,45 7,34 0,662 93
Paladru 494 21,31 5,87 0,651 82
Panissage 395 18,75 5,06 0,619 80
Massieu 470 21,71 6,36 0,677 78
La Boutiere 750 21,98 5,88 0,635 89
Les Vernays 600 20,46 5,54 0,613 89
Saint-Laurent-du-Pont 410 27,63 7,91 0,746 80
Chartreuse
Orciére 500 23,81 5,77 0,580 112
La Diat 800 22,59 5,41 0,545 119
Les Essarts 1350 19,89 4,67 0,567 97
Perquelin 1000 20,56 5,25 0,581 98
La Scia 1700 20,71 5,57 0,627 86
Saint-Michel-du-Touvet 1300 23,63 6,06 0,621 99
Saint-Bernard-du-Touvet 910 19,54 5,00 0,582 93
Grésivaudan
Lumbin 230 16,95 4,58 0,617 73
Froges 230 19,63 5,21 0,610 86
Belledonne
Goncelin 780 21,3 5,88 0,685 74
Les Berts 940 20,59 5,53 0,622 87
Pipay 1350 21,98 5,64 0,618 93
Praoutel 1580 18,13 6,01 0,628 79
Haut de Pipay 1820 22,36 6,10 0,595 103
Chalet des Fanges 1270 28,5 7,13 0,635 114

des cartes de cumul de précipitations. Pour la Suisse (voir figure 5.7), I’étude montre:

- dans les massifs internes (Valais, Engadine), il y a des zones séches qui regoivent
bien moins de précipitations que les zones externes. La variabilité interannuelle
est peu prononcée, et il n’y a pas de corrélation entre cumul annuel de précipi-

tations et altitude;

- la zone externe est plus humide; elle se caractérise par une forte corrélation
entre précipitations et altitude. La variabilité interannuelle est significative (de
l'ordre de £15 % pour les cumuls annuels d’'une année a I’autre).
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Figure 5.6 — Variation de la pluie journaliére décennale (en mm) en fonction de lalti-
tude (en m) pour le TPG. Source: Vetter (2004).

Dans leur étude, Schidler & Weingartner (2002) montrent que seule la Suisse oc-
cidentale se caractérise par un gradient hypsométrique constant de 'ordre de 80 mm
par tranche de 100 m d’altitude (voir figure 5.8). Pour les autres régions, il n’y a pas
de corrélation entre cumul annuel et altitude (éventuellement on pourrait parler de
corrélation négative pour le sud des Alpes et les altitudes supérieures a 2000 m).

Une étude menée par une équipe italienne sur la partie nord-ouest des Alpes ita-
liennes a tenté de déduire I'influence de l'altitude (moyenne) d’un bassin-versant sur
les débits liquides (Allamano et al., 2009). A partir de I'analyse de 57 bassins-versants
de 14 10* km? et d’altitude moyenne comprise entre 500 et 3000 m, ils ont trouvé que
le débit spécifique (décennal) diminuait notablement avec 'altitude, avec d’aprés eux
une diminution de 0,06 m®/s/km? du débit spécifique par tranche de 100 m d’altitude. Il
y a également une variabilité trés contrastée des débits, qui est d’autant plus marquée
qu’on est a basse altitude:

- entre 500 et 1000 m d’altitude, le débit spécifique varie dans une fourche large
0,1-3,8 m%/s/km?;

- entre 1000 et 2000 m, la fourchette est plus étroite: 0,2-2,5 m3/s/km?;

- au-dessus de 2000 m, le débit spécifique est situé dans une fourchette étroite
0,1-1 m?/s/km?.
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Figure 5.7 — Variation du cumul annuel de précipitations avec ’altitude selon le tran-
sect nord-sud. Source: Spreafico & Weingartner (2005).
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Figure 5.8 — Variation du cumul annuel de pluie avec altitude pour quatre zones
climatiques en Suisse. La courbe tiretée est la tendance P, = 0,866z 4 773 mm pour la
Suisse occidentale donnée par Sevruk (1997). Source: Schiadler & Weingartner (2002).
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5.2 Quelques formules utiles

5.2.1 Loide Montana

La loi de Montana est une représentation de la pluie (cumul ou intensité moyenne)
en fonction de leur durée d:

P(T,d) = ad'"?,
L
~ =

— P:pluie de durée d (en s, mn, h, ou j) pour une période de retour 7' donnée (en

I(T,d) = ad™® (5.1)

années);

— I:intensité de la pluie de durée d;

— aetb: premier et second coeflicients de Montana (dépendant des unités choisies)
qui sont fonctions de 7.

Pour la Suisse (voir figure 5.9) et la plupart des pays occidentaux, on peut utiliser
la loi de Montana sur des durées allant de quelques minutes a plusieurs journées. Dans
un contexte méditerranéen (le cas de Locarno pour la figure 5.9), les pluies de longue
durée sont moindres que ce que donne une loi de Montana calée sur les petites durées.

100

50;

| + Bale, I = 53.409

. Davos, I = 35.d4706
Lausanne, I = 65.4708

e Locarno, I = 96.d798
Lugano, I = 80.d797

o Sion, [ = 25.4798
Zirich, I = 78.47%8
Rotenbach, 7 = 66.d7°7

s Sperbelgraben, [ = 57.4708
Rappebgraben, / = 51.4797

d[h]

Figure 5.9 — Variation de l'intensité de la pluie de période de retour 7' = 100 en
fonction de la durée d et calage d’une loi de Montana. Source: Forster & Baumgartner
(1999).

11 existe d’autres formulations telles que

(T, d) =

dr+b’
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avec n un autre parameétre fonction de 7'; le cas n = 1 correspond a la formule de
Talbot, qui donne généralement de bons résultats pour les durées courtes (moins de 3
h). On définit aussi une intensité instantanée ¢ de la pluie de durée d en introduisant

5.2.2 Temps de concentration

Le temps de concentration est le temps maximal pour qu’'une goutte parcourt tout
le bassin-versant entre I'endroit ou elle tombe et 'exutoire de ce bassin. C’est une gran-
deur conceptuelle qui a émergé dés les premieres tentatives de modélisation de la ré-
ponse hydrologique d’un bassin-versant au x1x° siecle (Beven, 2020). Dans les modeles,
le temps de concentration est souvent compris comme le temps entre la fin de la pluie
nette et la fin du ruissellement direct. En pratique, c’est une grandeur difficile a évaluer.
Aujourd’hui, on lui préfeére d’autres grandeurs telles que la durée spécifique.

Il existe plusieurs formules d’usage courant, certaines relativement vieilles comme
la formule de Kirpich qui date de 1940 et a été élaborée a la suite des crues qui ont frappé
le nord-est des Etats-Unis en 1936 (Folmar et al., 2007); les données ayant servi a 1’éla-
boration de ces formules sont souvent indisponibles et il convient d’étre particuliére-
ment méfiant dans l'utilisation des formules empiriques. La dispersion des prédictions
fournies par les formules est considérable puisqu’on peut facilement trouver un ordre
de grandeur quand on fait des applications sur de petits bassins-versants de quelques
km?. La comparaison entre prédictions et données sur de petits versants de montagne
montre également que la plupart des formules surestiment les temps de concentra-
tions, souvent d’un facteur entre 2 et 5, parfois jusqu’a 30 (Quefféléan, 2015); pour
les bassins-versants de montagne de plus grande taille (dans la fourchette 100-1500
km?), (Ravazzani et al, 2019) trouvent une dispersion des formules de +50 % par rap-
port aux valeurs estimées. La dispersion des formules est également significative dans
les bassins-versants urbanisés (McCuen ef al., 1984).

On prendra garde également aux unités des variables employées. Ces unités peuvent
varier d’'une méthode a I'autre. Les méthodes empiriques nécessitent de préciser cer-
taines caractéristiques du bassin-versant telles que la superficie S et la longueur du
cours d’eau L. La superficie est souvent comprise comme la surface projetée, non la sur-
face réelle, car du point de vue des précipitations c’est la surface projetée qui importe.
En théorie, la longueur du cours d’eau est la longueur du chemin hydraulique le long
du terrain naturel (ce n’est donc pas nécessairement la longueur que ’'on mesure sur
une carte, surtout si le bassin-versant est a forte pente). En pratique, toutefois, il s’agit
souvent d’une longueur projetée. Il existe des formules empiriques qui permettent de
relier S et L. Marchi et al. (2010) ont examiné 60 bassins-versants en Europe et ont
obtenu

L =1,518%%7
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tandis que Quefféléan (2015) a obtenu
L =1,8758%%

sur 275 bassins-versants des Alpes et Pyrénées francaises.

Formule de Turraza (1867)

VS L

te = 0,108 =
‘ Vim

t.: temps de concentration en h;
S': surface du bassin-versant en km?;

- L:longueur du chemin hydraulique le plus long en km;

— 1, : pente moyenne pondérée le long du thalweg en % définie comme

1
Vi LV

avec /i, la longueur du k°troncon du thalweg, de pente iy.

Formule de Kirpich (1940)

0,77

— -3
e = 1947 x 107 o

— t.: temps de concentration en min;
— L:longueur du chemin hydraulique en m;

- 1: pente moyenne du cours d’eau en %.

Formule de Ventura-Passini (1905-1910)

— t.: temps de concentration en h;
— «: coefficient de Ventura-Passini (0 < o < 2)

a =323

261

avec c coefficient de ruissellement et a coefficient de Montana (norme suisse

d’assainissement);
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- S: surface du bassin-versant en km?;
— L longueur du thalweg le plus long en m;

- im: pente moyenne pondérée le long du thalweg en % définie comme
1 __153 U
Vim L&V
avec {j, la longueur du k€ troncon du thalweg, de pente iy.
Formule de Sogreah

g\ 035
tC:OBO<C>

- t.: temps de concentration en min;

Sl

S : surface du bassin-versant en ha;
— c: coefficient de ruissellement;

- im: pente moyenne le long du thalweg en %.

Cette formule est appelée aussi « formule de Dujardin ».

Formule d’Izzard-Meunier (1946)

G0,312
te=p 40,625

- 1:pente moyenne en %;

t.: temps de concentration en min;

S': surface du bassin-versant en km?;

— [: coeflicient de Meunier valant 5 = 331 pour un bassin-versant végétalisé et
B = 145 lorsque le bassin-versant est dégradé.

Formule SNV

La Schweizerische Normen-Vereinigung? (SNV)

12L

te=5+0 o

- t.: temps de concentration en min;

2. Association suisse de normalisation.
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— (': coefficient de ruissellement;

- K : coeflicient de la SNV, qui est fonction de la période de retour et du lieu;
— L:longueur de la ligne d’eau principale (en m);

- 4:pente de la ligne d’eau (en %).

Formule de Li—-Chibber (2008)

Li & Chibber (2008) ont étudié le ruissellement sur des parcelles faiblement incli-
nées et de petites dimensions (17 m?), dont ils changeaient I’état de surface. Ils ont
établit le temps de concentration en corrélant les valeurs mesurées aux variables du
probléme:

t, = 0,3L00n0:329=2,277;=0,172 0,646

avec

— t.: temps de concentration en min;
- L:longueur en m;

- n: coefficient de Manning;

— 0: saturation du sol en (de 0 a 1);

— [ :intensité de la pluie (en mm/h);
- 4: pente de la ligne d’eau (en %).

Estimation théorique du temps de concentration

Des modeles conceptuels ont été élaborés pour estimer le temps de concentration.
L’idée est d’examiner le cheminement d’une goutte d’eau entre son point de chute et
Pexutoire du bassin-versant. Des outils de simulation a partir de systéme d’informa-
tion géographique ont été développés a cette fin (Michailidi et al., 2018). Des modeles
analytiques ont également été obtenus pour déterminer la dépendance du temps de
concentration vis-a-vis des parameétres du bassin-versant (Henderson & Wooding, 1964;
Singh, 1976; Zeller, 1981; Beven, 1982; Loukas & Quick, 1996; Baiamonte & Singh, 2016;
Beven, 2020). La section 5.6.4 illustre le principe de ces calculs en traitant le cas d’un

petit bassin versant.

5.2.3 Durée spécifique

La durée spécifique d’une crue est la durée pendant laquelle le débit est supérieur
ou égal a la moitié du débit de pointe. La durée spécifique peut se mesurer des hy-
drogrammes de facon relativement simple. L’analyse des données existantes a permis
d’obtenir des formules selon le type de bassin-versant. La encore, il faut étre prudent
quant a la précision des formules et il faut porter une attention particuliére aux unités
dans les formules.
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Méthode Socose (France)

Formule calée sur des données provenant de toute la France

Inds = —0,69 + 0,32In S + 2,2 Fa
Pj10tq
- ds: durée caractéristique en h;
- S: surface du bassin-versant en km?;
- Pj10: pluie journaliere décennale en mm;
- P, : cumul moyen annuel de précipitations en mm;

- t,: température annuelle moyenne ramenée au niveau de la mer en °C.

Cipriani et al. (2012) ont obtenu des formules prenant en compte les spécifiés régionales
de différentes régions de France métropolitaine.

Petits bassins-versants rapides

Inds =0,3751In 5 + 3,729

— ds: durée caractéristique en mn (valable pour 4 < d; < 300 mn);

~ S surface du bassin-versant en km? (valable pour 1072 < S < 15 km?).

Bassins-versants a forte pente

P,
ds = 12,5+ 4,3\/—3 —22.2 e

Vi Pj10

dg: durée caractéristique en mn;

- S: surface du bassin-versant en km?;

— Pj10: pluie journaliere décennale en mm;

- P, : cumul moyen annuel de précipitations en mm;

- 4: pente moyenne du thalweg.

5.24 Temps de montée

Le temps de montée est souvent 1ié au temps de concentration. La méthode ration-
nelle suppose que t,, = t. (voir § 5.6.1) tandis que la méthode SCS prend ¢,,, = 0,375¢.
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Certains auteurs ont cherché a relier le temps de montée aux caractéristiques du bassin-
versant. Par exemple, Quefféléan (2015) a obtenu

tm = 0,0775%5°

(tm en h, S en km?) pour des bassins-versants de montagne en France de superficie
S < 370 km?.

5.3 Origine des crues

Il n’existe pas de classification générale de 'origine des crues (Tarasova et al., 2019).
Pour les Alpes, il est commode de considérer trois scénarios majeurs dans la formation
des crues:

— les pluies bréves et intenses: typiquement des orages de fin d’aprés-midi I’été
quand il faut chaud et humide. La saison a risque est I’été (juin a septembre). Les
débits spécifiques de pointe se situent dans une fourchette large 1-10 m3/s/km?
pour une période de retour 7' = 10 ans. Le coefficient d’écoulement est souvent
moyen (0,3 a 0,8). Les crues sont rapides et ne durent en général que quelques
heures. Le plus souvent, seul un bassin-versant est touché de facon isolée. En
conditions exceptionnelles, des valeurs dépassant 20 m?/s/km? ont été observées
(crue de I'Orba dans les Alpes italiennes en aotit 1935 ou bien du Tech en octobre
1940 dans les Pyrénées) lors d’épisodes de pluie diluviens et hors normes (pour
I’Europe) sur des massifs montagnes proches de la Méditerranée. En aotit 1996,
de violents orages (140-220 mm en 2 h, 160-250 mm en 24 h) causérent une
crue de grande ampleur de I’Aras dans les Pyrénées espagnoles, causant la mort
de 87 personnes & Biescas. Avec un débit de 430 m3/s pour un bassin-versant
de 18 km?, le débit spécifique a été voisin de 24 m?/s/km? en moyenne sur le
bassin-versant, avec des valeurs atteignant 45 m3/s/km? sur certains affluents
(Benito et al.,, 1993);

- les pluies soutenues sur de longues périodes (plusieurs jours, parfois plusieurs
semaines) liées au passage d’un ou plusieurs systémes dépressionnaires bien or-
ganisés sur les Alpes. La saison a risque est en général I’automne et le début du
printemps, trés exceptionnellement en hiver. Les crues sont lentes, durent plu-
sieurs jours, et concernent une vallée entiére, voire tout un massif ou une région.
Les débits spécifiques de pointe dépassent exceptionnellement 1-2 m3/s/km?
pour 1" = 10 ans. Le coeflicient d’écoulement est élevé (de 0,6 a 1);

- la fonte des neiges au printemps ou bien un important redoux accompagné de
pluie durant I'hiver ou le printemps. Les crues sont lentes et étalées sur plusieurs
jours a semaines. La saison a risque est la fin du printemps (mai et juin). Les
débits spécifiques de pointe dépassent exceptionnellement 1 m?/s/km? pour T' =
10 ans.
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Un exemple est fourni par la crue de ’Arc (Haute Maurienne) et celle du Guil
en juin 1957 et de nombreux autres riviéres de la chaine frontaliére: le mois
de mai 1957 avait été plus froid que la normale et un important stock de neige
subsistait en altitude, au-dessus de 2000 m. Au début de juin, les températures
se sont mises a s’élever trés brutalement (plus de 20 °C) sous l'effet de I’arrivée
d’air chaud et humide de Méditerranée. Les précipitations faibles du mois de
juin se sont intensifiées avec I'arrivée d’air froid de Scandinavie. A ces chutes
de pluie s’est ajoutée la fonte rapide du manteau neigeux, ce qui a conduit a des
crues extrémes. Ainsi a Saint-Michel-de-Maurienne, alors que le débit moyen
interannuel pour le mois de juin est ) = 84 m3/s, un débit moyen journalier de
500 m?/s a été enregistré le 14 juin 1957 (voir figure 5.10).

500F"
40|
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e
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Figure 5.10 — Débit journalier de ’Arc a Saint-Michel-de-Maurienne (Savoie) en juin
1957. (a) variation du débit moyen journalier en juin 1957, (b) variation du débit de I’Arc
en 1957 et comparaison avec les moyennes mensuelles.

La réponse d’un bassin-versant a une pluie est variée. Certains bassins-versants
sont sensibles a tous les scénarios décrits ci-dessus tandis que d’autres ne réagissent
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qu’a un scénario précis. La réponse d’un bassin-versant a une pluie dépend:

de la forme générale du bassin-versant: selon que le bassin-versant est de forme
oblongue ou ramassée, le temps mis par 'eau pour atteindre ’exutoire peut dif-
férer notablement;

la densité du réseau hydrographique drainant le bassin-versant;

le couvert végétal: densité, nature, réseau racinaire, etc.

Pinclinaison moyenne des pentes;

la nature des sols, la géologie du sous-sol, la capacité d’infiltration et de résur-
gence, l'existence de surfaces imperméables (glacier, route, etc.);

Paltitude et ses effets sur la limite des neiges, nature pédologique du sol, pergi-
sol/permafrost, végétation, etc.;

la possibilité de blocage de cellules orageuses ou un effet de barriére sur le pas-
sage d’une perturbation.

On peut distinguer trois classes de réponses:

réponse rapide (groupe 1): le bassin-versant répond a peu preés systématique-
ment et de la méme facon aux pluies bréves et intenses. Aucune crue ne survient
apres des précipitations longues, mais peu soutenues. Le débit de crue dépend
fonciérement de I'intensité des pluies: plus 'intensité est forte, plus le débit de
pointe est élevé. Le temps de montée et la durée spécifique de la crue sont courts.
Les petits bassins-versants de montagne, raides et peu végétalisés, entrent le plus
souvent dans cette catégorie. Le torrent de ’Alptal (SZ) en est un exemple;;
réponse moyenne (groupe 2): le bassin-versant répond de facon atténuée aux
pluies mémes intenses ou soutenues sur plusieurs jours. En général, la capacité
d’infiltration est bonne, le ruissellement est faible (forte résistance, végétation
dense, pente modérée). Toutefois, des concours de circonstances font qu’ excep-
tionnellement des crues peuvent se produire avec des débits importants;
réponse lente (groupe 3): le bassin-versant ne répond pas ou faiblement aux
pluies. Le débit de pointe est généralement faible et 'onde de crue est assez
étalée.



Tableau 5.2 — Nom de la riviére, surface S du bassin-versant
(km?), région et localité ou le débit est estimé, débit spécifique de
pointe en conditions décennales Q; 19 (m3/s/km?), surface occu-
pée par la végétation selon son type, pente moyenne (%) du bassin-
versant, pluie décennale horaire Pj(1) et journaliére P;o(24), na-

ture géologique du terrain. D’apres (Graff, 2004).

Nom S Région Localité Qs10 %nu %paturage % boisé Pente Pjo(1) Pip(24) Géologie
Groupe 1
Laval 0,86 Alpes-du-Sud Draix 14,3 68 10 22 58 32 100 marnes
Erlenbach 0,64 Suisse Centrale Alptal, Schwyz 7 0 60 40 20 35 120 flysh
Groupe 2
Rimbaud 1,5 Alpes-du-Sud Toulon 5,2 - 35 160 gneiss
Latte 0,19 Massif Central Mont Lozére 3,5 - granit
Sapine 0,54 Massif Central Mont Lozére 2.7 granit
Groupe 3
Rietholzbach 3,31 Suisse Centrale Mosnang 2,1 76 20 molasse
Lumpenenbach 0,93 Suisse Centrale Alptal, Schwyz 4,1 55 20 15 40 140 flysh
Vogelbach 1,55 Suisse Centrale Alptal, Schwyz 3,1 10 65 15 40 110 flysh
Brusquet 1,08  Alpes-du-Sud Draix 1,3 13 87 53 44 92  marnes
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5.4 Meéthodes par corrélation statistique

5.4.1 Methode Crupédix

La méthode Crupédix est une formule qui permet d’évaluer le débit de pointe de pé-
riode de retour 7' = 10 ans. La formule a été obtenue a partir d’une analyse statistique
sur 630 bassins-versants documentés frangais dont la taille variait entre 1,4 et 52 000
km?:

A 08 [ Pi0 ? 3
chup. = Qp,lO = RS™ (80) [m /S],

avec S la surface du bassin-versant en km?, P;j 10 1a pluie journaliére décennale (en
mm), et R un coefficient régional qui vaut R = 1 partout en France sauf sur le Massif
Central, les Pyrénées, le Languedoc-Roussillon, le bassin de la Seine et de la Meuse, la
Vendée et une partie de ’Aquitaine.

Selon Galéa & Ramez (1995), il y a seulement une probabilité de 70 % que le vrai
débit se situe entre %chup. et 2Qcrup.

Figure 5.11 — Valeur du parameétre R dans la méthode Crupédix.
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5.4.2 Courbe enveloppe

Plusieurs formules empiriques ont été calées en corrélant (par régression linéaire)
le débit de pointe mesuré/estimé et la superficie d'un bassin versant sous la forme d’une
loi puissance

Qp = aS’ (5.2)

avec (), le débit de pointe (en m?/s), S la superficie (en km?), a et b sont deux paramétres
qui dépendent du contexte hydrologique. On parle de courbe enveloppe car en général,
ces courbes cherchent a fournir une borne maximale des débits de pointe. La figure 5.12
montre des courbes enveloppes de crues éclair pour différentes régions en Europe. Le
tableau 5.3 fournit les valeurs de a et b de I’équation (5.2) pour des crues éclair en
Europe, en France, dans le monde, et en Suisse. Le tableau 5.4 donnent ces valeurs pour
des crues sur différents bassins-versant suisses. Une courbe enveloppe d’équation un
peu plus complexe que la loi puissance (5.2) a été ajustée sur des données de crue issues
de plusieurs bassins-versants dans le monde:

3009,2

@ = (g a1 107"

avec (), le débit de pointe (en m/cube/s), S la superficie (en km?) (Hingray et al., 2009).

Figure 5.12 — Variation du débit spécifique (de pointe) en fonction de la superficie du
bassin versant, avec (a) selon la localisation du bassin versant et (b) la nature de la
mesure. D’apres (Marchi et al., 2010).

Le probléme de plusieurs formulations de courbe enveloppe est qu’elles ne font
pas de mention précise a la période de retour. Des approches plus rigoureuses ont été
suivies en utilisant la régression sur des quantiles® et la simulations de Monte Carlo

3. Dans la littérature francophone, bien des auteurs traduisent directement le terme originel
anglais « quantile regression » par la parataxe « régression quantile », qui est peu claire en
francais. Au demeurant, on remarquera que cette section est riche en parataxes, c’est-a-dire des
juxtapositions de deux substantifs: loi puissance, courbe envelope et régression quantile.
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Tableau 5.3 — Valeurs des coeflicients a et b selon le contexte météorologique.

Zone géographique a b S T Source

Gard 30 0,75 20a400km? T =100 (Lang & Lavabre, 2007)
Monde 350 06 S<10*km? rare® (Gaume et al., 2009)
Méditerranée 97 06 1a10*km? rare (Gaume et al., 2009)
Europe 230 043 12a10*km? rare (Marchi et al., 2010)
Monde 850 0,357 S > 100km? extréme? (Marchi et al., 2010)
Zone océanique ¢ 4,05 0,72 12a10*km? T ~ 1000 ans (Lang & Lavabre, 2007)
Zone de piedmont ¢ 74 072 1a10*km? T ~ 1000 ans (Lang & Lavabre, 2007)
Zone méditerranéenne® 16,4 0,72 14 10* km? T ~ 1000 ans (Lang & Lavabre, 2007)
Suisse ¢/ 066 10a500km?> T =100ans (Spreafico et al, 2003)
Suisse 7.2 0,566 1a10*km? T =100 ans  (Spreafico et al, 2003)

?Rare ici veut dire que la période de retour est dans une fourchette 7" = 100 — 1000 ans.
b Extréme ici veut dire que la crue était exceptionnelle et correspondait a la plus grosse crue

connue.
“Bassin de la Loire, Bretagne, Sadne, Moselle.

dPyrénées, Préalpes, Dordogne, Pyrénées centrales et occidentales, Aude, Ariége, Drome.

¢ Alpes maritimes, Corse, Cévennes, Tarn, Ardéche, Haute-Loire, Pyrénées orientales.

FPour des terrains relativement plats, bordés de collines peu élevées, on a ¢ = 2,5 — 4. Pour
des terrains vallonnés, on a ¢ = 4 — 6. Pour des terrains vallonnés des Préalpes, ona c = 6 — 9.
Pour des bassins-versants a forte pente, on a ¢ = 9 — 12 sauf en zone glaciaire (c = 3 — 5)

Tableau 5.4 — Valeurs des coefficients a et b pour calculer le débit de pointe centennal
selon les régions en Suisse. Adapté de (Spreafico et al, 2003).

Région a b

Jura, Neuchitel 1,44 0,73

Jura bernois 5,98 0,59

Saint Gall, Thurgovie 2,65 0,61
Zirich 7,86 0,58

Argovie, Béle 0,68 0,79

Alpes vaudoises 7,18 0,60
Berne 17,66 0,54

Mont-Blanc, Valais oriental 4,36 0,64
Valais central 1,3 0,74
Oberland oriental 1,4 0,78
Tessin oriental 0,83 0,58
Tessin occidental 12,41 0,69
Grisons orientales 0,9 0,83
Grisons occidentales 4,41 0,74

(Bertola et al., 2024) (voir figure 5.13). L’idée est caler des lois puissances de la forme
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5.2 uniquement sur des quantiles associés a une certaine probabilité.

Figure 5.13 — (a) Emplacement des riviéres documentées dans la base de données eu-
ropéenne sur les crues (points) et quatre régions représentées par des carrés de couleur.
(b)-(e) Courbes enveloppes (trait gras) obtenues par régression sur les quantiles asso-
ciés a la probabilité p = 0,999 (crue millennale) et courbe enveloppes régionales (trait
fin). Les couleurs des lignes correspondent aux quatre régions de la carte (a). Les points
gris indiquent les débits spécifiques et les points noirs les crues record. La pente b est
indiquée pour chaque région. Source: Bertola et al. (2024). La base de données com-
prend 8023 riviéres dans 33 pays européens avec des observations entre 1805 et 2021,
mais la plupart postérieures a 1961. La durée d’observation est donc au mieux de 215

ans.
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5.5 Meéthodes statistiques de type gradex

5.5.1 Meéthode du gradex

La méthode du gradex a été proposée a la fin des années 1960 par Pierre Guillot
et Daniel Duband (EDF) (Guillot & Duband, 1967). Le principe de la méthode est trés
simple, ce qui explique son large succés et sa popularité. Cette méthode se fonde sur
les observations suivantes:

- la plupart des pluies maximales annuelles sont distribuées selon une loi expo-
nentielle ou une loi de Gumbel. Ainsi deux pluies extrémes P; et P» de période
de retour respective 17 et T5 vérifient la relation

T
P,— P =Gln2, (5.3)
T

avec G > 0 un coefficient exprimé en mm (si les pluies en mm) et appelé le
gradex des pluies;

- linfiltration dans le sol diminue au cours du temps du fait de la saturation pro-
gressive du sol. Lorsque le sol est saturé, toute 'eau qui continue de précipiter
ruisselle sur le sol. Cette eau ruisselée participe directement au volume de crue;

— lorsque le sol est saturé, tout surcroit de pluie pendant une durée égale au temps
de concentration ¢, se transforme intégralement en un surcroit de débit sur une
durée a peu pres égale a ¢, (a 10-20 % pres).

De ces observations, on admet ’hypothese du gradex: la courbe intensité-fréquence
des pluies de durée ¢, est paralléle a la courbe intensité-fréquence du débit. En consé-
quence, lorsque sur un bassin-versant on dispose de données de pluie sur une période
suffisamment longue (quelques dizaines d’années), on peut estimer les débits extrémes
en considérant que le gradex des débits G, (en m3/s) équivaut a celui des pluies G, (en
mm) lorsqu’on les exprime dans la méme unité, c’est-a-dire

S

Gy

avec S la superficie du bassin-versant en km?, t,. le temps de concentration en h, 3,6
un facteur de conversion des unités. On se sert du temps de concentration ¢, comme
durée caractéristique car c’est la durée optimale de pluie: en effet, une pluie de durée
d < t., l'intensité de pluie (rappelons la loi de Montana I,, = ad~?) est supérieure a
Pintensité I, associée au temps . (I, = atc_b), mais seule une partie du bassin-versant
contribue a la crue (puisque toutes les gouttes d’eau n’ont pas pu atteindre 1’exutoire)
et donc le début résultant est plus que le débit (), généré par une pluie de durée ..
Lorsque d > t., tout le bassin-versant contribue, mais 'intensité moyenne associée est
plus faible, donc le débit résultant est aussi plus faible.
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En se servant de la relation (5.3) et en considérant que la période de retour pour
laquelle on observe la saturation du sol est 7' = 10 ans, on aboutit a une approximation
dite du gradex de la loi intensité-fréquence pour les débits

T
Q= Q10+ Gyln 0 (5.5)

avec (19 le débit de pointe décennal.

Dans cette méthode, le débit décennal Q1¢ et le temps de concentration doivent
étre estimés indépendamment. Des variations de cette méthode ont été proposées. En
particulier, la « formulation esthétique » lisse la transition entre les régimes des crues
ordinaires et des crues extrémes. Plus récemment, la prise en compte du type de condi-
tions météorologiques a permis d’améliorer la performance de cette méthode (Paquet
et al., 2006).

5.5.2 Méthode QdF

La méthode QdF est une méthode développée par Prudhomme, Galéa, et Javelle au
Cemagref (devenu INRAE) de Lyon (France), qui permet de donner une relation durée-
intensité-fréquence pour le débit en fonction du débit décennal (qui doit étre connu ou
bien évalué par ailleurs), de la superficie du bassin-versant, du gradex des pluies, et du
type de réponse du bassin-versant.

Principe

Il y a trois idées de base:

1. L’idée fondamentale de la méthode QdF est qu’on peut étudier les hydrogrammes
de crue en les caractérisant par des débits () moyens ou bien systématiquement
dépassés sur des durées d variables; chaque hydrogramme est valable pour une
période de retour ou fréquence F' donnée. D’oui le nom QdF.

2. L’extrapolation des quantiles de débit se fait selon une approche de type gradex:
on suppose que la courbe Q(T') varie parallélement a la courbe des pluies P(T')
pour les périodes de retour T’ suffisamment grandes.

3. Pour une méme région, le comportement des bassins-versants est & peu prés
identique. Il existe une « loi-maitresse » valable régionalement qui permet de
représenter la réponse hydrologique des bassins-versants a I’aide d’une seule
courbe adimensionnelle. Il existe donc également des « marqueurs » qui per-
mettent d’adimensionnaliser les variables hydrologiques. Ici, on va considérer
deux marqueurs ou échelles (durée et débit) D, et )., qui sont propres a chaque
bassin-versant; le principe de régionalisation affirme que les débits et durées sur
un bassin-versant (BV) sans observation peuvent étre estimés a partir des débits
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Figure 5.14 — Extrapolation de la distribution des débits moyens journaliers max.
annuels par la distribution des pluies journaliéres maximales annuelles. D’apres
(Djerboua et al., 2004).

et durées observées sur un bassin-versant de référence par une simple loi d’ho-
mothétie

(Q(T7 d)> _ (Q(T, d))
Q* BV de réf. Q* BV non obs. 7

AL ES
D, BV de réf. D, BV non obs.
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Variables hydrologiques employées

Pour faire les calculs d’hydrogramme, on ne sert pas du débit instantané Q(¢) car il
y a trop d’informations. A la place, on suppose que tout hydrogramme peut se présenter
sous la forme d’un hydrogramme synthétique de crue, avec une courbe montante et
une courbe descendante (décrue), appelé encore hydrogramme mono-fréquence car il
n'y a qu'un seul pic de crue. On introduit deux variables qui permettent de réduire
Pinformation nécessaire (voir figure 5.15):

— le débit seuil Qs(d) de durée d est la plus grande valeur de débit qui est systé-
matiquement dépassée au cours d’une durée d de la crue. La forme supposée de
I'’hydrogramme fait que la relation Q(d) est unique et continue;

— le débit moyen @, (d) de durée d est la valeur moyenne du débit sur une durée

d.

Q m

Qs

t

Figure 5.15 — Définition du débit seuil ()5 (débit systématiquement dépassé pendant
une durée) et du débit moyen Q,,.

Pour un pays au climat tempéré comme la France, on considére deux échelles de
débit et de temps, qui sont appelées marqueurs:

- Q. = Qqo le débit de pointe instantané de la crue décennale. Ce débit sert a
séparer les débits ordinaires correspondant aux petites crues fréquentes et les
débits plus importants;

— D’échelle de temps (durée) D, peut étre définie comme le temps de concentration
t. ou bien la durée spécifique d;. L’avantage de ds est que c’est une donnée
mesurable alors que ¢, reste une quantité plus conceptuelle.

Les autres données du probléme peuvent s’exprimer en unités de temps ou de débit.
Par exemple, quand on utilise le gradex des pluies pour différentes durées d, on peut le
transformer en gradex adimensionnel de la facon suivante: tout d’abord, on transforme
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les unités de mm en m®/s a I'aide de la relation

A S
Gp [m%/s] = T (5.6)

avec S la surface du bassin-versant exprimée en km? et d la durée de la pluie en h (Gp
est donc aussi le gradex des débits de durée d).

Sélection d’un modéle

Pour la France métropolitaine, il existe trois réponses types de bassin-versant:

- type « Soyans » : le bassin-versant typique est celui du Roubion (Dréme proven-
cale). Il est caractéristique des bassins-versants avec des écoulements rapides et
un faible stockage (climat a dominante continentale). Les crues ne durent géné-
ralement pas trés longtemps; ’hydrogramme est pointu. Les crues extrémes ne
sont pas en continuité avec les crues ordinaires;

- type « Florac » : le bassin-versant typique est celui de la Mimente a Florac, dans
la partie méridionale des Cévennes (Lozere), donc sous influence climatique mé-
diterranéenne. Ce bassin sert de référence pour des crues rapides, mais avec un
stockage ; une partie de ’eau stockée est restituée durant la crue, ce qui allonge
la durée de la crue et augmente son volume, sans toutefois accroitre le débit de
pointe;

- type « Vandenesse »: le bassin-versant typique est celui de la Dragne (Nievre,
Bourgogne). Les crues sont volumineuses et s’étalent sur des durées longues
comme c’est souvent le cas pour régions a dominante océanique.

Pour les régions tempérées hors de France métropolitaine, il est possible d’appliquer la
méthode QdF, mais il est vraisemblable qu’il faille choisir d’autres sites de référence.

Selon sa situation et sa taille, les caractéristiques d’un bassin-versant varient d’amont
en aval, avec une modification du régime des crues: plus la taille augmente, plus le vo-
lume de crue tend a étre important et moins ’hydrogramme est pointu. Une méme
riviére peut générer des crues de type « Soyans » dans la partie supérieure et des crues
« Vandenesse » a sa confluence.

La question qui se pose est: parmi ces modeles de référence, quel est le modele le
plus approprié pour décrire un bassin-versant quelconque pour lequel on n’a pas ou peu
de données hydrologiques ? La réponse apportée par la méthode QdF est la suivante:
on trace la variation du gradex adimensionnel I' = G'p /Q10 des pluies en fonction de
la durée 71 (adimensionnelle) de la pluie et on compare cette courbe avec les courbes
limites séparant les domaines Soyans, Florac, et Vandenesse. Ces courbes limites sont
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au nombre de deux

1
L = 57
1) = 5680 1 2,332 -7

1
La(n) (5.8)

0,419 + 1,580’

avec 11 = d/ D, En pratique, on considére des durées de pluie allant de %D* abD,;on
calcule le gradex GG, des pluies associées a ces durées et a I'aide de I’équation (5.6), on
exprime ces gradex de pluie en gradex de débit et on les norme en les divisant par ()19
pour obtenir I' = G/, /Q10. On reporte ensuite les couples (7, T').

& Exemple. — Sur un petit bassin-versant du Chablais, d’une superficie de 2 km?,
I'étude des pluies a donné les estimations suivantes du gradex des pluies: G, = 3,7
mm pour d = 1 h, 4,8 mm pour d = 2 h, 5,5 mm pour d = 3 h, 7,0 mm pour d = 6
h, 8,9 mm pour d = 12 h, 11,4 mm pour d = 24 h. Une estimation empirique du débit
décennal donne Q19 = 3 m?/s et une durée spécifique ds = 1 h. On pose D, = d;;
le gradex des pluies est transformé en gradex de débit a 'aide de la relation (5.6). Cela
fournit Gp(d = 1) = 2,05 m%/s, G,(d = 2) = 1,33 m®/s, Gp(d = 3) = 1,02 m%/s,
Gp(d = 6) = 0,65 m3/s, Gp(d = 12) = 0,41 m®/s, et G,(d = 24) = 0,26 m?/s. On
forme ensuite la suite (n;, I';), avec n; = d;/D, et I'; = Gp/ng, oud; = 1,2, 3,6,
12, et 24 h. On reporte sur la figure 5.16 la courbe empirique I' = I'(n) et les limites
entre les comportements de type Soyans, Vandenesse, et Florac. On note qu’aux temps
courts (n < 2), le comportement est de type Soyans, mais qu’aux temps longs (n > 2)
le comportement se rapproche de celui de Florac, voire Vandenesse. Comme on se situe
dans un contexte de petit bassin-versant de montagne, caractérisé par des crues rapides
et breves, le comportement retenu est de type Soyans.

Loi débit-fréquence

La loi débit-fréquence est fondée sur la méthode du gradex dans sa version dite
« formulation esthétique ». Le quantile de débit suit une loi de Gumbel pour les petites
périodes de retour (T" < 20 ans), puis la « formation esthétique » (pour 20 < T <
1000):

Q(gv d) _ A(n) InT + B(n) pour 0,5 < T < 20 ans, (5.9)
Q(T, d) C_Q*Q(loa d) = C(n)ln (1 + éEZ;T 1_010> pour 20 < 7T" < 1000 ans,

(5.10)

ou Q(10, d) est le débit décennal obtenu a I'aide de 1'équation (5.9). Les fonctions A4,
B, et C sont de la forme f(n) avec

fn) = ————+as.

a1n + a9
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Figure 5.16 — Variation de I' en fonction de 1 pour le Chablais. La courbe continue
représente la courbe empirique I' = T'(7) pour un poste du Chablais — simple interpo-
lation linéaire des points (7;, I';) — et les courbes a tiret représentent les courbes L; et
Lo.

Les lois (5.9-5.10) sont valables aussi bien pour des débits moyens @, (d) ou des dé-
bits seuils Q;(d). Les parametres des lois changent selon le type de variable employée.
Les tableaux 5.5.2 et 5.5.2 fournissent les valeurs des parameétres selon que, respective-
ment, 'on opte pour un débit moyen @Q),,, ou un débit seuil Q5.

Tableau 5.5 — Valeurs des coefficients «; pour les fonctions A, B, et C' lorsqu’on
cherche a calculer le débit moyenné sur une période d.

Modele A B C

a1 a9 a3 a1 (6] Qa3 a1 a9 a3
Soyans 0,87 4,60 0 1,07 2,50 0,099 0,569 0,690 0,046
Florac 1,12 3,56 0 0,95 3,18 0,039 1,56 1,91 0,085

Vandenesse 2,635 6,19 0,016 1,045 2,385 0,172 1,083 1,75 0

Tableau 5.6 — Valeurs des coefficients «; pour les fonctions A, B, et C lorsqu’on
cherche a calculer le débit seuil sur une période d.

Modéle A B C

aq P o3 a1 o2 o3 e31 o2 ]
Soyans 2,57 4,86 0 2,10 2,10 0,050 1,49 0,660 0,017
Florac 3,05 3,53 0 2,13 2,96 0,010 2,78 1,77 0,040

Vandenesse 3,970 6,48 0,010 1,910 1,910 0,097 3,674 1,774 0,013
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Hydrogramme synthétique

La formulation QdF en termes de débit seuil permet d’obtenir un hydrogramme
de crue synthétique. Cet hydrogramme est par ailleurs consistant avec les quantiles de
débit moyen @Q);,,. L’hydrogramme pour une crue de période de retour 1" est défini par:

- t < ds, une courbe (droite) de montée: Q = @Q,,t/ds. Il y a une augmentation
linéaire du débit () jusqu’au temps ¢ = d ou le débit atteint le débit de pointe
Qp 5

- t = dg, un débit de pointe: Q, = Q. (T, dp). C'est le débit moyen instantané,
donc un débit observé sur une durée d, = 1 s = 0,0003 h;

- t > ds, une courbe de décrue: Q = Qs(7T, d). Le débit a I'instant ¢ se calcule a
partir du débit seuil dépassé sur une durée d =t — dsQ/Q,.

t(h

Figure 5.17 — Principe de formation de ’hydrogramme.

Modeéle QdF convergent

Il existe une variante de cette méthode appelée « modele QdF convergent », qui
suppose que le débit moyen vérifie la loi d’échelle (Lang & Lavabre, 2007):

_ @Qm(0T)

Qm(dv T) - M7

(5.11)

ou Qm0,T") correspond au débit de pointe (le débit moyen observé sur une durée
infiniment courte) et A un parameétre a caler. On renvoie a Lang & Lavabre (2007) pour
plus d’informations.
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5.6 Méthodes de transformation pluie-débit

Les débits dans les riviéres sont souvent des données peu disponibles: hormis pour
certaines grandes villes ou bien pour des sites avec un intérét hydroélectrique, il y a
peu de postes de mesures installés. Comme par ailleurs les débits peuvent varier de
facon substantielle le long des cours d’eau en fonction des apports par les affluents et
que les séries de données sont souvent courtes, il reste difficile d’estimer les quantiles
de débit en un point donné d’un cours d’eau. Il est dés lors trés tentant de contourner
cette difficulté en cherchant a relier les débits aux pluies qui sont censées les générer. En
effet, les pluies sont mieux connues, plus faciles a mesurer; leur distribution spatiale est
un peu mieux appréhendée que les débits et leur distribution temporelle se préte bien
a une analyse statistique de type théorie des valeurs extrémes. Trés tot les hydrologues
ont donc cherché a développer des modeéles de transformation pluie-débit qui visent a
reproduire la génération d’'une crue a partir de la pluie. Nous allons passer en revue
quelques-uns des modéles les plus connus

Comme toute simplification de la réalité, ce type de modélisation est limité par

- la complexité des interactions entre le sol, ’atmospheére, et ’eau;;
- le nombre de paramétres conceptuels qui sont introduits et qui rendent difficile
les procédures de calage.

Il y a en général deux sous-modeles dans un modele de transformation pluie-débit :

- un module de passage de la pluie brute (pluie précipitée) a la pluie efficace (pluie
participant a la crue). Cette transformation nécessite de connaitre les pertes dues
a linterception par les végétaux, la rétention dans le sol, le ruissellement direct,
etc.;

- un module de transformation de la pluie efficace en volume de crue. Cette trans-
formation nécessite de modéliser les différents processus de ruissellement, drai-
nage, et écoulement dans le cours d’eau jusqu’a 'exutoire.

Les différentes transformations sont basées sur des représentations le plus souvent
conceptuelles du fonctionnement du bassin-versant, avec parfois une approximation
physique du comportement réel.

Nous commencons par décrire une méthode trés simple dite « méthode ration-
nelle », qui a été utilisée des la moitié du x1x°® siecle. Ce modele calcule le débit de pointe
a partir du volume d’eau précipité et d’un temps caractéristique (temps de concentra-
tion). Nous voyons ensuite deux méthodes un peu plus élaborées: le modele SCS et sa
variante francaise SoCoSe. Ces méthodes calculent le débit a partir du volume d’eau
ruisselé, c’est-a-dire le volume d’eau précipité auquel on a retranché I’eau interceptée
par la végétation et 'eau infiltrée dans le sol. Nous décrivons ensuite un modéle concep-
tuel un peu plus complexe, ou le sol est modélisé comme un réservoir. Avec ce type de
modeéles, on entre véritablement dans le domaine des outils utilisables aussi bien pour
la prévision de crues que dans les calculs hydrauliques. Un modéle comme le modéle
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suédois HBV * a été par exemple utilisé en Suisse pour la prévision des crues sur le Rhin
jusqu’a Béle (Lindstrom et al., 1997).

Notons que nous ne parlerons pas ici des modeles spatialement distribués, qui af-
finent la description des crues en scindant le bassin-versant en plusieurs unités hydro-
logiquement homogénes. Le modele TopmoDEL développé par Beven et Kirby est 'un
des plus connus. La classe de modéles ORAGE, SOCONT, puis MINERVE a été développée
a 'EPFL pour décrire des crues sur des bassins-versants alpins (Bérod, 1994; Jordan,
2007) (on en verra une version trés simplifiée avec les modéles GR4 et GR4H). Ces
modeéles tiennent compte d’une multitude de processus hydrologiques pour évaluer
Papport des précipitations et leur effet sur la génération d’une crue: infiltration, évapo-
ration, interception par les végétaux, fusion de la neige et des glaciers. Le débit drainé
par une parcelle du bassin-versant est ensuite évacué par un cours d’eau; on parle de
routage de crue (flood routing). On peut alors utiliser des outils de calcul hydraulique
tels que les équations de Saint-Venant. Ce type de procédures sort du cadre de ce cours,
mais le lecteur peut se référer au cours d’hydraulique (master GC) ainsi qu’a des livres
spécialisés (Brutsaert, 2005).

5.6.1 Méthode rationnelle

La méthode la plus ancienne d’estimation du débit de pointe a partir des pluies
est appelée méthode rationnelle. La pluie est supposée d’intensité 7, constante sur une
durée t = t. et le volume de crue est proportionnel au volume de pluie. La réponse
en débit est un hydrogramme triangulaire, de durée 2¢. et de débit de pointe (),,. Le
volume de pluie est V), = t.i,,S. Le volume de crue est

1
‘/C =2X §th67

avec S la surface du bassin-versant. On suppose que le coefficient de proportionnalité
est C' (0 < C < 1), appelé encore coefficient de ruissellement de pointe. De I’égalité
Ve = CV), on tire

Qp = CipS.

Notons que i, est généralement exprimé en mm/h alors que @, est en m®/s. Pour que
la formule précédente soit dans ces unités, on modifie la formule de la facon suivante

Ci,S
Qp = TPG [m?/s]. (5.12)

4. acronyme du suédois hydrologisca byrans vattenbalansavdelning (service bilan hydrique
du bureau hydrologique).
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Figure 5.18 — Principe de transformation pluie-débit dans la méthode rationnelle.

Tableau 5.7 — Quelques valeurs guides de C' selon 'occupation du sol.

Type de surface C
zone urbanisée 0,7-0,95
zone résidentielle

lache 0,3-0,5
dense 0,5-0,75
parcs 0,1-0,2
pelouse

terrain meuble, peu pentu (i < 2 %) 0,05-0,2

terrain peu perméable et pentu (: > 5 %) 0,15-0,25

5.6.2 Méthode SCS

Cette méthode a été développée au cours des années 1960 au Soil Conservation
Service (SCS) de I'United States Forest Administration (USFA), ce qui explique son nom.
Elle s’applique pour les petits bassins-versants en milieu rural, sans observations.

Elle repose sur les quatre hypothéses suivantes:

- lorsque la pluie tombe, une partie est interceptée par la végétation. Il faut trans-
former la pluie brute P, en pluie utile P,

P, =P, —1I, (5.13)

ou [ est 'interception par la végétation (en mm).

- la pluie qui atteint le sol participe au ruissellement R(t) et a I'infiltration J(t)

- Le rapport entre 'eau ruisselée (R) et 'eau précipitée (P,) est égal au rapport
entre la quantité d’eau J(¢) infiltrée au temps ¢ et la quantité maximale d’eau
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Figure 5.19 — Schéma de la méthode SCS.

Jso que le sol peut recevoir quand il y a saturation

R _ I (5.15)
Py Joo
Cette hypotheése trés forte peut étre démontrée dans le cas ou la saturation dans
le sol au cours du temps suit une loi de Horton (variation exponentielle de 'in-
tensité d’infiltration) (Yu, 1998).
- linterception par la végétation est indépendante de la pluie utile et est reliée a
la capacité maximale d’infiltration

I=0,2J]s. (5.16)
C’est une loi empirique tirée des observations.

En combinant les équations (5.13) a (5.15), puis en servant de la relation empirique
(5.16), on tire la relation

R_ A
P, Pit s
De 1a, on déduit que la quantité d’eau ruisselée vaut
P (Py—0,2Jy)?

R

TP tJe P 108Js

Dans ce modéle, la quantité d’eau ruisselée dépend de facon non linéaire de la quantité
de pluie recue P, ; la relation est aussi fonction d’un seul paramétre (capacité maximale
d’infiltration du sol) J, qui doit étre calé (voir ci-dessous).
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Qp

tm = 0,375t tq = 0,625t

Figure 5.20 — Hydrogramme de crue dans la méthode SCS.

Cette pluie brute géneére une crue, dont le débit de pointe peut étre estimé en consi-
dérant un hydrogramme triangulaire (voir figure 5.20). Le volume de crue étant R, on
déduit que si t. est le temps de concentration, ¢,, le temps de montée (estimé ici a
tm = 0,375%.), on déduit

Sk mO,Zf—R [m?/s],

—9 2"
@ 3,6t m

avec S la surface du bassin-versant en km?, ¢, le temps de montée en h. Rappelons que
le facteur 3,6 provient de la conversion des unités en m3/s. Le temps de concentration
doit étre estimé indépendamment, par exemple a ’aide d’une des relations proposées
au § 5.2.2.

Reste a évaluer le seul parameétre du modéle, qui est la capacité maximale d’infil-
tration du sol) J. Ce paramétre dépend de I’état d’humidité dans le sol et du type
d’occupation des sols. Le bassin-versant doit étre subdivisé en parcelles de surface S; a
interception J; homogeéne. L’interception moyenne du bassin-versant est alors calculée

par une moyenne pondérée
J. 00 J, %
s 2%

Chaque valeur de J; est évaluée a partir du coefficient de ruissellement C;,

1000
J=254(———10).
<Cn )

5.6.3 Méthode Socose

La méthode Socose est une variante francaise de la méthode SCS, développée par
Claude Michel au Cemagref (Oberlin, 1980; CTGREF, 1980). Elle a été ajustée sur 5000
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Tableau 5.8 — Quelques valeurs guides de C), selon le type de sol et la densité de
la végétation. Sol A: sol sablonneux (trés perméable); sol B: sol sableux ou limoneux
(perméable); sol C: sol argileux a limoneux (peu perméable); sol D: sol argileux (trés
peu perméable). D’apres (Ponce, 1994).

culture végétation solA solB solC solD
jachére 77 86 91 94
céréales lache 63 74 82 85
dense 61 73 81 84
légumineuse lache 64 75 83 85
dense 55 69 78 83
prairie 30 58 71 78
bois lache 45 66 77 83
dense 25 55 70 77
pistes, routes 72 82 87 89

crues survenues dans 187 bassins-versants de 2 4 200 km?. Par rapport a la méthode
SCS, elle introduit les expressions suivantes pour le parameétre de rétention J et la durée
spécifique ds (en remplacement du temps de montée)

[ P,
Ind, = —0,69 4+ 0,32In S + 2,24/ —%—,
PlOta
S [P,
=2 21ln — — 544/ =%
J 60 + nL 5 P’

avec J exprimée en mm, ds en h, P, le cumul annuel moyen de précipitations (en
mm), Pjg la pluie maximale journaliére décennale (en mm), ¢, la température moyenne
annuelle réduite au niveau de la mer (en °C), L le chemin hydraulique le plus long
jusqu’a I’exutoire, S la surface en km?- avec S > 2 km?- (voir figure 5.21).

La méthode propose un hyétogramme de projet

t
5 3/7
t d
[(ds) 2T 2}
valable pour 0 < t < 2d; qui représente la pluie d’intensité maximale. La pluie to-
tale durant I'événement de durée d, est donc P(2ds) = a(1,25ds)'~°. Le passage de

la pluie locale a la pluie moyenne sur le bassin-versant se fait a ’aide du coefficient
d’épicentrage k,. La méthode Socose introduit donc un indice k appelé « indice pluvio-

métrique »
24b Py

304/ds
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avec b le coefficient de Montana (P = at'~?). La méthode Socose définit également
deux parametres

_J
k(1,25d,)1-b

et ¢ est un parametre proche de 1, qui est déterminé a partir d’'une abaque (voir fi-
gure 5.22). Le débit de pointe décennal est

p=1-072

kS 0?

3
(25,0 15— 12p ™ /8]

Qo =¢

L’hydrogramme associé a cette méthode a pour équation

274

Q(T) = Qmm’

avec 7 = 2t/(3ds) un temps adimensionnel.
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Figure 5.22 — Valeur du coefficient £ en fonction du parameétre p et du coefficient de
Montana b. D’aprés (Oberlin, 1980; CTGREF, 1980).
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5.6.4 Meéthode de Zeller

La plupart des modeles qui sont décrits dans ce chapitre sont dits conceptuels car
ils schématisent la réponse hydrologique a ’aide d’opérateurs mathématiques censés
décrire des fonctions du bassin-versant (ruissellement, infiltration, évapotranspiration,
restitution, écoulement) de facon simplifiée. On pourrait attaquer le probléme en consi-
dérant le sol comme un milieu poreux et en se servant des équations d’écoulement
dans les milieux poreux (p. ex., équation de Dupuit-—Forchheimer), et on parle alors de
modele physique. De tels modeles donnent rarement de bons résultats, et la puissance
de calcul nécessaire est colossale. Toutefois, sur de petits surfaces, I'utilisation de loi
physique permet d’obtenir des ordres de grandeur corrects. On va illustrer ici cette pos-
sibilité avec la méthode de Zeller (Zeller, 1981), que l’on justifiera a ’'aide d’'un modéle
de ruissellement ou d’écoulement souterrain (Beven, 2020).

Base phénoménologique

On examine le parcours de I’eau entre le moment ou elle tombe sous forme de pluie
avec une intensité constante I et le moment ou elle quitte le bassin-versant (voir figure
5.23). Pour cela on va considérer deux phases (Henderson & Wooding, 1964; Beven,
1982; Sloan & Moore, 1984; Loukas & Quick, 1996; Beven, 2020):

- une phase d’écoulement sur un versant de pente « et longueur L,,. L’écoulement
est soit une nappe de surface (ruissellement) sur un sol saturé ou bien un écou-
lement hypodermique;

- une phase d’écoulement dans le cours d’eau qui draine le bassin-versant. La
pente de la riviere est ¢ et sa longueur L,.

Pour I’écoulement en nappe, qu’il soit de surface ou souterrain, on peut considérer que
I’écoulement a une épaisseur h(x,t) et une vitesse u(x,t) qui est liée — en premiére
approximation - a la hauteur h: u = ah?, avec a et b deux coefficients qui dépendent
de la nature de I’écoulement

- par exemple, a = C'v/a et b = 1/2 si on considére un écoulement de surface et
une loi de Chézy avec un coefficient de frottement C' (typiquement C' = 1,3 — 2
m'/%/s);

- par exemple, a = Ky sina/hg et b = 1 si on considére un écoulement de surface
et une approximation de Darcy (tirée de 1’équation de Dupuit-—Forchheimer)
avec une conductivité hydraulique Ky (typiquement Ky = 100 — 1000 mm/h)
et hg une profondeur de saturation (hg ~ 1 m).

On va s’intéresser ici a définir des temps caractéristiques de ruissellement et d’écou-
lement dans la riviére. La méthode permettrait de faire un calcul analytique complet
ou de procéder a une résolution numérique des deux équations de conservation de la
masse, et donc de calculer un hydrogramme en fonction d’une pluie, mais on se conten-
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Figure 5.23 - Ecoulement souterrain et alimentation d’un cours d’eau. Une riviére
s’écoule dans la direction = (normale a la figure) et draine des pentes latérales. Sur ces
pentes, la pluie ruisselle sous forme d’une nappe d’eau, ou bien s’infiltre et s’écoule
sous la forme d’un écoulement souterrain. La section mouillée dans la riviére est notée
A, le périmetre mouillé est .

tera ici d’expliquer les grandes lignes du calcul analytique et de déterminer les échelles
de temps.

Ecoulement de versant L’écoulement sur le versant vérifie I’équation de conser-
vation de la masse:

Ooh  Ohu

oh  onu o 1
i , (5.17)

avec € un coefficient de stockage effectif; on prendra ici e = 1. Comme on a u = ahb,
on déduit:

oh oh B b
5 + c(h)g = T avecc(h) = a(b+ 1)h°.

Il s’agit d’'une équation d’advection non linéaire avec une vitesse d’advection c(h). On
peut la résoudre en la mettant sous forme caractéristique:

dh dz
— =1Ilelongde — =
elongde -

" c(h) = a(b+ 1)h°,

5. c.-a-d. on remplace une équation aux dérivées partielles par un systéeme de deux équa-
tions différentielles ordinaires. Voir cours de master GC.
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et on suppose que le versant est initial sec (h(z,0) = 0) et qu'il n’y a pas d’eau arrivant
de 'amont de zg (h(29,t) = 0). On a donc h = It le long de la courbe caractéristique:

z= /a(b + DAt + 2 = aI®t 0 + 2y, (5.18)

avec z1 constante d’intégration (telle que quand z = z; on ait A = 0). Cela implique
qu’en un point 0 < z < zg (avec le repére choisi a la figure 5.23 on a 29 = L,):

- on a une croissance linéaire de la hauteur h: h(z,t) = It jusqu’au temps t, tel
que aIbtéjb =2z0— 2;

— pour t > to, la solution devient stationnaire:

oo — o)\ /()
h(z,t) = hoo(2) = (I(OG)> .

Si on identifie la longueur du versant comme L, = zp, la hauteur de la lame d’eau a
son arrivée dans la riviére est h, = (IL,/ a)l/ (1+5) En ce point, le débit varie en loi
puissance du temps

@ (t) = uphy = ahl™ = a(1t)**°

pour ¢ < s, et devient constant pour ¢ > fo
@o(t) = ahX? = Iz.

Le temps que met une parcelle d’eau tombant en 2y pour atteindre la riviére est le temps
lié 4 la courbe caractéristique émanant de zp = L,,. C’est aussi le temps critique ¢, (0)

20 )1/(1+b)

= (5.19)

ty = too(0) = (

Ecoulement dans la riviere L’écoulement dans le cours d’eau vérifie I'équation
de conservation de la masse:

0A  0Q
ot T or T 2qy, (5.20)

ou A est la section mouillée, () le débit d’eau transitant par cette section, et ¢, = h,u =
ahl P est le débit latéral (le coefficient 2 vient du fait que 'on considére que chaque
versant de part et d’autre de la riviére contribue de facon égale au débit (). Le débit @)
peut étre relié a la section mouillée A a I’aide de la loi de Manning-Strickler:

AViRY?

Q= g’ (5.21)
n

avec n le coefficient de Manning (typiquement n = 0,025 — 0,1 s/m!/3) et R;, =

A/x le périmétre mouillé. Pour les riviéres naturelles, une bonne approximation de R},

est R;, = kv/A avec k un coefficient de forme (sans dimension, typiquement dans la
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Figure 5.24 — (a) Courbes caractéristiques (5.18). La courbe en trait gras correspond a
la trajectoire z = aI’t' T d’une particule émise de zy qui va en direction de la riviére;;
le domaine en aplat de couleur représente le domaine contro6lé par la condition initiale
h = 0; dans ce domaine, la hauteur varie linéairement h(x,t) = It. Dans le domaine
au-dessous de la courbe z = aI’t'*?, la hauteur est constante et égale a hoo(2). (b)
Variation de la hauteur d’eau en z = 0 en fonction du temps. Calcul pour des valeurs
arbitrairesa = 11/s,b=1,1 = 1 m/s, et zp = 3 m.

fourchette 0,25-0,40). Mise sous forme caractéristique, I’équation de conservation de
la masse (5.20) nous dit:

dA dz 8@ 4k2/3A1/3\/i
at WO T Ha T3 g 2
On a donc a intégrer:
2a
dA 14 g ¢ < I sit <
dt ZoSit > too Ac+ 2120t — too) sit > too,

avec A, la section mouillée au temps .. Les caractéristiques sont donc des courbes

<2all+b> 1/3 g4(5+b)/3

/4]{2/3141/3\@(% 4 k2/3\/i 5 51 sit <t
r—xr1 = ——dt = -
3 n 3 n 3(Ap + 21 20(t — too))*/3
Ly S+ 20 20(t — t)) sit > too,
8[20
(5.24)

avec 1 une constante d’intégration (que l’on prend arbitrairement égale 4 0) et Ly =

Ler — 34Y3 /(81zp) une autre constante d’intégration. On a défini une longueur cri-
tique de parcours qui correspond a la distance parcourue au temps o :

42 o] alb+!
Loy = ——~— i3 7 =4 56+0)/3, 5.25
TG (i (5.25)
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En prenant la longueur de la riviére jusqu’a 'exutoire L, et en inversant I’équa-
tion (5.24), on peut calculer le temps ¢,, que met une parcelle d’eau pour parcourir la
longueur L, :

545
+
(b+5)L,n
- 3 [alb+1
ty = Vik?/3 §f er (5.26)

1 [ 93/4 L, — L 3/4,,3/4 A,
sM4>Lmtm+< ( )

2\ BBk 21
Comme précédemment, on peut montrer qu’il existe un débit limite pour ¢ > ¢,
Qoo(x) = 2qur = 2120

et que pour t < t,, le débit () varie en loi puissance du temps (obtenue en combinant
la loi de Manning-Strickler (5.21) et I’évolution (5.23) de la section mouillée A).

Le temps de concentration sera, par définition, égal a la somme des temps de par-
cours du versant et de la riviere:

te =ty + L. (5.27)

Application numérique Prenons par exemple une pente longue de L, = zp =
500 m et inclinée 4 ov = 30 %, avec une rugosité de C' = 1,5 m'/?/s. Il tombe une pluie
I = 20 mm/h (a convertir dans les bonnes unités) pendant deux heures. L’équation
(5.19) nous dit que le temps caractéristique pour atteindre un régime stationnaire est
t, = 4055 s, soit un peu plus d’une heure. Pour ¢ > ¢, 'eau ruisselle le long des pentes
avec un débit (par unité de largeur) constant: ¢, = Izg.

On suppose qu’apres la phase de ruissellement, 'eau s’écoule dans un torrent de
pente i = 5 %, de longueur L = 1 km, avec un facteur de forme £ = 0,3 et une rugosité
n = 0,05 s/m'/3. D’aprés I’équation (5.26), le temps nécessaire ¢, = 1032 s. Le temps
de concentration est {. = 1032 + 4056 = 5088 s, soit un temps inférieur a celui de la
pluie. Comme la méthode de Zeller le suggére ci-dessous, il faut reprendre une intensité
de pluie un peu plus forte sur un temps un peu plus court, et réitérer le calcul.

Principe de la méthode de Zeller

Nous exposons ici le principe de la méthode proposée par Zeller (1981) pour estimer
le temps de concentration et le débit pour un petit bassin-versant. Par « petit », il faut
entendre que I'on peut identifier un cours d’eau drainant des pentes et le découper en
zones homogeénes sans que le travail devienne trop fastidieux. La méthode de Zeller
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doit étre vue comme un canevas et non comme un cadre rigide. C’est une méthode
itérative:

1. onsuppose que 'on dispose des données de pluie, notamment de la loi de Montana
(5.1) pour une période de retour;

2. on se fixe une durée d de précipitation et on calcule I'intensité correspondante
al’aide de la loi de Montana (5.1);

3. Zeller (1981) s’est servi de la formule d’Izzard pour estimer le temps de parcours
t, sur les versants (par ruissellement), mais on peut se servir d’autres formula-
tions, par exemple de I’équation (5.19) obtenue ci-dessus;

4. on en déduit un débit arrivant dans le cours d’eau. Dans la méthode originale,
Zeller (1981) applique une méthode rationnelle (5.12) en écrivant que le débit
est généré par une surface S avec un coefficient de ruissellement C' est Q =
CI15/3,6;

5. connaissant le débit a travers une section A, on peut en déduire la vitesse moyenne
u = @Q/A, etdelale temps ¢, que met I’eau a parcourir un trongon ¢, de riviére:
tr = Ly /u.

6. le temps de concentration est défini comme t. = ¢, + t,;

7. on compare ce temps avec la durée d de la pluie;

8. sid et t. sont raisonnablement proches, on arréte le calcul sinon on itére avec
une valeur différente de d jusqu’a observer la convergence souhaitée.

5.6.5 Modeéle réservoir GR4
Principe

Les modéles a n réservoirs et p parametres sont des représentations conceptuelles
du fonctionnement d’un bassin-versant qui généralisent le modele SCS. La principale
nouveauté est qu’on considére maintenant que le sol agit comme un réservoir et qu’en
conséquence, une partie de ’eau infiltrée est restituée avec un temps de latence au cours
d’eau en crue. Nous considérons ici un des modéles qui offre le meilleur compromis
entre simplicité et performance: il s’agit d’'un modeéle a un réservoir et 4 parameétres;
ce modéle est appelé GR4 (pour Génie Rural a 4 paramétres) et fait partie d’une classe
de modeles conceptuels de transformation pluie-débit développés par Claude Michel
au Cemagref (Rojas-Serna, 2005). I offre une approximation satisfaisante des petits
bassins-versants rapides (Graff, 2004). Il existe plusieurs formulations de ce modéle,
qui généralement se distinguent notamment par le pas de temps employé: les modeles
de type GR4H a pas de temps horaire pour les crues rapides et les modéeles GR4J a pas
de temps journalier pour les crues lentes (Perrin et al., 2001, 2003; Oudin et al., 2008).
Ici, nous ferons une présentation générale indépendante du pas de temps (on emploie
donc des équations différentielles au lieu des équations de bilan employées dans les
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modeles d’ingénierie). La formulation est adaptée a de petits bassins-versants de mon-
tagne (Graff, 2004) ou I'interception de la pluie par la végétation se fait de fagon simple
et ne nécessite pas de connaitre I’évapotranspiration; pour d’autres bassins-versants,
il faut prendre un modéle GR4H ou GR4J avec prise en compte de I’évapotranspiration
(Perrin, 2000; Perrin et al., 2003).

dP = Idt
/ / / / |

¢ C \

IS !

\

X2 1

1
! t

X4
dR = XdP
(1 - X)dP
‘/7
dH = X3Vdt

Figure 5.25 — Schéma de principe d’'un modéle réservoir GR4.

Le modéle prend en compte quatre phénomenes (voir figure 5.25):

— les pertes initiales (interception par la végétation) sont en général faibles. On les
prend égales a une valeur Xs (en mm);

- une fois que la capacité d’interception est saturée, il y a ruissellement. La quan-
tité d’eau ruisselée par unité de temps est liée a la pluie précipitée dP = I(t)dt

dR(t) = X1dP, (5.28)

avec X un coefficient sans dimension (exprimé en %);

— dans le méme temps dt, une partie de 'eau (1 — X7)Idt est infiltrée et stockée
dans un réservoir dont le volume initial est nul V(0) = 0; V est un volume
par unité de surface, il s’exprime donc en mm. Une partie du volume stocké est
restituée par des écoulements hypodermiques au cours d’eau

dH(t) = X3V (H)dt, (5.29)

avec X3 un taux de vidange linéaire (exprimé en %/h);
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- le temps de montée t,,, de I'hydrogramme est noté X, (en h). On suppose que
I’hydrogramme est symétrique, donc t; = X4. La lame totale d’eau transmise
au cours d’eauestT = R+ H.

Les valeurs moyennes des coefficients X7, X2, X3, et X4 sont données dans le
tableau 5.9.

Tableau 5.9 — Valeurs moyennes des coefficients pour les différents bassins-versants.
Adapté de (Graft, 2004).

Nom Surface Région X1 Xo X3 Xy R/T
km? % mm %h h %
Groupe 1
Laval 0,86 Alpes-du-Sud 57,6 7,28 24 0,38 91
Erlenbach 0,64 Suisse Centrale 46,5 13,6 16,2 0,63 53
Groupe 2
Rimbaud 1,5 Alpes-du-Sud 354 40 2,28 1,07 57
Latte 0,19 Massif Central 14,4 75,4 3,96 0,78 41
Sapine 0,54 Massif Central 15,7 71,1 0,90 1,03 34
Groupe 3
Rietholzbach 3,31 Suisse Centrale 26,5 17 2,82 1,11 41
Lumpenenbach 0,93 Suisse Centrale 22,6 12,2 9,6 0,5 41
Vogelbach 1,55 Suisse Centrale 31,4 11,5 5,88 0,64 56
Brusquet 1,08 Alpes-du-Sud 13,8 224 0,72 1,63 54

Il reste une derniere opération pour passer de la pluie au débit. Sur le plan physique,
ce passage est complexe car il implique des processus trés différents: ruissellement le
long du sol, drainage des sols, propagation d’une intumescence de crue le long d’'un
cours d’eau a la géométrie plus ou moins complexe (cours d’eau principal et tributaires),
etc. Mathématiquement, on remplace tous ces processus par une « boite noire », qui
permet de relier le débit a la pluie nette par 'intermédiaire d’une fonction de transfert.
L’idée de base est calquée sur la théorie de la réponse linéaire (Dooge, 1973; Brutsaert,
2005). On peut 'exprimer de la fagon suivante : on considere une pluie unitaire de durée
infinitésimale (c’est-a-dire la quantité de pluie est de 1 mm et la durée est infiniment
petite); dans le cadre de la théorie de la réponse linéaire, cette impulsion initiale est
une fonction de Dirac §. Cette pluie se produisant a 'instant £ = 0 génere une crue
unitaire, dont ’hydrogramme est appelé I’ hydrogramme unitaire instantané. La figure
5.26 montre I'allure de ’hydrogramme pour le modéle étudié ici; son équation est

q(t) = 27X4772 pour 0 <n <1,

3
at) = 55,2~ pourl<n <2,
q(t) = 0 pourn > 2,
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avec ici 7 = t/X4; l'unité de ¢ est 1/s. La fonction g est aussi appelée fonction de
transfert car elle permet de passer d’'une pluie quelconque au débit induit par cette pluie.
Le choix de cette fonction est arbitraire, mais il doit satisfaire la contrainte [, ¢(¢)dt = 1.
Physiquement, on peut interpréter la fonction de transfert ¢ comme une fonction qui
étale le volume de pluie nette sans en changer son volume total.

15”

q(n)

051 7

0.0 0.5 1.0 15 2.0
n=t/X4

Figure 5.26 — Hydrogramme unitaire ¢(7) d’'un modéle réservoir GR4.

Comme le schématise la figure 5.27, une pluie complexe peut étre décomposée en
une succession d’impulsions. En effet, on peut par définition écrire

P(t) = / I(7)dr,

ou 7 est une variable d’intégration. On peut interpréter /(7)dr comme pluie de durée
d7, qui vaut [ fois la pluie unitaire §(¢ — 7). Comme une pluie unitaire provoque une
crue unitaire ¢(¢ — 7), la pluie I(7)dr provoque une crue élémentaire I(7)q(t — 7)dr.
Comme le systéme est supposé linéaire, la réponse totale du systéme est la somme de
toutes les contributions élémentaires. En intégrant sur le temps et en multipliant par
la surface S du bassin-versant, on déduit le débit résultat de la pluie P()

Qt) = aS/O I(7)q(t — 7)dT, (5.30)

ou S est ici exprimé en km? et @ = 1/3,6 (comme pour la méthode rationnelle, la
conversion des unités pour aboutir 4 des m®/s nécessite d’introduire ). Cette opération
est un produit de convolution entre I'intensité nette I et la fonction de transfert q.
En pratique, la pluie n’est pas une fonction continue, mais une succession de valeurs
discrétes (un histogramme); il est alors d’'usage de remplacer I’équation (5.30) par un
produit de convolution discret; c’est un point que nous n’aborderons pas ici. Dans le
modeéle GR4, ce n’est pas la pluie I que ’on va utiliser, mais la lame d’eau T représentant
la somme du volume d’eau ruisselée et du volume d’eau restituée apres infiltration et
stockage dans le sol-réservoir.
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P Q

@

(b)

dr

Figure 5.27 — (a) Réponse a une impulsion de pluie. (b) Décomposition d’une pluie
complexe en une série d’impulsions élémentaires.

Application

On va examiner ici la solution dans le cas d’une pluie d’intensité constante pendant
une durée t.

Le bilan hydrique dépend du niveau dans le réservoir. Le volume V' obéit a I'équa-
tion v iP
—=-X3V({t)+ (1 —-X1)—. 5.31
" sV (1) + ( g (5.31)
Considérons une pluie d’intensité constante I = dP/dt = I, qui commence a
t = 0 et s’arréte a un instant (. Durant les premiers instants, la pluie est interceptée.
Jusqu'au temps t; = Xo/Ij, il n’y a pas d’eau qui atteint le sol; on suppose que t1 < t.
Pour ¢ > t1, 'eau touche le sol, commence a ruisseler et a s’infiltrer. La résolution de
I’équation (5.31) fournit
1-X5
V(t) = [n—— L= (=t)Xs ((t—t1) X5 _ 1)
0= I ( )

Le flux d’eau restituée au torrent a 'instant ¢ty > ¢t > ¢1 est donc

T = X3V + X1y = I ((1 — Xl)e_(t—tl)XS(e(t—tl)X3 — 1)+ Xl) .

ATinstant ¢y, la pluie s’arréte. Le niveau dans le réservoir diminue selon I’équation

vt = -xv o)
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avec pour condition initiale V' (tg) = Vp = Io%e_(to_“))(3 (eto=t)Xs _ 1) La

solution est
V(t) = Voe~ (t—t0)Xs

Le flux total d’eau restituée au torrent a I'instant ¢ > t( est donc
T = X3V = X3Vpe (-t Xs,

Le débit résultant est obtenu par le produit de convolution (5.30) en remplacant 1

parT":
t
Qt) = aS/ T(7r)q(t — 7)dr.
0
En changeant la variable d’intégration, on obtient la relation suivante

t
Qt) = aS/O T(t —7)q(7)dT,

qui peut s’intégrer facilement numériquement (et peut s’intégrer a la main, mais plus

laborieusement).

Q (m’/s)

T (mm)

t (h) t (h)

Figure 5.28 — (a) Variation de la lame d’eau T. (b) Hydrogramme résultant. Calcul
effectué avec: Iy = 50 mm/h pendant ¢ty = 1 h; paramétres du bassin-versant: § = 1
km? X1 =8% Xo=0mm, X3=0,1h"LetX,=1h

5.6.6 Modele réservoir GR4J

Principe

Le modéle GR4J développé par Charles Perrin est une évolution du modéle GR3]
(Edijatno & Michel, 1989). Il s’agit d’un modéle & deux réservoirs et quatre parametres.
En entrée, il nécessite une série temporelle de précipitation P et une d’évapotranspira-
tion E. Cette derniere donnée étant le plus souvent inconnue, il faut 'estimer a I’aide
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de formules empiriques (Oudin et al, 2005, voir p. ex.). Il fournit le débit journalier
moyen (). Quoiqu’initialement développé pour un pas de temps journalier, il peut se
décliner avec une base de temps horaire (GR4H).

La figure 5.29 montre le principe du modele. Il y a deux réservoirs:

— le réservoir de production: il correspond d’une part a un effet tampon représen-
tant les échanges d’eau entre la végétation, le sol, et ’atmosphere, et d’autre part
a l'infiltration d’eau dans le sol. La taille de ce réservoir est X; [mm]. Le niveau
d’eau dans le réservoir est S [mm];

— le réservoir de routage: il sert a étaler le volume de crue. Sa taille est notée X3
[mm], et le niveau d’eau est R [mm)].

Les étapes du calcul sont les suivantes.

1. Initialement, au cours d’une journée, le bassin-versant subit une pluie P et de
I'évapotranspiration E. Si P > FE, alors il existe une pluie nette P,, = P — E, et
I’évapotranspiration est étanchée: F,, = 0. Si au contraire P < F, alors P, =0
et I’évapotranspiration nette est £, = F — P.

2. Une fraction de la pluie nette s’infiltre dans le sol. Cette fraction notée Ps [mm]
est d’autant plus importante que le réservoir est vide. On suppose donc que pour
une pluie élémentaire d P,,, une fraction d P; se dirige vers le réservoir dont S/ X
sert de jauge de remplissage:

S 2
e (1 (2) ) ar

et le réservoir voit son niveau augmenter:
dS =dP;.

L’équation différentielle du remplissage est donc

ds

1T (S/x2 (5/X1)2 =dPp,.

Si S), désigne le niveau d’eau dans le réservoir le jour précédent et S le nou-
veau niveau, on a

Skt1 P
[arctanhs} =
1]s, X1

En simplifiant®, on obtient:

Sk + X1 tanh(Pn/Xl)
1+ Sktanh(Pn/Xl)/Xl

Sk+1 =

tanh a + tanh b

6. On se sert de I'identité tanh(a + b) = T+ tanhatanh b’
anh a tan
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3. On fait le méme type de calcul avec ’évapotranspiration. Le niveau du réser-

voir diminue du fait de ’évapotranspiration, or celle-ci dépend du niveau du
réservoir. On définit une évapotranspiration au niveau sol/réservoir E, et on re-
lie empiriquement sa variation temporelle au degré de remplissage du réservoir
et a ’évapotranspiration nette:

S (o 5 s,
Au bout de 24 heures, le réservoir a vu son niveau évoluer:
1 — tanh(E, /X1)
Skt = 1T = 8./, ) tanh( B/ X0
k 1

On déduit que la pluie nette qui s’est infiltrée en 24 h est:
(X? — S?) tanh(P,/X1)
X + Sitanh(P,/X1) ’
et que la quantité d’eau qui s’est évaporée est:
Sk(2Xy — Sg) tanh(P,,/X1)
X1 + (X7 — Sg) tanh(P,/X7)"

La variation totale du réservoir tient compte des deux processus:

Sk—i—l =S5, — FEs+ Ps.

Py = Sp41— Sk =

Es = Sk+1 _Sk =

De I’eau percole du réservoir avec un taux S o S°. Perrin et al. (2003) proposent
la formulation empirique suivante pour estimer la quantité d’eau percolée

P _ - 4 5\
S 9 X; '

Le volume d’eau dans le réservoir varie en conséquence (en tenant compte de

tous les processus)
Sk:—i—l =S, — P, — FE,+ P,.

La lame d’eau qui est redirigée vers le cours d’eau est donc
P. =P, —P;+ PF..

Afin d’avoir un hydrogramme avec une montée et une décrue réalistes, les concep-
teurs du modeéle supposent que le flux P, se scinde en deux composantes:
- une petite fraction (10 %) est associée a un hydrogramme unitaire HU1
[1/1] de la forme

)
@ (t) = mng‘/z pour 0 < n < 1,
)
() = 22— ) pour1 <y <2

C4Xy
q1(t) = 0 pourn > 2,
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avec 7 = t/X4 ou X4 est un temps caractéristique [jour]. On forme le
produit de convolution pour obtenir le débit ()1 ou plus exactement son
équivalent en hauteur d’eau [mm)]

Qi(t) = / q1(t — 7)Pr(1)dT.

- laplus grande fraction (90 %) est associée a un hydrogramme unitaire HU2
[1/j] de la forme

5
qo(t) = 2—X4773/2 pour 0 < n <1,
a0(t) = 0 pour > 1,

et on forme le produit de convolution pour former le débit Q9 [mm]

Qo(t) = /qQ(t —7)P,(7)dT.

6. Quoique les deux flux soient scindés dans le calcul, il existe en pratique un cou-
plage. Ce couplage entre flux est décrit a I’aide de la fonction

7/2
F = min (Xg, <)]§3> ) ,

ou Xs (avec possiblement X2 < 0) un coefficient d’échange, X3 [mm)] est la
taille du réservoir de routage et R [mm] le niveau d’eau dans ce réservoir. Le
niveau dans ce réservoir varie donc comme:

Ry11 = max(0, Ry, + Qo + F) — Q»

ou le débit retournant vers la riviere (), est supposé étre de la forme:

Le débit () transitant directement sans passer par le réservoir devient ()4 [mm] :
Qq = max(Qy + F, 0).
7. Le débit total est finalement:
Q = Qr + Qq [mm].

Attention, il s’agit d’'un débit en équivalent de hauteur d’eau [mm]. Pour obtenir le
débit moyen journalier, il faut multiplier par la superficie A du bassin-versant [km? ]
et diviser par I'unité de temps [1j = 86 400 s]:

AQ

Q=25 [m®/s]. (5.32)
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Tableau 5.10 — Valeurs moyennes des coefficients et plages de variation. Les valeurs
ont été calées a partir des données collectées sur 429 bassins-versants. Source: (Perrin
et al., 2003).

unité valeur médiane intervalle de confiance (2 80 %) signification

X7, mm 350 100 a 1200 taille réservoir sol

Xy mm -0,6 -3a5 coeflicient sol-routage
X3 mm 90 20 a 300 taille réservoir routage
Xy jour 1,7 1,1a2,9 temps caractéristique

Le tableau 5.10 fournit les valeurs typiques des parametres X a X4 calés par Perrin
et al. (2003).

Perrin (2002) ont proposé des formules empiriques pour les parametres X3 [mm]
et X4 [jour]:
X3 = 074(Pma:13 - Pmax)lhla

avec P4z la pluie moyenne mensuelle du mois le plus arrosé [mm] et P4, le pluie
moyenne mensuelle du mois le moins arrosé [mm], et

0,16
X4 = 0,5 + 1,3@,
Jy
avec A la superficie [km? ] du bassin-versant et P}, [mm] la pluie journaliére moyenne
sur le bassin-versant.

Pour aller plus loin

Il faut signaler la suite de modéles de type réservoir dans le langage R (Coron et al,
2017; Delaigue et al., 2018): airGR et airGRteaching. On se peut utilement se référer a
la page de présentation du code airGR.


https://hydrogr.github.io/airGR/
https://hydrogr.github.io/airGR/
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Figure 5.29 — Schéma fonctionnel du modéle pluie-débit GR4]J: au cours d’une journée
(24 h), le bassin-versant subit des précipitations (pluie P) et I’évapotranspiration. Si la
précipitation est de faible intensité, elle sera entiérement transformée en vapeur d’eau;
si elle dépasse un certain seuil lié a I’évapotranspiration FE, alors la pluie nette est
P, = P — E et 'évapotranspiration nette est I/, = 0. Une partie de la pluie nette s’est
infiltre dans le sol; on la note P; et le reste (P, — Ps ruisselle vers la riviére). L’eau
infiltrée est stockée dans le sol, qui agit comme un réservoir dont le niveau est S et
le volume maximal est X;. L’eau percole et est restituée a la riviére; on appelle P, le
volume d’eau émis par le réservoir. P, = P, + P, — P constitue donc la lame d’eau
totale qui ruisselle. Le modéle étale ce volume ruisselé avec: 10 % de la lame qui est
rapidement évacué vers la riviére (fonction de transfert HU1) pour former le débit (),
tandis que les 90 % restants sont dirigés vers avec un débit QJg. Il y a des échanges entre
le sol et ’écoulement de surface ainsi que le réservoir; ces échanges sont controlés par
la variable X5. Le débit émis par le réservoir est noté (), et celui transitant directement
vers la riviere est (4. La somme des deux forme le débit Q) = @, + Q4. D’aprés Perrin
et al. (2003).
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5.6.7 Méthode Shypre

Nous terminons ce chapitre avec une méthode de détermination des caractéris-
tiques des débits a partir d’'une connaissance fine des pluies. Cette méthode se nour-
rit des éléments vus a travers le chapitre, a savoir une détermination de la probabilité
d’observer une pluie P et un modéle de transfert pluie-débit (voir figure 5.30) (Eagleson,
1972; Freeze, 1980). Il existe de nombreuses variantes de cette méthode. On va l'illustrer
ici a travers la méthode Shypre, qui a été développée a partir des années 1990 en France
pour déterminer la relation intensité-fréquence des débits dans des bassins-versants
jaugés ou non (Arnaud & Lavabre, 2010). La méthode Shypre comporte deux étapes:

- al’aide d’un simulateur stochastique de pluie, on génére une chronique de pluies
au pas de temps horaire. C’est le simulateur développé par (Cernesson et al.,
1996), qui est utilisé dans la méthode Shypre, mais il existe d’autres algorithmes
(Oriani et al., 2014; Ailliot et al., 2015; Akrour et al., 2015; Breinl et al., 2017; Evin
et al., 2018). Le simulateur doit étre calé a partir de données d’un pluviographe.

- al’aide d’'une méthode de transfert pluie-débit (modéle Socose, GR3H, etc.), on
transforme cette chronique de pluies en chronique de débits, puis on traite sta-
tistiquement la série temporelle qui en résulte pour déterminer les quantiles qui
nous intéressent (p. ex. le débit centennal). L’avantage est qu’on peut générer
des chroniques de pluies sur de longues durées (p. ex. 1000 ans ou plus), et donc
de débits, ce qui permet d’aboutir a des estimations plus précises des quantiles
(p. ex. la crue centennale). On peut aussi calculer des moyennes d’ensemble et
des incertitudes de facon plus précise. Historiquement, c’est le modéle GR3H
(modéle a deux réservoirs et trois parameétres au pas de temps horaire) qui a été
utilisé (Aubert et al., 2014), mais d’autres modeles de transformation de pluies
en débits ont été implémentés.

convolution

probabilité de pluie
P Q=5SP®f

modele de ruissellement

f

Figure 5.30 — Schéma de principe. D’aprés (Eagleson, 1972).

Un peu comme un jeu de Lego, la méthode Shypre peut étre adaptée selon les ob-
jectifs poursuivis. Par exemple, la méthode Shyreg est calquée sur la méthode Shypre,
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avec deux différences (Arnaud et al., 2008; Fouchier, 2010; Arnaud et al., 2014; Aubert,
2012; Aubert et al., 2014):

— les pluies sont régionalisées en tenant compte de I'information pluviométrique
disponible et du relief. Une carte des précipitations pour la France métropoli-
taine a été obtenue a la résolution de 1 pixel = 1 km?. Le simulateur de pluie est
donc calé pour une région donnée (base données shyreg-pluie). La figure 5.6.7
montre la distribution de la pluie horaire et journaliére décennale sur la France
métropolitaine ;

— les débits sont déduits des pluies simulées a ’aide d’un modéle GR simplifié et
en tenant compte d’un abattement. La méthode a été appliquée a 1605 bassins-
versants pour former la banque de données Shyreg-débit.

La méthode Schadex développée par Emmanuel Paquet a EDF est construite sur une
approche similaire: une simulation des pluies sur la longue durée, la chronique des
événements sur un bassin-versant (circulation atmosphérique, formation et fonte du
manteau neigeux, infiltration, évapotranspiration), et le transfert sous forme de débit
a 'exutoire du bassin-versant (Paquet et al.,, 2006, 2013; Lawrence et al., 2014).

PM1_10 PM24_10
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I 40

U= 20
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T T T T T T
200000 400000 600000 800000 1000000 1200000

6000000 6200000 6400000 6600000 6800000 7000000
6000000 6200000 6400000 6600000 6800000 7000000

Figure 5.31 — Quantiles de pluie ponctuelle en mm de durée 1h et 24 h, de période
de retour 10 ans. Méthode SHYREG, base 2016 pluie journaliére. Source: INRAE et
HYDRIS hydrologie.

Des modéles couplant prévision des précipitations et transformation pluie-débit
ont également été construits sur le méme principe et sont utilisés pour la prévision des
crues. Par exemple, le modele Minerve est utilisé pour I’alerte hydrométéorologique
en Valais. Il est alimenté par les prévisions météorologiques a 72 h de Météo-Suisse

200000 400000 600000 800000 1000000 1200000

|- 400
— 350
— 300
— 250
— 200
— 150

— 100

== 50


https://shyreg.recover.inrae.fr/
https://www.crealp.ch/fr/accueil/outils-services/logiciels/rs-minerve.html
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(modele Cosmo-7) et de modéles a réservoir pour la transformation pluie-débit, qui
prennent en compte la présence de neige et de glace en altitude (Schaefli et al., 2005;
Jordan et al.,, 2010; Garcia Hernandez et al, 2011). La France teste un systéme de pré-
vision des crues éclair suivant le méme principe que celui exposé dans cette section
(Demargne et al., 2019).

Simulateur des pluies

Nous commengons par le calage du simulateur stochastique des pluies (Cernesson
et al., 1996; Arnaud & Lavabre, 2010). On suppose que 'on dispose d’une série de don-
nées au pas minimal d’une heure. Les hyétogrammes de cette série sont décomposés
en succession d’événements pluvieux et de périodes séches au pas de temps journalier
(voir figure 5.33):

— une période séche est une période sans pluie ou bien avec des pluies trop faibles
pour étre significatives (le seuil de délimitation est fixé a 4 mm);

- un événements pluvieux est une période de pluie soutenue délimitée par deux
périodes seches. Toutes les pluies journaliéres qui le composent sont supérieures
a 4 mm, et il existe au moins une pluie, dont le cumul journalier excéde 20 mm.
On considére qu’il y a NE événements par an.

Une fois que chaque événement pluvieux a été déterminé, on regarde sa structure a
I’échelle horaire. On distingue (voir figure 5.33):

— une averse est une succession de pluies horaires présentant un seul maximum
local. Chaque averse est caractérisée par sa durée (DA), son volume (VOL), le
volume relatif du pic de 'averse (RX) et la position relative de ce pic (RPX);

- un période pluvieuse est composée d’'une ou de plusieurs averses séparées par
des périodes seches. Il y a NG périodes plusieurs par événements pluvieux, et
chaque période comprend NA averses.

Le tableau 5.11 énumeére les lois de probabilité employées pour chaque variable et
le(s) paramétre(s) de calage.

Une fois le simulateur calé, on peut créer une série temporelle de précipitations au
pas de temps horaire:

1. on génére un nombre aléatoire NE d’événements pluvieux. Comme NE suit une
loi de Poisson, la durée entre deux événements pluvieux suit une loi exponen-
tielle, ce qui permet de caler dans le temps le début de chaque événement;

2. pour chaque événement, on tire aléatoirement un nombre NG de périodes plu-
vieuses et la durée DIA des périodes séches entre les périodes pluvieuses. On a
alors entierement positionné dans le temps les périodes au sein des événements
pluvieux;
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Figure 5.32 - Principe de détermination des événements pluvieux : un événement plu-
vieux est une succession de pluies journaliéres non nulles. Pour qu’il soit considéré
dans la statistique, il faut que toutes les pluies journaliéres qui le composent soient
supérieures au seuil de délimitation fixé a 4 mm et qu’il y ait au moins une pluie jour-
naliére supérieure au seuil de sélection de 20 mm.

3. pour chaque période pluvieuse, on tire aléatoirement le nombre NA d’averses,
leur durée DA et leur volume VOL;

4. pour chaque averse, on tire aléatoirement la position relative RPX du pic de
I'averse et I'intensité relative RX associée;

5. on distribue aléatoirement le reste du volume de I’averse de part et d’autre du
pic (on tire le volume de pluie associé a chaque pas de temps a partir de la loi
uniforme, et on classe par ordre croissant ou décroissant les valeurs afin de res-
pecter la croissance et la décroissance de part et d’autre du pic).
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Figure 5.33 — Recherche des périodes pluvieuses (au nombre de NG) et des averses
(dont le nombre est NA). A partir de la série temporelle, on peut déterminer les variables
du probléme: durée DA de chaque averse, durée DIA entre deux averses, volume VOL
de chaque averse, volume relatif du pic de averse (RX), et position relative (RPX) de
cette averse.

Simulateur des débits

Classiquement, la méthode Shypre se fonde sur le modéle GR3H. Ce modéele sup-
pose qu'une partie du transfert des eaux de ruissellement se fait par un écoulement le
long du cours d’eau principal. La méthode a été employée pour des bassins-versants de
5 km? 4 10 000 km?. Elle ne marche pas pour des bassins-versants karstiques (le Doubs
par exemple), des bassins-versants régulés par des barrages, ou des petits bassins-versants
de montagne pour lesquels la fonte nivale est un processus important dans la genese
des crues.

Nous présentons ici le modéle GR4H tiré du modéle GR4 vu précédemment au
§ 5.6.5, qui est adapté aux tout petits bassins-versants. Pour ce faire, le modele GR4
doit étre intégré afin de fournir le débit instantané @); au temps ¢; = ¢t en fonction
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Tableau 5.11 — Loi de probabilité associée a chaque variable et valeur typique du (des)
parameétre(s) de chaque loi.

variable loi de probabilité valeur du parameétre

nombre d’événements pluvieux NE loi de Poisson pve = 10

nombre de périodes pluvieuses NG loi géométrique png = 0,25

durée des périodes seches entre périodes loi géométrique pp;a = 0,2

nombre d’averse NA par période loi géométrique pna =0,5—0,7

durée DA de chaque averse loi de Poisson ppa =5—10

volume VOL de chaque averse loi exponentielle pyor = 0,1 —0,2

volume relatif RX du pic d’averse loi uniforme

position relative du pic loi normale prpx = 0,5 0rpx = 0,1 —0,2

du volume V}; et de la pluie horaire Py aux temps t; (k < i), avec 0t = 1 h le pas de
temps horaire du simulateur. Pour cela, il faut discrétiser I’équation (5.30)

e

2X4
Q:i=Qt) =5 / (It~ 1)dr = 83 q(t) It — 1),

j=0

avec .J est la partie entiére du rapport 2X4/dt. Sans discrétisation, la résolution de
I’équation (5.30) a chaque pas de temps a un coiit exorbitant. Quand X4 est un multiple
de dt, la discrétisation peut donner un résultat exact, et dans le cas contraire, il existe
une erreur de troncature. Si par exemple, on a une durée de transfert Xy = ¢t = 1 h
(une hypothése réaliste pour de petits bassins-versants de taille inférieure a 10 km?),
alors le débit dépend de la pluie P; et du niveau du réservoir V; au temps ¢; ainsi que
de leur état précédent P;_j et V;_1:

Qi = abP; + BV, +yP_1 + €Vi_1,

ou (; ety; des coefficients qui ont été déterminés en fonction des parameétres X1, Xo,
X3zet Xy:

X1 (X1 — 1) (X3Xy(X3X4(X3Xy — 3) 4 6) 4 6 3% —6)

2 5.33

T2 2X3X3 (5.33)
3 (X3X4(X3X4 — 2) — 2€_X3X4 + 2)

- $X3 (5.34)

2X2X3
1 X1 (X1 —1)e X3X4 (eX3X4 (X33X43 _ 6) +3X3X4(X3X4+2) _1_1@3

e B X33X43 (5:3%)
367X3X4 C Xa Xu(XaXa+2) —2)+2

‘= ( — 4(2 334 )= +2) (5.36)

2X2X3

Le principe de I’algorithme est exposé a la figure 5.34.
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Figure 5.34 — Schéma fonctionnel du modéle pluie-débit GR4H: pendant un intervalle
de temps 4t = 1 h, une pluie P; tombe. Si la capacité d’interception n’est pas nulle
(X2 > 0),alorsla pluie est diminuée de Xo: P/ = P;—X2si P > X2 (etdonc Xo =04
litération suivante), et P/ = 0si P < X2 (et donc Xp = Xy — P; al'itération suivante).
Une fraction X P/ de 'eau ruisselle tandis que la fraction (1 — X1 )P/ s’infiltre dans
le sol. Le niveau V; du « réservoir sol » s’accroit donc de l'eau infiltrée, mais perd
aussi une quantité X3V;. La somme des eaux ruisselée et infiltré forme la lame d’eau
restituée au cours d’eau, qui une fois convoluée avec la fonction de transfert ¢ fournit
le débit @); a l'instant ¢;. Schéma adapté de celui proposé par Benjamin Graff dans
sa thése (Graff, 2004, p. 139). Le modele GR4H présenté ici différe un peu du schéma
originel du modeéle GR4J proposé par Perrin et al. (2003), qui notamment prend en
compte I’évapotranspiration comme entrée du modéle.

5.6.8 Prise en compte de la fonte nivale

Approches possibles

Beaucoup de bassins-versants dans les pays montagneux comme la Suisse ont un
régime hydrographique nivo-pluvial, c’est-a-dire que les débits sont influencés par la
fonte nivale. L’apport de cette fonte au débit d’une riviére est généralement estimé a
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I’aide de I'une des deux approches suivantes (Ferguson, 1999; DeWalle & Rango, 2008):

- Bilan énergétique. Les modeles physiques fondés sur un bilan énergétique consi-
dérent le bilan de la « valeur en eau”’ » du manteau neigeux en fonction des ap-
ports, des pertes, et des variations internes du manteau neigeux. Ce bilan prend
en compte l'influence des précipitations (sous forme solide ou liquide), la redis-
tribution de neige par le vent, les échanges de masse avec ’atmosphere hors pré-
cipitation (sublimation, condensation, évaporation), le ruissellement a la base du
manteau neigeux, et I'infiltration dans le sol. En Suisse, la prévision des crues se
fait a 'aide du modéle Flexible Snow Model (FSM) développé au sein du service
hydrologique du WSL/SLF (Mott et al., 2023).

— Corrélation statistique avec les températures. Les modeles considérent que le
volume de neige fondue varie linéairement avec un « indice de température »,
qui se définit comme la différence entre la température moyenne (souvent jour-
naliére) et une température de base (représentant la température requise pour
faire fondre la neige). Le coefficient de proportionnalité dépend de la couverture
de végétation, de la pente et de orientation, et de ’altitude. Deux des modeles
les plus populaires sont SRM (Snowmelt-Runoff Model) (Martinec et al., 2008) et
HBV (Lindstrém et al., 1997).

Si les modeéles physiques offrent une description plus réaliste des débits liés a la fonte
nivale en fonction des conditions nivo-météorologiques, ils sont aussi bien plus gour-
mands en données et bien plus lourds a mettre en oeuvre que les modeles statistiques.

Modele CemaNeige

Ici, pour étre en continuité avec la présentation des modéles conceptuels de type
réservoir vus précédemment au § 5.6.5 et offrir un cadre de calcul adapté aux études
en ingénierie, nous décrivons le principe du modéle CemaNeige développé par Audrey
Valéry au Cemagref (devenu INRAE) (Valéry, 2010; Valéry et al.,, 2014), qui peut étre vu
comme une variante du modéle HBV. Ce modéle nécessite seulement deux parameétres
de calcul propres a chaque versant, et les autres parametres sont supposés avoir un
caractére universel. Le modéle a été testé sur 380 bassins-versants en France, Suisse,
Suéde et Canada, et s’avére en moyenne plus performant que les modéles plus anciens.

La figure 5.35 montre le principe du modéle et les différentes opérations. Il faut
fournir en entrée la température 7' (moyenne sur le pas de temps considéré At, en °C)
et la précipitation (lame d’eau équivalente en eau sur At, en mm). Le modele fournit la
lame d’eau résultant soit de la part de précipitation liquide, soit de la fonte de la neige.

7. Les Anglo-Saxons parlent de snow water equivalent (équivalent en eau de la neige), abré-
gée comme SWE, c’est-a-dire la conversion de la masse du manteau neigeux en masse d’eau
liquide.


https://www.slf.ch/en/snow/snow-as-a-water-resource/snow-hydrological-forecasting/
https://www.slf.ch/en/snow/snow-as-a-water-resource/snow-hydrological-forecasting/
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Le modéle nécessite de scinder le bassin-versant en plusieurs étages et de fournir les
tranches d’altitude (courbe hypsométrique). Le calcul comprend plus étapes:

1. Extrapolation des températures et précipitations en fonction de laltitude:
T(ta Z) = T(t) + Q(Z - Zref)»

avec 0 le gradient de température, 2,.¢ une altitude référence (valeur médiane
des températures sur le bassin-versant), et

P(t, z) = P(t) exp(B(z — zref)),

avec [ un gradient hypsométrique.

2. Décomposition de la précipitation en précipitation solide N et liquide. Quand
Ialtitude référence z;..s est au-dessous de 1500 m, le coefficient o est une fonc-
tion de deux parametres de température 7}y, et T1nq5 correspondant a la plage
de températures pour laquelle on observe de la neige. Quand 2z, > 1500 m, on
pose Tinin = —1 °C et Tge = +3 °C. On définit

N = aP

la quantité de précipitation sous forme solide.
3. Le manteau neigeux comme réservoir. Pendant le temps At, le réservoir « neige »
peut varier du fait de 'apport de neige N ou de la fonte F':

Gt+ A, z)=G(t,z)+ N(t, z) — F(t, 2).

On introduit un parameétre décrivant I’état thermique du manteau neigeux (une
sorte de température moyenne au sein du manteau neigeux):

e(t+ A, z) =min(Ce(t, z) + (1 — C)T(t, 2), 0),

ou C est un parameétre de pondération traduisant les transferts thermiques au
sein du manteau neigeux et avec ’atmospheére.

4. Prise en compte de la couverture neigeuse. La fonte n’intervient que lorsque
I'état thermique este = O et T' > Ty ou Ty = 0 °C est la température de fusion
de la neige. La fonte potentielle F},,; est

Foot = K(T —Ty),

avec K le parameétre de fonte. Quand la quantité G de neige du réservoir est en-
deca d’un seuil G, seule une fraction de 1'étage considéré fournit de la neige
fondue. Quand G > G, la lame de neige fondue F' correspond a la fonte poten-
tielle F},,¢. On note p la fraction de la zone enneigée:

P:as~
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5. Calcul de la fonte nivale. La fonte I’ s’écrit:
F= (Vm + (1 - Vm)p)Fpota

ou V,, est la contribution minimale du bassin-versant a la lame F' quand p — 0.

6. Transfert au module de débit. La lame totale d’eau L transmise au module de
calcul des débits est donc:

L=(1-«a)P+F.

CemaNeige utilise des paramétrisations publiées dans la littérature pour les para-
metres Tryin et Thnaq, les parametres 6 et 3, la température de fonte 7', la fonte mini-
male V;,,, et G le seuil de couverture. Les deux parameétres libres sont K le parametre
de fonte [mm/°C] (K ~ 3 mm/°C) et C' le paramétre de pondération [-] (C' ~ 0,18 en
Suisse).

Pour aller plus loin

Le code CemaNeige est disponible avec d’autres modeles réservoirs tels que GR4
(a pas de temps journalier ou horaire) dans la bibliotheque airGR du langage R. Il faut
prendre garde qu’il existe plusieurs formulations de modéle sans que le nom ne change.
Par exemple, le modele CemaNeige originel a deux parametres (Valéry, 2010), mais il
existe une variante a quatre parameétres (Riboust et al, 2019); de méme le modéle GR4
connait plusieurs déclinaisons (Perrin et al., 2003; Graff, 2004) qui ne se recouvrent pas.
On peut coupler le code CemaNeige a un modele GR dans airGR.


https://hydrogr.github.io/airGR/
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P(t,), T(t
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Figure 5.35 — Schéma fonctionnel du modéle CemaNeige: en entrée, le modele consi-
dere des séries temporelles de température 7" et de précipitations P. La premiére étape
du calcul consiste a subdiviser le bassin-versant en différents étages pour lesquels la
température serait adaptée en fonction de l'altitude z. Ensuite on examine quelle est
la proportion de précipitation sous formes solide et liquide. Le parameétre o = f(7',2)
permet d’estimer la quantité de précipitation sous forme solide, que 'on désigne par
N = «P.La quantité P — N = (1 — «) P est donc la proportion de précipitation sous
forme liquide qui est transmise directement au module de calcul des débits. La neige
forme le manteau neigeux. Conceptuellement, un manteau neigeux est vu comme un
réservoir, dont I’équivalent en volume d’eau est noté (G. Le manteau neigeux est éga-
lement caractérisé par son état thermique e. Lorsque e = 0, le manteau neigeux fond.
Tout ’étage k n’est pas nécessairement couvert de neige, et on introduit un coefficient
p de couverture neigeuse. Ce coefficient est défini comme p = max(G/Gs, 1) ou Gy
est une valeur seuil. La valeur en eau de la neige fondue dépend de la différence de
température AT = T}, — T entre la température moyenne de I'étage k et la tempéra-
ture de fusion et de la couverture neigeuse. La neige fondue est ensuite transmise au
module de calcul des débits.



A.1 OQu’est ce qu’une probabilité?

A.1.1 Introduction du concept « probabilité »

ANS LE LANGAGE COURANT, l’adjectif « probable » désigne quelque chose qui

est vraisemblable, qui peut se produire, mais sans certitude. Dans le langage
4 mathématique, la chose est moins aisée a définir ou, plus exactement, elle
n’offre pas de consensus. On compte ainsi pas moins de trois maniéres de définir la
probabilité d’un événement. Historiquement, la probabilité P a été vue sous un aspect
de dénombrement dans les jeux de hasard:

nombre de cas favorables

nombre de possibilités

Par exemple, avec un dé parfait, la probabilité de tirer un nombre pair est de 3/6=1/2:
on a donc une chance sur deux de tirer un chiffre pair en tirant un dé non pipé. On voit
rapidement qu’avec ce type de définition, la base du calcul est une affaire de dénom-
brement et dés lors qu’on travaille avec des ensembles qui ne sont plus dénombrables,
on ne peut plus appliquer ce type de définition.

Une vision classique, longtemps prédominante, est dite fréquentiste car elle pos-
tule que la probabilité P d’un événement peut étre estimée en réalisant un trés grand
nombre d’expériences et en comptant le nombre d’occurrences de ’événement consi-
déré: . )

. nombre d’événements observés
P = lim — .

n—oo nombre total d’événements n
En pratique, il faut qu’on soit en mesure de réaliser (ou d’observer) un grand nombre
d’expériences pour estimer la probabilité. Dans le cas contraire, ce concept ne permet
pas de définir une probabilité. Par exemple, la question « quelle est la probabilité qu’il
neige a Lausanne le 1°" novembre 2100 ? » n’a pas de réponse dans le cadre conceptuel

fréquentiste.

317
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Beaucoup considerent que la vision fréquentiste conduit a une rigidité intenable
tant du point de vue de la logique que pour les aspects pratiques. De plus en plus, on
assiste a ’émergence du point de vue bayésien, qui affirme que la probabilité objective
d’un événement n’existe pas et qu’il faut lui substituer la notion de probabilité subjec-
tive qui mesure l'incertitude que l’'on a dans la connaissance d’'un événement, mesure
qui varie d’'un observateur a 'autre:

P = mesure du degré de croyance qu’'un événement se produise.

Tout ce que 'on peut exiger de cette mesure d’incertitude est qu’elle remplisse les
axiomes fondamentaux du calcul des probabilités (voir § A.1.2). Dans ce cadre bayé-
sien, il est possible de répondre a la question formulée plus haut. Par exemple, en se
fondant sur une étude statistique des chutes de neige a la date fixe du 1¥" novembre,
on peut arriver a estimer la probabilité qu’il neige le 1°" novembre 2100 a Lausanne. La
réponse fournie n’est alors rien d’autre qu'un degré de vraisemblance.

I convient de ne pas opposer brutalement ces points de vue car, en pratique, ils
donnent des résultats qui sont assez voisins. Par exemple, pour aboutir a une estimation
bayésienne de la probabilité d’une chute de neige le 1" novembre 2100 a Lausanne,
une attitude pragmatique est d’évaluer la probabilité d’occurrence de chutes sur un
échantillon d’événements passés en calculant une fréquence empirique d’occurrence.
Si sur les 40 derniéres années, il a neigé 2 fois un 1*" novembre, on peut avancer que
la probabilité qu’il neige le 1¥" novembre 2100 est de 2/40 = 1/20 ~ 5 %. Dans 10 ans,
avec de nouvelles observations, on sera en mesure d’affiner encore cette estimation.
Cette maniére de procéder n’est pas la seule. On peut par exemple trouver qu’il y a en
moyenne 4 chutes de neige par an a Lausanne. En moyenne, il y aurait donc 4/365=1,1
% de chances qu’il neige un 1*" novembre, mais comme il ne neige essentiellement que
pour certains mois de I’année, mettons pour 6 mois de ’année, la valeur moyenne est
de 4/365/(6/12) ~ 2,2 %. On voit a travers cet exemple deux aspect cruciaux:

— le calcul bayésien des probabilités est subjectif;
- il peut intégrer de nouvelles connaissances (ou observations) au fil du temps.

A.1.2 Les regles de base du calcul des probabilités

Il convient de rappeler avant toute chose quelques définitions élémentaires. On dit
qu’un phénoméne ou une expérience est aléatoire si on ne peut pas prévoir de maniére
certaine son résultat ou bien, si répété dans des conditions identiques, sa réalisation
donne lieu a des résultats différents. Une avalanche est par exemple un phénomeéne
aléatoire dans les deux sens du terme (sous réserve, pour le second point, de s’entendre
sur ce que sont des conditions identiques).

Un événement est une assertion sur le résultat de I’expérience ou de 'observation.
Par exemple, la proposition « la chute de pluie journaliere est de 10 cm » est un événe-
ment. Une réunion d’événements est encore un événement ; par exemple, la proposition
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« la riviére atteint la cote 100 m » est une collection d’événements élémentaires de la
forme « la riviére atteint la cote 90 m, la cote 80 m, 70 m, etc. ». Une population est
Pensemble de tous les événements possibles.

Propriétés élémentaires

Quel que soit le point de vue adopté pour la définition de la probabilité, quelques
propriétés élémentaires doivent étre vérifiées. A tout événement, on associe un nombre
positif P compris entre 0 et 1, appelé probabilité. Soient E; et Fo deux événements, on
a:

— complémentarité: la probabilité quun événement ne se réalise pas vaut 1 —
P(Ey)
P(non Ey) =1— P(Ey).

— probabilité d’observer deux événements: on introduit différentes notations, qui
peuvent se comprendre en considérant que les événements sont des ensembles
(voir fig. A.1) qui peuvent étre joints ou intersectés. Ainsi, F | J F'2 désigne l'en-
semble de deux événements et signifie en théorie des probabilités le fait d’ob-
server 1 ou E5 (ou bien encore, si on parle de propositions, au moins une des
deux propositions £ ou Ej3 est vraie). On note la probabilité jointe P(E; | F2)
ou P(E E3) - ou bien P(E, FE5) dans la notation de Jaynes (2003), qui dé-
signe 'opération logique F; F> comme étant une somme logique ou disjonc-
tion. Insistons ici sur le fait que quelle soit la notation choisie (un symbole +
ou | J, il s’agit juste d’une convention d’écriture qui n’implique pas d’opération
numérique (on ne somme pas les valeurs).

E1 () E2 désigne U'intersection de deux événements et signifie qu'on observe a
la fois E1 et E5 (ou bien encore, a la fois les deux propositions £ ou E3 sont
vraies). La probabilité d’observer a la fois F et F est notée P(E; () E2) - ou
bien P(E; E3) par Jaynes (2003) qui parle de produit logique (ou conjonction)
pour désigner « a la fois F et Fa ».

La probabilité d’observer I/1 ou Ej est égale a la somme des probabilités d’obser-
ver individuellement E; et F moins la probabilité d’observer F; et E'y ensemble
(afin de ne pas compter deux fois le méme événement)

P(Ei| | E2) = P(Ey) + P(E2) — P(Ey () Ea).
Une simplification peut étre opérée quand les deux événements sont mutuelle-
ment exclusifs, c’est-a-dire quand P(E; () E2) = 0: P(E; ou Ey) = P(E;) +
P(E,). Le plus souvent la probabilité jointe est notée

P(El et Eg) = P(El ﬂEg) = P(El,EQ).

On emploie dans certains livres la notation £ A Es;
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— probabilité conditionnelle: la probabilité d’observer F; sachant que F est ob-
servé est égale au rapport de la probabilité d’observer a la fois F et F» sur la
probabilité d’observer Es séparément.

P(E1 () Es)

PENE) = =5,

Siles deux événements sont dits (statistiquement) indépendants alors: P(E1|Ey) =
P(El) N

- comme la relation précédente est symétrique, on en tire la (premiére) relation de
Bayes:

P(E|E)P(E>)

P(E2|El) = P(El)

En combinant avec la premiére régle de composition (étendue a une série de n
événements complémentaires, c’est-a-dire ils sont exclusifs les uns par rapport
aux autres: » ", P(E;) = 1), on obtient le second théoréme de Bayes

P(F|E;)P(E;)

PEIF) = ——pF

ou F' désigne un événement quelconque et ou
n
P(F) =Y P(F|E)P(E,).
i=1

Ce théoréme permet de renverser 'ordre dans le conditionnement en exprimant
la probabilité d’observer un événement E; sachant que F' s’est produit en fonc-
tion des autres probabilités marginales. L’utilité de ce théoréme est montrée a
travers exemple suivant.

Figure A.1 - Deux événements F et Es.
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Notons que ces régles formulées ici pour des événements discrets peuvent se trans-
poser aux variables aléatoires continues. Ainsi, le théoréme de Bayes dans sa formula-
tion continue s’écrit

P(y|lz)P(z
P(ely) = o WPE)
J P(ylz)P(z)dz
avec y et z deux variables aléatoires. Ce théoréme sera abondamment utilisé dans les
problémes d’inférence (dite bayésienne).

& Exemple. — On a observé les feux de forét pendant un grand nombre d’années.
Sur 100 feux observés, il y a eu 80 feux déclenchés par des pyromanes, 15 feux déclen-
chés par inadvertance/imprudence, et 5 feux d’origine non identifiée, éventuellement
consécutifs a des orages. On a également noté que 30 % des feux dus a une impru-
dence atteignaient les alentours d’un village contre 80 % des feux dus a des pyromanes;
lorsque le feu était du troisiéme type, on trouvait que dans 60 % des cas le village était
concerné. On note F; 'événement « le feu est dli 4 un pyromane », F5 « le feu a pris
naissance a cause d’'une imprudence », et E3 « le feu est d’'un autre type ». On note
D T’événement « le feu de forét atteint le village ou ses environs immédiats ». On a
d’aprés I'’énoncé: P(E,) = 0,8; P(E2) = 0,15; P(E3) = 0,05. De méme, on sait que:
P(D|Ey) =0,8; P(D|E3) = 0,3; P(D|E3) = 0,6.

La question est: « un feu vient de se déclencher dans la forét voisine, quelle est la
probabilité qu’elle atteigne le village ? ». La réponse est:

P(D) =Y _P(D|E;)P(E;) =08 x 0,8+ 0,15 x 0,3+ 0,05 x 0,6 = 0,715.
7

Dans 71,5 % des cas, le feu de forét atteint le village. On se pose maintenant la question
« quand un feu de forét menace directement le village, quelle est la probabilité que ce
feu ait été déclenché par un pyromane? ». La réponse est d’apres la formule de Bayes:

D|Ey)P(Ey)  08x0,8
P(D) 0,715

P
P(Ey|D) = ( ~ 0,895.
Il y a donc 89 % de chances que le feu soit sous d’origine criminelle s’il arrive au village.
On tire de cet exemple trés simple plusieurs enseignements.

- Les propriétés élémentaires du calcul des probabilités permettent de faire des
opérations basiques et de manipuler de maniére rigoureuse les assertions.

- La prise en compte d’une information (le feu atteint le village) modifie la proba-
bilité puisqu’on passe de P(E;) = 0,8 a P(E;|D) =0,895. O

& Exemple. - Voici un exemple emprunté a Gerd Gigerenzer (Gigerenzer, 2003).
La probabilité qu’'une femme entre 40 et 50 ans ait le cancer est de 0,8 %. Si une femme
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atteinte du cancer passe une mammographie, il y a 90 % de chances que le résultat soit
positif. Si une femme n’a pas le cancer, il y a 7 % de chances que sa mammographie four-
nisse un faux positif. Considérons maintenant une femme qui passe une mammogra-
phie, dont le résultat est positif. Quelle est la probabilité qu’elle soit réellement atteinte
du cancer?

Interrogés les médecins expérimentés pensent intuitivement que P ~ 90 %. Pourtant
en appliquant le théoréme de Bayes, on trouve un résultat de I'ordre de 9 %. En effet,
on cherche a calculer la probabilité conditionnelle P(malade|positif), or d’apres le théo-
réme de Bayes, cette probabilité se définit comme

P(positifjmalade) P(malade)
P(positif)

P(maladelpositif) =

Or les données fournies nous donnent les estimations suivantes: P(malade) = 0,008,
P(sain) = 1— P(malade) = 0,992, P(positifimalade) = 0,9, et P(positif|sain) = 0,07.
Pour le dénominateur, la régle de composition des probabilités nous donne

P(positif) = P(positifjmalade) P(malade) + P(positif|sain) P(sain),

soit encore
P(positif) = 0,9 x 0,008 + 0,07 x 0,992 = 7,66 %.

On déduit donc la probabilité qu'une femme soit réellement atteinte d’un cancer si sa
mammographie est positive :

P(malade|positif) = % =94 %.

Gerd Gigerenzer a développé une technique dite des fréquences naturelles (voir figure
A.2) qui permet d’arriver a 'estimation suivante de la probabilité conditionnelle

P(malade|positif) = 7/(7 + 70),
donc P = 9,1 %. La différence vient des arrondies dans le décompte des personnes.

1000 personnes

/N

8 malades 992 non-malades
7 positifs 1 négatif 70 positifs 922 négatifs

Figure A.2 — Calcul des « fréquences naturelles » selon la méthode de Gerd Gigerenzer
(Gigerenzer, 2003).
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A noter que les campagnes publiques de dépistage du cancer du sein sont en passe
de devenir un scandale sanitaire; la situation est dénoncée par de nombreux méde-
cins et scientifiques depuis de nombreuses années (voir p. ex. ce le site d’informations
www.cancer-rose.fr de la doctoresse Cécile Bour). Le probléme est propre a cette forme
de cancer, et ne concerne donc pas les autres campagnes de dépistage.

& Exemple. — Voici un article d’opinion tiré du Monde Le Monde du 30 mars 2010.

« Ce n’est pas tous les jours qu’étre un peu matheux peut aider a dé-
fendre la liberté d’expression. Tiens, on va aider Zemmour, méme s’il n’est
pas toujours sympathique, a se dépétrer de la Licra qui décidément tire
sur tout ce qui bouge, des pigistes du Figaro aux humoristes anarchistes
(on se souvient du procés contre Siné).

« M. Zemmour donc, se retrouve condamné par toutes les bonnes
consciences pour avoir proféré ces paroles sacrileges: « la plupart des
trafiquants sont noirs et arabes ».

« Mon conseil & Zemmour est de prendre comme avocat un prof de
math (d’abord ils sont moins chers) qui seul pourra irréfutablement dé-
montrer a la cour que ses propos ne constituent pas une attaque raciste.
Car ce qui est condamnable, ce n’est pas de constater statistiquement que
« la plupart des trafiquants sont noirs et arabes », mais de prétendre en
déduire, comme le font ses accusateurs, que « la plupart des Noirs et des
Arabes sont des trafiquants », un propos qui, lui, tombe clairement sous
le coup de la loi.

« Or, comme ’a démontré le peu médiatique Thomas Bayes, un pas-
teur et mathématicien qui vécut a Londres dans les années 1750, le pre-
mier énoncé n’implique absolument pas l'autre, loin s’en faut. Dans le
cours que je donne chaque année a mes étudiants, je leur montre, n’utili-
sant le fameux théoréme de Bayes, que la proportion (techniquement la
« probabilité conditionnelle ») des émigrés parmi les délinquants peut lar-
gement dépasser 50 % (propos de Zemmour) sans que la proportion des
délinquants parmi les émigrés (le propos raciste) soit beaucoup plus éle-
vée qu’elle ne I’est parmi la population des Frangais « de souche », chére
a Gérard Longuet. Et si 'on introduit, en plus, le fait avéré que le taux de
délinquance est plus fort parmi les tranches de population a bas revenus,
on peut méme trouver des situations ou les émigrés sont simplement plus
vertueux que les franchouillards, dans toutes les tranches!!

« La formule (de Bayes) qui relaxe immédiatement Zemmour, la voici:
p(trafiquants/émigrés) = p(émigrés/trafiquants) x p(trafiquants) /p(émigrés)

A BxC '
D
Application numérique: avec B = 1/2, C = 1/10000, et D = 1/10, la
proportion des trafiquants parmi les émigrés est de 1/2 000! Pas de quoi
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justifier de renvoyer chez eux les 1 999 autres qui ne font rien de répréhen-
sible. Une autre chose que montre ce calcul, c’est I'influence terriblement
négative que peut avoir une infime fraction de délinquants sur la percep-
tion de la minorité dont ils sont issus. Pour garder votre souplesse d’esprit,
pratiquez le retournement bayésien une fois pas jour! »

Son auteur Jean-Michel Claverie est professeur de génomique et bioinformatique médi-
cale, faculté de médecine, Université de la Méditerranée, Marseille. Il est aussi directeur
du laboratoire « information génomique & structurale ».

A.1.3 Loide probabiliteé

On a dit précédemment qu’un événement est dit aléatoire si son résultat n’est pas
certain ou bien qu’il varie au gré des réalisations et on a dit que la mesure de cette
réalisation, la probabilité, est un nombre compris entre 0 et 1. On appelle variable aléa-
toire X la quantité qui dépend de la valeur prise par I’événement. Si I’événement ne
peut prendre que des valeurs discretes (finies ou dénombrables), on parle de variable
aléatoire discréte; si, au contraire, un événement peut prendre des valeurs continues
sur un intervalle donné, alors on parle de variable aléatoire continue.

& Exemple. - Si’'on reprend 'exemple précédent, la nature du feu est une variable
aléatoire, qui peut prendre ses valeurs dans un ensemble a trois valeurs: {feu d’origine
criminelle, feu d’origine accidentelle, autre forme}. Il s’agit d’'une variable discréte. Si
on considére une chute de pluie, celle-ci peut prendre n’importe quelle valeur positive,
il s’agit d’une variable aléatoire continue. O

Une loi de probabilité (ou distribution) est une fonction qui décrit comment sont
distribuées les valeurs de la variable aléatoire considérée. Le support d’une loi de pro-
babilité est le domaine sur lequel elle prend ses valeurs; on le note supp.

& Exemple. - La loi exponentielle s’écrit sous la forme P,(X = x) = ae™** ou
a est un réel positif. Le support de P, est 'ensemble des réels positifs: suppP, = R,

car P, n’est définie que pour des valeurs x positives ou nulles. O

Si la variable est discrete, la loi de probabilité fournit la probabilité d’observer dans
quel état est le systeme:

Px (X = z) = prob(X prend la valeur x).
Si la variable est continue, on introduit la densité de probabilité (ou la masse pour

une variable discréte) f(z) qui est la probabilité d’observer 1’état du systéme dans un
certain voisinage dz:

f(x)dr = Px(x < X <o+ dx).
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La probabilité est un nombre sans dimension (physique) compris entre 0 et 1. En
revanche, la densité de probabilité a pour dimension I'inverse de 'unité de X puisque
f=dPx/dz.

Pour une densité de probabilité f de support [a, b], on appelle fonction de répartition
Fx Pintégrale de f:

Fx(x)=P(X <z)= /f(u)du

Elle donne la probabilité que la variable aléatoire ne dépasse par une valeur donnée x.
On parle aussi de probabilité de non-dépassement. On introduit la quantité complémen-
taire, dite probabilité de dépassement, la probabilité que la variable dépasse systémati-
quement une valeur seuil :

1—Fx(z)=P(X >2) = /f(u)du

A noter que I'on a nécessairement F'x (b) = P(X < b) = fab flu)du = 1.

On déduit de cela que

b
Probla < X < b] = / F(@)dz = Fx(b) — Fx(a).

On appelle moyenne (ou espérance ou moment d’ordre 1) E(X) d’une variable dis-
créte la moyenne arithmétique des différentes valeurs que X peut prendre, pondérées
par leurs probabilités: E(X) = > . 2; P(X = ;). L’équivalent pour une variable conti-

nue est:
b b

E(X):/xf(x)dm:/deX.

a a

Quand on écrit une relation de forme P = Prob[X < z], on appelle = le quantile
associé a la probabilité de non-dépassement P.

A noter la notation générale suivie dans le calcul des probabilités: les variables
capitales désignent le nom de la variable aléatoire tandis qu'une variable minuscule
renvoie a la valeur particuliére que peut prendre une variable aléatoire. Par exemple,
si on note C' la quantité de pluie qu’il peut tomber en 24 h (la chute de pluie journa-
liére autrement dit), alors ¢ désigne la valeur particuliére que peut prendre la variable
aléatoire C.
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A.1.4 Changement de variable

Dans un changement de variable de la forme x — y = v(z) avec v une fonction
croissante bijective!, la probabilité doit rester invariante (il s’agit d’un nombre d’un
nombre dimension qui garde la méme valeur quel que soit ’espace considéré). On a
donc

f@)dz=Px(r <X <z+dr)=Py(y<Y <y-+dzx) = g(y)dy,

ou g est la densité de probabilité de Y. On en déduit donc

o(y) = f(sc)j”; — f@) (@) A1)

Cette relation s’étend a des fonctions a plusieurs variables.

A.1.5 Moyenne, variance, moments

On appelle variance (ou moment centré d’ordre 2) la quantité définie par (pour une
variable continue):

b

o? =E[(X —m)?] = / (z —m)?f(z)dz,

a

avec m = E(X) la moyenne de X. Pour une variable discréte, on a

o? = Z (z; — m)?Px (X = ).
(2
La variance sert a traduire la répartition de densité (ou de masse) autour de la valeur
moyenne. Une « petite » variance signifie que les valeurs sont centrées autour de la
valeur moyenne alors qu'une « grande » variance indique qu’il existe un nuage diffus
de points autour de la valeur moyenne. La quantité o s’appelle I’écart-type. On introduit
le moment d’ordre 2 My = fab 22 f(x)dz; c’est une quantité qui est reliée a la variance
(moment centré d’ordre 2) par: My = o2 + M2, avec M7 = E[X] = m. On introduit
aussi la covariance de deux variables aléatoires X et Y

Cov(X,Y) = Cov(X,Y) = E[(X —my)(Y —my)],

avec m, = E(X) etmy, = E(Y).

1. Cela marche aussi avec des fonctions décroissantes, mais il faut faire attention au signe
car la probabilité est nécessairement un nombre réel compris entre 0 et 1, donc il faut écrire

f(z)dz = —g(y)dy.



A.1  Qu’est ce qu’une probabilité ? 327

On appelle mode d’une loi de probabilité la valeur la plus fréquente, c’est-a-dire
associée a un maximum de la densité de probabilité; en d’autres termes, le mode est
la valeur z,,, telle que f’(z,,) = 0. A noter qu’il peut y avoir plusieurs modes si la
densité de probabilité posséde plusieurs maxima (de méme valeur). On appelle valeur
médiane la valeur x,, telle que P(x,,) = 1/2. Son interprétation est simple: puisque
la valeur médiane correspond a la moitié de la fonction de répartition, il y a autant de
valeurs inférieures a x,,, que de valeurs supérieures a .

Une loi de probabilité est une fonction qui dépend de parameétres de forme 6. On
note souvent cette dépendance sous la forme: f(z; 6) et cela peut se lire « la densité de
probabilité de la variable aléatoire X avec les parameétres 8 ». On trouve des notations
synonymes, que I'on emploie selon les contextes: f[0](x), f(0)(x) oubien fy(z). Deux
problémes se posent en général :

- soit on connait 6 et on cherche a déterminer les différentes valeurs que peut
prendre X (par exemple, la valeur moyenne et la variance);

- soit on connait un échantillon (fini) de valeurs prises par X et on cherche a
déterminer les parameétres 6 de la loi de probabilité de X.

En pratique, la premiére classe de problémes ouvre le champ a la simulation, ou a partir
de la connaissance d’une loi, on crée des échantillons de valeurs de X. La seconde
catégorie renvoie au probléeme d’inférence statistique.

& Exemple. — On appelle processus de Poisson un processus au cours duquel des
événements se produisent de maniere intermittente et jamais deux a la fois. L’intervalle
de temps 7' entre deux événements est une variable aléatoire mais, en moyenne, le
nombre d’événements par unité de temps est constant. On pose donc E(7") = A, ou A
est une constante positive. Ici, manifestement, T est une variable aléatoire continue. On
tire également que le nombre moyen d’événements par unité de temps est: N = 1/\.
Si on considere le nombre n d’événements par unité de temps, il s’agit d’une variable
discrete. On montre que 1" et n ont les lois de probabilité suivantes:

F(TIN) = e T/*/X: loi exponentielle de paramétre ),

n

N
P(n|N) = e_NF : loi de Poisson.
On vérifie que E(T') = A et E(n) = N.

Un observateur note qu’en moyenne, il y a deux crues par décennie. Quelle est
la probabilité d’observer deux crues au cours d’'une méme année? Quel est le temps
moyen entre deux événements ? Quelle est la probabilité d’observer deux années consé-
cutives avec une crue ? De ce qui précéde, en prenant ’année pour unité de temps, on
tire: N = 0,2. La probabilité d’observer deux crues au cours d’'une méme année est
donc: P(2|0,2) = 6_0’2% ~ 0,0163 (il y a donc presque 2 % de chances d’observer
deux crues). On tire: A = 1/N = 5. La durée moyenne entre deux crues est donc de 5
ans. S’il y a deux années consécutives avec une crue par année, alors on tire que 7' < 2
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ans, donc P(T < 2) = f02 dte /A /X =1 — e 2 ~ 0,329. 1l y a 4 peu prés une
chance sur trois d’observer deux années consécutives avec une crue. O

Nous nous sommes intéressés jusqu’a présent a des lois a une seule variable aléa-
toire. On peut étendre les définitions a plusieurs variables. Par exemple, en dimension
2, on appelle probabilité jointe d’observer a la fois les deux variables aléatoires X et Y':

fle,y)=P(X =zetY =y).

On peut naturellement considérer les lois de X et Y prises séparément. On parle alors
de loi marginale. Par exemple la loi marginale de X s’écrit:

fx(x) = / f(x. y)dy.

On appelle aussi la loi conditionnelle qui exprime, par exemple, la probabilité d’observer
X sachant Y. On la note f(x|y) = Prob(X = z|Y = y). D’apres les propriétés
élémentaires du calcul des probabilités, on a:

flx,y) = flzly) f(y). (A2)

Le conditionnement de variables aléatoires est un aspect essentiel du calcul des proba-
bilités, surtout dans un contexte d’approximation et de prévision.

& Exemple. - Un probléme fondamental en zonage est de déterminer avec quelle
probabilité une riviere débordant de son lit peut atteindre un endroit donné avec une
certaine hauteur/vitesse d’eau. Un tel probléme peut étre abordé en le décomposant en
deux étapes. Dans la premiere étape, un observateur se place a une certain distance
de I'axe du lit de la riviére; on appelle X = =z cette distance entre le point d’obser-
vation et cet axe. On suppose qu’une crue a atteint une certaine distance X apres le
débordement; on mesure alors sa hauteur/vitesse Y. Pour une crue donnée, on a donc
I'information (Y| X) qui se lit: « valeur de la hauteur/vitesse Y sachant que la distance
parcourue par 'eau est X ». Admettons que 'on soit en mesure de faire plusieurs obser-
vations; on va donc pouvoir approcher la probabilité d’observer une pression donnée
Y sachant que la distance parcourue vaut z: P(Y'|X = x). La seconde étape consiste
a changer de position X = 2’ et a renouveler la mesure; ce faisant, en réitérant la
procédure plusieurs fois, on tire a la fois la probabilité d’observer la riviére atteindre
un endroit P(X = ') et la probabilit¢ P(Y|X = z’) que la riviére ayant atteint cet
endroit exerce une hauteur/vitesse Y. La probabilité jointe d’observer une crue en tel
endroit avec telle hauteur/vitesse s’en déduit alors: P(X,Y) = P(Y|X)P(X). O

A.2 Quelques lois de probabilité usuelles

On va ici rappeler quelques lois essentielles et fréquemment rencontrées en hy-
drologie statistique. Tout d’abord, les lois discrétes comme la loi de Bernoulli, la loi
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binomiale, la loi de Poisson servent le plus souvent a décrire les fréquences d’occur-
rence des événements, c’est-a-dire le nombre de fois qu'un phénomeéne se produit par
unité de temps. Ensuite, nous verrons quelques lois continues comme la loi de Laplace-
Gauss, la loi exponentielle, et les lois de valeur extréme. Ces lois sont trés utiles pour
décrire la distribution de l'intensité des phénomeénes hydrologiques.

A.2.1 Loide Bernoulli et lois dérivées

Loi de Bernoulli

Il s’agit d’une loi discréte a un parametre p d’une variable X qui peut prendre deux
valeurs (0 ou 1 par exemple) avec les probabilités p et 1 — p respectivement. On parle
aussi de modéle d’urne: si I'on place des boules noires et blanches et qu’il y a une
proportion p de boules blanches, alors la probabilité de tirer au hasard une blanche est

.
La moyenne est: E(X) = p; la variance est: Var(X) = p(1 — p).

Cette loi sert dans de nombreuses situations pratiques ou I’on s’intéresse a 'occur-
rence d’événements (comme une crue, une chute de pluie dépassant un certain seuil,
etc.). Cette loi peut étre étendue pour considérer n > 2 états possibles.

Loi binomiale

Une autre loi tirée de la loi de Bernoulli est la loi binomiale: supposons que 'on
répete m fois I'expérience de tirage de boule; apres chaque tirage, on replace la boule
dans I'urne (pour que le nombre de boules soit identique). On note X le nombre de fois
qu’une boule blanche est apparue dans cette séquence de m tirages. La probabilité que
ce nombre vaille k est:

B(m, p)(k) = Prob(X = k) = Cpp"(1—p)™".

La moyenne est: E(X) = mp; la variance est: Var(X) = mp(1 — p).

Loi binomiale négative

Une autre extension est la loi dite binomiale négative. On appelle X le nombre de
tirages qu’il faut réaliser pour obtenir un ensemble de k succés. On montre que:

Neg(k, p)(i) = Prob(X = i) = CF'p"(1 — p)i=*.

La moyenne est: E(X) = k(1 — p)/p; la variance est: Var(X) = k(1 — p)/p®. Notons
que pour une loi binomiale négative, la variance est toujours supérieure a la moyenne.
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En pratique, cette loi peut se révéler utile en remplacement de la loi de Poisson pour
décrire des processus hydrologiques instationnaires. En effet, la loi binomiale négative
peut étre vue comme une loi de Poisson dont le taux est lui-méme aléatoire et distribué
selon une loi gamma (voir § A.2.4):

Neglk, pl(i) = /0 " P@)Galk. (1 — p)/pl(N)dA,

A.2.2 Loide Poisson

Il s’agit d’une loi discrete & un parametre A d’une variable aléatoire X qui peut
prendre une infinité de valeurs entiéres:

P(N)(k) = Prob(X = k) = e—k?j.

La loi de Poisson peut étre vue comme une limite de la loi binomiale quand le nombre
de succes p est petit. Cette loi a donc un grand nombre d’applications dés lors que 'on
s’intéresse a 'occurrence de phénomenes rares et a des phénoménes de comptage.

Par exemple, si A désigne le nombre de crues par an, Prob(X = 2) = e72)\2/2
donne la probabilité d’observer deux crues au cours de la méme année.

La moyenne est: E(X) = \; la variance est: Var(X) = A

A.2.3 Loi uniforme

C’est une loi continue définie sur un intervalle [a, b] (en général [0, 1]). Elle ne
posséde aucun parameétre hormis les deux bornes a et b. La densité de probabilité est
constante:

Osiz<a
u[a,b](x): ﬁsiagxgb‘
Osiz>0b
La moyenne est: E(X) = 1; la variance est: Var(X) = 0. Cette loi sert souvent a

traduire I’absence d’information ou de connaissance: toute valeur est a priori possible.

A.2.4 Loi exponentielle
C’est une loi continue a un parametre, dont la densité de probabilité s’écrit:
EN)(z) = Ae

La moyenne est: E(X) = 1/); la variance est: Var(X) = 1/A%.
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La loi exponentielle présente également des propriétés trés intéressantes, notam-
ment vis-a-vis de la loi de Poisson. Considérons un processus qui arrive N fois par unité
de temps en moyenne (par exemple, N chutes de pluie par an). On suppose que chaque
événement est indépendant (la derniére chute de pluie ne dépend pas de la précédente,
par exemple). La distribution du nombre d’événements suit alors une loi de Poisson (en
théorie, elle converge vers une loi de Poisson) et le temps entre deux événements est
une variable aléatoire distribuée selon un loi exponentielle de paramétre A = 1/N.

Anoter que'ona: E[X] = /Var[X], une propriété qui peut étre utile pour vérifier
si une population est distribuée selon une loi exponentielle.

Une caractéristique des processus de Poisson est liée a I’hypothése que les événe-
ments ont la méme probabilité de se produire pour des intervalles de temps de méme
durée. On peut relaxer cette hypothese a aide des processus dit non-homogénes ou

instationnaires. Si les événements se produisent de maniére aléatoire, N () constitue
un processus de Poisson non homogéne d’intensité A(t) si:

- N0)=0
- le nombre d’événements se produisant en des temps disjoints sont indépendants

- la distribution du nombre d’événements ne dépend que de I'intervalle de temps
et non du temps absolu ou se situe cet intervalle

. P évé Teez 10
~ limy,_o (exactement un événement entret et t+h) __ )\(t) (la probab1hte d’observer un

événement dans un petit intervalle de temps h est A(¢)h)

P(deux événements ou plus entret et t+h)

- limy_.o 7 = 0 la probabilité d’observer deux évé-
nements dans un petit intervalle de temps h est nulle).

A.2.5 Loide Laplace-Gauss (ou loi normale)

C’est I'une des lois les plus connues et employées. On parle de loi de Laplace-Gauss
(les deux mathématiciens s’en sont disputé la paternité), de loi de Gauss, ou de loi nor-

male. Une variable X est distribuée selon une loi de Laplace-Gauss de moyenne p et
de variance o2 si:
1 _ew?

N(p, 0)(z) = e 27 (A3)

2o

C’est une courbe symétrique en forme de cloche autour de la valeur moyenne (voir

figure A.3). La moyenne est: E(X) = y; la variance est: Var(X) = o2

C’est une distribution fondamentale et assez universelle, notamment car, d’apres
le théoréme de la limite centrale, la distribution de probabilité d’'une somme de n va-
riables indépendantes et identiquement distribuées selon la méme loi tend vers une loi
gaussienne quand n — 0.

On peut étendre la définition de la loi de Laplace-Gauss a des variables vectorielles.
Considérons une variable vectorielle aléatoire X = (X, X»,...,X,,) de dimension
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Figure A.3 — Représentation graphique de la loi A/(0, 1/2). La courbe continue repré-
sente la densité de probabilité tandis que la courbe en tiret représente la fonction de
répartition.

n; la densité de probabilité de la loi multinormale s’écrit

_ 1 Lor
Nd(/’l’v O')— (2ﬂ)d/2mexp< 2:1: o .’B),

avec o la matrice de covariance (matrice de taille d x d)

ou I’élément (i, j) correspond a la covariance des variables X; et X; prises individuel-

lement
COV(XZ' N X])

7= V/Var(X;)Var(X;)

Notons que la matrice est symétrique et que les termes diagonaux o; ; sont égaux a 1.

A.2.6 Loiduy:

Il s’agit d’une loi en relation avec la loi de Laplace-Gauss. Considérons la somme
de k carrés de variables tirées d’une loi de Laplace-Gauss

X=7Zi+..7;
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On montre que cette variable suit une loi de distribution appelée du x? a k paramétres
de liberté; elle est notée Xi. Sa densité de probabilité s’écrit

k/2—-1
& / —xz/2

2 —
Xk(x) - 2k/2F(k/2) exp )

ouz > 0etI estlafonction dite gamma:I'(z) = fooo u® ! exp~* du. La moyenne est:
E(X) = k; la variance est: Var(X) = 2k.

A.2.7 Loide Student

Il s’agit d’une loi en relation avec la loi de Laplace-Gauss et celle du y2. Considérons
7 tirée selon une loi normale A/ (0, 1) et Y une variable tirée selon une loi du x? av > 0
degrés de liberté. La variable
Z
VY /v
est une variable aléatoire dont la loi est la loi de Student a v degrés de liberté, de densité
de probabilité :

L
VEr T(5) (1+£2)%

pour ¢t € R. La moyenne est E(T") = 0 et la variance vérifie

Pr(t; v) =

Varl =
ar —

pour v > 2.

Cette loi joue un grand réle dans 'estimation de I’erreur standard d’'une moyenne
empirique. Rappelons que le théoréme de la limite centrale montre que la moyenne
empirique X d’un échantillon de n valeurs X est distribuée selon la loi normale centrée
autour de I’espérance de la population Z = (X — u)/(0/+/n). En pratique, cela veut
que 'on peut estimer ;. en prenant X ; erreur est de +/y/n. Le probléme est qu’en
général, 'écart-type de la population n’est pas plus connue que I’espérance; il est donc
tentant de remplacer o par ’écart-type empirique

n

1 _
S2% = — D (X - X)%

i=1

La variable Y = (n—1)52/0? est une variable x? a v/ = n — 1 degré de liberté d’apres
la propriété que I'on a vue ci-dessus au § A.2.6. Il s’ensuite donc que la variable

X—p
(n—1)52/02  S/\/n
n—1

est une variable de Student & v/ = n — 1 degrés de liberté.
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Figure A.4 — Densité de probabilité de la distribution de Student pour nu = 1, 10, 100,
et 1000; on a également reporté en rouge la distribution de probabilité de la loi normale

N(0,1).

A.2.8 Loi gamma

C’est une loi de probabilité a deux parametres: un parameétre d’échelle A et un autre
de forme x > 0. Sa densité de probabilité s’écrit >

AK/

rk—1 -z
A4
F e (a9

GalA, wl(x) =

pour tout x > 0 et ou I est la fonction gamma. La moyenne est: E(X) = x/)\; la
variance est: Var(X) = x£/)2. Quand x = 1, on retrouve la loi exponentielle.

Lois gamma et du X% sont intimement liées puisque si X est tiré selon une loi
Ga[A, k], alors on montre que la variable AX a pour densité de probabilité % X3,

A.2.9 Loi béta

C’est une loi de probabilité a deux parametres de forme, qui posséde un support
fini sur [0, 1]:
za—l(l __x)ﬂ—l
B(a, B)

pour tout 1 > 2 > 0 et ot B(a, ) = fol 27 1(1 — x)#~1dz est la fonction béta.

Bela, B](z) = (A5)

2. Attention, il existe dans la littérature d’autres paramétrisations de cette loi.
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La moyenne est: E(X) = a/(a+ /) ;la variance est: Var(X) = a8/(a+3)?/(1+
a + ). Quand o = 8 = 1, on retrouve la loi uniforme.

Cette loi est utile quand on cherche a travailler avec des variables aléatoires variant
sur un intervalle borné. Cette loi est également particulierement utile en inférence bayé-
sienne puisqu’on montre que c’est un prior conjugué a la loi binomiale (Robert, 2001).

A.2.10 Lois de Pearson

On appelle loi de Pearson une loi dont la densité de probabilité vérifie I'équation

différentielle ordinaire
ag + ar1x

/ —
! (%) N by + b1z + box?

f(@). (A6)

Cette loi comprend sept types de forme en fonction des parameétres ag, a1, bg, b et bs.
La plupart de ces formes recoupent ou généralisent des lois existantes: loi béta (forme
I et 1), loi normale et loi gamma (forme III), loi gamma inverse (forme V), loi de Fisher
(forme VI) et loi de Student (forme VII).

En hydrologie, on utilise principalement la loi de Pearson ou la loi de log-Pearson
III (Bobée, 1975; Bobée & Robitaille, 1977; Rao & Hamed, 2000). C’est une loi a trois
parameétres (o, A, m) dont densité de probabilité prend la forme:

f(x) = F’EXA’) exp~ @) (a(z — m))* ! pour al(z — m) > 0, (A.7)
qui est la solution de I’équation (A.6) avec a; = abi, ap = b1 (1—A—am) etby = —bym.

On parle de loi de log-Pearson quand In x est distribué selon une loi de Pearson.

La fonction de répartition est:

a(z —m))

T\

F(z)= /w f()d¢ = L = pour a(x —m) > 0, (A.8)

ou
oo
I'(a,z) :/ t7 e tdt
z

est la fonction gamma incompleéte.

Les trois moments centrés de la loi de Pearson III sont:

i =E(X) =m+ 2, (A9)
e =VarX =E [(X — ,u)ﬂ = %, (A.10)

fi3 = Skew X = E [(X - u)3] —9 (A.11)

a3’
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Si y = Inx est distribué selon une loi de Pearson III, alors la variable aléatoire y
varie selon I'équation (A.7). On fait le changement de variable y = v(z) = Inx et on
se sert de I’équation (A.1):

d 1
fo= 1) 3, = fylnz) .
of

= ——~exp “M* M (g (Ing — m)) ! Inz — . (A12
xF()\)exp (a(lnz —m))* " pour a(lnz —m) > 0. (A.12)

La fonction de répartition est:

P = [ pu(gag =~ =g

pour a(lnx —m) > 0. (A.13)

Les moments (non centrés) de la loi de log-Pearson III sont (Bobée, 1975):

orm
m, =E[X"] = m, (A.14)
d’ot 'on déduit les moments centrés:
em
w= m, (A.15)
Var X = my — p? = ™ot ((a —2)7A — (o — 1)_2’\04>‘) , (A.16)
ps =m> — 3uVarX — 13, (A.17)

= mat (o/‘ (204)‘ —3(a—2)"Ma - 1)2)‘) (a—1)"3 4+ (a — 3)_)‘) .

Bobée (1975) a proposé une méthode de calage par la méthode des moments. En
prenant le logarithme des trois premiers moments (A.14), on obtient:

Li=m—An(1 —-1/a), (A.18)
Ly =2m — An(1 — 2/a), (A.19)
Ly =3m — An(1 — 3/a). (A.20)

On résout une seule équation pour «:

1—1/a)? 1—1/a)?
mﬂ :Blnw7 (A.21)
1-3/«a 1-2/«a
avec B défini par
Lo —
- Ls=3l
Lo — 2L,
Une fois que « a été calculé numériquement, on déduit immédiatement \:
Ly —2L
\ = 2 ! (A.22)

CIn(1-1/a)® —In(1—2/a)
Finalement, on tire m:
m=1L;+An(l —1/a). (A.23)
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A.3 Quelques théorémes importants

Nous regroupons ici un certain nombre de théorémes importants, notamment pour
la modélisation par simulation de Monte Carlo.

A.3.1 Inégalité de Markov

¢ Théoréme. — Si X est une variable aléatoire positive alors pour tout a > 0:

E(X)

P(X >a) <

~> Démonstration. — Supposons que la loi de probabilité de X soit f avec un
support sur R . Par définition on a

BOX) = [ af(@)d
Ry
que l'on peut transformer de la fagon suivante
E(X) :/ mf(:r:)dx+/ zf(z)de,
Ooo a
> / x f(x)dz,
> / af(z)de,

car zf(x) > af(x) quand x > a. Le dernier membre de droite n’est rien d’autre que
aP(X >a). O

A.3.2 Inégalité de Chebyshev

C’est un corollaire de I’énoncé précédent. Cette inégalité est appelée encore inéga-
lité de Bienaymé—Chebyshev.

4 Théoréme. — Si X est une variable aléatoire de moyenne y et de variance o2,

alors la probabilité que X soit loin de sa valeur moyenne est bornée. Pour tout k¥ > 0

L
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~~ Démonstration. — Comme la variable réduite (X — p)2/0? est une variable
aléatoire de moyenne 1, on déduit du théoréeme de Markov que

(52 ) <

< —.
o2 - k2

Le résultat s’en suit car I'inégalité (X — p)2/0? > k? équivauta (X — p)/o > k. O

A.3.3 Loi faible des grands nombres

La derniére inégalité est utile a montrer la loi faible des grands nombres, base de la
méthode de Monte Carlo.

¢ Théoréme. — Soit X1, Xo, ... X, une séquence de variables indépendantes dis-
tribuées selon une loi de moyenne y et de variance finie o2, alors pour tout € > 0, on
a:
Xi+--+X

—u’ >€> — 0 quand n — oo.
n

~> Démonstration. — Rappelons tout d’abord que la moyenne de la somme de
variables aléatoires indépendantes est égale a la somme de leur moyenne

E(nY) =E(X1 + -+ X5) = E(X1) + - + E(X5) = np,

ouY =" | X;, tandis que pour la variance d’'une somme, on montre facilement que

0.2

! (Var(Xy) + -+ - + Var(X,,)) = —.

Var(nY) = Var(X; +--- X,,) = —
n n

L’inégalité de Chebyschev nous indique que pour tout k£ > 0

ko
PY —p| > —=) <

1
Noaa

On trouve le résultat souhaité en posant simplement ¢ = ko /y/n. O

La formulation « forte » de la loi des grands nombres affirme qu’il est certain que
la somme d’une séquence de n variables aléatoires indépendantes et identiquement
distribués tende vers p quand n est grand

X1+ + X,
lim —— = p.
n—oo n
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A.3.4 Théoréeme de la limite centrale

Le théoréme central limite® va un peu plus loin que la loi des grands nombres en
précisant que si 'on utilise la variable réduite Z,, = (X,, — u)/(y/no), alors la suite
(Zn)nen converge (en loi) vers la loi normale N'(0,1).

¢ Théoréme. — Soit X1, Xo, ... X, une suite de variables indépendantes distri-
buées selon une loi de moyenne 1 et de variance finie o2, alors

Xi4- 4+ X,—n

N BN N(0,1). (A.24)

Le théoréme central limite permet de formaliser I'intervalle de confiance en défi-
nissant la précision avec laquelle la moyenne empirique X tend vers la moyenne p. On
peut en effet reformuler le théoréme central limite commet suit:

2
e /2,

b
Va,b(—oo <a <b<+o0) lim Prob[a<Zn<b]:/ dx

1
n—00 \/ 2
Cette équation permet d’affiner la définition de I'intervalle de confiance. A cet effet, on
généralise le théoréme limite centrale de la facon suivante.

¢ Théoreme. - En plus des hypotheses précédentes (X; indépendantes et iden-
tiquement distribués), on définit Z2 = (X? + --- + X2)/(n — 1) — X2 (écart-type
empirique). Soit o un réel (petit) et z,, le réel tel que:

2o 1 2
dx e /2 =1 - 2a.
/za V27

On pose:
= 240 . o Zan/S?
h=X-— T =X —
1 \/7’»71 1 \/’TL )
o 240 . o Zan/S?
Th=X+— =X
2 +\/ﬁ 2 + \/’E ;
alors

lim Prob[T} < u < Ty = lim Prob[T] < u<Tj]=1-q.

n—oo n—o0

Par exemple, quand on parle de lintervalle de confiance a 95%, cela revient a
prendre z, = 1,96. L’interprétation classique est que si 'on tire NV échantillons et

3. Il faudrait plutét dire « théoréme de la limite centrée », qui est plus juste que la traduction
anglaise mot a mot « central limit theorem ».
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qu’on construit des intervalles X; & 1,96.5,,/y/n, alors la valeur théorique 1 tombera
dans 95 % de ces intervalles en moyenne.

Quand on fait des essais avec une variable aléatoire, on peut approcher sa moyenne
en prenant:

M%Xiﬁlﬁ
NG

La convergence est plutot lente (en n~Y/2) mais il est possible d’accélérer les choses en

tentant de réduire la variance o2.

A.4 Quelques définitions autour de la notion de
série temporelle

¢ Définition. — On parle de série temporelle ou chronologique pour désigner toute
série chronologique d’une quantité (généralement scalaire) en fonction du temps: (¢;, ;)
outy <ty < ... <tn.

& Exemple. — La variation du cours de la bourse au fil des jours, le débit minimal
d’une riviére chaque année (étiage), etc. constituent des séries temporelles.

A.4.1 Série déterministe ou aléatoire

¢ Définition. — On parle de série temporelle déterministe quand la valeur prise a
Pinstant ¢; par = est connue précisément ; il existe une relation déterminant z; en fonc-
tion des valeurs prises précédemment et/ou du temps. Par exemple une suite récurrente
de la forme x; 1 = f(x,), avec f une fonction, est une série déterministe.

¢ Définition. — Inversement, on parle de série temporelle aléatoire quand on ne
peut pas établir avec précision la valeur prise a I'instant ¢; par x. On peut tout au plus
dire qu’il existe une certaine probabilité P que cette valeur soit x;.

¢ Définition. — On parle de série stationnaire quand les caractéristiques de cette
série ne dépendent pas du temps. Ainsi, pour une série aléatoire, la probabilité jointe
d’observer (x;,...x;) est égale a la probabilité d’observer un échantillon décalé d’un
temps k:
P((l:i, e x]‘) = P(«%’—&-k; . xj+k),

pour tout triplet (¢, j, k). La plupart du temps, on fait ’hypotheése que I’échantillon de
données est stationnaire pour simplifier les calculs.
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Pour caractériser une série temporelle aléatoire stationnaire, il faut:

— établir la probabilité P que la valeur prise a I'instant ¢; par x soit x;, z;—1 a
Pinstant ¢;_1;

- évaluer I'auto-corrélation du signal. La fonction d’autocorrélation permet d’esti-
mer un temps caractéristique qui donne en quelque sorte la mémoire du systéme.

Pour caractériser un processus stationnaire, il suffit de fournir sa densité de probabilité
(la probabilité de trouver le processus dans un certain état) et sa fonction d’autocorré-
lation.

A.4.2 Corrélation

Lorsqu’une fonction aléatoire est stationnaire, alors I’auto-variance R(s), ou sous
une forme normalisée la fonction d’autocorrélation p(s), est la fonction:

R(s) = (f'(®)f'(t+9)), (A.25)

(f'(@)f'(t+5))
(@)

ou f/(t) = f(t) — (f(t)) désigne la fluctuation par rapport a la valeur moyenne et
(-) désigne 'opérateur « moyenne ». L’autocorrélation permet d’évaluer la corrélation
existant entre deux instants séparés du temps s. Plus R est grand, plus les signaux se
ressemblent. L’échelle intégrale de temps permet de donner un ordre de grandeur du
temps de corrélation entre deux instants:

_— /0  o(s)ds.

Dans le cas d’une série (x;)1<i<n, on peut définir également I’autocorrélation comme
étant:

p(s) = (A.26)

1 N—-n 1 N—-n 2
R(n)_MZJTi%Hn—(N_nZ%) .
i=1 j

En statistique, la covariance de deux variables aléatoires, dont la densité de proba-
bilité jointe est notée fx y, est définie par:

Cov(X,Y) = / (z — E(X)) (y — E(Y)) dady,

que 'on peut transformer en coefficient de corrélation:

Cov(X,Y)

Corr(X, Y) = VarXVarY "’
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La covariance traduit le degré de linéarité entre deux variables. Si deux variables aléa-
toires sont indépendantes, alors la covariance est nulle (I'inverse n’est pas vrai).

Attention une forte autocorrélation d’'une fonction a deux variables ou de va-
riables statistiques ne signifie pas qu’il existe un lien fort entre variables. Corrélation
est ici a prendre au sens général et non au sens de la corrélation entre deux points
C = (xjzj) — (z;)(x;). En effet, considérons une variable aléatoire  ~ f(f) avec
f une densité symétrique f(z|0) = f(—x|0) et construisons y = x?; comme y dé-
pend de z, les deux variables sont dépendantes. Pourtant leur corrélation est nulle:
Cov(, y) = (wy) — (@){y) = 0 car (%) = (a).

A.4.3 Autocorrélation partielle

La fonction d’autocorrélation p(s) mesure le degré de corrélation entre deux va-
leurs x; et 445 dont les occurrences sont séparées d’un temps s. Le probléme est que
lorsque les valeurs sont corrélées, cette mesure refléte également 'influence des valeurs
ZTiyr avec 0 < 7 < s sur la valeur x4, s.

Par exemple, si on mesure les débits moyens mensuels dans une riviére, on peut
s’intéresser a savoir comment le débit en mars dépend du débit en janvier. Si on calcule
Pautocorrélation a ’aide de ’équation A.26, la mesure ainsi obtenue refléte la facon
dont non seulement janvier, mais également février influe sur le débit en mars. Pour 6ter
I'influence du mois de février, il faut utiliser une variante de ’autocorrélation appelée
« autocorrélation partielle* ».

L’autocorrélation partielle est définie de la facon suivante:

¢(1) = corr(zt1,7t), (A.27)
¢(k) = cort(2i ik — Ttyh, Tr — 1) pour k > 2 (A.28)
ou Zy4k et &y sont des combinaisons linéaires de (vyy1, Z142, - -+ ,T¢+k—1) qui mini-

misent 'erreur quadratique moyenne x;, de x; respectivement. En pratique, on se
sert d’'une méthode itérative (méthode de Durbin-Levinson) pour calculer ¢(n) (Box
et al., 2015, voir § A.3.2).

A.4.4 Densité de probabilité; chaine de Markov '

On introduit P(z1, t1 ... xy, t,) la probabilité d’observer la valeur x = x; a I'ins-
tant {1, * = x5 a instant 9, etc. On introduit également la probabilité conditionnelle
d’observer la valeur © = z; a I'instant ¢ sachant qu’a 'instant ¢;_; on avait x = x;_1,
a linstant t;_o on avait x = x;_o, etc.

Pz, ti|lwi—1, ti—1;Ti—2, ti—o; Ti—3, ti—g; -+ - ).

4. partial autocorrelation function (pacf) en anglais.
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Cette probabilité conditionnelle est en générale trés complexe a manipuler, mais dans

bien des cas pratiques, le temps d’échantillonnage (c’est-a-dire le temps entre deux
temps At; = t; — t;_1) est bien plus grand que le temps d’autocorrélation de la série.
Dans ce cas, le passé lointain n’a pas d’influence sur le présent ou, autrement dit, le
passé influe sur le présent (a t = ¢;) uniquement a travers le dernier état visité (c’est-a-
dire la valeur z = x;_1 a 'instant £;_1).

¢ Définition. — On dit alors que la série est une chaine de Markov et on peut écrire:

P(x;, tilwi—1, tim1; Ti—o, ti—o; i3, ti—g; -+ ) = Py, tilwi—1, tic1).

A.4.5 Processus a moyenne mobile

On appelle processus @ moyenne mobile® d’ordre q — abrégé MA(q) - la série tem-
porelle définie par:

T =+ €+ 0161 + 0262+ - - + 0464 (A.29)

oll 41 est une constante, la variable €, est du bruit blanc® évalué au temps , et 0, est
un jeu de parametres constants.

La série temporelle fluctue autour de sa moyenne y et la valeur a un temps ¢ dépend
du passé, plus précisément, elle dépend des g valeurs passées.

La figure A.5 montre un exemple de processus MA(2). On trace aussi ’autocorréla-
tion empirique et autocorrélation partielle de I’échantillon. On note que pour k = 2,
p (et incidemment ¢) est au-dessus du seuil fixé par 'intervalle de confiance a 95 %, ce
qui est une preuve a posteriori que I’ordre du processus est bien ¢ = 2.

A.4.6 Processus autorégressif

On appelle processus autorégressif 7 d’ordre p — abrégé AR(p) — la série temporelle
définie par:
i =C+€+ Proi—1 + paxi—o + -+ + PpTiyp (A.30)

ou C' est une constante, la variable ¢; est du bruit blanc au temps 7 et ¢, est un jeu de
parameétres constants. La moyenne de x; vérifie:

p
E(X)=C+Y_ ¢:E(X),
k=1

5. Moving average process en anglais, d’ou I’acronyme MA.

6. On appelle bruit blanc un processus aléatoire €, qui est nul en moyenne, de variance
finie et dont deux occurrences sont non corrélées: E(e;) = 0, E(e7) = 02 > 0, et p(k) = 0
pour k& > 0.

7. Autoregressive process en anglais, d’ou 'acronyme AR.
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Figure A.5 — Exemple d’un processus MA(2) avec 1 = 2, 61 = 0 = 0,5 et 0 = 1. (a)
Réalisation jusqu’a un temps & = 100. (b) Autocorrélation. (c) Autocorrélation partielle.
La droite tiretée montre I'intervalle de confiance a 95 %.

et donc la moyenne du processus est:

B c

=
1- Ek:1 ¢k

On peut introduire I’écart a la moyenne:

p=E(X)

Ti = X5 — M,
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et avec cette notation, ’équation (A.30) est équivalente a:

Ty =€+ P11 + P2Ti—o + - + PpTiyp (A31)

Comme le processus AM, un processus autorégressif AR(p) dépend de I’historique
récent, jusqu’au p précédentes valeurs. La figure A.6 montre un exemple de proces-
sus AR(2). On trace aussi 'autocorrélation empirique et 'autocorrélation partielle de
I’échantillon. On note que pour k = 2, ¢ est au-dessus du seuil fixé par I'intervalle de
confiance a 95 %, ce qui est une preuve a posteriori que 'ordre du processus est bien

p=2.
Si on introduit I'opérateur retard® B défini par:
Bxp = xp_1
et donc par itération: 4
Bz, = xp—;
on peut récrire I’équation (A.31) sous la forme
Ti =€+ (018 + 2B + - + ¢ BY) 3,

soit encore

p
®(B)z; = ¢ avec ®(B) =1 — Z o B (A.32)
k=1

En introduisant ¥ la fonction inverse de ®: U(B) = ®~!(B), on peut écrire (A.31)
sous une forme explicite
i’i = \I/(B)Ei, (A.33)

ou 'on voit que W(B) joue le rdle de fonction de transfert et que le processus AR agit
comme un filtre linéaire du bruit. Cela montre aussi une équivalence formelle entre pro-
cessus autorégressif et a moyenne mobile : un processus autorégressif est un processus
AM avec un ordre ¢ infini.

Cette formulation aide a fournir une condition de convergence vers I’état station-
naire. Prenons 'exemple d’un processus AR(1):

T = P1Ti—1 + €, (A.34)

soit encore

€T, = \I/(B)ez = (1 — (ﬁl)flei,

or un développement de Taylor de la fonction de transfert nous fournit:

_#_ - k pk
@<B>—1_¢IB—§¢1B,

8. lag ou backward shift operator en anglais



346 Annexe A Annexe A: probabilités

05¢ b
00k o v v A
0 20 40 60 80 100
t
o0p T T ]
(b)
0.5r b
L& @ — — — — — — — o — - — —— & - ---1
QU 0.0 'y e o ® e o o ry
® o o Py
F e el 2 ______e_ e
e O
-05¢ b
-1.0r ‘ ‘ ‘ b
0 5 10 15 20
k
1.0 b
(©
0.5r b
,.,,,,,,,,,;,;,,,,,;,,,,‘., ,,,,,,
e o rY Py
< 00 R e ? S
-05f ¢ 1
-1.0 ‘ L ‘ b
0 5 10 15 20
k

Figure A.6 — Exemple d’un processus MA(2) avec i = 2, ¢1 = 03 = 0,5 et 02 = 1. (a)
Réalisation jusqu’a un temps & = 100. (b) Autocorrélation. (c) Autocorrélation partielle.
La droite tiretée montre I'intervalle de confiance a 95 %.

et une condition nécessaire de convergence est que |¢1| < 1. Dit autrement, cela veut
dire que la racine de I’équation ®(B) =1 — ¢1B = 0est B = gi)l_l et donc que cette
racine est située au-dela du cercle unitaire (Box et al, 2015, p. 55). Cette condition se
généralise pour des processus d’ordre p quelconque. Elle assure que la variance et la
fonction d’autocorrélation sont bien définies; dans le cas contraire, le bruit est amplifié
a chaque pas de temps, et la variance tend vers 'infini.
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A.4.7 Processus ARMA

On appelle processus ARMA d’ordre (p, q) — abrégé ARMA(p, q) — la série tempo-
relle combinant un processus a moyenne mobile et un processus autorégressif:

v = CHe+drxi1+doxi o+ -+ Ppxip+ 0161 +b26 2+ -+046,_4. (A35)

A.5 Histogramme: échantillon de petite taille '

Une alternative a la méthode des histogrammes est d’employer la « méthode des
champs de probabilité », notamment développée par Bialek et Holy (Bialek et al, 1996;
Holy, 1997), qui est fondée sur le théoreme de Bayes; cette méthode est une variante
plus générale de la méthode dite des fonctions-noyaux (Reiss & Thomas, 2001). Supposons
que l'on ait un échantillon de n valeurs de p notées (ju1, 2 - - - , firy) ; nous recherchons
la distribution de probabilité () qui approche le mieux la distribution empirique de p.
Les fonctions « candidates » () sont tirées d’'un espace de fonctions continues, nor-
malisées’, et positives. On peut donc poser: Q = 1) avec i ¥?dp = 1. En outre, on
suppose que () est continue ou, d’un point de vue probabiliste, la probabilité d’obser-
ver des gradients importants de 1) est tres faible. Holy résuma toutes ces conditions en
avangant que la distribution de (), notée P[Q] ou indifféremment P[1)], est:

Pl =  exp [ / f(auwﬁdu] 5 (1 -/ deu> (A36)

ou Z est un facteur de normalisation, ¢ est un parameétre libre imposant la régularité de
Q, et § est la fonction Dirac '° (Holy, 1997). Dans I’équation (A.36), le terme exponentiel
exprime la pénalité attribuée a la fonction v si son gradient prend de fortes valeurs:
en effet, si cela est le cas, la dérivée de v par rapport a u, notée 0,1 est grande et le
terme exponentiel est trés petit; la pénalité est ici sous une forme exponentielle pour
des raisons pratiques et par analogie avec la mécanique statistique, mais d’autres choix
sont possibles. Le second terme (fonction Dirac) impose la normalité de (). Appliquer
le théoréme de Bayes permet de prendre en compte la connaissance a priori sur Q:

P[MDIU’QH'MU’N]

P[Q’Mluﬂ? 7/'LN] -

)

ou:
- P[Ql|u1, 2+ , un] estla probabilité a posteriori de () connaissant les données;
— Plut,po-- un | Q] = ?(u1)v?(u2) - - - 2 (un) est la vraisemblance de ces
données (1, pi2, - -+ () connaissant la distribution @ ;

9. Leur intégrale vaut 1. La normalité d’une fonction est la propriété des fonctions vérifiant

J F(p)dp = 1.
10. La fonction Dirac 0 est telle que 6(x) = 0 pour 2 # 0 et §(0) = 1.
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- le dénominateur est une constante de normalisation:
Plorsia- ) = [ 4QPIQIQU) -+ Qux).

On obtient alors:
P[Q’Mlv#Z T 7”]\7] X e_S[tﬂd <]‘ - /dﬂ¢2> )

ou S est une fonctionnelle:
02 9
S= [ du| 50)" —2Iny > " 6(p— i) | -

La distribution la plus probable () connaissant les données est la fonction qui minimise
la fonctionnelle S. Il s’agit d’un calcul de variations d’Euler-Lagrange; en se servant
des régles de calcul des variations, on montre que ) est de la forme:

b= \/5 N T )

ot k2 = 2)\/f?, avec \ est un facteur de Lagrange qui doit étre ajusté pour garantir la
normalité de @, et a; (1 < ¢ < N) sont des coefficients. Le facteur de Lagrange \ et les
coefficients a; sont solutions du systéme de N + 1 équations:

2)\a; Zake_“|“k_“i| =1l,pouri=1,--- N (A.37)
3
N el — s
g5+ iy = e =1

Le paramétre libre £ commande la pénalité imposée a () quand son gradient (sa dé-
rivée) prend des valeurs importantes. Le meilleur accord est obtenu avec une valeur
petite de £, mais dans ce cas, la solution peut étre fortement oscillante. A 'opposé, la
meilleure régularité est obtenue en choisissant une valeur relativement grande de /,
mais la courbe résultante peut représenter de facon peu fidéle les données. En pratique,
il faut trouver un compromis entre accord et régularité, ce qui peut se faire en tracant
une « courbe de compromis », c’est-a-dire S(1)) en fonction de Inx = Inv/2X — In/
dans un diagramme semi-logarithmique. Généralement, la courbe de compromis pos-
séde un maximum/minimum (courbe en cloche) ou un point d’inflexion (courbe en S).
Une valeur convenable de £ est alors choisie en sélectionnant le point ou dS [1[1] /dInt
s’annule ou tend vers 0 puisque ce point correspond a sensibilité minimale de S (Holy,
1997).
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A.6 Principe de ’estimation

Généralement, lorsqu’on cherche a déterminer la loi de distribution dont est issu un
échantillon de valeurs, on recherche une loi issue d’une famille paramétrique f(-; 6),
ou 6 est 'ensemble des paramétres de la loi. Ainsi pour une loi de Laplace-Gauss, on a
0 = (u, o) avec v la moyenne et o I’écart-type.

Quand on dispose de données, on cherche a estimer les parameétres 6 a partir de
I’échantillon (x;). La fonction a variable(s) aléatoire(s) qui lie I’échantillon au jeu de
parameétres 6 est appelée un estimateur. Par exemple, 'estimateur « moyenne » est la
fonction:

1y
(@i)1<isn = f1=— > @,
i=1

et la quantité [i est appelée I’estimation de la moyenne p. Puisque les variables sont
aléatoires, différentes répétitions de 'expérience produisent des échantillons de valeurs
(x;) différentes et donc des estimations de ji également différentes. La probabilité de
distribution de /i est appelée la distribution d’échantillonnage.

Il est utile de définir des fonctions d’estimation qui donnent des valeurs les plus
proches possible des paramétres 6. Pour qualifier I’écart entre les parameétres 6 et 6, on
introduit le biais d’un estimateur

Biais(f) = E(§) — 0,
ainsi que I'erreur quadratique moyenne!
MSE(d) = E ((é - 9)2) .

Quand l'estimateur a un biais nul, il est dit non biaisé, c’est-a-dire il va donner, en
moyenne, la bonne valeur du parameétre recherché. On montre, par exemple, que I’estima-
teur « moyenne » est non-biaisé. Pour d’autres estimateurs (par exemple pour estimer
la variance), il est difficile d’assurer qu’il soit non biaisé, mais il est souvent possible de
le construire de telle sorte que I'erreur quadratique moyenne soit faible. Quand cette
erreur est faible, cela signifie que n’importe quelle estimation 6 est raisonnablement
proche de 6.

La distribution d’échantillonnage détermine la variabilité d’un estimateur. On peut
donc estimer la précision de I'estimateur en calculant ’écart type de la distribution
d’échantillonnage de 0. On I'appelle 'erreur type 2 SE(é) ; C’est ’écart type de sa dis-
tribution d’échantillonnage. Plus SE(é) est petit, meilleure est la précision de I’estima-
teur.

11. Mean-square error en anglais.
12. Standard error en anglais.
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La question, souvent délicate, est de savoir si I'on peut arriver a construire des
estimateurs corrects de ces moments empiriques. Pour cela, il faut qu’ils soient conver-
gents quand n — oo et non biaisés. On se reportera a des ouvrages spécialisés (Saporta,
1990; Robert, 2001; Davison, 2003) pour plus de renseignements sur ce point. On peut
juste rappeler que:

— pour le moment d’ordre 1 (moyenne), on montre que la moyenne empirique z =
> i, xi/n est un bon estimateur de la moyenne théorique E[f] (convergent et
non biaisé);

— pour le moment centré d’ordre 2 (variance), si la moyenne de la population E[f]
n’est pas connue mais seulement estimée a 'aide de 7, alors un estimateur non
biaisé de la variance est

n —\2
(x; —
Var(x) = 2i(@i—2) .
n—1
Toutefois, cela cesse d’étre vrai si la moyenne de la population est connue exac-
tement. Dans ce cas, il faut revenir a 'expression: Var(z) = > /' (z; — m)?/n
avec m = E[f];
— pour le moment centré d’ordre 3, ona ms = > (x; — Z)3/n, qui est un estima-
teur biaisé. En pratique on définit un coefficient d’asymétrie y; = ms /o>, dont
un estimateur non biaisé est

n > (i —x)?
L M SR R

La précision d’un estimateur peut étre quantifiée a I’aide du calcul de I'intervalle
de confiance (cf. § 4.3.4). Cette quantification est rendue particuliérement aisée quand
il existe un pivot; un pivot est une fonction particuliére de 0 et 0, dont la distribution
ne dépend pas de 6. Par exemple, dans le cas de I'estimateur « moyenne », la fonction
g(ft, ) = o — p est un pivot car le théoréme de la limite centrale montre que 1 — p ~
N (0, 6% /n). Quand on peut trouver un pivot pour un estimateur, alors il est possible
de préciser un intervalle de confiance pour 6. En effet si Y= g(é, 0) est un pivot, alors
sa distribution d’échantillonnage ne dépend pas de parameétre inconnu et pour tout réel
« (tel que 0 < a < 1), on peut trouver des limites supérieure et inférieure, ¢5 et ¢;,
telles que:

Prob(¢s < ¢ < ¢;) =1 —a,
qui peut étre transformée par changement de variable en
Prob(6s <6 <6;,)=1—aq,

ou [0;, 6] est appelé I'intervalle de confiance a 100(1 — «v) % de 6. Cet intervalle donne
la gamme de valeurs ou I'on peut étre siir de trouver 6.
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A.7 Tests statistiques d’ajustement

A partir d’'un échantillon de données x, il a été possible d’ajuster les paramétres 6
(de dimension p) d’une distribution f(x; #). En faisant cet ajustement, on a implicite-
ment supposé que I’échantillon avait été généré par cette loi f. Il est possible de vérifier
la pertinence de cette hypothése a I’aide de tests. Nous en décrirons rapidement deux:
le test du 2 pour les valeurs discrétes et le test de Kolmogorov-Smirnov pour les va-
leurs continues. Dans tous les cas, on ne pourra jamais prouver que cette hypothese
est exacte (il faudrait connaitre toute la population dont est extrait I’échantillon), mais
seulement se faire une idée sur la pertinence de cette hypothese. De plus, un test d’ajus-
tement ne garantit pas 'unicité de la solution; autrement dit, ce n’est pas parce qu'on
a trouvé une loi répondant avec succés a un test statistique pour un échantillon qu’il
n’existe pas d’autres lois pouvant représenter I’échantillon de maniére plus précise.

A.7.1 Test du x>

L’idée du test du x? est de construire un histogramme des valeurs échantillon-
nées et des valeurs théoriques, puis de mesurer I’écart relatif séparant les deux histo-
grammes. Donnons un découpage du support de f en N intervalles. Ce découpage peut
étre régulier mais il est bien plus intéressant de travailler avec des intervalles de taille
irréguliére mais constituant des classes équiprobables; dans ce cas, les bornes sont don-
néespar:y; = F~1((i —1)/N) (1 <i < N + 1), avec F~! I'inverse de la fonction
de répartition. Dans tous les cas, il est préférable d’avoir au moins 3 a 5 éléments par
intervalle (dans le cas contraire on peut procéder a des regroupements).

On compte le nombre nj d’éléments de Iéchantillon & qui sont dans le kiéme
intervalle [y, yr+1[ et on calcule le nombre théorique d’éléments que I'on devrait avoir
tr = N(F(yg+1)— F(yk)) (avec des classes équiprobables, on a: ¢, = 1/N). On définit
une distance relative entre les deux histogrammes de la fagon suivante:

D2 i (g —tk)2.

t
k=1 k

Intuitivement on sent que cette distance ne doit pas étre trop grande pour que I’échantil-
lon soit effectivement tiré d’une population de loi de distribution f. Cette distance est
une somme de k termes aléatoires (ils ne sont toutefois pas indépendants puisqu’ils
vérifient la condition ) ng = n; au mieux seuls N — 1 termes sont indépendants).
Un théoréme important montre que, pour n grand, D? est distribué selon la loi de
probabilité dite du x?(v/), qui est une loi 2 un paramétre ' v pris égaliciav = N—1—p
(Saporta, 1990).

13. On appelle v le degré de liberté.
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En pratique, on procede ainsi.

— On se fixe N classes équiprobables (le nombre de classes est généralement fixé
de telle sorte qu’il y ait au moins 5 éléments par classe).

- On dénombre les éléments de I’échantillon par classe et on détermine le nombre
théorique d’aprés la loi ajustée f(0).

~ On calcule la distance D? et on recherche la probabilité Ppy2 (de non-dépassement)
d’observer le quantile D? avec une loi x%(v).

- On se fixe un seuil ' de rejet o (typiquement de I'ordre de 5 ou 10 %) pour le
test du 2.

- Si Pp2 < « alors il est peu vraisemblable que I’échantillon soit tiré selon la loi
ajustée. On peut donc rejeter la distribution f(6).

A.7.2 Test de Kolmogorov-Smirnov

Le principe est a peu pres similaire si ce n’est qu’on ne compare plus des densités de
probabilité (histogrammes) mais des fonctions de répartition. On définit une distance
entre fonctions de répartition de la facon suivante:

D = max |F(x;|0) — F(x;)|,

ou F}¥(z;) désigne la fonction de répartition empirique construite a partir des n valeurs
x;. Le théoréeme de Glivenko-Kolmogorov montre que cette distance suit une loi de
probabilité dite de Kolmogorov-Smirnov dont la fonction de répartition s’écrit:

—+00

K(y; k) =Y (1) exp(—2k>y?).

—00

C’est une loi a un parameétre k = n. En pratique, on procédera de la méme facon que
pour le test du x?.

A.8 Génération de nombres aléatoires

On ne traite ici que le cas de variables continues mais 'extension a des variables
discrétes ne pose gueére de probléeme. On recense ici deux méthodes classiques et faciles
a programmer. L’algorithme de Metropolis offre un cadre plus général et universel d’ob-
tention de variable aléatoire.

14. Ce seuil signifie que si on était en mesure d’effectuer un nombre infiniment grand de
tests 1, sur des échantillons de taille donnée et si tous les échantillons étaient tirés de la méme
population de loi f(#), alors en moyenne an, échantillons seraient rejetés par le test.
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A.8.1 Inversion directe

C’est la méthode la plus simple. Soit f une densité de probabilité, F' sa fonction de
répartition. Si on veut simuler des nombres aléatoires tirés selon f, alors on peut tirer
u selon une loi uniforme sur [0, 1], puis poser X = ! (u).

Par exemple, pour simuler une loi exponentielle de taux J, il suffit de poser X =
—1In(1 — u) (ou plus simple X = —Inw car u et 1 — u suivent la méme loi).

A.8.2 Meéthode d’acceptation/rejet

Dans certains cas, on ne sait pas calculer directement (analytiquement) F'~! ou cela
demande du temps. On peut alors approcher la densité f par une fonction g plus simple
telle que: f(z) < cg(x) ou c est une constante supérieure a 1 (on a en général intérét a
choisir ¢ de telle sorte que ¢ = max(f(x)/g(x)) soit le plus petit possible). Si u est une
variable aléatoire et x une variable aléatoire tirée selon ¢ alors la loi conditionnelle de
x sachant I’événement « cug(z) < f(z) » a pour densité f.

A.9 Méthodes stochastiques

Beaucoup de problémes pratiques se ramenent a I'un des problémes suivants:

- trouver le minimum d’une fonction (probléme d’optimisation);
- calculer une intégrale;

- générer un échantillon de n valeurs tirées selon une loi de probabilité donnée
(probleme d’échantillonnage).

Pour résoudre ces problémes, il existe

— un certain nombre de méthodes déterministes qui permettent d’aboutir généra-
lement au résultat avec une précision donnée ¢;

— des méthodes stochastiques, qui en théorie permettent d’aboutir a des résultats
avec une précision donnée.

Comment en pratique choisir plutét un algorithme déterministe ou stochastique? La
réponse n’est pas facile et dépend, entre autres choses,:

— du coit de calcul (nombre d’opérations a effectuer, temps total de calcul, éven-
tuellement temps nécessaire a écrire/adapter I’algorithme);

— de la robustesse du calcul;

- de la possibilité de faire du calcul analytique pour les méthodes déterministes;

- de la possibilité de stocker de grandes quantités de données pour les méthodes
déterministes ou stochastiques.



354 Annexe A Annexe A: probabilités

Généralement, le nombre d’opérations élémentaires impliquées dans un algorithme dé-
terministe est fonction de la taille du probleme n (par exemple, le nombre de pas de
discrétisation pour le calcul d’une intégrale) et de la précision € requise. Typiquement,
un algorithme déterministe demandera K In e~ 'n opérations contre e ~>n? pour des al-
gorithmes stochastiques. De ce point de vue, un algorithme déterministe est bien plus
rapide a précision égale qu'un algorithme stochastique.

La situation est moins claire en ce qui concerne la robustesse, notamment si les me-
sures sont bruitées. Prenons '’exemple suivant: on mesure une variable f(z) pour diffé-
rentes valeurs de z et on souhaite déterminer pour quelle valeur de x on observe f = 1.
Si les données ne sont pas bruitées, il existe plusieurs méthodes (Newton, etc.) qui per-
mettent de trouver cela rapidement et précisément (Press et al., 1992). Considérons
maintenant que les données sont bruitées (imprécision de la mesure, fluctuations du
parametres, etc.), alors les méthodes déterministes ont de fortes chances de ne pas mar-
cher ou bien de donner un résultat faux comme le laisse deviner la figure A.7.

. 1.05 .
1.05 .

f(x)
f(x)

., 0.95 e

0.95
09

0.9
0.85

Figure A.7 — Mesure de f; signal pur (gauche) et signal bruité (droite) avec un niveau
de 10 %.

C’est ainsi qu’en présence de bruit, trouver le zéro d’une fonction ou bien son mi-
nimum s’il existe peut étre plus efficacement obtenu avec un algorithme stochastique
(Venkatesh et al, 1997). Ainsi, si la taille du systeme est grande et que la précision
souhaitée n’est pas trés grande, un algorithme stochastique satisfera largement aux
besoins.

Il existe des cas ou la suprématie des algorithmes stochastiques est évidente: ce
sont les problémes d’optimisation, d’évaluation de possibilité ou de combinaison. Un
probleme classique, dit du « représentant de commerce » (salesman problem), est le
suivant. Un représentant doit au cours d’une tournée aller dans N villes différentes.
Connaissant les distances entre ces villes, comment optimiser la distance totale a par-
courir en recherchant dans quel ordre les villes doivent étre visitées ? C’est typiquement
un probleme dont le temps de calcul est en N! pour une résolution déterministe alors
qu’on va rester dans des temps en N? opérations pour un algorithme stochastique.
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A.9.1 Exemple: intégration d’une fonction

On cherche a calculer I'intégrale d’une fonction f sur un domaine x

I:/Xf(x)d:n.

On peut aborder ce probléme de deux fagons:

- approche déterministe impliquant une discrétisation de ’équation. Le signe d’in-
tégration est alors interprété comme une somme;

- approche stochastique: on tire de nombres aléatoires et on interpreéte I'intégra-
tion comme une moyenne.

On va examiner ces deux méthodes en considérant — pour simplifier le probleme - que
X est un intervalle y = [a,b] et f une fonction scalaire.

Approche déterministe: approximation de Riemann

Une approximation de I peut étre obtenue en divisant un intervalle y = [a,b] en
une succession d’espaces réguliers x; = a + i(b — a)/n. On a alors:

n—1

I= / dof(z) ~ ) flai) (i — ;)
X

1=0

Cette méthode s’appelle méthode des rectangles; c’est la plus basique des méthodes
d’intégration. Il existe de nombreuses variations (méthode des trapézes ou méthode de
Simpson, etc.) qui sont bien plus performantes.

& Exemple. — Admettons que 'on veuille résoudre [ e*dx sur x = [0, 1]. Analy-
tiquement on trouve / = e — 1 ~ 1,718.

La figure A.8 montre comment varie I en fonction du nombre d’intervalles 7. On
note la lente convergence en 1/n de la série vers la valeur exacte. Au bout de 1000
itérations, on trouve I = 1,71371, soit une erreur de 0,266 %.

Approche stochastique
Méthode 1 (Monte Carlo). - On peut transformer I'intégrale a résoudre
1= [ o= [ hglons
X X

avec g(z) une densité de probabilité a priori quelconque, mais:

- qui est strictement positive sur ;
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Figure A.8 — Calcul de I par une adaptation stochastique de ’algorithme de Riemann.

— qui est nulle en dehors de x ;
- dont on doit pouvoir tirer facilement des réalisations;

— qui peut étre choisie de facon a accélérer la vitesse de convergence.

Par défaut, on peut prendre g comme étant la loi uniforme sur . La fonction h est
obtenue en posant simplement & = f/g. On peut interpréter I comme: I = E,[h(z)].
Laloi forte des grands nombres nous indique que sil’on est capable de générer x; - - - x,,
selon g, alors

_ 1<
hp = —
k=1
converge vers I. Cette méthode est un exemple typique de simulations de Monte Carlo.

La précision peut étre estimée en calculant la variance de I'estimateur. La variance
théorique est donnée par:

n

Var(h) = /X (h(z) — I)? g(z)dz = % < /X deg(a)h?(x) — Eﬁ[h(z)}) ,

qui peut étre évaluée par:

1 < h?
Up = —ZhQ(a}k) -
k=1

Pour n grand, le rapport (hy,, —E4[h])//Um se comporte comme une variable aléatoire
normale N/ (0,1).

& Exemple. - On identifie: g(z) = e” et h est la loi uniforme sur x. On ap-
plique une méthode de simulation par Monte Carlo. Comme le montre la figure A.9, la
convergence est trés lente. Au bout de n = 1000 simulations, I’écart type relatif est de
Sn/+/n = 0,016, intervalle de confiance a 95% est donc £1,96 x 0,016 = 0,03 autour
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Figure A.9 — Calcul de I. Les points représentent les résultats d'une simulation. Pour le
dessin de gauche, on a reporté le rapport S, /1/n en fonction du nombre de simulations
n.

de la valeur moyenne estimée (1,680). La valeur obtenue pour 1000 itérations est de
1,73713, soit une erreur de 1,09 %.

Méthode 2 (adaptation stochastique). — Une autre facon de faire est d’adapter
des algorithmes stochastiques pour en accélérer la vitesse de convergence. Une adap-
tation stochastique de la méthode des rectangles consiste a supposer que les x; ne
sont plus réguliérement espacés mais distribués selon f. On obtient alors une conver-
gence plus rapide (en 1/n2) que précédemment. La figure A.10 montre un exemple de
convergence dans le cas ou la méthode des trapézes est appliquée avec une distribution
aléatoire des points.

& Exemple. — La figure A.10 montre comment varie I en fonction du nombre de
tirages n. Au bout de 1000 tirages, on obtient / = 1,71781, soit une erreur de 0,02769 %.

1.715
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1.695

1.69

1.685
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n

Figure A.10 — Calcul de I par une adaptation stochastique de la méthode des trapézes.






B.1 Normalité de estimateur 6

¢ Théoréme. — Soient * = 7, ...x, des réalisations indépendantes d’une dis-
tribution f(-; ) ou 0 désigne le parameétre f, ¢ la log-vraisemblance, 0 I’estimateur
du maximum de vraisemblance, et §° la « bonne » valeur (du paramétre #) que ’on
cherche a estimer. Alors pour n suffisamment grand, on a:

0= Mo,
1/\/14(0)
avec
9? 9? 9?
I4(6°) =R <—802€(90]m)) =— Wﬁ(e%)f(m; 6°)dx = —n @f(eomf(x; 6°)dz,

I'information attendue (ou encore information de Fisher). On peut écrire cette relation
sous la forme équivalente

0~ N(6°, 14(0°)71).

~+ Démonstration. — Pour montrer ce résultat et comprendre ce qu’est I'infor-
mation de Fisher, il faut se souvenir que 'estimateur de vraisemblance est la valeur qui
maximalise la log-vraisemblance /() d’un échantillon de données tirées de f, donc on
a

o .
5500 =0.

Cette équation s’appelle équation de la log-vraisemblance. Gardons en mémoire que
chaque fonction ¢ est implicitement définie a partir de ’observations des n valeurs x.

359



360 Annexe B Annexe B: quelques demonstrations du cours

Rappelons que la log-vraisemblance ¢(#) est un nombre aléatoire: différentes valeurs
de x conduisent a des valeurs différentes de £(6).

On peut tout d’abord montrer que E[0pf(0")] = 0, c’est-a-dire en moyenne la
bonne valeur vérifie les équations de la vraisemblance pour n’importe quel échantillon
de n valeurs tirées selon la loi f. En pratique, si 'on prend une réalisation particuliere
et qu'on calcule ¢/(#"), on a en faisant un développement limité a I'ordre 1:

0% =00)+ (6°—0)" @) + -, (B.1)
= ("= 0)0"(h),
donc #'(6°) n’est pas nul en général pour une réalisation particuliére, mais le devient
en moyenne.
En effet, on a

89£ 00 ZE[QIHJ;Q«ZZ; ):| avecxiNf(_790)

o0l 0
—af “gé‘}f (s 0%)aa,

/8f3: 00

En intervertissant les opérateurs d’intégration et différentiel et puisque f(x ; 6) est une
densité de probabilité, on aboutit a

B(0(6°)] =gy [ s 0)dz =0,

puisque par définition, 'intégrale de f vaut 1.

On montre ensuite que la variance est égale a I 4. Repartons de ’expression trouvée
précédemment

Oln f(x; 0)

59 (@;0)dz=0,

et on différentie par rapport a 0

0%1n f(x; 6° Olnf(z; 6°))
/ngéf’)f(x; 90)dx+/ <nfa(:;,)> fla;0%)de =E

AN

ot E|l==
(5) )=
Comme la variance est définie par

var (55 ) =B [£0") - B(E(@*)?) = E[(¢(6")7).
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on déduit la relation recherchée

ov 020
ar(89> [ 892} nig,
ce qui permet d’introduire 'information de Fisher et de 'interpréter comme étant la

variance de la courbure autour de la bonne valeur du paramétre °. On a également
introduitig = — [ f 892 In fdx 'information attendue a partir d’une seule observation.

Reprenons maintenant le développement limité de ¢ comme celui de 1’équation
(B.1) si ce n’est qu’on intervertit le réle de 6 et §°

(0) = (6 + (6 — ) () + - - =0,

soit encore

§j _ 90 — f@
0"(09)°
De cela on peut définir que 0 — 00 estle rapport de deux variables aléatoires
. Y,
\/’77,(9 - 90) = 77

avec
By !

="

Y,, est une somme de variables aléatoires de moyenne nulle et de variance i 4 et on a
pris soin de mettre Y,, sous la forme utilisée dans I’équation (A.24) du théoréme central
limite. On en déduit donc d’aprés ce théoréme que Y,, se comporte comme une variable
tirée d’une loi normale A/ (0,1) quand n — oo

"9 1
_ /00N __ e . n0 — 0
Y, = 0(6") = 321 8€f(acz,0 ) et Zy, n€ (6°).

Y, — N(0,1).

La variable Z,, est la moyenne de variables aléatoires de moyenne —i 4, qui d’apres la
loi forte des grandes nombres tend vers i 4 quand n — 0.

Lp —> 1A

Il s’ensuit que le rapport Y,/ Z,, tend vers

Y, ,
Z —>N(O, - 1/ZA).
Puisque /n(0 — 0°) — N(0, — 1/i4), on déduit

0 —0° — N(0,— (nia)™) = N(0, — (In)™h),

qui est la relation souhaitée. O
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B.2 Approximation de’information attendue par
une loi du y?

4 Théoréme. — Soient x; . .. x,, des réalisations indépendantes d’une distribution
f(-5 0) ou 6 désigne le paramétre de f, ¢ la log-vraisemblance, et 6 I'estimateur du
maximum de vraisemblance. Alors pour n suffisamment grand, on a:

D(6") ~ x1.

~ Démonstration. — Faisons un développement a ’'ordre 2 de la log-vraisemblance
autour de #°, qui est la bonne valeur du paramétre 6, mais cette est inconnue (la distance
entre 0° et Iestimateur # n’est donc pas connue de facon certaine)

0(0) = £(6°) + (6 — 6°)¢'(0°) + %(é — 002" (%) + -+,
Comme ¢'(0°) = 0, on tire que
D(0°) = 2(¢(6) — £(0°)) = (6 — 6°)2¢" (9°).
Nous avons au § 4.3.4 que quand n suffisamment grand, on a

0 —0° ~N(0,1a(6°)71),

soit encore R
VIa(6°)(0 = 6°) ~ N(0, 1),

donc si I'on considére D(6°) = I,4(6°)(6 — 6°)2, alors on doit avoir
D~ X%v

puisque le carré d’une variable gaussienne varie selon la loi du 2.

O
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