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Global prevalence of non-perennial rivers 
and streams

Mathis Loïc Messager1,2 ✉, Bernhard Lehner1 ✉, Charlotte Cockburn1,7, Nicolas Lamouroux2, 
Hervé Pella2, Ton Snelder3, Klement Tockner4,5, Tim Trautmann6, Caitlin Watt1,8 & 
Thibault Datry2 ✉

Flowing waters have a unique role in supporting global biodiversity, biogeochemical 
cycles and human societies1–5. Although the importance of permanent watercourses is 
well recognized, the prevalence, value and fate of non-perennial rivers and streams 
that periodically cease to flow tend to be overlooked, if not ignored6–8. This oversight 
contributes to the degradation of the main source of water and livelihood for millions 
of people5. Here we predict that water ceases to flow for at least one day per year along 
51–60 per cent of the world’s rivers by length, demonstrating that non-perennial 
rivers and streams are the rule rather than the exception on Earth. Leveraging global 
information on the hydrology, climate, geology and surrounding land cover of the 
Earth’s river network, we show that non-perennial rivers occur within all climates  
and biomes, and on every continent. Our findings challenge the assumptions 
underpinning foundational river concepts across scientific disciplines9. To 
understand and adequately manage the world’s flowing waters, their biodiversity and 
functional integrity, a paradigm shift is needed towards a new conceptual model of 
rivers that includes flow intermittence. By mapping the distribution of non-perennial 
rivers and streams, we provide a stepping-stone towards addressing this grand 
challenge in freshwater science.

Almost every river network on Earth includes channels that periodi-
cally cease to flow. From Himalayan snow-fed creeks to occasionally 
water-filled Saharan wadis, river flow cessation is naturally prevalent 
worldwide. Yet the global extent of intermittent rivers and ephemeral 
streams (IRES) is largely unknown. IRES vary widely in size and flow dura-
tion, encompassing all non-perennial watercourses—from large, rarely 
intermittent rivers with nearly continuous channel flow to mostly dry 
streams that only flow after intense rainfall (see Extended Data Table 1 
for additional definitions and IRES terminology). IRES are pivotal com-
ponents of the landscape, critically contributing to the biodiversity1,2, 
biogeochemical processes and functional integrity of fluvial systems3,4. 
Many formerly perennial rivers and streams have become intermittent 
in the past 50 years owing to water abstractions, climate change and 
land use transitions, including sections of iconic rivers such as the Nile, 
Indus, Yellow and Colorado10,11. Given continued global change, an 
increasingly large proportion of the global river network is expected 
to seasonally cease to flow over the coming decades12,13.

Despite their prevalence, IRES are frequently mismanaged owing 
to a lack of recognition6, or altogether excluded from management 
actions and conservation laws7. As a result, non-perennial rivers and 
streams are being degraded at an alarming rate6. Recent attempts to 
further remove IRES from environmental legislation and national water 
governance systems (for example, in the USA8), if implemented, would 

worsen their already inadequate protection. The long-standing neglect 
of IRES is partly the result of their continued omission from scientific 
research. Most freshwater science has focused on the functioning and 
conservation of perennial water bodies, and only recently has riverine 
flow cessation become its own subject of study1,9,10. Consequently, 
science-based methods for managing these unique ecosystems, such 
as biomonitoring tools and protocols, are still limited or absent5,14. 
Management frameworks also need to be adapted to conserve envi-
ronmental flows in IRES15—that is, the quantity, timing, and quality of 
freshwater flows necessary to sustain aquatic ecosystems and their 
associated benefits16. But perhaps the most important gap until now 
has been our inability to quantify and map IRES worldwide. Accurate 
mapping of non-perennial rivers and streams would provide crucial 
baseline information to determine and monitor their role in biogeo-
chemical and water cycles and in supporting global biological diversity3.

Streamflow monitoring data for IRES are scant, spatially biased, 
and of uneven quality17. Indeed, most streamflow gauging stations are 
installed on large, perennial rivers worldwide17. The dearth of primary 
data has triggered the development of alternative methods to map 
IRES, including citizen science or expert field observations of stream-
flow state, in situ sensor networks and remote sensing18–20. However, 
these efforts only provide information at local scales and suffer from 
several limitations (for example, remote sensing of smaller rivers can 
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be obstructed by overhanging riparian vegetation and cloud cover20). 
Model-based classifications of river types, either IRES-focused (for 
example, in mainland France21, the north-western USA22, eastern Aus-
tralia23) or general (for example, Australia24, California25), have also 
provided important baseline estimates of the spatial distribution of 
IRES from the catchment to the national scale. However, a rigorous 
estimation of the global prevalence and distribution of IRES is still 
lacking.

In this study, we developed a statistical random forest (RF) model 
(see Methods for details) to produce the first reach-scale estimate of the 
distribution of IRES for the 23.3 million kilometres of mapped rivers and 
streams across the globe (except Antarctica) whose long-term average 
naturalized discharge exceeds 0.1 m3 s−1, and then extrapolated our IRES 
estimates to the nearly 64 million kilometres of rivers and streams with 
an average discharge higher than 0.01 m3 s−1. For this purpose, we linked 
quality-checked observed streamflow data from 5,615 gauging stations 
(on 4,428 perennial and 1,187 non-perennial reaches) with 113 candidate 
environmental predictors available globally (Extended Data Table 2). 
Predictors included variables describing climate, physiography,  
land cover, soil, geology and groundwater, as well as estimates of 
long-term naturalized (that is, without anthropogenic water use in 
the form of abstractions or impoundments) mean monthly and mean 
annual flow (MAF), derived from a global hydrological model (Water-
GAP 2.2)26. Following model training and validation, we predicted the 
probability of flow intermittence for all river reaches in the RiverATLAS 
database27, a digital representation of the global river network at high 
spatial resolution.

Prevalence and distribution of IRES
We predict that water ceases to flow for at least one day per year, on 
interannual average, along 41% of the mapped global river network 
length, that is, all rivers and streams with MAF ≥ 0.1 m3 s−1 (Fig. 1, Table 1). 
However, any estimate of the percentage of IRES reaches in a river 
system, whether for a small catchment or for the globe, is inherently 
dependent on cartographic scale. Although many dryland rivers exhibit 
downstream decreases in discharge owing to channel evaporation and 
transmission losses28, river flow tends to become more permanent with 
increasing drainage area and distance from the headwaters in a basin29, 
which is well reflected in the predictions of our model. Because of the 
dendritic nature of river networks, small headwater streams, which 
are more prone to intermittence, make up a greater proportion of the 
total stream length than larger downstream rivers30. Consequently, the 
percentage of the river network length that is non-perennial increases 
with decreasing size of the smallest mapped stream. To account for this 
distribution, we made a first-order approximation of the prevalence of 
intermittence in small streams by extrapolating our estimate to streams 
with 0.01 m3 s−1 ≤ MAF < 0.1 m3 s−1 (see Methods for details). Including 
this size class, we estimate that 60% of all rivers and streams globally are 
IRES; and we found a lower bound of this estimate at 51% after applying 
an alternative, more conservative extrapolation approach. This demon-
strates that IRES represent the world’s most widespread type of rivers.

For river flow to occur, water from rainfall, snowmelt, or releases 
from existing storage (for example, lakes, reservoirs, groundwater) 
must exceed losses from infiltration and evapotranspiration31. Climatic 
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Fig. 1 | Global distribution of non-perennial rivers and streams. 
Intermittence is defined as flow cessation for at least one day per year on 
average. The median probability threshold of 0.5 was used to determine the 

binary flow intermittence class for each reach in RiverATLAS27. Mapping 
software: ArcMap (ESRI).
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variables, in particular climate-induced aridity, were therefore the 
leading predictors of river flow cessation and the occurrence of IRES 
(Fig. 2). Our model indicates that where evaporation rates considerably 
exceed precipitation for at least part of the year, as expressed by a low 
aridity index (that is, the ratio of mean annual precipitation to mean 
annual potential evapotranspiration), river networks comprise large 
proportions of IRES. In extremely hot and xeric environments, which 
cover nearly one-tenth of the global landmass and encompass most of 
India, northern Australia and the Sahel region of Africa (see Extended 
Data Fig. 1a for the global typology of bioclimates32), 95% of the river 
and stream network length is prone to flow cessation (MAF ≥ 0.01 m3 s−1; 
Table 1). In these environments, we find that even the main stem of 
major rivers, such as the Niger or Godavari, can dry out.

Outside of arid regions, flow in river networks is primarily controlled by 
catchment processes influenced by interacting climate and basin condi-
tions1,29. In cold climates, for instance, a combination of scarce precipita-
tion, its storage as snow during winter months, and completely freezing 
streams33 can lead to high prevalence of flow intermittence. Although 
not mapped in our study, even streams in Antarctica are known to flow 
intermittently owing to seasonal patterns of freezing, thawing and/or 
drying1. In humid and temperate regions, IRES are concentrated in the 
upper end of channel networks where small drainage areas and steep 
slopes lead to rapid delivery of water to and through the river channel, 
causing a lack of buffering from variations in precipitation34. Therefore, 
even in the wettest climates (for example, extremely hot and moist; 
Extended Data Fig. 1a), up to 35% of headwater streams are non-perennial 
(Table 1). In lowland and large basins, temporary storage and subsequent 
attenuated release from groundwater, lakes and wetlands, as well as the 
averaging of local hydrologic variability across a larger drainage area 
lead to more balanced, steady and thus perennial flow29.

Our study presents a novel, empirically grounded effort to specifi-
cally quantify the prevalence of flow intermittence of rivers and streams 

globally, and to show that IRES occur across all climates and biomes, 
and on every continent (Fig. 1, Table 1). Previous assessments reported 
from 29% to 36% of the global length of rivers to be non-perennial28,35,36, 
with inferred and extrapolated estimates exceeding 50%10,37. However, 
these estimates were either generalized hypotheses (for example, based 
on the global distribution of drylands28), geographically constrained 
(that is, south of 60° N35–37), or research by-products within larger pro-
jects (for example, using a regional extrapolation to remove IRES from 
estimates of the global CO2 emissions of inland waters37), rather than 
dedicated global IRES quantification efforts, and are therefore not 
directly comparable to our predictions. The FAO AQUAMAPS35 and 
GRIN36 global river networks, for instance, assume that streamflow 
cessation only occurs in arid and semi-arid areas. See Supplementary 
Information section I for a review of how previous estimates relate to 
our predictions, including maps of AQUAMAPS and GRIN estimates.

Our study improves on these previous estimates because it repre-
sents diverse hydrometeorological processes beyond aridity at the river 
reach scale (rather than at the basin scale37) by leveraging extensive, 
high-resolution global data on the hydrology, climate, physiography, 
geology and surrounding land cover of the world’s river network. Fur-
thermore, our study uses global empirical streamflow data for training 
and validation, which enabled our model to make fine-grained predic-
tions of the intermittence class of rivers across all climates.

Model performance and uncertainties
Performance analysis showed that our RF model could predict the 
binary flow intermittence class of streamflow gauging stations with high 
confidence. Cross-validation yielded an overall classification accuracy 
(the percentage of correctly classified gauges), ranging from 90% to 
92% (depending on cross-validation method), and indicated that model 
predictions were unbiased globally—that is, adequately reflecting the 

Table 1 | Global prevalence of IRES across climate zones and streamflow size classes

Climate zonea Prevalence of intermittence (% of network length) by streamflow size class (m3 s−1) Total intermittence 
(% length)

Total stream lengthb 
(×103 km)

Extrapolatedc Mapped Including | (excluding)  
extrapolated stream classc

[10−2, 10−1) [10−1, 1) [1, 10) [10, 102) [102, 103) [103, 104) ≥104

Extremely hot and arid 100 100 100 98 49 0 – 99 | (98) 1,032 | (249)

Hot and arid 100 100 100 97 46 0 – 99 | (98) 990 | (238)

Arctic 1 100 92 71 100 – – – 96 | (92) 11 | (6)

Warm temperate and xeric 99 96 89 59 11 0 0 96 | (89) 1,351 | (444)

Extremely cold and wet 2 100 93 69 34 0 – – 96 | (87) 766 | (243)

Extremely hot and xeric 99 90 95 90 45 0 0 95 | (89) 4,551 | (1,605)

Arctic 2 100 89 18 8 – – – 92 | (82) 98 | (41)

Cool temperate and xeric 94 81 70 37 2 0 – 87 | (72) 1,709 | (552)

Extremely cold and mesic 96 70 45 34 26 22 0 83 | (61) 8,083 | (3,051)

Extremely cold and wet 1 92 59 10 1 0 – – 72 | (50) 227 | (109)

Cold and mesic 90 47 26 6 3 0 0 70 | (37) 8,189 | (3,084)

Warm temperate and mesic 84 45 35 16 1 0 0 63 | (39) 3,582 | (1,646)

Hot and dry 77 47 36 23 7 0 0 62 | (41) 4,054 | (1,683)

Cool temperate and dry 65 46 34 11 0 0 0 57 | (39) 4,087 | (1,325)

Hot and mesic 77 30 24 23 5 0 0 54 | (27) 4,452 | (2,023)

Extremely hot and moist 35 18 20 21 4 0 0 30 | (18) 19,117 | (6,002)

Cool temperate and moist 52 18 10 0 0 0 – 29 | (13) 1,164 | (691)

Cold and wet 34 1 0 0 0 0 – 14 | (1) 493 | (299)

World 70 47 35 26 9 1 0 60 | (41) 63,956 | (23,291)
aGlobal Environmental Stratification (GEnS)32, see Extended Data Fig. 1a. 
bExcluding sections of river reaches contained within a lake. 
cExtrapolated statistics based on the main estimate (as opposed to the lower-bound estimate, see Methods for details).
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proportion of IRES gauges in the training dataset. In general, sparsely 
gauged basins exhibit lower accuracy and higher bias (Fig. 3; for exam-
ple, in Africa and the Arctic). Boundary areas between climate zones, 
from mainly non-perennial regions to mainly perennial regions, are also 
characterized by higher misclassification rates (Extended Data Fig. 2). 
See Fig. 3 as well as Extended Data Table 3 for cross-validation results.

Our model is based on an inclusive definition of IRES as those rivers and 
streams that cease to flow at least one day per year on average. To test the 
sensitivity of our results to the specific threshold of cessation length, we 
adapted our model and found that 44–53% of the global river network 
ceases to flow at least one month per year (lower-bound and main estimate, 
respectively, with MAF ≥ 0.01 m3 s−1; see Methods; Extended Data Fig. 1b, c).

Comparisons with national hydrographic datasets that include infor-
mation on flow intermittence show that our model predicts a substan-
tially higher prevalence of IRES in the contiguous USA than mapped in 

the country’s atlas (by 31 percentage points), but coincides well with 
the patterns and extents depicted in the Australian, Argentinian and 
Brazilian atlases, and with model-generated maps21 in mainland France 
(Extended Data Figs. 3–5). The divergence observed in the USA (and to 
a limited extent in Australia) largely stems from the thresholds used 
to define IRES—when applying a minimum of one zero-flow month per 
year, our predictions more closely concur with the comparison dataset 
(Extended Data Figs. 3, 5).

At an even more local scale, comparing our model predictions against 
datasets of ground observation points of flow cessation for the US 
Pacific Northwest and mainland France reveals particular challenges 
in predicting flow intermittence for small rivers and streams (median 
MAF ≈ 0.5 m3 s−1, Extended Data Fig. 6). Our model only achieved a bal-
anced accuracy of 0.59 for mainland France (n = 2,297) and of 0.47 for 
the US Pacific Northwest (n = 3,725), both under- and overestimating 
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reported IRES, respectively. We hypothesize that heavy water abstrac-
tions for domestic and agricultural use are the main reason for the 
greater contemporary prevalence of intermittence observed in France38 
(from 2012 to 2019) than predicted by our model, which aims to depict 

the natural distribution of IRES. In the US Pacific Northwest, a lower 
frequency of observations per site may have led to an underestima-
tion of the prevalence of IRES in the comparison dataset, since the 
probability of observing a no-flow event increases with the number 
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ArcMap (ESRI).
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of observations. In addition, the mountainous landscape of the region 
is characterized by complex, local hydrological processes associated 
with snow and groundwater dynamics that our model can only super-
ficially represent22.

Despite the increasing uncertainties at national and local scales, 
the global validation findings demonstrate that our overall statistics 
and large-scale representation of the spatial distribution of IRES are 
robust. However, we advise caution in using our model outputs to 
interpret fine-scale variations in intermittence for small spatial units 
or for small rivers and streams. The quality of our model results is 
constrained by the resolution of the river network and associated 
hydro-environmental predictor variables (250–1,000 m grid cells 
for most predictors)27. Accurate, fine-scale data on catchment soil 
types and lithology (for example, karst areas), riverbed sediments and 
groundwater dynamics would be needed to capture variation in the 
processes influencing flow intermittence at the sub-catchment and 
reach scales29. Groundwater–surface water interaction in particular 
is an enduring challenge in global hydrological modelling39 and repre-
sents a key process that is only partly represented in our analysis. Also, 
potential local biases in training data (such as IRES being inconsistently 
represented in streamflow gauging networks) introduce uncertainties. 
For instance, model predictions in the south-eastern USA may overes-
timate the prevalence of IRES, owing to the relative scarcity of gauging 
stations for model training on small, perennial watercourses in that 
region. Similarly, the general under- and misrepresentation of small 
watercourses and arid regions in the global hydrometric network17 
causes substantial difficulty in consistently predicting the prevalence 
of IRES across the gamut of river types worldwide. Global hydrologi-
cal models are known to overestimate flow in arid climates28, further 
complicating IRES mapping in these regions.

Finally, our model’s ability to predict the natural prevalence of flow 
intermittence is affected by the impact of human activities on most 
gauged basins. Our study aims to depict the natural distribution of 
non-perennial watercourses by excluding those gauging stations 
from model training that were affected by flow regulation and/or 
whose flow intermittence class changed over the discharge record 
(see Methods). We also used naturalized estimates of discharge as 
predictor variables, which exclude anthropogenic water use in the 
form of abstractions or flow regulation. Nevertheless, disentangling 
the potential effects of contemporary land use, impoundments and 
human water abstractions on flow intermittence remains a research 
frontier40. We expect that continued improvements in global 
hydro-environmental datasets and hydrological models, combined 
with greater access to national hydrometric datasets, will be key to 
improve future IRES mapping efforts.

Understanding and managing IRES dynamics
Our global map of IRES may become a crucial tool for understanding 
and managing these long-undervalued ecosystems. High-resolution 
predictions of flow intermittence for all river reaches with MAF ≥ 0.1 m3 s−1 
can support spatially explicit studies down to the national scale, and 
our first-order extrapolation of the total prevalence of non-perennial 
rivers and streams by region and river basin can offer additional insights 
into the role of IRES at continental and global scales. Our results also 
provide an important baseline for the assessment of future changes in 
flow intermittence in river networks. Quantifying the variability of flow 
cessation in space and time is required to better understand the impact of 
climate change, water abstraction and flow regulation. IRES are not only 
becoming increasingly common but the flow regime of existing IRES can 
shift; for example, some intermittent rivers are becoming ephemeral, 
whereas others will turn perennial41.

In this study we identified whether and where rivers and streams 
cease to flow, but further quantification of the spatiotemporal dynam-
ics of flow occurrence across stream networks worldwide is required to 

determine when and for how long. Knowledge of the natural frequency, 
duration, and timing of flow cessation—the primary determinants of the 
functioning of IRES2,3—forms the basis of flow-alteration analyses that 
can inform strategies to mitigate the impacts of future changes15. In par-
ticular, tools for assessing environmental flows globally are needed to 
appraise freshwater planetary boundaries42 and to define quantitative 
targets for the 2030 UN Sustainable Development Goals43. Yet current 
tools exclude arid and semi-arid regions44, which are dominated by IRES 
and where alternative sources of water are scarce5.

Rethinking the importance of IRES
Our findings call for a paradigm shift in river science and management. 
The foundational concepts of river hydrology, ecology and biogeo-
chemistry have been developed from and for perennial waterways, and 
as a result, have all traditionally assumed year-round surface channel 
flow9. Here we show that this assumption is invalid for most rivers on 
Earth, which bolsters previous appeals for bringing together aquatic 
and terrestrial disciplines into river science5,10.

Multiple conceptual models rely on the assumption that river dis-
charge increases monotonically downstream from the headwaters to 
the mouth—for example, the River Continuum Concept45, a theoreti-
cal pillar of river ecology. Moreover, current models define hydro-
logical connectivity within river networks in binary terms, as either 
free-flowing or perpetually fragmented by barriers such as waterfalls 
and dams46, but we show that temporary fragmentation by seasonal 
drying47 is a widespread phenomenon on Earth. In hydrology, the 
parameterization and calibration of predictive models of runoff and 
discharge are usually based on average or peak flows (for example, for 
flood forecasting) rather than being calibrated to simulate low-flow 
quantities and timing, including flow cessation events, thus failing 
to reliably predict intermittence20. Up until now, global estimates of 
biodiversity have also overlooked IRES, which provide unique habitats 
for aquatic and terrestrial species5,10. Finally, recent research shows 
that omitting the role of non-perennial inland waters in carbon models 
may result in underestimating CO2 emissions from inland waters by 
approximately 10%4; similar biases might undermine other global 
biogeochemical estimates, notably with respect to nitrogen cycling.

IRES have always been integral to human societies, whether cultur-
ally or as a source of food and water5. We estimate that for 52% of the 
world’s population in 2020, the nearest river or stream is non-perennial 
(see Methods). The relationship between the seasonal hydrology of 
IRES and the ecosystem services they provide to society is a press-
ing area of research, particularly in regions where climate change is  
disrupting the water pulses to which people’s livelihoods are tuned48. In 
many languages, multiple words exist to designate IRES and their mark 
on the landscape, highlighting the long history of inter-dependence 
between humans and seasonal freshwater systems5. However, the 
spiritual and cultural values that IRES provide, often to Indigenous 
peoples (for example, in Australia or in sub-Saharan Africa), remain 
to be acknowledged5.

The past decade has witnessed several efforts to highlight both the 
values and ongoing degradation of IRES6,8, yet current tools and policies 
still fall short of ensuring their biomonitoring and conservation14,15. A 
recognition of the prevalence and ecological importance of IRES by 
the scientific community may trigger efforts to adequately manage 
them and halt current attempts to exclude them from protective leg-
islation8. As a stepping-stone, the dataset we present here intends to 
provide a baseline for identifying gaps in hydrological and biological 
monitoring efforts, to inform global biogeochemical upscaling and 
riverine species distribution models, and to decipher the links between 
hydrological patterns, culture and language. We hope it can ultimately 
assist in discerning the role of IRES in the Earth system to safeguard the 
integrity of river networks and the well-being of those who directly rely 
on these ecosystems for their livelihood and culture.
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Methods

See Extended Data Fig. 7 for a summary of the data and methods used 
in this study.

Data
Global underpinning hydrography. We predicted the distribution of 
IRES for river reaches in the global RiverATLAS database27. RiverATLAS is 
a widely used representation of the global river network built on the hy-
drographic database HydroSHEDS50,51. Rivers are delineated on the basis 
of drainage direction and flow accumulation maps derived from eleva-
tion data at a pixel resolution of 3 arcseconds (~90 m at the equator) and 
subsequently upscaled to 15 arcseconds (~500 m at the equator). In this 
study, we only included river reaches with a modelled MAF ≥ 0.1 m3 s−1 
and excluded: i) smaller streams (owing to increasing uncertainties 
in their geospatial location and flow estimates derived from global 
datasets and models; see also Methods section ‘Hydro-environmental 
predictor variables’ below); and ii) sections of river reaches within lakes 
(identified based on HydroLAKES polygons52). We define a ‘river reach’ 
as a cartographic—rather than a functional—unit, represented by the 
smallest spatial element of our global river network, that is, a line seg-
ment between two neighbouring confluences. We made predictions 
for 6,198,485 individual river reaches with an average length of 3.8 km, 
totalling 23.3 million kilometres of river network.

Reference intermittence data for model training and 
cross-validation. Two streamflow gauging station repositories were 
used as the source of training and cross-validation data for the split 
random forest (RF) model (Extended Data Figs. 7b, 8)—the World Mete-
orological Organization Global Runoff Data Centre (GRDC)53 database 
(n ≈ 10,000) and a complementary subset of the Global Streamflow In-
dices and Metadata archive (GSIM, n ≈ 31,000), a compilation of twelve 
free-to-access national and international streamflow gauging station 
databases54. Whereas the GRDC offers daily river discharge values for 
most stations, GSIM only contains time series summary indices com-
puted at the yearly, seasonal and monthly resolution (calculated from 
daily records whose open-access release is restricted for some of the 
compiled data sources)55. Therefore, we used the GRDC database as the 
core of our training/testing set and complemented it with a subset of 
streamflow gauging stations from GSIM. A GSIM station was included 
only if: i) it was not already part of the GRDC database; ii) it included 
auxiliary information on the drainage area of the monitored reach (for 
reliably associating it to RiverATLAS); iii) it had a drainage area <100 km2 
or else (that is, for gauges with a drainage area ≥100 km2) it was located 
either iv) on an IRES or v) in a river basin that did not already contain 
a GRDC station (assessed based on level 5 sub-basins of the global  
BasinATLAS database50, average sub-basin area = 2.9 × 104 km2). We 
applied the described GSIM selection criteria to balance the relative 
amount of non-perennial versus perennial records, and the spatial 
distribution of stations in the model training dataset.

Each station in the combined dataset was geographically associated 
with a reach in the RiverATLAS stream network and every discharge 
time series was quality-checked through statistical and manual outlier 
detection (see Supplementary Information section II for details on 
these procedures). Non-perennial gauging stations were only included 
in the dataset if they were free of anomalous zero-flow values (for exam-
ple, from instrument malfunction, gauge freezing, tidal flow rever-
sal17). We also excluded stations whose streamflow was potentially 
dominated by reservoir outflow regulation (that is, with a degree of 
regulation >50%27,56) or whose discharge time series exhibited an altera-
tion (see online research compendium at https://messamat.github.
io/globalIRmap/ for an interactive visualization of processing infor-
mation for every gauging station) as flow-regulating structures may 
change the flow class of a river either from perennial to non-perennial 
or vice-versa depending on their mode and rules of operation57,58.  

We further narrowed our selection by adding only gauging stations with  
a streamflow time series spanning at least 10 years—excluding years 
with more than 20 days of missing records for the calculation of this 
criterion and in subsequent analyses. Finally, we classified stations as 
non-perennial if their recorded discharge dropped to zero at least one 
day per year on average over the years of record, and as perennial other-
wise. Stations with at least one zero-flow day per year on average (that is, 
non-perennial) but without a zero-flow day during 20 consecutive valid 
years of data (those with ≤20 missing days), anywhere in their record, 
were deemed either to have experienced a shift in flow intermittence 
class (regardless of the direction of the shift) or to have ceased to flow 
owing to exceptional conditions of drought and were also excluded. On 
the basis of these selection criteria, the training dataset contained data 
for 4,428 perennial river reaches and for 1,187 non-perennial reaches, 
with 41 and 34 years of daily streamflow data on average, respectively, 
across all continents (except Antarctica) (Extended Data Fig. 8).

The threshold used to define flow intermittence varies among 
studies, ranging from a single zero-flow day across the entire stream-
flow record21,59 to at least five days per year on average60. Because 
zero-flow values in streamflow gauging records may be erroneous17, 
other studies have used a flow percentile threshold value (for example, 
Q99 < 0.0283 m3 s−1 in the US Pacific Northwest)22. To test the sensitivity 
of altering our criterion (one zero-flow day per year on average) on the 
resulting number of non-perennial stations, we changed the threshold 
to one zero-flow month (30 consecutive or non-consecutive days) per 
year, which yielded a dataset with 4,735 perennial stations and 880 
non-perennial stations, respectively. Given the substantial difference 
between these thresholds, we also produced model estimates for the 
latter definition (Extended Data Fig. 1b, c).

Although our training dataset of gauging stations encompasses a 
wide range of river types found on Earth, it is inherently limited by the 
global availability of hydrometric data (Extended Data Fig. 8). Most 
notably, rivers with MAF > 500 m3 s−1 are over-represented whereas 
those with MAF < 50 m3 s−1 are under-represented. In addition, few sta-
tions monitor rivers in extreme climates, whether cold or hot, dry or wet 
(for example, classes 1–4 and 16–18 for extremely cold and extremely 
hot climates, respectively; Extended Data Fig. 1a shows the extent of 
each climate stratum)32. Other under-represented river types include 
those with annual average snow cover extent >75% in their upstream 
drainage area and rivers with a shallow groundwater table or with >90% 
of karst outcrops across their upstream drainage area.

Hydro-environmental predictor variables. The primary source of 
predictor variables was the global RiverATLAS database, version 1.0, 
which is a subset of the broader HydroATLAS product27. RiverATLAS 
provides hydro-environmental information for all rivers of the world, 
both within their contributing local reach catchment and across the 
entire upstream drainage area of every reach (Extended Data Table 2). 
This information was derived by aggregating and reformatting original 
data from well established global digital maps, and by accumulating 
them along the drainage network from headwaters to ocean outlets27.

RiverATLAS also includes estimates of long-term (1971–2000) 
naturalized (that is, without anthropogenic water use in the form of 
abstractions or impoundments) mean monthly and mean annual flow 
(MAF). These discharge estimates are derived through a geospatial 
downscaling procedure50 based on the 0.5-degree resolution runoff 
and discharge layers provided by the global WaterGAP model (version 
2.2 as of 2014)26. A validation of the downscaled discharge estimates 
against observations at the 2,131 GRDC gauging stations used in this 
study with ≥20 years of streamflow data from 1971 to 2000, represent-
ing rivers with MAF between 0.006 and 180,000 m3 s−1, confirmed 
good overall correlations for MAF (log–log least-square regres-
sion, R2 = 0.96, with a symmetric mean absolute percentage error 
sMAPE of 30%; see Supplementary Table 1 for all validation results). 
The sMAPE increased from 5% for rivers with MAF ≥ 1,000 m3 s−1 to  
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20% for 10 m3 s−1 ≤ MAF < 1,000 m3 s−1, and to 52% for MAF < 10 m3 s−1. 
Minimum monthly discharge was also found to be an effective proxy 
for Q90 (that is, the daily discharge exceeded 90% of days in the gaug-
ing record; R2 = 0.84).

We complemented the RiverATLAS v1.0 data with three additional 
sets of variables. The first set of variables describes the inter-annual 
open surface water dynamics as determined by remote sensing imagery 
from 1999 to 201961. In the original dataset, each 30-m-resolution pixel 
that has been covered by water sometime during this time period was 
assigned one of seven ‘interannual dynamic classes’ (for example, per-
manent water, stable seasonal, high-frequency changes) on the basis 
of a time series analysis of the annual percentage of open water in the 
pixel. We computed the percent coverage of each of these interannual 
dynamic classes relative to the total area of surface water within the 
contributing local catchment and across the entire upstream drainage 
area of every river reach.

Second, we replaced the soil and climate characteristics in  
RiverATLAS v1.0 with updated datasets. Specifically, we computed 
the average texture of the top 100 cm of soil based on version 2 of Soil-
Grids250m62. We also updated the climate variables with version 2 
of WorldClim63 (adding all bioclimatic variables to the existing set of 
variables) as well as the second version of the Global Aridity Index and 
Global Reference Evapotranspiration (Global-PET) datasets64. Finally, 
we updated the Climate Moisture Index (CMI), computed from the 
annual precipitation and potential evapotranspiration datasets pro-
vided by the WorldClim v2 and Global-PET v2 databases, respectively.

We derived a third set of variables by combining multiple variables 
already included in the model through algebraic operations. These 
metrics included the runoff coefficient (that is, the ratio of MAF and 
mean annual precipitation), specific discharge (that is, MAF per unit 
drainage area), and various temporal (for example, minimum annual/
maximum annual discharge) and spatial (for example, mean elevation 
in local reach catchment/mean elevation in upstream drainage area) 
ratios.

The application of all described procedures yielded a total of 113 
candidate predictor variables to be used in our statistical model devel-
opment (Extended Data Table 2).

Machine learning models
We developed and used a split RF machine learning model to predict the 
flow intermittence class, as a probability response, of all river reaches 
globally, with 1 denoting a 100% predicted probability of being an IRES. 
RF models have already been successfully used to predict the distri-
bution of IRES in Australia and France21,65 and they have been shown 
to achieve high performance when compared to other approaches, 
including other machine learning models, logistic regression, and 
single decision trees66,67. Below, we briefly describe the model devel-
opment and validation procedure conducted for our split RF model; 
see Supplementary Information section III for additional information.

Our final predictions are based on the probability RF algorithm devel-
oped by Malley et al.68, a derivative of the standard RF algorithm for 
making probabilistic predictions of class membership, as included in 
the ‘ranger’ R package69. This algorithm was selected following a com-
parison70,71 of several probability RF variants (namely, conditional infer-
ence forest72,73 and a newly developed regression RF algorithm using 
maximally selected rank statistics74). To address known biases in RF 
models from class imbalance in the training data (more perennial than 
non-perennial gauging stations on large rivers)22,75, we implemented 
random oversampling of non-perennial gauging stations76.

For our split model approach, we trained and cross-validated two 
probability RF sub-models with slightly overlapping ranges in river 
size, one trained to predict the streamflow intermittence probabil-
ity of small-to-medium rivers with MAF < 10 m3 s−1 and the other for 
medium-to-large rivers with MAF ≥ 1 m3 s−1. Within the overlapping 
range of 1–10 m3 s−1 MAF, the average probability was calculated to 

avoid abrupt transitions at a singular size threshold. This split approach 
performed better than a single model and was motivated by the distinct 
class imbalance in training gauging stations between large rivers (4.87:1 
perennial to non-perennial ratio) versus small rivers (1.98:1 perennial 
to non-perennial ratio). With a single model, the use of a common over-
sampling factor for both size classes underpredicted the prevalence 
of IRES in large rivers (see Extended Data Table 3).

Model development and diagnostics
To optimize the predictive performance of the two sub-models, avoid 
overfitting, and obtain unbiased estimates of statistical uncertainty, 
we implemented a nested resampling framework for hyperparameter 
tuning and cross-validation77, first for comparison across RF algorithm 
variants, and then for comparing model performance with and without 
predictor variable selection (see Supplementary Information section IV 
for a full description of the tuning and cross-validation procedure)78,79. 
Tuning was performed for 2–3 hyperparameters (depending on the 
RF algorithm) through random search with a termination criterion 
of 100 iterations. The inner (hyperparameter tuning) loop was com-
posed of a fourfold cross-validation and the outer loop (for predic-
tive performance assessment) involved a twice-repeated threefold 
cross-validation. Cross-validation strategies usually involve 2–10 
folds78, with a lower number of folds (as chosen here) yielding a more 
stringent evaluation of performance (that is, a pessimistic evaluation 
bias). The outer cross-validation procedure was repeated twice and the 
results were averaged to reduce the variance caused by randomly split-
ting the data into few folds77. A spatial cross-validation procedure based 
on k-means spatial clustering (k = 40, see Supplementary Fig. 3 for the 
distribution of clusters) was also used in the outer resampling loop to 
avoid overoptimistic error estimates that arise in cases of considerable 
spatial autocorrelation80–83. We chose to implement 40 spatial folds to 
strike a balance between two extremes. Fewer folds would risk evaluat-
ing the predictive ability of the model across areas so large that they 
may represent unique hydro-climatic conditions outside of the model’s 
training set (for a given fold), therefore underestimating the model’s 
performance. More folds would have inflated our estimate of model 
accuracy by relying on training sets too similar to the testing sets and 
would have made the computational requirements of cross-validation 
even greater.

All algorithms were compared using the same inner and outer sets of 
training and testing partitions. Hyperparameters were tuned to opti-
mize the Balanced class ACCuracy (BACC) metric84, which is equivalent 
to the raw accuracy (or one minus the misclassification rate) but with 
each sample weighted according to the inverse prevalence of its true 
class (large river model: 4.87 and 1.00 weights for the non-perennial and 
perennial classes, respectively; small river model: 1.98 and 1.00 for the 
non-perennial and perennial classes, respectively). To assess predictor 
variable importance, weighted averages of Actual Impurity Reduction 
(AIR, an unbiased version of Gini impurity)49 and the associated p values 
(determined via 100 permutations, following ref. 85) were computed 
for each outer resampling cross-validation fold and repetition, using 
the BACC of each resampling instance as weight.

Prior to final model training and evaluation, only predictors with a 
variable importance p value of <0.05 were retained, so that 92 and 82 
variables were retained in the final small-river and large-river models, 
respectively. Variable selection was implemented to both increase 
model performance86,87 and decrease model training time.

In addition to the BACC and the variable importance, several addi-
tional diagnostics were examined to determine the performance and 
characteristics of the RF model as follows:

(i) We assessed the classification accuracy (percentage of correctly 
classified gauges), the sensitivity (percentage of correctly classified 
IRES reaches, also known as true positive rate or recall), specificity 
(percentage of correctly classified perennial reaches, also known as 
true negative rate or selectivity), and precision (percentage of reaches 
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predicted to be IRES that are actually IRES) of the model for each stream-
flow size class (Extended Data Table 3), based on spatial and non-spatial 
cross-validations.

(ii) We examined the geographic, hydrological, and environmental 
distributions of the intermittence prediction residuals (IPRs) for each 
reference stream gauging station (Extended Data Fig. 2):

IPR = predicted intermittence probability

–observed intermittence class
(1)

with observed intermittence class IR = {0: perennial, 1: non-perennial}. 
If |IPR| ≤ 0.5, the binary intermittence class of the reach associated with 
the gauging station was accurately predicted, with |IPR| values closer to 
0.5 indicating greater uncertainty. If IPR > 0.5, the reach was predicted 
to be non-perennial when it was perennial. If IPR < −0.5, the reach was 
predicted to be perennial when it was non-perennial. We also examined 
the distribution of classification accuracy and bias (Fig. 3), as well as 
residual spatial autocorrelation (see Supplementary Information sec-
tion IV.d), by river basin.

(iii) Partial dependence plots were generated for the 27 most impor-
tant predictors using the ‘edarf’ package88 (see Supplementary Fig. 5). 
These plots display estimates of the marginal relationship between 
each predictor variable and the model’s predictions by holding the 
rest of the predictors at their respective mean values89.

Assessing the global prevalence of IRES
After training the two final probability RF sub-models, the constructed 
prediction rules were used to estimate the probability of intermit-
tence for each river reach included in the global river network (that 
is, with MAF ≥ 0.1 m3 s−1). All reaches with a resulting probability ≥0.5 
were classified to be non-perennial (and perennial otherwise). This 
threshold was chosen following an analysis of model performance 
sensitivity to probability thresholds ranging from 0.25 to 0.75 for each 
RF sub-model which showed a balanced model performance at 0.5 
(see Supplementary Information section IV.e). When adjusting the 
probability threshold between 0.45 and 0.55, the RF-predicted (that is, 
non-extrapolated) global prevalence of IRES varied from 36% to 48% 
(compared to 41% with a 0.5 threshold).

We then used the binary intermittence class predictions to com-
pute the global prevalence of IRES by country, continent, climate 
zone, terrestrial biome, and major freshwater habitat type (Table 1 
and Supplementary Data). Although gauging stations on reaches with 
MAF < 0.1 m3 s−1 were included in the training dataset, we did not pro-
duce global RF predictions of the probability of flow intermittence for 
individual reaches below this discharge threshold for two reasons. First, 
there existed only 59 gauges with MAF < 0.1 m3 s−1 and at least 10 valid 
years of data (including only 13 on perennial reaches), which was insuf-
ficient to confidently train a model and assess its uncertainty for this 
discharge size class. Second, there exists a discontinuity in RiverATLAS 
below 0.1 m3 s−1 whereby only those reaches with a drainage area ≥10 km2 
are included27, leading to a varying discharge cut-off depending on a 
region’s aridity. Nonetheless, bounding our RF predictions to 0.1 m3 s−1 
enabled us to establish a robust estimate of the prevalence of flow inter-
mittence in a range of discharge size classes which we then used for an 
extrapolation to smaller streams (see Methods section ‘Extrapolating 
the global prevalence of IRES to smaller streams’).

Estimating human population near IRES
To estimate the percentage of the global population living near an IRES, 
we first aggregated 2020 population count data from WorldPop90. We 
used constrained, rather than unconstrained, top-down WorldPop 
population estimates to avoid erroneous allocation of population to 
all land cells90. Population count estimates were aggregated from 3 arc-
second (~90 m at the equator) to 15 arcsecond pixels (~500 m, that is, 
the resolution of the hydrographic data underpinning the RiverATLAS 

river network). We associated the population within each larger pixel 
to the river reach in RiverATLAS (with MAF ≥ 0.1 m3 s−1) that was nearest 
to that pixel. Finally, we summed the population across all pixels in the 
world that were associated with a reach predicted to be non-perennial 
by our model.

Extrapolating the global prevalence of IRES to smaller streams
To create a first-order approximation of the global prevalence of IRES 
including even smaller streams, we extrapolated our model estimates 
to the next smaller streamflow size class range of [0.01, 0.1) m3 s−1. 
Although streams of this size class are rarely monitored or mapped 
globally, they are ecologically and environmentally critical91. For 
instance, at least 64% of rivers and streams in the USA (by length) show 
a MAF < 0.1 m3 s−1, and 25% show a MAF < 0.01 m3 s−1 (according to the 
US National Hydrography Dataset, NHDPlus, at medium resolution). 
We limited our extrapolation to one order of magnitude (that is, we 
did not include even smaller streams, with MAF < 0.01 m3 s−1, that still 
can form stream channels) as we expect uncertainties to continuously 
increase when moving further outside the range of our trained and 
tested RF model.

The prevalence of IRES for this stream size class was indepen-
dently extrapolated for a total of 465 spatial sub-units representing 
all occurring intersections of 62 river basin regions (BasinATLAS27 
level 2 subdivisions, average surface area 2.2 × 106 km2) and 18 climate 
zones (Global Environmental Stratification)32. For each basin–climate 
sub-unit, we first extrapolated the empirical cumulative distribu-
tion of total stream length (of all reaches with MAF ≥ 0.1 m3 s−1) down 
to 0.01 m3 s−1 MAF using a generalized additive model (GAM)92. We 
excluded reaches larger than the 95th percentile of MAF (that is, the 
largest rivers) within the sub-unit from model fitting to avoid com-
mon discontinuities at the high end of the empirical distribution 
that can affect the low end of the power-law-like trendline (see Sup-
plementary Fig. 8a, c).

Second, we extrapolated the prevalence of flow intermittence (in 
percentage of stream length) down to 0.01 m3 s−1 MAF. In this case, we 
fitted a GAM for beta-distributed data—that is, with a (0, 1) range—to 
the prevalence of intermittence in each logarithmic MAF size bin of the 
sub-unit. MAF logarithmic size bins (m3 s−1) were defined as [10i, 10i+0.1) 
for every i in {−1, −0.9, −0.8, …, 5.3} for model fitting, and every i in 
{−2, −1.9, …, −1.1} for model extrapolation. See Supplementary  
Fig. 8b, d for illustrative examples of this approach. GAMs were used to 
conduct both extrapolations because this non-parametric, nonlinear 
approach does not require assumptions to be made regarding what 
distribution (for example, a power law93) the empirical cumulative 
distributions should follow. This is justifiable because the aim of 
the analysis was to make a pragmatic first-order approximation of 
IRES prevalence rather than to demonstrate the existence (or not) 
of a specific distribution.

Following the fitting of all GAM models, the length of IRES in each 
linear MAF size class between 0.01 m3 s−1 and 0.1 m3 s−1 was computed as 
the product of the extrapolated length of streams and the prevalence 
of intermittence in that size class. Finally, the total length of IRES in the 
extrapolated size classes was combined with the predictions from the 
split RF model to estimate the global prevalence of IRES as a percentage 
of the total global length of rivers and streams with MAF ≥ 0.01 m3 s−1.

We also produced an additional estimate with the assumption that, 
for each basin–climate sub-unit, the prevalence of IRES in streams with 
0.01 ≤ MAF < 0.1 m3 s−1 was equal to the prevalence of IRES in streams 
with 0.1 ≤ MAF < 0.2 m3 s−1. Even with this conservative assumption, we 
estimate that 51% of all global rivers and streams with MAF ≥ 0.01 m3 s−1 
are IRES. In contrast to the RF models, which estimate the probabil-
ity of flow intermittence at the scale of individual river reaches, the 
GAM-based extrapolation provides aggregate estimates of IRES preva-
lence for basin–climate sub-units, which are best suited for global 
accounting studies.



Model comparisons
Comparisons with reported prevalence of flow intermittence at 
national scales. The most common source of information on the 
prevalence of flow intermittence across large regions are national hy-
drographic datasets, derived mainly from paper topographic maps 
in which non-perennial watercourses are usually depicted by dashed 
lines. We compared our model estimates of the percentage of stream 
length that is non-perennial with this type of hydrographic data for 
four countries covering a wide range of environmental, geological, 
and climatic conditions: the contiguous USA, Australia, Brazil, and 
Argentina (Extended Data Figs. 3, 4; for data sources see Extended Data 
Fig. 7b). In addition, we compared our results in mainland France with 
predictions of a national model21.

It should be noted that we do not consider these comparisons to be 
an accuracy assessment of our model outputs, owing to the inherent yet 
unknown uncertainties in the national hydrographic datasets. Although 
the national maps represent the most comprehensive records of pre-
sumed intermittence, most are characterized by high levels of incon-
sistency among regions and cartographers, even for a fixed map scale 
(for example, 1:24,000), in both stream density and flow intermittence 
assessment94,95. For instance, streamflow intermittence classifications 
contained in the US National Hydrography Dataset (NHDPlus, which was 
used in this study), based on one-time field surveys typically conducted 
in the mid-to-late 1900s, have been shown to exhibit misclassifica-
tion rates as high as 50% compared to independent field surveys94,95. 
Hafen et al.96 report only an 80–81% agreement between ground-based 
streamflow field observations from the US Pacific Northwest and the 
NHDPlus classifications. Furthermore, in the Brazilian dataset and the 
NHDPlus, neighbouring topographic map sheets differ in whether flow 
intermittence was mapped, leading to artefactual hard edges between 
regions in terms of the prevalence of intermittence97 (for example, 
Extended Data Fig. 4). Despite these limitations, map-based national 
hydrographic datasets remain the reference used by most govern-
ment agencies and institutions in determining the extent and flow 
intermittence of river networks, and thus provide a useful benchmark 
for comparing the output of our model.

A custom processing workflow was developed to format each of the 
four national river network datasets to ensure comparability with our 
model predictions. This involved filtering each source dataset to keep 
only river and stream channels (for example, excluding lake shorelines 
and marine coastlines), excluding reaches in the source data that do 
not correspond with the streamflow threshold applied for the mapped 
rivers in this study (MAF ≥ 0.1 m3 s−1) and excluding artificial channels 
(for example, canals and ditches). For a full description of the format-
ting workflow, see Supplementary Information section VI.a. Following 
this formatting process, we compared the percentage of river network 
length that was categorized as IRES in each of the source datasets to 
our model results for the same region (Extended Data Fig. 5). We could 
not perform this quantitative comparison for Brazil and Argentina 
because there was no measure of river size in these datasets. Lastly, 
we visually assessed whether spatial patterns of intermittence were 
similar between the source datasets and our model results. Aside from 
Argentina, we were unable to compare our predictions to hydrographic 
maps in countries where sparse hydrometric networks result in higher 
modelling uncertainties, owing to the unavailability of hydrographic 
data in these regions.

Comparisons with local on-the-ground visual observations. Data-
sets of on-the-ground visual observations of flow presence or absence 
(flow state) by trained individuals provide some of the most reliable 
records of flow intermittence22,98,99. We compared our predictions of 
intermittence to datasets of this type for two regions: the US Pacific 
Northwest and mainland France (Extended Data Fig. 6; see Supple-
mentary Information section VI.b for additional details). We did not 

use these observations directly for the training of the RF sub-models 
as we could not apply the same criterion to define ‘intermittence’ as 
for gauging stations (that is, at least one day per year of flow cessation, 
on average, across the entire record) and their inclusion would have 
represented a strong regional bias. These datasets instead enabled an 
independent comparison of the model predictions for smaller rivers 
and streams (here mostly <1 m3 s−1), which are poorly represented in 
the global hydrometric network.

For the US Pacific Northwest, we used 5,372 observations across 3,725 
reaches (3,547 perennial, 178 non-perennial) from a larger dataset of 
24,316 stream observations100 that occurred from 1 July to 1 October,  
between 1977 and 2016. The source dataset is a compilation of  
11 smaller datasets from independent projects that include aquatic 
species habitat surveys, wet/dry stream channel mapping, benefi-
cial use reconnaissance surveys, or were collected specifically for the  
PROSPER intermittent river mapping project22,100. Streamflow obser-
vations included one-time surveys and repeat surveys extending over 
several years, as well as discrete locations or continuous sections of 
a stream channel reach. On the basis of the approach used by Jaeger 
et al.22, we considered that a river section was perennial only if all obser-
vations (1 July–1 October) reported the presence of water. Despite this 
strict criterion, this dataset may underestimate the prevalence of inter-
mittence since most sites were only observed 1–3 times and the prob-
ability that flow cessation was observed at a given reach increased with 
the number of observations (logistic regression, n = 9,850, p < 0.001, 
see Supplementary Information section VI.b for details).

For France, we used 124,112 observations across 2,297 reaches (878 
perennial, 1,419 non-perennial) from a larger set of approximately 3,300 
sites uniformly distributed across France from the national river drying 
observatory (ONDE) network101. The ONDE network provides a stable 
set of sites on river and stream reaches of Strahler orders under five 
which, since 2012, have been inspected by agency employees from the 
French Office for Biodiversity (OFB) at least monthly between May and 
September. We considered an observation to reflect flow intermit-
tence if it was classified as either ‘with no visible flow’ or ‘dried out’ 
(as opposed to ‘with visible flow’). In case of multiple observations 
on one reach, we considered the reach to be non-perennial if a single 
observation of flow cessation existed.

All flow state observations were linked to the RiverATLAS stream net-
work through custom semi-automated procedures designed for each 
dataset, using the proximity between the point observations and the 
reach locations in RiverATLAS, as well as associated information from 
local river network datasets and ancillary attribute data provided for 
each location (for example, drainage area, site name; see Supplemen-
tary Information section VI.b for details). Following data formatting 
and harmonization, we assessed the degree of agreement at the river 
reach level between the binary intermittence class predicted by our 
model and that reported by the two datasets of visual observations.

Data availability
The global river network dataset and the associated attribute infor-
mation for every river reach—that is, the hydro-environmental attrib-
utes, predicted probability of intermittence and associated binary 
class—as well as the main results of the study are available at https://
doi.org/10.6084/m9.figshare.14633022. The dataset can be used 
together with the published source code (see ‘Code availability’) to 
recalculate the main study results with updated data and parameters. 
The streamflow time series from the Global Runoff Data Centre are 
available in summarized format. The daily records are not available 
in the data repository owing to licensing issues but are freely avail-
able upon written request through https://www.bafg.de/GRDC/EN/
Home/homepage_node.html. Original data that supported the study 
are freely available and their sources are summarized in Extended Data 
Fig. 7b. Source data are provided with this paper.

https://doi.org/10.6084/m9.figshare.14633022
https://doi.org/10.6084/m9.figshare.14633022
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
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Code availability
The source code and results of this research are available under the 
GNU General Public License v3.0 at https://messamat.github.io/ 
globalIRmap/.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Global prevalence of IRES with at least one zero-flow 
month per year on average. a, Distribution of global climate zones used in this 
study. Data provided by Global Environmental Stratification (GEnS)32.  
b, Predicted probability of river flow intermittence, defined as at least one 
zero-flow month (30 days) per year on average, across the global river and 
stream network27. The median probability threshold of 0.5 was used to 
determine the binary flow intermittence class for each reach. c, Global 
prevalence of IRES with at least one zero-flow month (30 days) per year on 
average, across climate zones and streamflow size classes (based on long-term 

average naturalized discharge). Note that in regions with sparse training data, 
the model results can differ substantially from the results shown in Table 1, as 
the underlying random forest and extrapolation models were developed 
independently. No stations were available in climate zones Arctic 1 and Arctic 2, 
and few stations were available in ‘Extremely cold and wet’ (1 and 2) and in 
‘Extremely hot and arid’ climates (together representing 3% of global river and 
stream length). Rows are sorted in the same order as in Table 1, and the same 
footnotes as in Table 1 apply. Mapping software: ArcMap (ESRI).
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Extended Data Fig. 2 | Distribution of cross-validation results. a, Maps of 
spatially cross-validated predictive accuracy of flow intermittence for 
streamflow gauging stations. See Supplementary Fig. 3 for the distribution of 
spatial cross-validation folds and details on the cross-validation procedure. 
The classification errors shown here are not necessarily present in the final 
predictions but illustrate the ability of the model to predict the flow 
intermittence class for each region if that region was excluded from the 
training set. For instance, it shows that the model would be unable to predict 
the presence of IRES in western France and northern Spain (inset ii, dark red 
dots), or in western India (inset iii) without training stations in these regions. 

 b–e, Intermittence prediction residuals versus gauging station characteristics 
and environmental variables. The mean intermittence prediction residual (IPR) 
is the difference between the average predicted probability of flow 
intermittence (across three cross-validation folds and two repetitions) and the 
observed flow intermittence of the gauging station (1 = non-perennial, 
0 = perennial). Overall, prediction errors and uncertainties decrease with an 
increase in the number of recorded years by gauging stations as well as the 
drainage area and the degree of flow intermittence (average annual number of 
zero-flow days and flow cessation events) of the corresponding reaches. 
Mapping software: ArcMap (ESRI).



Extended Data Fig. 3 | Comparing global predictions to national maps of 
IRES in the USA and Australia. Comparison of a, the US National Hydrography 
Dataset (NHDPlus, medium resolution) and d, the Australian hydrological 
geospatial fabric, with our model predictions based on two thresholds of flow 
intermittence, either ≥1 zero-flow day per year (b, e), or ≥1 zero-flow month  
(30 days) per year (c, f), on average. Only rivers and streams with MAF ≥ 0.1 m3 s−1 
are shown for the USA (a–c) and with drainage area ≥10 km2 for Australia (d–f). 
The US reference dataset portrays 19–22% of the length of rivers and streams as 
non-perennial, depending on whether reaches without flow intermittence 

status are assumed to be perennial or removed; our estimates range from 51% 
(≥1 zero-flow day per year) to 36% (≥1 zero-flow month per year). We 
hypothesize that the remaining gap in IRES prevalence is attributable to a 
tendency of our model to overpredict intermittence across the eastern USA 
and an under-accounting of intermittence in medium to large rivers by the 
national dataset. The Australian reference dataset portrays 91% of the length of 
rivers and streams as non-perennial; our estimates range from 95% (≥1 
zero-flow day per year) to 92% (≥1 zero-flow month per year). See Extended 
Data Fig. 7b for data sources. Mapping software: ArcMap (ESRI).
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Comparing global predictions to national maps of 
IRES in Brazil, Argentina, and France. Comparison of a, the continuous 
cartographic base of Brazil (BC250), d, the Argentinian hydrographic network, 
and g, model predictions for France from Snelder et al.21, with our model 
predictions based on two thresholds of flow intermittence, either ≥1 zero-flow 
day per year (b, e, h) or ≥1 zero-flow month (30 days) per year (c, f), on average. 
In a and d, only first-order streams (determined through network analysis) are 
visually differentiated (finer, semi-transparent lines), owing to the lack of 
a watercourse-size attribute in the Brazilian and Argentinian datasets.  

In b, c, e–h, only rivers and streams with MAF ≥ 0.1 m3 s−1 are shown. Snelder 
et al.21 predict that 17% of the length of rivers and streams in France are non-
perennial. We predict that 14% are non-perennial. This slight divergence may be 
partly driven by the difference in definition of flow intermittence: Snelder 
et al.21 classified stations with ≥1 zero-flow day in the streamflow record as IRES 
whereas we used a threshold of 1 zero-flow day per year across the streamflow 
record. See Extended Data Fig. 7b for data sources. Mapping software: ArcMap 
(ESRI).
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Extended Data Fig. 5 | Quantitative comparison between the predicted 
prevalence of flow intermittence and national estimates. a–f, Comparisons 
were conducted for France (a, b), the USA (c, d), and Australia (e, f), on the basis 
of two thresholds of flow intermittence, either ≥1 zero-flow day per year (a, c, e) 
or ≥1 zero-flow month (30 days) per year (b, d, f), on average. Bars for mapped 

rivers and streams with MAF < 0.1 m3 s−1 (for France and the USA) are greyed out 
as they were not included in the calculation of summary statistics. Inset graphs 
in b, d, f show comparisons of total river network length (log-transformed 
y axis), which in case of discrepancies can explain some of the differences in the 
predicted prevalence of intermittence.



Extended Data Fig. 6 | Comparing global predictions to on-the-ground 
observations of flow cessation. a, b, Maps show individual RiverATLAS 
reaches and their predictive accuracy for France (a), and the US Pacific 
Northwest (b). Maps are drawn at identical cartographic scales. France 
(n = 2,297): balanced accuracy = 0.59, classification accuracy = 51%, 

sensitivity = 24%, specificity = 94%. US Pacific Northwest (n = 3,725): balanced 
accuracy = 0.47, classification accuracy = 80%, sensitivity = 10%, specificity =  
83%. See Extended Data Fig. 7b for data sources. Mapping software: ArcMap 
(ESRI).
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Extended Data Fig. 7 | Overview of study design and main data sources.  
a, Diagram of modelling workflow. b, Main data sources used in model 
development, predictions, diagnostics and comparisons. Data sources: Global 

Runoff Data Centre53, Do et al.54, Gudmundsson et al.55, Linke et al.27, Snelder 
et al.21, McShane et al.100, ONDE eau 2012–2019101, National Hydrographic 
Data102–105, WorldPop90.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Spatial and environmental distribution of 
streamflow gauging stations used in model training and cross-validation. 
a, b, Gauging stations (n = 5,615) were deemed perennial (a) if their streamflow 
record included less than one zero-flow day per year, on average, across their 
record, or non-perennial (b) if they included at least one zero-flow day per year, 
on average, and at least one zero-flow day in every 20-year moving window 
across their record. Stations fulfilling neither condition a nor b were excluded. 
Darker points symbolize longer streamflow records. Only gauging stations 
with streamflow time series spanning at least 10 years were included in this 
analysis, excluding years with more than 20 missing days. c–p, Distribution of 
values for 14 hydro-environmental variables across the streamflow gauging 

stations used for model training/testing (purple, n = 5,615) and across all 
reaches of the global river network (blue, n = 6.2 × 106). The distribution plots 
show empirical probability density functions (that is, the area under each 
density function is equal to one) for all variables, aside from climate zones (g) 
for which the relative frequency distribution is shown. All variables were 
averaged across the total drainage area upstream of the reach pour point 
associated with each gauging station or river reach, respectively. See Extended 
Data Table 2 for a description of the variables and Extended Data Fig. 1a for a 
description of the climate zones. No stations were available for climate zones 
Arctic 1 and Arctic 2. Mapping software: R statistical software (R Core Team).



Extended Data Table 1 | Definitions of commonly used terms for non-perennial rivers and streams

Refs. 106,107.
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Extended Data Table 2 | Hydro-environmental characteristics used as candidate predictor variables in the split random 
forest model

Spatial representations refer to: p (derived at the pour point of the river reach), c (derived within the local catchment that drains directly into the reach), or u (derived within the total drainage 
area upstream of the reach pour point). See ref. 27 for a full description of the methodology to calculate the variables. 
Refs. 32,50,52,61–64,108–120.



Extended Data Table 3 | Performance summary of binary flow intermittence class predictions

a–c, Tables show summary results for the split model approach based on a twice-repeated threefold non-spatial cross-validation (CV; a) and a once-repeated 40-fold spatial CV (b), as well as, 
for comparison, a single (non-split) model approach based on a twice-repeated threefold non-spatial CV (c). The colour coding mirrors Extended Data Fig. 2 with light colours slightly darkened 
for readability. The split model approach involves training two random forest sub-models with slightly overlapping MAF ranges, one trained to predict the streamflow intermittence  
probability of small-to-medium rivers with MAF < 10 m3 s−1 and the other for medium-to-large rivers with MAF ≥ 1 m3 s−1. Within the overlapping range of 1–10 m3 s−1 MAF, the average probability 
was calculated to avoid abrupt transitions at a singular size threshold. Gauging stations monitoring streams with a mean annual naturalized discharge <0.1 m3 s−1 were included in model training 
and testing (shown in grey font); however, no global model predictions were made below this discharge threshold. Sensitivity is the proportion of non-perennial reaches correctly classified as 
non-perennial. Specificity is the proportion of perennial reaches correctly classified as perennial. Precision is the proportion of reaches classified as non-perennial that are truly non-perennial. 
See Supplementary Fig. 3 and Supplementary Information section IV.b for the distribution of spatial cross-validation folds and details on the cross-validation procedure.
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