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Flowing waters have a unique role in supporting global biodiversity, biogeochemical
cycles and humansocieties' . Although the importance of permanent watercourses is
well recognized, the prevalence, value and fate of non-perennial rivers and streams
that periodically cease to flow tend to be overlooked, if not ignored® 8. This oversight
contributes to the degradation of the main source of water and livelihood for millions
of people’. Here we predict that water ceases to flow for at least one day per year along

51-60 per cent of the world’s rivers by length, demonstrating that non-perennial
rivers and streams are the rule rather than the exception on Earth. Leveraging global
information on the hydrology, climate, geology and surrounding land cover of the
Earth’s river network, we show that non-perennial rivers occur within all climates

and biomes, and on every continent. Our findings challenge the assumptions
underpinning foundational river concepts across scientific disciplines’. To
understand and adequately manage the world’s flowing waters, their biodiversity and
functionalintegrity, a paradigm shift is needed towards a new conceptual model of
riversthatincludes flow intermittence. By mapping the distribution of non-perennial
rivers and streams, we provide a stepping-stone towards addressing this grand
challenge in freshwater science.

Almost every river network on Earth includes channels that periodi-
cally cease to flow. From Himalayan snow-fed creeks to occasionally
water-filled Saharan wadis, river flow cessation is naturally prevalent
worldwide. Yet the global extent of intermittent rivers and ephemeral
streams (IRES) is largely unknown. IRES vary widely in size and flow dura-
tion, encompassing all non-perennial watercourses—fromlarge, rarely
intermittentrivers with nearly continuous channel flow to mostly dry
streams that only flow after intense rainfall (see Extended Data Table 1
for additional definitions and IRES terminology). IRES are pivotal com-
ponents of the landscape, critically contributing to the biodiversity'?,
biogeochemical processes and functional integrity of fluvial systems>*.
Many formerly perennial rivers and streams have become intermittent
in the past 50 years owing to water abstractions, climate change and
land use transitions, including sections of iconic rivers such as the Nile,
Indus, Yellow and Colorado'®™. Given continued global change, an
increasingly large proportion of the global river network is expected
to seasonally cease to flow over the coming decades'".

Despite their prevalence, IRES are frequently mismanaged owing
to alack of recognition®, or altogether excluded from management
actions and conservation laws’. As a result, non-perennial rivers and
streams are being degraded at an alarming rate®. Recent attempts to
further remove IRES from environmental legislation and national water
governance systems (for example, in the USAS), ifimplemented, would

worsen their already inadequate protection. The long-standing neglect
of IRES is partly the result of their continued omission from scientific
research. Most freshwater science has focused on the functioning and
conservation of perennial water bodies, and only recently has riverine
flow cessation become its own subject of study*®'°. Consequently,
science-based methods for managing these unique ecosystems, such
as biomonitoring tools and protocols, are still limited or absent>*.
Management frameworks also need to be adapted to conserve envi-
ronmental flows in IRES®—that is, the quantity, timing, and quality of
freshwater flows necessary to sustain aquatic ecosystems and their
associated benefits'. But perhaps the most important gap until now
has been our inability to quantify and map IRES worldwide. Accurate
mapping of non-perennial rivers and streams would provide crucial
baseline information to determine and monitor their role in biogeo-
chemical and water cycles and in supporting global biological diversity>.

Streamflow monitoring data for IRES are scant, spatially biased,
and of uneven quality”. Indeed, most streamflow gauging stations are
installed on large, perennial rivers worldwide". The dearth of primary
data has triggered the development of alternative methods to map
IRES, including citizen science or expert field observations of stream-
flow state, in situ sensor networks and remote sensing'®2°, However,
these efforts only provide information at local scales and suffer from
several limitations (for example, remote sensing of smaller rivers can
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Fig.1|Global distribution of non-perennial rivers and streams.
Intermittence is defined as flow cessation for at least one day per year on
average. The median probability threshold of 0.5 was used to determine the

be obstructed by overhanging riparian vegetation and cloud cover®).
Model-based classifications of river types, either IRES-focused (for
example, in mainland France?, the north-western USA?, eastern Aus-
tralia®®) or general (for example, Australia®, California®), have also
provided important baseline estimates of the spatial distribution of
IRES from the catchment to the national scale. However, a rigorous
estimation of the global prevalence and distribution of IRES is still
lacking.

In this study, we developed a statistical random forest (RF) model
(see Methods for details) to produce the first reach-scale estimate of the
distribution of IRES for the 23.3 million kilometres of mapped rivers and
streams across the globe (except Antarctica) whose long-term average
naturalized discharge exceeds 0.1m>s™, and then extrapolated our IRES
estimates to the nearly 64 millionkilometres of rivers and streams with
anaverage discharge higher than 0.01m>s™. For this purpose, we linked
quality-checked observed streamflow data from 5,615 gauging stations
(on4,428 perennial and 1,187 non-perennial reaches) with 113 candidate
environmental predictors available globally (Extended Data Table 2).
Predictors included variables describing climate, physiography,
land cover, soil, geology and groundwater, as well as estimates of
long-term naturalized (that is, without anthropogenic water use in
the form of abstractions orimpoundments) mean monthly and mean
annual flow (MAF), derived from a global hydrological model (Water-
GAP 2.2)*. Following model training and validation, we predicted the
probability of flow intermittence for all river reaches in the RiverATLAS
database?, a digital representation of the global river network at high
spatial resolution.
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binary flow intermittence class for each reachin RiverATLAS?. Mapping
software: ArcMap (ESRI).

Prevalence and distribution of IRES

We predict that water ceases to flow for at least one day per year, on
interannual average, along 41% of the mapped global river network
length, that s, all rivers and streams with MAF > 0.1m*s ™ (Fig.1, Table1).
However, any estimate of the percentage of IRES reaches in a river
system, whether for a small catchment or for the globe, is inherently
dependent on cartographicscale. Although many dryland rivers exhibit
downstream decreases in discharge owing to channel evaporation and
transmission losses?, river flow tends to become more permanent with
increasing drainage area and distance from the headwatersin abasin®,
whichis well reflected in the predictions of our model. Because of the
dendritic nature of river networks, small headwater streams, which
are more prone to intermittence, make up a greater proportion of the
total stream length than larger downstreamrivers*’. Consequently, the
percentage of the river network length thatis non-perennial increases
with decreasing size of the smallest mapped stream. To account for this
distribution, we made afirst-order approximation of the prevalence of
intermittencein small streams by extrapolating our estimate to streams
with 0.01 m*s™ < MAF < 0.1 m*s™ (see Methods for details). Including
this size class, we estimate that 60% of all rivers and streams globally are
IRES; and we found alower bound of this estimate at 51% after applying
analternative, more conservative extrapolation approach. This demon-
strates that IRES represent the world’s most widespread type of rivers.

For river flow to occur, water from rainfall, snowmelt, or releases
from existing storage (for example, lakes, reservoirs, groundwater)
must exceed losses from infiltration and evapotranspiration®. Climatic



Table 1| Global prevalence of IRES across climate zones and streamflow size classes

Climate zone®

Prevalence of intermittence (% of network length) by streamflow size class (m®*s™) Total intermittence Total stream length®

(% length) (x10% km)
Extrapolated® Mapped Including | (excluding)
[10%107)  [107,1) [1,10) [10,10° [10%109 [10°10%) »10° extrapolated stream class®

Extremely hot and arid 100 100 100 98 49 0 - 991(98) 1,0321(249)
Hot and arid 100 100 100 97 46 0 - 991(98) 990 | (238)
Arctic1 100 92 7 100 - - - 96 (92) 11(6)
Warm temperate and xeric 99 96 89 59 1 0 0 96| (89) 1,351| (444)
Extremely cold and wet 2 100 93 69 34 0] - - 96| (87) 766 | (243)
Extremely hot and xeric 99 90 95 90 45 0 0 95(89) 4,551 (1,605)
Arctic 2 100 89 18 8 - - - 92((82) 981 (41)
Cool temperate and xeric 94 81 70 37 2 0 871(72) 1,709 | (552)
Extremely cold and mesic 96 70 45 34 26 22 0 831 (61) 8,083 (3,051)
Extremely cold and wet 1 92 59 10 1 - - 721(50) 227 (109)
Cold and mesic 90 47 26 6 3 0 0 701(37) 8,1891(3,084)
Warm temperate and mesic 84 45 35 16 1 0 0 631(39) 3,582(1,646)
Hot and dry 77 47 36 23 7 o] 0] 62 (41) 4,0541(1,683)
Cool temperate and dry 65 46 34 1 0 0 0 571(39) 4,0871(1,325)
Hot and mesic 77 30 24 23 5 0 0 541(27) 4,4521(2,023)
Extremely hot and moist 35 18 20 21 4 0 0 301|(18) 191171(6,002)
Cool temperate and moist 52 18 10 0 0 0 - 291(13) 11641(691)
Cold and wet 34 1 o] 0] o] o] - 141(1) 493 (299)
World 70 47 35 26 9 1 o 60|(41) 63,956 (23,291)

2Global Environmental Stratification (GEnS)*2, see Extended Data Fig. 1a.
®Excluding sections of river reaches contained within a lake.

°Extrapolated statistics based on the main estimate (as opposed to the lower-bound estimate, see Methods for details).

variables, in particular climate-induced aridity, were therefore the
leading predictors of river flow cessation and the occurrence of IRES
(Fig.2). Our modelindicates that where evaporation rates considerably
exceed precipitation for atleast part of the year, as expressed by alow
aridity index (that is, the ratio of mean annual precipitation to mean
annual potential evapotranspiration), river networks comprise large
proportions of IRES. In extremely hot and xeric environments, which
cover nearly one-tenth of the global landmass and encompass most of
India, northern Australia and the Sahel region of Africa (see Extended
Data Fig. 1a for the global typology of bioclimates®), 95% of the river
andstream network lengthis prone to flow cessation (MAF >0.01m>s™;
Table 1). In these environments, we find that even the main stem of
major rivers, such as the Niger or Godavari, can dry out.

Outside of arid regions, flow inriver networks is primarily controlled by
catchment processesinfluenced by interacting climate and basin condi-
tions*®.In cold climates, for instance, acombination of scarce precipita-
tion, its storage as snow during winter months, and completely freezing
streams® can lead to high prevalence of flow intermittence. Although
not mapped in our study, even streams in Antarctica are known to flow
intermittently owing to seasonal patterns of freezing, thawing and/or
drying®. In humid and temperate regions, IRES are concentrated in the
upper end of channel networks where small drainage areas and steep
slopes lead to rapid delivery of water to and through the river channel,
causingalack of buffering fromvariationsin precipitation®. Therefore,
even in the wettest climates (for example, extremely hot and moist;
Extended DataFig. 1a), up to 35% of headwater streams are non-perennial
(Table1).Inlowland and large basins, temporary storage and subsequent
attenuated release fromgroundwater, lakes and wetlands, as well asthe
averaging of local hydrologic variability across alarger drainage area
lead to more balanced, steady and thus perennial flow?.

Our study presents a novel, empirically grounded effort to specifi-
cally quantify the prevalence of flow intermittence of rivers and streams

globally, and to show that IRES occur across all climates and biomes,
and onevery continent (Fig.1, Table1). Previous assessments reported
from29%to 36% of the global length of rivers to be non-perennial®>53¢,
withinferred and extrapolated estimates exceeding 50%'%*. However,
these estimates were either generalized hypotheses (for example, based
on the global distribution of drylands®), geographically constrained
(thatis, south of 60° N*"¥), or research by-products within larger pro-
jects (for example, using aregional extrapolation to remove IRES from
estimates of the global CO, emissions of inland waters®), rather than
dedicated global IRES quantification efforts, and are therefore not
directly comparable to our predictions. The FAO AQUAMAPS™ and
GRIN* global river networks, for instance, assume that streamflow
cessationonly occursin arid and semi-arid areas. See Supplementary
Information section I for areview of how previous estimates relate to
our predictions, including maps of AQUAMAPS and GRIN estimates.

Our study improves on these previous estimates because it repre-
sents diverse hydrometeorological processes beyond aridity at the river
reach scale (rather than at the basin scale®) by leveraging extensive,
high-resolution global data on the hydrology, climate, physiography,
geology and surroundingland cover of the world’s river network. Fur-
thermore, our study uses global empirical streamflow data for training
and validation, which enabled our model to make fine-grained predic-
tions of the intermittence class of rivers across all climates.

Model performance and uncertainties

Performance analysis showed that our RF model could predict the
binary flow intermittence class of streamflow gauging stations with high
confidence. Cross-validation yielded an overall classification accuracy
(the percentage of correctly classified gauges), ranging from 90% to
92% (depending on cross-validation method), and indicated that model
predictions were unbiased globally—that is, adequately reflecting the
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Fig.2|Climate-induced aridity and hydrologic variables are the main
predictors ofglobal flow intermittence. a, b, The two sets of ranked
predictor variables representresults fromasplit random forest model trained
ongauges withamean annual naturalized flow <10 m*s™ (a) and gauges witha
mean annual naturalized flow 21 m>s™ (b). See Methods section ‘Machine
learning models’ for details on model structure and implementation.
Rectangular bars show the balanced accuracy-weighted average of actual
impurity reduction* (AIR) across non-spatial cross-validation folds and
repetitions. The longer the bar (thatis, the higher the AIR), the moreimportant

proportion of IRES gaugesin the training dataset. Ingeneral, sparsely
gauged basins exhibit lower accuracy and higher bias (Fig. 3; for exam-
ple, in Africa and the Arctic). Boundary areas between climate zones,
frommainly non-perennial regions to mainly perennial regions, are also
characterized by higher misclassification rates (Extended DataFig. 2).
SeeFig.3 aswell as Extended Data Table 3 for cross-validation results.

Ourmodelisbased onaninclusive definition of IRES as those riversand
streamsthat cease to flow atleast one day per year onaverage. To test the
sensitivity of our results to the specific threshold of cessation length, we
adapted our model and found that 44-53% of the global river network
ceasestoflowatleast one month peryear (lower-bound and mainestimate,
respectively, with MAF > 0.01m’s’; see Methods; Extended DataFig. 1b, ¢).

Comparisons with national hydrographic datasets thatincludeinfor-
mation on flow intermittence show that our model predicts asubstan-
tially higher prevalence of IRES in the contiguous USA than mappedin
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thevariablein predicting flow intermittence. Error brackets show + one
weighted standard deviation of AIR. After the variables’ names, the first
abbreviation denotes each variable’s spatial extent: p (derived at the pour point
oftheriverreach), c (derived within the local catchment that drains directly
intothereach), oru (derived within the total drainage areaupstream ofthe
reach pour point). Thesecond abbreviation denotes each variable’s dimension:
yr (annual average), mn (annual minimum), mx (annual maximum), or mj
(spatial majority). See Methods and Extended Data Table 2 for data sources of
variables.

the country’s atlas (by 31 percentage points), but coincides well with
the patterns and extents depicted in the Australian, Argentinian and
Brazilian atlases, and with model-generated maps® inmainland France
(Extended DataFigs.3-5). The divergence observed in the USA (and to
alimited extent in Australia) largely stems from the thresholds used
to define IRES—when applying aminimum of one zero-flow month per
year, our predictions more closely concur with the comparison dataset
(Extended DataFigs. 3, 5).

Atanevenmorelocal scale, comparing our model predictions against
datasets of ground observation points of flow cessation for the US
Pacific Northwest and mainland France reveals particular challenges
in predicting flow intermittence for small rivers and streams (median
MAF =0.5m?s™, Extended Data Fig. 6). Our model only achieved a bal-
anced accuracy of 0.59 for mainland France (n=2,297) and of 0.47 for
the US Pacific Northwest (n =3,725), both under- and overestimating
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reported IRES, respectively. We hypothesize that heavy water abstrac-
tions for domestic and agricultural use are the main reason for the
greater contemporary prevalence of intermittence observedin France®
(from2012t02019) than predicted by our model, which aims to depict
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the natural distribution of IRES. In the US Pacific Northwest, a lower
frequency of observations per site may have led to an underestima-
tion of the prevalence of IRES in the comparison dataset, since the
probability of observing a no-flow event increases with the number
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of observations. In addition, the mountainous landscape of the region
is characterized by complex, local hydrological processes associated
with snow and groundwater dynamics that our model can only super-
ficially represent®.

Despite the increasing uncertainties at national and local scales,
the global validation findings demonstrate that our overall statistics
and large-scale representation of the spatial distribution of IRES are
robust. However, we advise caution in using our model outputs to
interpret fine-scale variations in intermittence for small spatial units
or for small rivers and streams. The quality of our model results is
constrained by the resolution of the river network and associated
hydro-environmental predictor variables (250-1,000 m grid cells
for most predictors)?. Accurate, fine-scale data on catchment soil
typesandlithology (for example, karst areas), riverbed sediments and
groundwater dynamics would be needed to capture variation in the
processes influencing flow intermittence at the sub-catchment and
reach scales®. Groundwater-surface water interaction in particular
isan enduring challenge inglobal hydrological modelling® and repre-
sents akey processthatisonly partly represented in our analysis. Also,
potentiallocal biases in training data (such as IRES being inconsistently
represented in streamflow gauging networks) introduce uncertainties.
Forinstance, model predictionsin the south-eastern USA may overes-
timate the prevalence of IRES, owing to the relative scarcity of gauging
stations for model training on small, perennial watercourses in that
region. Similarly, the general under- and misrepresentation of small
watercourses and arid regions in the global hydrometric network"”
causes substantial difficulty in consistently predicting the prevalence
of IRES across the gamut of river types worldwide. Global hydrologi-
cal models are known to overestimate flow in arid climates®, further
complicating IRES mappingin these regions.

Finally, our model’s ability to predict the natural prevalence of flow
intermittence is affected by the impact of human activities on most
gauged basins. Our study aims to depict the natural distribution of
non-perennial watercourses by excluding those gauging stations
from model training that were affected by flow regulation and/or
whose flow intermittence class changed over the discharge record
(see Methods). We also used naturalized estimates of discharge as
predictor variables, which exclude anthropogenic water use in the
form of abstractions or flow regulation. Nevertheless, disentangling
the potential effects of contemporary land use, impoundments and
human water abstractions on flow intermittence remains aresearch
frontier*®. We expect that continued improvements in global
hydro-environmental datasets and hydrological models, combined
with greater access to national hydrometric datasets, will be key to
improve future IRES mapping efforts.

Understanding and managing IRES dynamics

Our global map of IRES may become a crucial tool for understanding
and managing these long-undervalued ecosystems. High-resolution
predictions of flowintermittence for all river reaches withMAF > 0.1m?s™
can support spatially explicit studies down to the national scale, and
our first-order extrapolation of the total prevalence of non-perennial
riversand streams by region and river basin can offer additional insights
into the role of IRES at continental and global scales. Our results also
provide animportant baseline for the assessment of future changes in
flowintermittencein river networks. Quantifying the variability of flow
cessationinspace and timeisrequired tobetter understand the impact of
climate change, water abstractionand flow regulation. IRES are not only
becomingincreasingly common but the flow regime of existing IRES can
shift; for example, some intermittent rivers are becoming ephemeral,
whereas others will turn perennial*.

In this study we identified whether and where rivers and streams
ceaseto flow, but further quantification of the spatiotemporal dynam-
ics of flow occurrence across stream networks worldwide is required to
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determine when and for how long. Knowledge of the natural frequency,
duration, and timing of flow cessation—the primary determinants of the
functioning of IRES**—forms the basis of flow-alteration analyses that
caninform strategies to mitigate the impacts of future changes®. In par-
ticular, tools for assessing environmental flows globally are needed to
appraise freshwater planetary boundaries* and to define quantitative
targets for the 2030 UN Sustainable Development Goals*. Yet current
tools exclude aridand semi-arid regions**, which are dominated by IRES
and where alternative sources of water are scarce’.

Rethinking the importance of IRES

Our findings call for a paradigm shiftin river science and management.
The foundational concepts of river hydrology, ecology and biogeo-
chemistry have been developed from and for perennial waterways, and
as aresult, have all traditionally assumed year-round surface channel
flow’. Here we show that this assumption is invalid for most rivers on
Earth, which bolsters previous appeals for bringing together aquatic
and terrestrial disciplines into river science>'°.

Multiple conceptual models rely on the assumption that river dis-
charge increases monotonically downstream from the headwaters to
the mouth—for example, the River Continuum Concept*, atheoreti-
cal pillar of river ecology. Moreover, current models define hydro-
logical connectivity within river networks in binary terms, as either
free-flowing or perpetually fragmented by barriers such as waterfalls
and dams*¢, but we show that temporary fragmentation by seasonal
drying* is awidespread phenomenon on Earth. In hydrology, the
parameterization and calibration of predictive models of runoffand
discharge are usually based on average or peak flows (for example, for
flood forecasting) rather than being calibrated to simulate low-flow
quantities and timing, including flow cessation events, thus failing
to reliably predict intermittence?. Up until now, global estimates of
biodiversity have also overlooked IRES, which provide unique habitats
for aquatic and terrestrial species>°. Finally, recent research shows
that omitting therole of non-perennial inland waters in carbon models
may result in underestimating CO, emissions from inland waters by
approximately 10%*; similar biases might undermine other global
biogeochemical estimates, notably with respect to nitrogen cycling.

IRES have always been integral to human societies, whether cultur-
ally or as a source of food and water®. We estimate that for 52% of the
world’s populationin2020, the nearest river or stream is non-perennial
(see Methods). The relationship between the seasonal hydrology of
IRES and the ecosystem services they provide to society is a press-
ing area of research, particularly in regions where climate change is
disrupting the water pulses to which people’s livelihoods are tuned*. In
many languages, multiple words exist to designate IRES and their mark
on the landscape, highlighting the long history of inter-dependence
between humans and seasonal freshwater systems®. However, the
spiritual and cultural values that IRES provide, often to Indigenous
peoples (for example, in Australia or in sub-Saharan Africa), remain
tobe acknowledged®.

The past decade has witnessed several efforts to highlight both the
values and ongoing degradation of IRES®®, yet current tools and policies
still fall short of ensuring their biomonitoring and conservation'". A
recognition of the prevalence and ecological importance of IRES by
the scientific community may trigger efforts to adequately manage
them and halt current attempts to exclude them from protective leg-
islation®. As a stepping-stone, the dataset we present here intends to
provide a baseline for identifying gaps in hydrological and biological
monitoring efforts, to inform global biogeochemical upscaling and
riverine species distribution models, and to decipher the links between
hydrological patterns, culture and language. We hope it can ultimately
assistindiscerning therole of IRES in the Earth system to safeguard the
integrity of river networks and the well-being of those who directly rely
onthese ecosystems for their livelihood and culture.
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Methods

See Extended DataFig. 7 for asummary of the data and methods used
inthis study.

Data

Global underpinning hydrography. We predicted the distribution of
IRES forriver reachesin the global RiverATLAS database?. RiverATLAS is
awidely used representation of the global river network built onthe hy-
drographic database HydroSHEDS***. Rivers are delineated on the basis
of drainage direction and flow accumulation maps derived from eleva-
tion dataata pixel resolution of 3arcseconds (~90 mat the equator) and
subsequently upscaled to15arcseconds (-500 mat the equator). In this
study, we only included river reaches with a modelled MAF > 0.1m?3s™
and excluded: i) smaller streams (owing to increasing uncertainties
in their geospatial location and flow estimates derived from global
datasets and models; see also Methods section ‘Hydro-environmental
predictor variables’ below); and i) sections of river reaches within lakes
(identified based on HydroLAKES polygons®?). We define a ‘river reach’
as a cartographic—rather than a functional—unit, represented by the
smallest spatial element of our global river network, that is, aline seg-
ment between two neighbouring confluences. We made predictions
for 6,198,485 individual river reaches with an average length of 3.8 km,
totalling 23.3 million kilometres of river network.

Reference intermittence data for model training and
cross-validation. Two streamflow gauging station repositories were
used as the source of training and cross-validation data for the split
random forest (RF) model (Extended Data Figs. 7b, 8)—the World Mete-
orological Organization Global Runoff Data Centre (GRDC)** database
(n=10,000) and acomplementary subset of the Global Streamflow In-
dicesand Metadataarchive (GSIM, n=31,000), acompilation of twelve
free-to-access national and international streamflow gauging station
databases®*. Whereas the GRDC offers daily river discharge values for
most stations, GSIM only contains time series summary indices com-
puted at the yearly, seasonal and monthly resolution (calculated from
daily records whose open-access release is restricted for some of the
compiled datasources)®. Therefore, we used the GRDC database as the
core of our training/testing set and complemented it with a subset of
streamflow gauging stations from GSIM. A GSIM station was included
only if: i) it was not already part of the GRDC database; ii) it included
auxiliaryinformation on the drainage area of the monitored reach (for
reliably associatingit to RiverATLAS); iii) it had a drainage area <100 km?
orelse (thatis, for gauges with a drainage area 2100 km?) it was located
either iv) on an IRES or v) in ariver basin that did not already contain
a GRDC station (assessed based on level 5 sub-basins of the global
BasinATLAS database®®, average sub-basin area=2.9 x 10* km?). We
applied the described GSIM selection criteria to balance the relative
amount of non-perennial versus perennial records, and the spatial
distribution of stations in the model training dataset.
Eachstationinthe combined dataset was geographically associated
with areach inthe RiverATLAS stream network and every discharge
time series was quality-checked through statistical and manual outlier
detection (see Supplementary Information section Il for details on
these procedures). Non-perennial gauging stations were only included
inthe datasetifthey were free of anomalous zero-flow values (for exam-
ple, from instrument malfunction, gauge freezing, tidal flow rever-
sal"). We also excluded stations whose streamflow was potentially
dominated by reservoir outflow regulation (that is, with a degree of
regulation>50%%"°) or whose discharge time series exhibited an altera-
tion (see online research compendium at https://messamat.github.
io/globallRmap/ for an interactive visualization of processing infor-
mation for every gauging station) as flow-regulating structures may
change the flow class of ariver either from perennial to non-perennial
or vice-versa depending on their mode and rules of operation®”,

We further narrowed our selection by adding only gauging stations with
astreamflow time series spanning at least 10 years—excluding years
with more than 20 days of missing records for the calculation of this
criterion and in subsequent analyses. Finally, we classified stations as
non-perennialiiftheir recorded discharge dropped to zero at least one
day peryear onaverage over the years of record, and as perennial other-
wise. Stations with at least one zero-flow day per year onaverage (thatis,
non-perennial) but without a zero-flow day during 20 consecutive valid
years of data (those with <20 missing days), anywhere in their record,
were deemed either to have experienced a shift in flow intermittence
class (regardless of the direction of the shift) or to have ceased to flow
owingto exceptional conditions of drought and were also excluded. On
the basis of these selection criteria, the training dataset contained data
for 4,428 perennial river reaches and for 1,187 non-perennial reaches,
with41and 34 years of daily streamflow data on average, respectively,
across all continents (except Antarctica) (Extended Data Fig. 8).

The threshold used to define flow intermittence varies among
studies, ranging from a single zero-flow day across the entire stream-
flow record®* to at least five days per year on average®. Because
zero-flow values in streamflow gauging records may be erroneous”,
other studies have used a flow percentile threshold value (for example,
Q99<0.0283 m*s™inthe US Pacific Northwest)?. To test the sensitivity
ofaltering our criterion (one zero-flow day per year on average) on the
resulting number of non-perennial stations, we changed the threshold
toone zero-flow month (30 consecutive or non-consecutive days) per
year, which yielded a dataset with 4,735 perennial stations and 880
non-perennial stations, respectively. Given the substantial difference
between these thresholds, we also produced model estimates for the
latter definition (Extended Data Fig. 1b, ).

Although our training dataset of gauging stations encompasses a
widerange of river types found on Earth, itis inherently limited by the
global availability of hydrometric data (Extended Data Fig. 8). Most
notably, rivers with MAF > 500 m?s™ are over-represented whereas
those with MAF <50 m*s™are under-represented. Inaddition, few sta-
tions monitor rivers in extreme climates, whether cold or hot, dry or wet
(forexample, classes 1-4 and 16-18 for extremely cold and extremely
hot climates, respectively; Extended Data Fig. 1a shows the extent of
each climate stratum)*. Other under-represented river types include
those with annual average snow cover extent >75% in their upstream
drainage areaand rivers with a shallow groundwater table or with >90%
of karst outcrops across their upstream drainage area.

Hydro-environmental predictor variables. The primary source of
predictor variables was the global RiverATLAS database, version 1.0,
which is a subset of the broader HydroATLAS product?. RiverATLAS
provides hydro-environmental information for all rivers of the world,
both within their contributing local reach catchment and across the
entire upstream drainage area of every reach (Extended Data Table 2).
Thisinformation was derived by aggregating and reformatting original
data from well established global digital maps, and by accumulating
themalong the drainage network from headwaters to ocean outlets?.

RiverATLAS also includes estimates of long-term (1971-2000)
naturalized (thatis, without anthropogenic water use in the form of
abstractions orimpoundments) mean monthly and mean annual flow
(MAF). These discharge estimates are derived through a geospatial
downscaling procedure® based on the 0.5-degree resolution runoff
and discharge layers provided by the global WaterGAP model (version
2.2as0f2014)%. Avalidation of the downscaled discharge estimates
against observations at the 2,131 GRDC gauging stations used in this
study with >20 years of streamflow datafrom1971t0 2000, represent-
ing rivers with MAF between 0.006 and 180,000 m?s™, confirmed
good overall correlations for MAF (log-log least-square regres-
sion, R*=0.96, with a symmetric mean absolute percentage error
SMAPE of 30%; see Supplementary Table 1 for all validation results).
The SMAPE increased from 5% for rivers with MAF >1,000 m®>s™ to
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20% for 10 m*s™ < MAF <1,000 m*s™, and to 52% for MAF <10 m*s™.
Minimum monthly discharge was also found to be an effective proxy
for Q90 (thatis, the daily discharge exceeded 90% of daysin the gaug-
ingrecord; R>=0.84).

We complemented the RiverATLAS v1.0 data with three additional
sets of variables. The first set of variables describes the inter-annual
opensurface water dynamics as determined by remote sensing imagery
from1999 t02019°. In the original dataset, each 30-m-resolution pixel
that has been covered by water sometime during this time period was
assigned one of seven ‘interannual dynamic classes’ (for example, per-
manent water, stable seasonal, high-frequency changes) on the basis
of atime series analysis of the annual percentage of open water in the
pixel. We computed the percent coverage of each of these interannual
dynamic classes relative to the total area of surface water within the
contributinglocal catchmentand across the entire upstream drainage
areaof every river reach.

Second, we replaced the soil and climate characteristics in
RiverATLAS v1.0 with updated datasets. Specifically, we computed
the average texture of the top 100 cm of soil based on version 2 of Soil-
Grids250m®, We also updated the climate variables with version 2
of WorldClim® (adding all bioclimatic variables to the existing set of
variables) aswell as the second version of the Global Aridity Index and
Global Reference Evapotranspiration (Global-PET) datasets®. Finally,
we updated the Climate Moisture Index (CMI), computed from the
annual precipitation and potential evapotranspiration datasets pro-
vided by the WorldClim v2 and Global-PET v2 databases, respectively.

We derived a third set of variables by combining multiple variables
already included in the model through algebraic operations. These
metrics included the runoff coefficient (that is, the ratio of MAF and
mean annual precipitation), specific discharge (that is, MAF per unit
drainage area), and various temporal (for example, minimum annual/
maximum annual discharge) and spatial (for example, mean elevation
inlocal reach catchment/mean elevation in upstream drainage area)
ratios.

The application of all described procedures yielded a total of 113
candidate predictor variablesto be used in our statistical model devel-
opment (Extended Data Table 2).

Machine learning models

We developed and used a split RF machine learning model to predict the
flow intermittence class, as a probability response, of all river reaches
globally, with1denoting a100% predicted probability of being an IRES.
RF models have already been successfully used to predict the distri-
bution of IRES in Australia and France? and they have been shown
to achieve high performance when compared to other approaches,
including other machine learning models, logistic regression, and
single decision trees®**’. Below, we briefly describe the model devel-
opment and validation procedure conducted for our split RF model;
see Supplementary Information section Ill for additional information.

Our final predictions are based on the probability RF algorithm devel-
oped by Malley et al.*8, a derivative of the standard RF algorithm for
making probabilistic predictions of class membership, asincluded in
the ‘ranger’ R package®. This algorithm was selected following a com-
parison’”' of several probability RF variants (namely, conditional infer-
ence forest’>” and a newly developed regression RF algorithm using
maximally selected rank statistics’). To address known biases in RF
models from classimbalance in the training data (more perennial than
non-perennial gauging stations on large rivers)*”, we implemented
random oversampling of non-perennial gauging stations™.

For our split model approach, we trained and cross-validated two
probability RF sub-models with slightly overlapping ranges in river
size, one trained to predict the streamflow intermittence probabil-
ity of small-to-medium rivers with MAF <10 m?®s™ and the other for
medium-to-large rivers with MAF =1 m?>s™. Within the overlapping
range of 1-10 m® s MAF, the average probability was calculated to

avoid abrupt transitions atasingular size threshold. This splitapproach
performed better than asingle model and was motivated by the distinct
classimbalance intraining gauging stations between largerivers (4.87:1
perennial to non-perennial ratio) versus small rivers (1.98:1 perennial
tonon-perennial ratio). With asingle model, the use of acommon over-
sampling factor for both size classes underpredicted the prevalence
of IRESin large rivers (see Extended Data Table 3).

Model development and diagnostics

Tooptimize the predictive performance of the two sub-models, avoid
overfitting, and obtain unbiased estimates of statistical uncertainty,
weimplemented anested resampling framework for hyperparameter
tuning and cross-validation”, first for comparison across RF algorithm
variants, and then for comparing model performance with and without
predictor variable selection (see Supplementary Information section IV
forafull description of the tuning and cross-validation procedure)’®”.
Tuning was performed for 2-3 hyperparameters (depending on the
RF algorithm) through random search with a termination criterion
of 100 iterations. The inner (hyperparameter tuning) loop was com-
posed of a fourfold cross-validation and the outer loop (for predic-
tive performance assessment) involved a twice-repeated threefold
cross-validation. Cross-validation strategies usually involve 2-10
folds™, with alower number of folds (as chosen here) yielding a more
stringent evaluation of performance (that s, a pessimistic evaluation
bias). The outer cross-validation procedure was repeated twice and the
results were averaged to reduce the variance caused by randomly split-
ting the datainto few folds”. A spatial cross-validation procedure based
on k-means spatial clustering (k=40, see Supplementary Fig. 3 for the
distribution of clusters) was also used in the outer resampling loop to
avoid overoptimistic error estimates that arise in cases of considerable
spatial autocorrelation®%, We chose to implement 40 spatial folds to
strike abalance between two extremes. Fewer folds would risk evaluat-
ing the predictive ability of the model across areas so large that they
may represent unique hydro-climatic conditions outside of the model’s
training set (for a given fold), therefore underestimating the model’s
performance. More folds would have inflated our estimate of model
accuracy by relying on training sets too similar to the testing sets and
would have made the computational requirements of cross-validation
even greater.

Allalgorithms were compared using the same inner and outer sets of
training and testing partitions. Hyperparameters were tuned to opti-
mize the Balanced class ACCuracy (BACC) metric®, whichis equivalent
to the raw accuracy (or one minus the misclassification rate) but with
each sample weighted according to the inverse prevalence of its true
class (large river model: 4.87 and 1.00 weights for the non-perennial and
perennial classes, respectively; small river model:1.98 and 1.00 for the
non-perennial and perennial classes, respectively). To assess predictor
variableimportance, weighted averages of Actual Impurity Reduction
(AIR, an unbiased version of Giniimpurity)* and the associated p values
(determined via 100 permutations, following ref. 5°) were computed
for each outer resampling cross-validation fold and repetition, using
the BACC of each resampling instance as weight.

Prior to final model training and evaluation, only predictors with a
variable importance p value of <0.05 were retained, so that 92 and 82
variables were retained in the final small-river and large-river models,
respectively. Variable selection was implemented to both increase
model performance®*® and decrease model training time.

In addition to the BACC and the variable importance, several addi-
tional diagnostics were examined to determine the performance and
characteristics of the RF model as follows:

(i) We assessed the classification accuracy (percentage of correctly
classified gauges), the sensitivity (percentage of correctly classified
IRES reaches, also known as true positive rate or recall), specificity
(percentage of correctly classified perennial reaches, also known as
true negative rate or selectivity), and precision (percentage of reaches
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predictedtobe IRES that are actually IRES) of the model for each stream-
flow size class (Extended Data Table 3), based on spatial and non-spatial
cross-validations.

(ii) We examined the geographic, hydrological, and environmental
distributions of theintermittence prediction residuals (IPRs) for each
reference stream gauging station (Extended Data Fig. 2):

IPR = predicted intermittence probability a

-observed intermittence class

with observed intermittence class IR={0: perennial, 1: non-perennial}.
If[IPR|< 0.5, the binary intermittence class of the reach associated with
the gauging station was accurately predicted, with |IPR| values closer to
0.5indicating greater uncertainty. IfIPR>0.5, the reach was predicted
to be non-perennial when it was perennial. IfIPR<-0.5, the reach was
predicted to be perennial when it was non-perennial. We also examined
the distribution of classification accuracy and bias (Fig. 3), as well as
residual spatial autocorrelation (see Supplementary Information sec-
tionIV.d), by river basin.

(i) Partial dependence plots were generated for the 27 most impor-
tant predictors using the ‘edarf” package®® (see Supplementary Fig. 5).
These plots display estimates of the marginal relationship between
each predictor variable and the model’s predictions by holding the
rest of the predictors at their respective mean values®.

Assessing the global prevalence of IRES

After training the two final probability RF sub-models, the constructed
prediction rules were used to estimate the probability of intermit-
tence for eachriver reach included in the global river network (that
is, with MAF > 0.1 m*s™). All reaches with a resulting probability >0.5
were classified to be non-perennial (and perennial otherwise). This
threshold was chosen following an analysis of model performance
sensitivity to probability thresholds ranging from 0.25to0 0.75 for each
RF sub-model which showed a balanced model performance at 0.5
(see Supplementary Information section IV.e). When adjusting the
probability threshold between 0.45and 0.55, the RF-predicted (that s,
non-extrapolated) global prevalence of IRES varied from 36% to 48%
(compared to41% with a 0.5 threshold).

We then used the binary intermittence class predictions to com-
pute the global prevalence of IRES by country, continent, climate
zone, terrestrial biome, and major freshwater habitat type (Table 1
and Supplementary Data). Although gauging stations on reaches with
MAF < 0.1 m*s™ were included in the training dataset, we did not pro-
duce global RF predictions of the probability of flow intermittence for
individual reaches below this discharge threshold for two reasons. First,
there existed only 59 gauges with MAF < 0.1 m®s ™ and at least 10 valid
years of data (including only 13 on perennial reaches), which was insuf-
ficient to confidently train a model and assess its uncertainty for this
dischargessize class. Second, there exists a discontinuity in RiverATLAS
below 0.1m*s™whereby only those reaches with adrainage area >10 km?
areincluded?, leading to a varying discharge cut-off depending on a
region’s aridity. Nonetheless, bounding our RF predictionsto 0.1m?s™
enabled us toestablisharobust estimate of the prevalence of flow inter-
mittence in arange of discharge size classes which we then used for an
extrapolationto smaller streams (see Methods section ‘Extrapolating
the global prevalence of IRES to smaller streams’).

Estimating human population near IRES

To estimate the percentage of the global populationliving near an IRES,
wefirstaggregated 2020 population count data from WorldPop®°. We
used constrained, rather than unconstrained, top-down WorldPop
population estimates to avoid erroneous allocation of population to
allland cells®°. Population count estimates were aggregated from 3 arc-
second (90 m at the equator) to 15 arcsecond pixels (-500 m, that is,
theresolution of the hydrographic data underpinning the RiverATLAS

river network). We associated the population within each larger pixel
totheriver reachin RiverATLAS (with MAF > 0.1m>s™) that was nearest
tothat pixel. Finally, we summed the population across all pixelsin the
world that were associated withareach predicted to be non-perennial
by our model.

Extrapolating the global prevalence of IRES to smaller streams
Tocreateafirst-order approximation of the global prevalence of IRES
including even smaller streams, we extrapolated our model estimates
to the next smaller streamflow size class range of [0.01, 0.1) m*s™.
Although streams of this size class are rarely monitored or mapped
globally, they are ecologically and environmentally critical®. For
instance, atleast 64% of rivers and streams in the USA (by length) show
aMAF <0.1m*s™, and 25% show a MAF < 0.01 m*s™ (according to the
US National Hydrography Dataset, NHDPlus, at medium resolution).
We limited our extrapolation to one order of magnitude (that is, we
did notinclude even smaller streams, with MAF < 0.01 m®s ™, that still
canformstream channels) as we expect uncertainties to continuously
increase when moving further outside the range of our trained and
tested RF model.

The prevalence of IRES for this stream size class was indepen-
dently extrapolated for a total of 465 spatial sub-units representing
all occurring intersections of 62 river basin regions (BasinATLASY
level 2 subdivisions, average surface area 2.2 x10°km?) and 18 climate
zones (Global Environmental Stratification)*. For each basin-climate
sub-unit, we first extrapolated the empirical cumulative distribu-
tion of total stream length (of all reaches with MAF > 0.1m>s™) down
to 0.01 m*s™ MAF using a generalized additive model (GAM)??. We
excluded reaches larger than the 95th percentile of MAF (that is, the
largest rivers) within the sub-unit from model fitting to avoid com-
mon discontinuities at the high end of the empirical distribution
that can affect the low end of the power-law-like trendline (see Sup-
plementary Fig. 8a, ).

Second, we extrapolated the prevalence of flow intermittence (in
percentage of stream length) down to 0.01 m®*s ' MAF. In this case, we
fitted a GAM for beta-distributed data—thatis, witha (0, 1) range—to
the prevalence of intermittence in each logarithmic MAF size bin of the
sub-unit. MAF logarithmic size bins (m?®s™) were defined as [10/,107°)
foreveryiin{-1,-0.9,-0.8, ..., 5.3} for model fitting, and every iin
{=2, -1.9, ..., -1.1} for model extrapolation. See Supplementary
Fig.8b, d forillustrative examples of this approach. GAMs were used to
conduct both extrapolations because this non-parametric, nonlinear
approach does not require assumptions to be made regarding what
distribution (for example, a power law®®) the empirical cumulative
distributions should follow. This is justifiable because the aim of
the analysis was to make a pragmatic first-order approximation of
IRES prevalence rather than to demonstrate the existence (or not)
of aspecific distribution.

Following the fitting of all GAM models, the length of IRES in each
linear MAF size class between 0.01m>s™and 0.1m?swas computed as
the product of the extrapolated length of streams and the prevalence
ofintermittence in thatsize class. Finally, the total length of IRESin the
extrapolated size classes was combined with the predictions from the
split RF model to estimate the global prevalence of IRES as a percentage
of the total global length of rivers and streams with MAF > 0.01m>s™.,

We also produced an additional estimate with the assumption that,
for eachbasin-climate sub-unit, the prevalence of IRES in streams with
0.01<MAF < 0.1 m*s™ was equal to the prevalence of IRES in streams
with 0.1<MAF<0.2m?s™. Even with this conservative assumption, we
estimate that 51% of allglobal rivers and streams with MAF > 0.01m3s™
are IRES. In contrast to the RF models, which estimate the probabil-
ity of flow intermittence at the scale of individual river reaches, the
GAM-based extrapolation provides aggregate estimates of IRES preva-
lence for basin—climate sub-units, which are best suited for global
accounting studies.



Model comparisons

Comparisons with reported prevalence of flow intermittence at
national scales. The most common source of information on the
prevalence of flow intermittence across large regions are national hy-
drographic datasets, derived mainly from paper topographic maps
in which non-perennial watercourses are usually depicted by dashed
lines. We compared our model estimates of the percentage of stream
length that is non-perennial with this type of hydrographic data for
four countries covering a wide range of environmental, geological,
and climatic conditions: the contiguous USA, Australia, Brazil, and
Argentina (Extended DataFigs. 3, 4; for datasources see Extended Data
Fig.7b).Inaddition, we compared our results inmainland France with
predictions of a national model*.

Itshould be noted that we do not consider these comparisons to be
anaccuracy assessment of our model outputs, owing to the inherent yet
unknownuncertainties in the national hydrographic datasets. Although
the national maps represent the most comprehensive records of pre-
sumed intermittence, most are characterized by high levels of incon-
sistency amongregions and cartographers, even for afixed map scale
(forexample, 1:24,000), in both stream density and flow intermittence
assessment®*, For instance, streamflow intermittence classifications
containedinthe US National Hydrography Dataset (NHDPIus, whichwas
used inthis study), based on one-time field surveys typically conducted
in the mid-to-late 1900s, have been shown to exhibit misclassifica-
tion rates as high as 50% compared to independent field surveys®*®.
Hafenetal.* report only an 80-81% agreement between ground-based
streamflow field observations from the US Pacific Northwest and the
NHDPIus classifications. Furthermore, in the Brazilian dataset and the
NHDPIlus, neighbouring topographic map sheets differ in whether flow
intermittence was mapped, leading to artefactual hard edges between
regions in terms of the prevalence of intermittence” (for example,
Extended Data Fig. 4). Despite these limitations, map-based national
hydrographic datasets remain the reference used by most govern-
ment agencies and institutions in determining the extent and flow
intermittence of river networks, and thus provide a useful benchmark
for comparing the output of our model.

A custom processing workflow was developed to format each of the
four national river network datasets to ensure comparability with our
model predictions. Thisinvolved filtering each source dataset to keep
only river and stream channels (for example, excluding lake shorelines
and marine coastlines), excluding reaches in the source data that do
not correspond with the streamflow threshold applied for the mapped
rivers in this study (MAF > 0.1 m?s™) and excluding artificial channels
(for example, canals and ditches). For a full description of the format-
ting workflow, see Supplementary Information section Vl.a. Following
this formatting process, we compared the percentage of river network
length that was categorized as IRES in each of the source datasets to
our modelresults for the same region (Extended Data Fig. 5). We could
not perform this quantitative comparison for Brazil and Argentina
because there was no measure of river size in these datasets. Lastly,
we visually assessed whether spatial patterns of intermittence were
similar between the source datasets and our model results. Aside from
Argentina, we were unable to compare our predictions to hydrographic
maps incountries where sparse hydrometric networks resultin higher
modelling uncertainties, owing to the unavailability of hydrographic
dataintheseregions.

Comparisons with local on-the-ground visual observations. Data-
sets of on-the-ground visual observations of flow presence or absence
(flow state) by trained individuals provide some of the most reliable
records of flow intermittence?°**°, We compared our predictions of
intermittence to datasets of this type for two regions: the US Pacific
Northwest and mainland France (Extended Data Fig. 6; see Supple-
mentary Information section VLb for additional details). We did not

use these observations directly for the training of the RF sub-models
as we could not apply the same criterion to define ‘intermittence’ as
for gauging stations (that s, at least one day per year of flow cessation,
on average, across the entire record) and their inclusion would have
represented astrongregional bias. These datasetsinstead enabled an
independent comparison of the model predictions for smaller rivers
and streams (here mostly <1m?>s™), which are poorly represented in
the global hydrometric network.

For the US Pacific Northwest, we used 5,372 observations across 3,725
reaches (3,547 perennial, 178 non-perennial) from a larger dataset of
24,316 stream observations'®® that occurred from1July to 1 October,
between 1977 and 2016. The source dataset is a compilation of
11 smaller datasets from independent projects that include aquatic
species habitat surveys, wet/dry stream channel mapping, benefi-
cial use reconnaissance surveys, or were collected specifically for the
PROSPER intermittent river mapping project?'°°, Streamflow obser-
vationsincluded one-time surveys and repeat surveys extending over
several years, as well as discrete locations or continuous sections of
astream channel reach. On the basis of the approach used by Jaeger
etal.2, we considered that ariver section was perennial only if all obser-
vations (1July-10ctober) reported the presence of water. Despite this
strictcriterion, this dataset may underestimate the prevalence of inter-
mittence since most sites were only observed 1-3 times and the prob-
ability that flow cessation was observed atagivenreachincreased with
the number of observations (logistic regression, n=9,850, p <0.001,
see Supplementary Information section VLb for details).

For France, we used 124,112 observations across 2,297 reaches (878
perennial, 1,419 non-perennial) from alarger set of approximately 3,300
sites uniformly distributed across France from the national river drying
observatory (ONDE) network'. The ONDE network provides a stable
set of sites on river and stream reaches of Strahler orders under five
which, since 2012, have beeninspected by agency employees from the
French Office for Biodiversity (OFB) at least monthly between May and
September. We considered an observation to reflect flow intermit-
tence if it was classified as either ‘with no visible flow’ or ‘dried out’
(as opposed to ‘with visible flow’). In case of multiple observations
ononereach, we considered the reach to be non-perennial if a single
observation of flow cessation existed.

Allflow state observations were linked to the RiverATLAS stream net-
work through custom semi-automated procedures designed for each
dataset, using the proximity between the point observations and the
reachlocationsin RiverATLAS, as well as associated information from
local river network datasets and ancillary attribute data provided for
eachlocation (for example, drainage area, site name; see Supplemen-
tary Information section VL.b for details). Following data formatting
and harmonization, we assessed the degree of agreement at the river
reach level between the binary intermittence class predicted by our
model and that reported by the two datasets of visual observations.

Data availability

The global river network dataset and the associated attribute infor-
mation for every river reach—that s, the hydro-environmental attrib-
utes, predicted probability of intermittence and associated binary
class—as well as the main results of the study are available at https://
doi.org/10.6084/m9.figshare.14633022. The dataset can be used
together with the published source code (see ‘Code availability’) to
recalculate the main study results with updated data and parameters.
The streamflow time series from the Global Runoff Data Centre are
available in summarized format. The daily records are not available
in the data repository owing to licensing issues but are freely avail-
able upon written request through https://www.bafg.de/GRDC/EN/
Home/homepage_node.html. Original data that supported the study
are freely available and their sources are summarized in Extended Data
Fig. 7b. Source data are provided with this paper.
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https://doi.org/10.6084/m9.figshare.14633022
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https://www.bafg.de/GRDC/EN/Home/homepage_node.html
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Code availability

The source code and results of this research are available under the
GNU General Public License v3.0 at https://messamat.github.io/
globallRmap/.
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Extremely hot and arid 100 100 100 97 39 0 - 99 | (98) 1,032 | (249)
Hot and arid 100 100 100 96 47 0 - 99 | (98) 990 | (238)
Arctic 1 100 100 100 100 - - - 100 | (100) 11 1(6)
Warm temperate and xeric 99 95 84 49 8 0 0 95| (87) 1,351 | (444)
Extremely cold and wet 2 99 95 87 42 18 - - 97 1 (92) 766 | (243)
Extremely hot and xeric 98 88 89 86 31 0 0 94 | (85) 4,551 | (1,605)
Arctic 2 100 99 98 22 - - - 99 | (99) 98 | (41)
Cool temperate and xeric 86 74 54 19 0 0 - 781 (62) 1,709 | (552)
Extremely cold and mesic 87 64 45 34 29 23 0 75| (57) 8,083 | (3,051)
Extremely cold and wet 1 92 75 62 9 0 - - 82 (72) 227 | (109)
Cold and mesic 56 32 20 5 3 0 0 45| (26) 8,189 | (3,084)
Warm temperate and mesic 79 30 18 7 0 0 0 54| (24) 3,582 | (1,646)
Hot and dry 71 41 28 18 4 0 0 56 | (35) 4,054 | (1,683)
Cool temperate and dry 55 36 22 7 0 0 0 47 | (29) 4,087 | (1,325)
Hot and mesic 68 26 17 19 4 0 0 47| (22) 4,452 | (2,023)
Extremely hot and moist 38 14 14 17 2 0 0 30| (14) 19,117 | (6,002)
Cool temperate and moist 31 7 3 0 0 0 - 16 | (5) 1,164 | (691)
Cold and wet 7 2 0 0 0 0 - 2| (1) 493 | (299)
World 63 41 28 23 7 1 0 53 | (35) 63,956 | (23,291)

Extended DataFig.1|See next page for caption.



Extended DataFig.1|Global prevalence of IRES with atleast one zero-flow
month peryearonaverage. a, Distribution of global climate zones used in this
study. Data provided by Global Environmental Stratification (GEnS)*.

b, Predicted probability of river flow intermittence, defined as atleast one
zero-flow month (30 days) per year on average, across the global river and
stream network?. The median probability threshold of 0.5 was used to
determine the binary flow intermittence class for each reach. ¢, Global
prevalence of IRES with atleast one zero-flow month (30 days) per year on
average, across climate zones and streamflow size classes (based on long-term

average naturalized discharge). Note thatin regions with sparse training data,
themodelresults can differ substantially from the results shownin Table1, as
theunderlying random forest and extrapolation models were developed
independently. No stations were available in climate zones Arcticland Arctic 2,
and few stations were available in ‘Extremely cold and wet’ (1and 2) and in
‘Extremely hot and arid’ climates (together representing 3% of global river and
streamlength). Rows aresorted inthe same orderasin Table1,and the same
footnotes asin Table1lapply. Mapping software: ArcMap (ESRI).
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Extended DataFig.2|Distribution of cross-validationresults. a, Maps of
spatially cross-validated predictive accuracy of flow intermittence for
streamflow gauging stations. See Supplementary Fig. 3 for the distribution of
spatial cross-validation folds and details on the cross-validation procedure.
Theclassification errors shown here are not necessarily presentin the final
predictions butillustrate the ability of the model to predict the flow
intermittence class for eachregionifthatregion wasexcluded from the
training set. For instance, it shows that the model would be unable to predict
the presence of IRES in western France and northern Spain (insetii, dark red
dots), orinwestern India (insetiii) without training stations in these regions.

b-e, Intermittence prediction residuals versus gauging station characteristics
and environmental variables. The meanintermittence prediction residual (IPR)
isthedifference between the average predicted probability of flow
intermittence (across three cross-validation folds and two repetitions) and the
observed flowintermittence of the gauging station (1=non-perennial,
0=perennial). Overall, prediction errors and uncertainties decrease with an
increase inthe number of recorded years by gauging stations as well as the
drainage area and the degree of flow intermittence (average annual number of
zero-flow days and flow cessation events) of the corresponding reaches.
Mapping software: ArcMap (ESRI).



a. U.S. National Hydrographic Dataset Plus (1:100k)

b. Global predictions (flow cessation 2 1 day/year)
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Extended DataFig.3|Comparing global predictions to national maps of
IRES inthe USA and Australia. Comparison of a, the US National Hydrography
Dataset (NHDPlus, mediumresolution) and d, the Australian hydrological
geospatial fabric, with our model predictions based on two thresholds of flow
intermittence, either >1zero-flow day per year (b, e), or >1zero-flow month

(30 days) per year (c, f), on average. Only rivers and streams with MAF >0.1m3s™
are shown for the USA (a-c) and with drainage area >10 km?for Australia (d-f).
The USreference dataset portrays19-22% of thelength of rivers and streams as
non-perennial, depending on whether reaches without flow intermittence

d. Australian hydrological geospatial fabric

Drainage area

) (line width and transparency)
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status are assumed to be perennial or removed; our estimates range from 51%
(>1zero-flow day per year) to 36% (=1 zero-flow month per year). We
hypothesize that the remaining gap in IRES prevalenceis attributabletoa
tendency of our model to overpredictintermittence across the eastern USA
and anunder-accounting of intermittence inmediumto large rivers by the
national dataset. The Australian reference dataset portrays 91% of the length of
riversand streams as non-perennial; our estimates range from 95% (>1
zero-flow day per year) to 92% (=1 zero-flow month per year). See Extended
DataFig.7b for datasources. Mapping software: ArcMap (ESRI).
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Extended DataFig.4|See next page for caption.



Extended DataFig. 4 | Comparing global predictions to national maps of
IRES in Brazil, Argentina, and France. Comparison of a, the continuous
cartographicbase of Brazil (BC250),d, the Argentinian hydrographic network,
and g, model predictions for France from Snelder et al.”, with our model
predictions based ontwo thresholds of flow intermittence, either >1 zero-flow
day peryear (b, e, h) or 21zero-flow month (30 days) per year (c, f), on average.
Inaandd, only first-order streams (determined through network analysis) are
visually differentiated (finer, semi-transparent lines), owing to the lack of
awatercourse-size attribute in the Brazilian and Argentinian datasets.

Inb, ¢, e-h, onlyriversand streams with MAF > 0.1m>s™are shown. Snelder
etal.” predictthat17% of the length of rivers and streams in France are non-
perennial. We predict that14% are non-perennial. This slight divergence may be
partly drivenby the differencein definition of flow intermittence: Snelder
etal.” classified stations with >1 zero-flow day in the streamflow record as IRES
whereas we used athreshold of1zero-flow day per year across the streamflow
record. See Extended Data Fig. 7b for data sources. Mapping software: ArcMap
(ESRI).
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Extended DataFig. 5| Quantitative comparison between the predicted
prevalence of flow intermittence and national estimates. a-f, Comparisons
were conducted for France (a, b), the USA (c, d), and Australia (e, f), on the basis
oftwo thresholds of flow intermittence, either >1zero-flow day peryear (a, c, e)
or >1zero-flow month (30 days) per year (b, d, f), on average. Bars for mapped

rivers and streams with MAF <0.1m>?s™ (for France and the USA) are greyed out
astheywerenotincludedin the calculation of summary statistics. Inset graphs
inb, d, fshow comparisons oftotal river network length (log-transformed
yaxis), whichin case of discrepancies can explainsome of the differencesinthe
predicted prevalence of intermittence.
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Extended DataFig. 6 | Comparingglobal predictions to on-the-ground
observations of flow cessation. a, b, Maps show individual RiverATLAS
reaches and their predictive accuracy for France (a), and the US Pacific
Northwest (b). Mapsare drawn atidentical cartographicscales. France
(n=2,297):balanced accuracy =0.59, classification accuracy = 51%,
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sensitivity =24%, specificity = 94%. US Pacific Northwest (n=3,725): balanced
accuracy = 0.47, classificationaccuracy =80%, sensitivity =10%, specificity =
83%.See Extended Data Fig. 7b for data sources. Mapping software: ArcMap
(ESRI).
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b
Theme Region Dataset — Source (access) Scale
World In-situ river discharge data (as of 2014) - Global Runoff Data R
Streamflow gauging Center (GRDC)
stations World Global Streamflow Indices and Metadata Archive (GSIM) - Do et )
al. (2018) and Gudmunsson et al. (2018)
Rivermetworkand gy HydroATLAS - Linke et al. (2019) 15 arc-second
attributes
Aguas continentales de Argentina (cartografia basica de la
Argentina republica de Argentina) — Argentinian National Geographic NA
Institute (IGN)
National Brazil Base Cartografica Continua do Brasil (BC250, 2019 version) - 1:250k
hydrographic data Brazilian Institute of Geography and Statistics (IBGE) ’
Australia Australian Hydrological Geospatial Fabric (Geofabric, v. 3.2) 1:25-1:250k
us. National Hydrography Dataset Plus (NHDPIlus, medium res., v.2) 1:100k
Previous mecisl France Snelder et al. (2013) ~1:25k
estimate
U.S. Pacific Streamflow observation points in the U.S. Pacific Northwest, B
Point-based field Northwest 1977-2016 - McShane et al. (2017)
sbservation data France  Observatoire National des Etiages (ONDE eau, 2012-2019) -
Office Francais de la Biodiversité (OFB)
Population World Top-down unconstrained populatlon estimates for individual 100 m
countries — WorldPop

Extended DataFig.7|Overview of study design and main datasources.
a, Diagram of modelling workflow. b, Main datasources used in model

development, predictions, diagnostics and comparisons. Datasources: Global ~ Data'®*'%, WorldPop®°.

RunoffData Centre®®, Do etal.**, Gudmundsson etal.*’, Linke et al.”, Snelder
etal.”, McShane et al.'”°, ONDE eau 2012-2019'"", National Hydrographic
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Extended DataFig. 8| Spatial and environmental distribution of
streamflow gauging stations used inmodel training and cross-validation.
a, b, Gauging stations (n=5,615) were deemed perennial (a) if their streamflow
recordincludedless than one zero-flow day per year, on average, across their
record, or non-perennial (b) if they included at least one zero-flow day per year,
onaverage,and atleast one zero-flow day in every 20-year moving window
across their record. Stations fulfilling neither condition anor bwere excluded.
Darker points symbolize longer streamflow records. Only gauging stations
with streamflow time series spanning atleast 10 years were included in this
analysis, excluding years with more than 20 missing days. c-p, Distribution of
values for 14 hydro-environmental variables across the streamflow gauging

stations used for model training/testing (purple, n=5,615) and across all
reaches of the global river network (blue, n=6.2 x10°). The distribution plots
show empirical probability density functions (thatis, the areaunder each
density functionis equal to one) for all variables, aside from climate zones (g)
forwhichtherelative frequency distributionis shown. All variables were
averaged acrossthetotal drainage area upstream of the reach pour point
associated with each gauging stationorriverreach, respectively. See Extended
DataTable 2 foradescription of the variables and Extended Data Fig.1afora
description of the climate zones. No stations were available for climate zones
Arcticland Arctic 2. Mapping software: R statistical software (R Core Team).



Extended Data Table 1| Definitions of commonly used terms for non-perennial rivers and streams

Term Definition Source
. : - ; o o Busch et al.,
Non-perennial Any lotic freshwater system that periodically ceases to flow and/or is dry at some point in time and/or space. 2020106
A non-perennial river or stream with a considerable connection to the groundwater table, having variable cycles
Intermittent of wetting and flow cessation, and with flow that is sustained longer than a single storm event. These Busch et al.,
waterways are hydrologically gaining [surface water from groundwater] the majority of the time when 202016
considering long-term flow patterns.
A non-perennial river or stream without a considerable groundwater connection that flows for a short period of Busch et al
Ephemeral time, typically only after precipitation events. These waterways are hydrologically losing [surface water to 2020106 ”
groundwater] the majority of the time when considering long-term flow patterns.
Flowing waters confined within a channel are called rivers or streams. Rivers are considered to be larger and
Intermittent rivers deeper than streams, although the distinction is a loose one of common usage rather than based on fixed size Adabted from
and depth thresholds. The same common usage applies to describing differences in patterns of flow duration: p
and ephemeral 4 o5 o : " . G : ’ : Datry et al.,
the term ‘ephemeral’ implies a shorter duration and lower predictability than ‘intermittent’ — but again, there are 107
streams (IRES) h : : o ) b . ) 2017
no fixed boundaries. Therefore, given the broad association of channel size with flow duration, a stream is
more likely to be ephemeral and a river to be intermittent, prompting the generalization.
. . . ) . . Busch et al.,
Temporary Rivers that cease to flow for a period of time during cycles of drying and rewetting. 2020106

Refs, 106107
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Extended Data Table 2 | Hydro-environmental characteristics used as candidate predictor variables in the split random
forest model

Category Attribute Spatial Aggregation Source
Climate Annual mean temperature (BIO1) c,u average WorldClim v2%3
Climate Mean diurnal range (BIO2) c,u average WorldClim v283
Climate Isothermality — (BIO2/BIO7) x100 (BIO3) c,u average WorldClim v2%3
Climate Temperature seasonality (SD x100) (BIO4) c,u average WorldClim v2%3
Climate Max. Tem perature of warmest month (BIO5) c,u average WorldClim v263
Climate Min. Temperature of coldest month (BIO6) c,u average WorldClim v2%3
Climate Temperature annual range (BIO7) c,u average WorldClim v2%3
Climate Mean temperature wettest quarter (BIO8) c,u average WorldClim v2%3
Climate Mean temperature driest quarter (BIO9) c,u average WorldClim v2%3
Climate Mean temperature warmest quarter (BIO10) c,u average WorldClim v2%3
Climate Mean temperature coldest quarter (BIO11) c,u average WorldClim v2%3
Climate Annual precipitation (BIO12) c,u average WorldClim v2%3
Climate Precipitation of wettest month (BIO13) c,u average WorldClim v2%3
Climate Precipitation driest month (BIO14) c,u average WorldClim v263
Climate Precipitation seasonality (BIO15) c,u average WorldClim v2%3
Climate Precipitation of wettest quarter (BIO16) c,u average WorldClim v2%3
Climate Precipitation driest quarter (BIO17) c,u average WorldClim v263
Climate Precipitation of warmest quarter (BIO18) c,u average WorldClim v283
Climate Precipitation of coldest quarter (BIO19) c,u average WorldClim v2%3
Climate Climate moisture index c,u  annual min. WorldClim v2 & Global-PET v263.64
Climate Climate zones c spatial majority GEnS®
Climate Global aridity index c,u average Global Aridity Index v2 %
Climate Actual evapotranspiration c,u annual average Global Soil-Water Balance "%
Climate Potential evapotranspiration c,u annual average Global-PET v25%4
Climate Snow cover extent c,u annual average, max. MODIS/Aqua'®
Hydrology Groundwater table depth c average Global Groundwater Map "°
Hydrology Inundation extent c,u  annual min., max. GIEMS-D15™
Hydrology Land surface runoff c annual average WaterGAP v2.2112
Hydrology Limnicity (percent lake area) c,u % extent HydroLAKES®?
Hydrology Naturalized discharge p aqnual average, min, Max, \yaterGAP v2.2'12
min/max, min/average
Hydrology Runoff coefficient (runoff/precipitation) c average WaterGAP v2.2"2, WorldClim v23
Hydrology Specific discharge (discharge/catchment area) u annual average, min. WaterGAP v2.2"?
Hydrology Surface water dry period c,u average GLAD®!
Hydrology Surface water high frequency c,u average GLAD®!
Hydrology Surface water loss c,u average GLAD®!
Hydrology Surface water maximum extent c,u average GLAD®!
Hydrology Surface water permanent c,u average GLAD®!
Hydrology Surface water seasonal c,u average GLAD®!
Hydrology Surface water wet period c,u average GLAD®!
Landcover Forest cover extent c,u % extent GLC2000'"3
Landcover Glacier extent c,u % extent GLIMS™4
Landcover Land cover classes c spatial majority GLC2000'"®
Landcover Agricultural extent c, % class 16 GLC2000"3
Landcover Permafrost extent c, % extent pPzI"s
Landcover Potential natural vegetation classes c spatial majority EarthStat'®
Landcover Pan, brackish/saline wetland extent c,u  %class7 GLWD "7
Landcover Intermittent wetland/lake extent c,u  %class 9 GLWD "7
Landcover Wetland extent (incl. lakes, reservoirs, rivers) c, u % class group 1 GLWD "7
Landcover Wetland extent (excl. lakes, reservoirs, rivers) c, u % class group 2 GLWD"?
Physiography Drainage area u - HydroSHEDS>®
Physiography Relative elevation [(average c elevation - (c-u)lu average EarthEnv-DEM90"®
average u elevation)/average u elevation]
Physiography Terrain slope c,u average EarthEnv-DEM90"®
Soils+Geology Karst area extent c,u % extent Rock Outcrops v3.0"°
Soils+Geology Lithological classes c spatial majority GLiM'20
Soils+Geology Clay fraction in soil 0-100 cm c,u average SoilGrids250m v2%2
Soils+Geology Sand fraction in soil 0-100 cm c,u average SoilGrids250m v2%2
Soils+Geology Silt fraction in soil 0-100 cm c,u  average SoilGrids250m v262
Soils+Geology Soil water content c, U annual average, min. Global Soil-Water Balance "%

Spatial representations refer to: p (derived at the pour point of the river reach), c (derived within the local catchment that drains directly into the reach), or u (derived within the total drainage

area upstream of the reach pour point). See ref. 2’ for a full description of the methodology to calculate the variables.
Refs. 32,50,52,61764,108—120-



Extended Data Table 3 | Performance summary of binary flow intermittence class predictions

a. Split model approach: twice-repeated 3-fold non-spatial cross-validation

Prediction (number of gauging stations) > 2 2 5
Streamflow size class Non-perennial | Perennial Total Prevalence of =~ 25 £ D=
(m?® 1) . . (N) IRES (%) 3& 8€ TL o
True: Non-perennial True: Perennial Pred. |True 2] s -4 2
< » %) [+ 8
(0, 0.1) 424 716 59 83|78 91 91 46 86
[0.1,1) 292 |55 441504 895 38|39 89 84 92 87
[1, 10) 490|70 11 | 1217 1888 32130 90 88 92 82
[10, 10?) 175124 82| 1459 1740 15111 94 88 95 68
[10%, 10%) 3311 24757 815 714 97 97 97 58
[10°% 10%) 110 2187 190 2|1 99 100 99 33
210* 0|0 0]28 28 0|0 100 - 100 -
All 1033|154 270]4158 5615 23|21 92 87 94 79

b. Split model approach: 40-fold spatial cross-validation

Prediction (number of gauging stations) Proval P > 2 2 s
Streamflow size class Non-perennial | Perennial Total revaenceo s 25 €3 ® 3
(m* s-) N) Resth 3 € gE g
True: Non-perennial True: Perennial Pred. [True & S & &
(0, 0.1) 43| 3 94 59 88|78 80 93 31 83
[0.1, 1) 280 | 67 54| 494 895 37139 86 81 90 84
[1, 10) 4591101 151 | 1177 1888 32130 87 82 89 75
(10, 102) 146 | 56 87 | 1454 1740 13|11 92 72 94 62
(102, 10°) 14120 16| 765 815 4|4 %6 41 98 47
[10%, 10%) o1 0189 190 01 99 100 100 -
2 10¢ 0]0 0|28 28 010 100 - 100 -
All 939 | 248 317 | 4111 5615 22|21 90 80 93 75
c. Single (non-split) model approach: twice-repeated 3-fold non-spatial cross-validation
Prediction (number of gauging stations) > 2 2 g
Streamflow size class Non-perennial | Perennial Total Prevalen:: e of s 25 €2 3
(m?s) ) od e 3T 2% g% 3E
True: Non-perennial True: Perennial Pred. [True & S (§- &
(0, 0.1) 9|4 59 86|78 78 91 31 82
(0.1, 1) 64 | 484 895 41139 88 87 88 83
(1. 10) 123 1205 1888 33|30 90 89 91 80
(10, 10?) 13 62| 1479 1740 13|11 95 83 96 73
(102, 10°) 30| 4 20| 761 815 6|4 97 88 97 60
[10°, 10%) 110 1]188 190 111 99 100 99 50
> 10¢ 010 0|28 28 ol0 100 - 100 R
All 1040 | 147 279 | 4149 5615 23|21 92 88 94 79

a-c, Tables show summary results for the split model approach based on a twice-repeated threefold non-spatial cross-validation (CV; a) and a once-repeated 40-fold spatial CV (b), as well as,
for comparison, a single (non-split) model approach based on a twice-repeated threefold non-spatial CV (c). The colour coding mirrors Extended Data Fig. 2 with light colours slightly darkened
for readability. The split model approach involves training two random forest sub-models with slightly overlapping MAF ranges, one trained to predict the streamflow intermittence

probability of small-to-medium rivers with MAF <10 m®s™ and the other for medium-to-large rivers with MAF > 1m?s™. Within the overlapping range of 1-10 m®s™ MAF, the average probability
was calculated to avoid abrupt transitions at a singular size threshold. Gauging stations monitoring streams with a mean annual naturalized discharge <0.1 m®s™ were included in model training
and testing (shown in grey font); however, no global model predictions were made below this discharge threshold. Sensitivity is the proportion of non-perennial reaches correctly classified as
non-perennial. Specificity is the proportion of perennial reaches correctly classified as perennial. Precision is the proportion of reaches classified as non-perennial that are truly non-perennial.
See Supplementary Fig. 3 and Supplementary Information section IV.b for the distribution of spatial cross-validation folds and details on the cross-validation procedure.
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