



## Lab 5 – Sensitivity analysis

### Carbon footprint of a carbonated water can



POLYTECHNIQUE  
MONTRÉAL

WORLD-CLASS  
ENGINEERING



## Context

The interpretation of the carbonated water can system has started during lab 4 after the impact assessment.

During this lab we will deepen the interpretation with sensitivity analysis.



## Question 1

**Sensitivity analysis (scenario) – Show with a graph how the result would change according those changes in the system:**

a) Use different impact method

(IMPACTWorld+ (Default\_Recommended\_Midpoint 1.29) / ReCiPe Midpoint (E) V1.13 no LT)

Step 1) Recalculate the endpoint results with IW+ for the two system from lab 2

Step 2) Copy results in Excel

Step 3) Recalculate the endpoint results with ReCiPe for the two system from lab 2

Step 4) Copy results in Excel

Step 5) Plot a comparative graph between the two methods

## Question 1

**Sensitivity analysis (scenario) – Show with a graph how the result would change according those changes in the system:**

b) Add a parameter and compare the evolution of this parameter according this scenario : Some can factory are more efficient then other. We assumed 13 g of aluminium to produce a can and no waste in the transformation process. Do the calculation again with a waste rate of 2% and 4% in the can factory. (use lab 1 system)

- Step 0) Calculate the baseline scenario the IW+ midpoint and copy it to Excel
- Step 1) Create a parameter waste rate (2%)
- Step 2) Change the input and output of the can production process (form lab1 folder)
- Step 3) Create a new product system
- Step 4) Calculate results with IW+ midpoint method and copy impacts to Excel
- Step 5) Go back into the system process and change the value of the parameter to 4% in the parameter tab
- Step 6) Calculate the results with this new parameter value and copy the results in Excel
- Step 7) Plot a comparison graph between the baseline and the 2% and 4% results

## Question 2 - Sensitivity analysis (tornado graph )

Order in an ascending way the sensitivity of those different parameters according the climate change midpoint indicator from IW+ (Climate change, non-renewable energy, particle matters, water consumption) (use lab 1 system) :

- Aluminium mass of the can
- End of life transport distance
- Amount of electricity for the can production
- Amount of natural gas in can production

## Question 2 - Sensitivity analysis (tornado graph )

**Order in an ascending way the sensitivity of those different parameters according the climate change midpoint indicator from IW+ (Climate change, non-renewable energy, particle matters, water consumption) (use lab 1 system) :**

- Step 1) Create parameters (distance\_eol, elec\_consumption, gn\_consumption, gn\_d\_emission, mass\_alu) and change input values to newly created parameters
- Step 2) Create the product system
- Step 3) Go to parameters tab and add parameters
- Step 4) Change the value of 1 parameter
- Step 5) Calculate result with IW+ midpoint and copy impact results to excel
- Step 6) Redo Step 4 and 5 for all parameters
- Step 6) Calculate baseline scenario
- Step 7) on Excel, plot the tornado graph with copied results

Why, where and which?

# LAB 5 – SENSITIVITY ANALYSIS