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A B S T R A C T   

Understanding the relationship and quantifying the impacts of climate change on energy production is key to 
meeting our objectives and achieving a sustainable future. Here we review the current state of the art on the 
methodologies to forecast future climate, potential changes in renewable energy production and main findings 
regarding the role of renewables in the decarbonisation of the energy supply. Most studies used a climate model 
and power production equations to estimate future renewable output. The largest variation in power production 
estimated was for the long-term climate change scenarios, with non-significant variations reported for the short- 
term. The highest variability was found for wind power followed by hydro, both in the long-term, and overall low 
variability for solar in any period. Additionally, future decarbonisation efforts point to investments in wind 
power as one of the main pillars of reducing fossil fuel dependency. Current knowledge gaps about the uncer
tainty of modelling results and the combined effects of climate change on renewable energy resources. Future 
studies should focus on increasing the resolution of climate models and improving input data, as well as assess 
the entire electricity production system and not concentrate on a single energy source, which will aid in defining 
decarbonisation strategies.   

Introduction 

Energy production through the use of fossil fuels has been one of the 
main contributors to climate change, which is why changing the way we 
think about energy production is a key element in future sustainability 
[1]. Renewable energy sources (RES) play a central role on the road to 
carbon neutrality and are a key mitigation strategy in reducing the 
impact of climate change on society and the environment [2]. However, 
the availability of renewable resources such as wind, solar irradiance 
and water, is dependent on current weather conditions and future 
climate variability. Being able to accurately forecast future climate and 
estimate the variation in RES can reduce uncertainty while assessing the 
feasibility of a low-carbon and sustainable energy system. This is 
underscored by high probabilities of current measures and planned 
strategies not being sufficient to reach future energy goals, especially 
considering recent estimates of increasing average temperatures, rising 
sea levels, extreme winds and decreased subtropic precipitation, the 
road to decarbonisation will be one of the greatest societal challenges of 
the century [3]. 

In light of growing concerns regarding climate change, the Paris 
Agreement was signed in late 2015 [4], which goal is to reduce global 
greenhouse gas (GHG) emissions to limit global warming below 2 ◦C. To 
achieve these objectives, each member country submitted a climate 
action plan named Nationally Determined Contributions (NDCs), which 
detail the long-term strategies for climate change mitigation and adap
tation, with electricity generation and consumption playing a key role in 
the plans [5–8]. Currently, electricity and heat generation accounts for 
35 % of global GHG emissions, and while all sectors are working toward 
low carbon solutions, decarbonization happens more rapidly in elec
tricity generation than in the other sectors, leading to scenarios where 
increased electrification is the most cost-effective way of reducing car
bon intensity [9–11]. In 2050, from transport to industry, electricity is 
projected to account for 50 % of total energy consumption. One of the 
main strategies for reducing GHG emissions from the electricity sector is 
the widespread adoption of renewable energy and increased penetration 
of renewable energy sources for electricity supply (RES-E). Therefore, on 
the path to carbon neutrality by 2050, the RES-E will account for 90 % of 
electricity generation, up from the current 29 % as of 2020 [2,12]. In 
this vein, countries submitted at least one RES-E in their NDCs in the 
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form of wind, solar and hydropower, or some combination of these 
technologies [5–8]. 

To achieve the goals set out by the Paris Agreement and subsequent 
NDCs, adequate methods are required to estimate future weather vari
ables and mid to long-term climate characteristics. There is little doubt 
that climate change will impact renewable energy production. The 
climate-induced production variability can be positive or negative 
depending on the region and renewable source, which is why quanti
fying potential future variations is essential for planning new RES-E 
installations and assessing the future performance of the ones that 
currently exist. Although this review is focused on the most commonly 
suggested RES-E sources with higher potential for decarbonization (i.e. 
wind, solar and hydro), it should be noted that other popular forms of 
renewable energy will also be affected by climate change, such as wave 
energy or bioenergy. The conversion of wave energy is directly linked to 
wave height and periodicity, which are heavily influenced by wind 
speed and direction over bodies of water, both of which are impacted by 
climate change [13–15]. As for bioenergy, there is a large potential for 
aid in decarbonization, but there are many uncertainties regarding 
future availability due to the impacts of climate change. Future changes 
to temperature and precipitation may lead to variability in available 
water or crop yields [16–18]. Additionally, bioenergy is a case and site- 
specific energy source that requires careful planning, because, in some 
regions, high deployment of land-intensive bioenergy sources can be 
detrimental to climate change [19]. 

Modelling approaches are the most common method of studying 
future energy potential and RES-E performance [20–24]. The most 
widely used are global and regional climate models (GCM and RCM), 
which are powerful tools that simulate the physical, chemical and bio
logical components of the atmosphere, land and oceans. These models 
are continuously being updated to improve their performance and the 
accuracy of their results, and are the main tool used in climate science to 
estimate future conditions. Others include Energy (EM) and Integrated 
Assessment (IAM) models, which both consider climate change sce
narios in future projections [25–27]. The former focuses on the energy 
conversion, supply and demand chains, as well as accounting for the 
economic and emissions aspect of energy conversion and energy use. 
The latter has a broader field of application and is normally applied 
when there is a need to include human development and societal chal
lenges such as the social cost of carbon or the acceptance of renewable 
energy sources. 

Many studies have mentioned the uncertainty in climate projections 
and future RES modelling, raising concerns about building a future 
where the foundation is a power source which is hard to predict and 

intermittent by nature [28–30]. RES face many challenges, from un
derproduction and inability to meet demand [22,31–34], to over
production and possible energy losses requiring curtailment [20,35–37]. 
A clear and concise methodology with the most up-to-date data is 
therefore required to study how to reach future targets, and accurately 
model the impact of climate change on RES power generation. There
fore, this article aims to review the leading methods and main findings 
on the impact of climate change on future renewable energy resources 
and decarbonization strategies. The main contribution of this review is 
in summarizing the current methodologies for calculating energy pro
duction from RES-E, combining the expected impacts of the impact of 
climate change on future energy production in various regions for a 
better overview of the results from the scientific community, and iden
tifying the limitations of current estimates for future energy production. 

This article is structured in four sections. Section 2 of the manuscript 
discusses the method used to perform the review and content analysis. 
Section 3 is an overview of the selected articles, methods used, regions 
studied, distribution of technologies analysed and main outcomes of the 
studies. Section 4 outlines the identified knowledge gaps, outlines future 
work and presents the main conclusions of the review. 

Data and methods 

The objective of this review is to consolidate the current state of the 
art in regional renewable energy resource modelling considering the 
effects of climate change in future scenarios and cases where these tools 
were used to study the decarbonization of the energy supply. The four 
research questions used to identify the global and regional prospects of 
climate and energy science for this review were:  

1. What are the methods employed to study the effects of climate 
change on renewable energy production and decarbonization of the 
energy supply (i.e., which models and what climate data)?  

2. Which regions have been covered by renewable energy projection or 
decarbonization studies?  

3. What are the main impacts of climate change on renewable energy 
resources, namely wind, solar and hydropower?  

4. Which are the renewable energy sources most commonly identified 
as being a key part of decarbonisation? 

The first step of the review was to define the main research questions 
and the appropriate search terms that would provide a wide range of 
results. Therefore, the search string in Scopus and Web of Science was 
“TITLE-ABS-KEY ((({climate change} AND energy AND impact*) OR 
({climate change} AND energy AND decarbon*)) AND (renewable* OR 
{wind power} OR {wind energy} OR {solar power} OR {solar energy} 
OR hydroelectric*)) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO 
(DOCTYPE, “re”))”. Additionally, since articles and review papers are 
the primary output of ongoing and past research, the search was limited 
to these two document types. Next, in the first selection phase, the most 
appropriate publications from the initial search were selected and sorted 
according to the objective of the study and the methods employed, 
specifically whether they accounted for the effects of climate change, 
which renewable energy sources were the focus and if the primary 
method for the analysis relied on modelling tools. This was accom
plished by reviewing the title, abstract, keywords and, when necessary, 
the conclusions. Then, for the second selection phase, each document 
resulting from the first selection was analysed to identify the ones that 
had clear objectives within the scope of the review, presented a sound 
and concise methodology with a clear identification of climate data and 
modelling tools used, and finally, quantitively presented their results 
and main findings. Studies that only addressed the issue with qualitative 
assessments and general comments without showing detailed results 
were excluded from the review. The sorting and data manipulation was 
performed with recourse to the MendeleyTM and Microsoft Excel/ 
WordTM software. 

Nomenclature 

Abbreviation Definition 
RES Renewable Energy Source 
GHG Greenhouse Gas 
NDC Nationally Determined Contributions 
RES-E RES for electricity production 
GCM Global Climate Model 
RCM Regional Climate Model 
EM Energy Model 
IAM Integrated Assessment Model 
IPCC Intergovernmental Panel on Climate Change 
IS92 1992 Supplementary Report to the IPCC Assessment 

Scenarios 
SRES Special Report on Emissions Scenarios 
RCP Representative Concentration Pathways 
SSP Shared Socioeconomic Pathways 
NAO North Atlantic Oscillation  
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As of August 2021, after both selection phases, there were a total of 
91 research papers and 7 review papers were identified as fulfilling the 
selection criteria of this review. Additionally, 30 articles were found that 
refer to decarbonisation strategies and provide estimates for renewable 
energy use by RES type and which RES-E would be the predominant 
source of energy. The sparse number of studies in this field reinforces the 
urgency to further research the effects of climate change on future en
ergy systems, especially since renewable energy production and RES 
penetration in the electricity market is a cornerstone of future energy 
goals and decarbonization strategies. 

Results and discussion 

Publication year and geographic distributions 

The publication years of the selected 98 climate change impact ar
ticles range from 2005 to 2021, with the highest number of publications 
in 2020 (22), with over 70 % of them being published in the past 5 years. 
This suggests that the issue has recently been gaining momentum in the 
scientific community as researchers become increasingly aware of the 
relationship between climate change and energy generation. Of the se
lection of articles, seven (7) were review papers and ninety-one (91) 
were research articles, of which eighty-seven focused on a regional study 
and four on a global scale analysis. The majority of articles were pub
lished by researchers with affiliations in the USA (28), followed by Spain 
(16) and Brazil (14), focusing on the subject areas of Energy (58) and 
Environmental Sciences (49). Since the region covered by these studies 
varies from individual countries to global analyses, Fig. 1 only shows the 
geographical distribution of the regional studies, not including the 
global scale or review papers. 

Only four studies are focused on global analysis, of which three 
explored the impact of climate change on hydroelectric production; one 
used an IAM [27] and two applied power production equations to 
climate modelling data [32,38]; while the other analysed the role of 
concentrated solar power in future electricity generation using GCM 
simulation [28]. In terms of regional distribution, there is a considerable 
number of studies located in Europe, with Asia also being a clear focus. 
Every member state of the European Union has submitted a national 
climate change action plan and has specific goals to be met considering 
future emissions and RES scenarios, therefore a high number of studies 
focusing on European countries was expected. The articles from Europe 

address all RES equally, while in Asia most of the studies focus on wind 
and hydroelectric production. The distribution of regions and studied 
RES suggests that while there is a global concern regarding the potential 
impacts of CC on renewables, regional studies focus on the resource that 
could either be most impacted by CC, or the one which already provides 
a substantial portion of the electricity supply. This could lead to cases 
where RES that could have a high energy generation potential in the 
future is overlooked due to a lack of interest in exploring that option in 
that region. 

Applied methods 

From the several methods that can be employed to study the impact 
of climate change on RES and future energy potential, Fig. 2 shows the 
distribution of methods used in the selected articles, as well as climate 
data source and RES technology covered. 

The most common approach in the articles is the use of power pro
duction equations applied to climate modelling results (60 out of 91), 
either from GCMs or RCMs, which output 3D meteorological fields with 
variables such as wind speed, solar irradiation, temperature and hu
midity, among others. The results are then post-processed using pro
gramming tools (i.e., Python, Matlab, or similar) and power output 
values are calculated using equations from literature, which are detailed 
in the next section. The main difference between using a GCM or a RCM 
is the area covered by the model. GCMs are global models and output 
global gridded values, whereas RCMs are applied at regional scales, 
providing outputs in limited areas, and generally have a higher spatial 
and temporal resolution compared to GCMs [39–41]. The climate data 
was provided by GCMs in forty-three (43) studies and RCMs in forty- 
seven (47). Following this approach are the EMs (29 out of 91), which 
are scalable energy models that can be applied at regional or global 
scales and can either use climate model output data as an input or a 
selection of climate change considerations, such as in [42–46], in which 
different energy system scenarios and energy demand projections are 
also considered. EMs simulate an energy system as a whole and are 
normally applied to study all RES while still allowing the user to focus on 
a specific type of RES-E if necessary. One study used an IAM, which is 
similar to EMs but also includes data regarding environmental and social 
factors when performing energy system simulations, and can incorpo
rate climate and energy system model output data as input variables 
[27]. And finally, one used a regression model that projects future 

Fig. 1. Number of climate impact studies in each study region (total of 87 regional studies).  
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climate based on historical data trends [47]. 
Regarding climate data, all studies based their projections on one or 

more of the Intergovernmental Panel on Climate Change (IPCC) GHG 
emissions scenarios. These scenarios were developed to account for a 
wide range of future GHG emission estimates to facilitate the analysis of 
future climate change impacts, allowing the scientific community and 
policymakers to assess future vulnerabilities and develop climate 
adaptation and mitigation strategies. The main difference between each 
dataset is the emissions scenarios that are being used for the model 
simulations. With each version, new considerations are added, and 
existing data is adjusted to better represent the past and present-day 
conditions, as well as improve the future projections that the models 
provide. The scenarios are defined as the following:  

- 1992 Supplementary Report to the IPCC Assessment Scenarios 
(IS92), which “consists of six global and regional greenhouse gases 
(GHGs) emissions scenarios projected from 1990 through 2100” and 
“embodied a wide array of assumptions affecting how future 
greenhouse gas emissions might evolve in the absence of climate 
policies beyond those already adopted” [48];  

- Special Report on Emissions Scenarios (SRES) “encompass four 
combinations of demographic change, social and economic devel
opment, and broad technological developments” [49];  

- Representative Concentration Pathways (RCP), where “four RCPs 
together span the range of year 2100 radiative forcing values found 
in the open literature, i.e. from 2.6 to 8.5 W.m− 1” [50];  

- Shared Socioeconomic Pathways (SSP), “a new scenario framework 
… based on five narratives describing alternative socio-economic 
developments, including sustainable development, regional rivalry, 
inequality, fossil-fuelled development, and middle-of-the-road 
development” [51]. 

The most commonly used scenarios are the RCPs, present in sixty- 
four (64) of the research papers. Table 1 details which studies used 
each version of the IPCC scenarios, along with the applied methodology. 

Finally, there are two clear RES that are the focus of most of the 
studies, namely hydro (38) and wind (34), with solar also present (9), 
albeit with few studies that specifically target this technology. Only one 
study quantified the impacts of climate change on all three. Studies 
pairing wind and hydro as balancing energy production units were ex
pected due to the synergies between the two [124,125], however, the 
only pairing that has been studied under climate change conditions has 
been wind & solar. The numerous hydro studies are due to agreeing 
estimates that many regions will experience an increase in droughts and 
a decrease in precipitation. Thus, it is important to quantify future 
production variability in regions where hydroelectricity is a key 
contributor to the electricity supply [27,29,33,45,47,102]. Regarding 
wind, the interest is mostly because of potential investments to expand 
the use of this RES, with many stating the viability of offshore sites, as 
well as the expansion of inland installations, suggesting that the use of 
wind power should be further explored in future climates 
[34,40,66,72,80,97,107,114,126,127]. 

Impact of climate change on RES 

Wind 
Climate change can greatly alter wind speed and its spatio-temporal 

patterns, which significantly affects wind power production due to it 
being proportional to the cube of wind speed [66]. Additionally, a large 
threat to wind power is the increase in extreme weather events and high 
variability in wind speeds, which can disrupt power production. With 
the recent increase in offshore wind technology, the scientific commu
nity has also broadened the scope of studies in the field to include 
offshore wind data and power potential estimates, with some concluding 
that offshore wind power could be the solution for the energy re
quirements in some regions [36,66–68,74,111]. 

The most common approach for wind power studies is the use of 
power production equations or EMs. Both methods use the same base 

Fig. 2. Distribution of methodology used for the study (top), scenario and 
model type used (middle) and RES analysed (bottom). 

Table 1 
Methods, climate data source and references of the selected ninety-one (91) 
research papers included in this review.  

Method Data Reference 

GCM EM RCP [52–57] 
SRES & RCP [44,58,59] 
SRES [37,60–64] 
IS92 [65] 

Equations SSP [66–68] 
RCP & SSP [69,70] 
RCP [6,41,79,80,71–78] 
SRES & RCP [81] 
SRES [28,32,38,82–85] 

IAM RCP [27] 
Regression Model SRES [47]  

RCM EM RCP [29,42,43,45,86–90] 
SRES [91–93] 

Equations SSP [40] 
RCP [31,33,36,94–119] 
SRES [39,120–123]  
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equations for the calculations, using Equation (1) for the potential power 
production, for which the wind speed at hub height and air density are 
required [40,66,94,97]. It is of note that for this method, the Betz limit, 
which is the theoretical maximum power output that can be extracted 
from the wind, always needs to be taken into consideration either within 
the equation or afterwards [128]. Alternatively, wind turbine power 
curves can be applied to convert the obtained wind speeds to power 
production, such as in [77,85,113]. The only variation between these 
methods is how the wind speed at turbine hub height is calculated, 
which can be done in one of three ways. Wind speed is either directly 
given at the desired height by the model outputs, or can be calculated 
using either the logarithmic law or power-law equations (Equation (2) 
and Equation (3), respectively), both of which need local estimations of 
surface roughness. The logarithmic law uses explicitly the local surface 
roughness in its formula, while the power-law accounts for the surface 
roughness in its exponent. Both laws are approximations since they 
provide equivalent winds assuming a neutrally stable atmosphere, and 
they are used when no information regarding local atmospheric stability 
and energy fluxes are available [129]. When such information is avail
able, the most accurate way to extrapolate wind speeds to hub heights is 
by following the Monin-Obukhov theory [34,97,130,131]. 

WPD =
1
2
ρairu3

h (1)  

WPD– Wind power density [W.m− 2].ρair– Air density [kg.m− 3].uh– Wind 
speed at hub height [m.s− 1]. 

uh = ur
ln
(
zh
z0

)

ln(zrz0)
(2)  

uh– Wind speed at hub height [m.s− 1].ur– Wind speed at reference 
height [m.s− 1].zh– Hub height [m].zr– Reference height [m].z0– Surface 
roughness. 

uh = ur
(
zh
zr

)α

(3)  

uh– Wind speed at hub height [m.s− 1].ur– Wind speed at reference 
height [m.s− 1].zh– Hub height [m].zr– Reference height [m].α– Wind 
shear coefficient. 

By applying these equations, the selected studies estimate the future 
variation of wind power production under climate change. Fig. 3 shows 
this variation for the early (present to 2030), mid (2040 to 2060) and 
long (2070 to 2100) term, divided by each region with available data. 

Except for South America, results across multiple regions agree on 
the magnitude of the impacts of climate change on wind power poten
tial, with increasing effects from early to long-term. Early-term changes 
are 20% variation, mid-term up to 40% and long-term up to 60%. In 
South America, the variations range from 60% in the mid-term and up to 
100% in the long-term. These higher values in South America suggest 
the region will be the most affected by climate change regarding wind 
speeds, yet this assumption can be misleading due to the small number 
of studies in the region. The overall patterns of the estimates show an 
increase in the mid-term wind potential and then a decrease in the long- 
term. It is of note that in regions where there is a large number of studies, 
such as Europe, the impact of climate change in each period has a more 
stable evolution. Additionally, the interannual variability within each 
region can at times be more significant than the effects of climate 
change, such as in Ravestein et al. [53] and Pryor and Barthelmie [30], 
which report that one of the main drivers for climate variability in 

Fig. 3. Percent variation estimated by the selected research articles in potential energy production from wind RES-E caused by climate change.  
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Europe is the North Atlantic Oscillation (NAO) phases. 
Overall, studies agree that there is still a large untapped potential for 

wind power across all regions, with estimates generally showing an in
crease in the available power in future scenarios. Offshore wind has been 
of particular interest since technological advances in offshore floating 
rigs have broadened the suitable areas for implementation of this RES, 
especially in coastal areas where the ocean floor depth has been a barrier 
to offshore implementation in the past [66]. Nonetheless, there are still 
many limitations to be addressed. Statistical downscaling, and even 
dynamic downscaling, still yield significant uncertainties to wind pat
terns and interannual variability, which can not only affect estimates for 
power production but also cause a mismatch between the availability of 
wind power and the required grid capacity to fully utilize it, leading to 
curtailment or energy waste [23,30,36,71]. 

Solar 
Although solar photovoltaic power is one of the main renewable 

power sources, among the three renewable technologies which are the 
focus of this review, it is the least studied power source when consid
ering the effects of climate change. This could be explained by the 
relatively low investment costs and wide availability of small scale solar 
technologies when compared to other renewable systems [28,71,73]. In 
most cases, solar PV has been the default solution for renewable 
implementation at urban scales and can provide a useful amount of 
energy almost everywhere in the world. Therefore, the benefits of 
studying the long-term impacts of climate change on solar availability 
could be less interesting. Additionally, clouds are one of the hardest 
meteorological features to realistically simulate in RCMs and particu
larly GCMs, as such, estimating their change in climate change scenarios 
remains a challenge. Therefore, since average temperatures will increase 
in future climate scenarios, the assumption is that solar power will either 
remain the same or decrease slightly (due to the decreased efficiency of 
PV panels at higher temperatures [79] and increased cloud coverage due 
to increased ambient humidity). Additionally, some studies have 
mentioned that dust could settle on solar panels in more arid regions, 
which combined with a decrease in precipitation, could lead to lower 
power output, although not highly significant [28]. These issues could 
discourage scientists from a more in-depth analysis of this technology. 

Similar to wind power, the solar output can be calculated using 
power production equations or EMs, both of which have the same base 
equations but can differ in complexity according to available data. Solar 
panel power output calculations can depend on wind speed, panel cell 
temperature, specific heat conduction coefficients or panel specific co
efficients. The most appropriate equations should be selected according 
to the available variables in each case study. Equation (4) and Equation 
(5) (for some examples see [78,102,132]), or Equation (6) (for examples 
see [28,73,122]), are two methods for calculating the power output of a 
given solar photovoltaic panel. These equations can be modified ac
cording to the specifications of a particular panel, which is provided by 
the manufacturer, and are normally applied to characterize solar power 
potential in a given region. 

PPV =
G
Gr
P0[1 + μP0

(Tcell − Tr)] (4)  

PPV– Photovoltaic power output [W].G– Solar Irradiance [W].Gr– 
Reference solar irradiance [1000 W.m− 2].P0– DC nameplate capacity 
[W].μP0

– Temperature efficiency coefficient [%.oC-1].Tcell– Cell temper
ature [oC].Tr– Reference temperature [oC]. 

Tcell = aTambient + bG+ cuwind + d (5)  

Tcell– Cell temperature [oC].Tambient– Ambient temperature [oC].G– Solar 
Irradiance [W].uwind– Wind speed [m.s− 1].a, b, candd– Panel specific 
parameters given by the manufacturer. 

PPV = G[1 − β(c1 + c2T + c3G − Tr)+ γlog10G ]ηr (6)  

PPV– Photovoltaic power output [W].G– Solar Irradiance [W].β– Tem
perature coefficient.T– Temperature [oC].Tr– Reference temperature 
[oC].γ– Reference radiation coefficient.η– Reference photovoltaic 
efficiency.c1, c2andc3– Heat conduction coefficients are given by the 
manufacturer. 

Figure 4 shows the results from the regional variation of the solar 
power potential of the selected studies. As with wind power, the varia
tion is for the early (present to 2030), mid (2040 to 2060) and long 
(2070 to 2100) term, divided by each region with available data. 

The reported impact of climate change on solar power production is 
overall low, with variations of up to 10% in regional analyses and 20% 
for the global study. Variations are mostly negative, with the largest 
impact being in the long-term estimates and in regions where the 
climate is already prone to higher temperatures, less precipitation and 
cloud coverage, such as Central America, Northern Africa and the 
Mediterranean [28,78,109,115]. The magnitude of the variations in the 
early and mid-term are not significant and would not be the reason to 
dissuade or encourage solar power installation development. 

On an urban scale, solar power has been the default option when 
considering the implementation of renewables, both due to its ease of 
implementation and scalability of the technology, making it an easily 
adaptable RES-E for most environments and a suitable option for 
developing areas [133]. While most projections show a negligible 
variation in future solar power production, there are still viable sites that 
can be considered for large scale power plants, leaving solar with space 
to grow in the future. However, since solar farms required substantial 
surface area, spatial limitations can be an issue for the future imple
mentation of large scale plants. The main limitations of this technology 
are similar to the wind in terms of future estimates, with current 
methodologies still proving large uncertainties in the variability of 
power production [41,71,133]. 

Hydro 
Of the RES-E that are explored in this review, hydro is the largest 

contributor to the global electricity supply, with a share of 16% out of all 
power sources (renewable and non-renewable) [134]. Besides the 
important role this technology plays in electricity generation, it also 
contributes to water supply and management for agriculture and in
dustry, as well as flood control [27]. The impacts of climate change on 
hydro are mainly derived from variations in the amount of precipitation 
and ambient temperatures [27,45]. Changes in rainfall, runoff and 
streamflow patterns and an increase in extreme weather events (severe 
rainfall or extended droughts) are also contributing factors which can 
affect hydro availability for power production [20,23,62,98]. 

For hydroelectricity calculations, the most common method is the 
use of EMs. Although power production equations can still be applied 
directly to modelling output data, hydro is usually a more complex 
system to manage and estimate power output from. Therefore, many 
studies opt for models that simulate the performance of a hydroelec
tricity power plant with a higher level of detail and consider multiple 
variables, such as reservoirs, pipelines, and generator characteristics, 
that can influence plant operating schemes [37,56,76]. However, in the 
same vein as the other RES-E in this review, the equations at the core of 
the EMs used for hydro are the same as those applied directly to climate 
model outputs. Available power output is calculated using either 
Equation (7) [69,96,98], or its simplified version for quick estimates, 
Equation (8) [99]. In both cases, the effective power can then be 
calculated using Equation (9) or Equation (10) [69,86,96,108], if data 
on outage rates or operation times is available. 

PH = ηturbine • ρwater • g • H • Q (7)  

PH– Hydroelectric power output [W].ηturbine– Turbine efficiency.ρwater– 
Water density [kg.m− 3].g– Gravitational constant [m.s− 2].H– Net head 
height [m].Q– Water flow rate or streamflow [m3.s− 1]. 
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PH = 8 • H • Q (8)  

PH– Hydroelectric power output [kW].H– Net head height [m].Q– Water 
flow rate or streamflow [m3.s− 1]. 

EPH = PH [(1 − FO) • (1 − SO) ] (9)  

PH– Hydroelectric power output [kW].EPH– Effective hydroelectric 
power output [kW].FO– Forced outage rate.SO– Scheduled outage rate. 

EPH = PH • OT (10)  

PH– Hydroelectric power output [kW].EPH– Effective hydroelectric 
power output [kW].OT– Operation time [h.year− 1]. 

Figure 5 shows the compilation of the hydro studies selected for this 
review, and as with wind and solar the variation is for the early (present 
to 2030), mid (2040 to 2060) and long (2070 to 2100) term, divided by 
each region with available data. 

There is an overall agreement regarding a reduction of hydro po
tential in all regions, except Africa. In the early term, the impact is low, 
with the only significant variation reported for South America, with 
− 30% to − 45%. Mid-term estimates also show an average decrease, 
however, some potential increases in regional variations are reported. 
Europe and South America are the regions where the variation is higher, 
from approximately − 40% to 20% and − 60% to 40%, respectively. 
Regarding the long-term projections, there is an average increase in the 
hydro potential for Asia and Africa, with average potential increases of 
10% to 20%., while other regions report a decrease with a slightly higher 
magnitude than the mid-term estimates. Globally, studies show that 
future variations in hydropower potential will fall within a variation of 

− 5% to 5%, with the highest impact being mid to long-term. 
While studies show an average decrease in future hydro availability, 

there are still sub-regions that show a possible increase in water flow and 
availability for hydroelectricity production, which suggests that some 
regions will benefit from climate change and are opportunities for in
vestment [27,61]. Hydro studies reinforce the uncertainties in model
ling data, issues in precipitation are widely known and accurate 
modelling results are difficult to achieve for this variable, resulting in 
inconsistent results regardless of the climate scenario [70]. Future es
timates can also be affected by uncertain water flow rates resulting from 
external factors to a specific location, such as upstream changes that can 
affect the production capacity of a given site [96]. 

Principal strategy for decarbonisation 

Studies that estimate future renewable energy availability and vari
ability are key steps to take towards decarbonization because they are 
the preamble to the assessment of the optimal energy mix in future low- 
carbon scenarios. There are few studies on the decarbonization of the 
energy supply, and only thirty (30) that both quantify and detail the 
contribution of each renewable in future production, of which twenty- 
three (23) were published after the first NDC was submitted by 
Switzerland in February 2015 (INDC - Submissions (unfccc.int)). With 
the increasing number of countries submitting their NDCs, there have 
been more studies that address decarbonization strategies and explore 
which RES would be the most cost-effective solution, accounting for 
energy production potential, carbon emissions and costs. The most 
common methodology in decarbonization studies is the application of 
EMs or IAMs, such as EnergyPLAN [135], TIMES [136], GenX [137], 

Fig. 4. Percent variation estimated by the selected research articles in potential energy production from solar RES-E caused by climate change.  
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PRIMES [7], EMMA [138] or REMIND [133], to name a few. These 
models can vary in domain size and specific output data and should be 
chosen according to the desired study case. 

There are decarbonization studies in all regions, with the focus being 
on Europe or European countries (11 of 30). Overall, regardless of re
gion, wind power is most often the main RES selected for future 
decarbonization scenarios, with a mix of on-shore and off-shore solu
tions whenever possible [7,26,145–149,136,138–144], followed by 
solar [133,137,150–153], and finally hydro [5,8,135,154]. Some studies 
propose an equivalent amount of a pair of RES for the region, such as in 
[155–158], with wind power always one of the RES of the pair. 

However, it should be noted that there are many limitations to the 
current methodologies to study decarbonization pathways. The best 
energy mix is still undetermined due to the high uncertainty in fore
casting energy production and grid demand data, leading to discrep
ancies between production and consumption [145,156,159]. In some 
cases, the lack of detailed data requires a simplified approach to 
decarbonization studies, potentially omitting national or sub-national 
policies or power grid limitations [133,141]. Technological limitations 
can arise from the inability to extract energy from RES to its full po
tential, either due to a lack of advancements in capabilities of the RES-E 
or structural limitations (e.g. spacing requirements between turbines in 
wind farms or uneven terrain) [26,133,137,157]. Finally, there are 
economic or societal barriers, such as the lack of knowledge or resources 
to build and manage RES-E installations, inadequate energy pricing 
models or social acceptance of a specific RES-E [8,147,151,153]. 

Review papers 

Several conclusions are present in most of the selected review papers 

on the topic of climate change impacts on RES availability and vari
ability, which can be summarized as:  

i) large uncertainties in climate projections and consequently in 
RES estimates [20–23,30,34];  

ii) lack of studies that quantify the impact of climate change on RES 
variability in future climates, especially periods of extreme events 
instead of long-term changes in climate patterns [20–23,35];  

iii) lack of analysis, i.e., a necessity in evaluating the impact of 
climate change not only on energy but also on the interacting 
sectors with energy production, such as agriculture or industry 
[20,21,23,34,35]. 

Some conclusions reached by the selected reviews were also noted 
here, such as the low number of studies on solar energy variability 
[20,22,23] and a focus on Europe as a study region [23,30]. Addition
ally, a notable comment on the topic pertains to the need for harmoni
zation of methodologies (i.e., input data and modelling approaches), 
allowing for the comparison of projections between different regions 
and studied years, similar to what is done for the climate change sce
narios used (e.g., RCP and SSP scenarios). 

Conclusions 

The impacts of climate change can significantly differ between re
gions and study periods, as evidenced by the main findings in the 
selected research papers. The main findings and discussion points can be 
summarized as: 

Fig. 5. Percent variation estimated by the selected research articles in potential energy production from hydro RES-E caused by climate change.  
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- Overall, there is agreement on the increased impact in the long-term 
compared to mid-term variations, with non-significant early-term 
changes (less than 5%).  

- The largest variation in results was registered for the potential 
changes to wind power and the high variability of winds between 
regions as well as periods. Nonetheless, it was the most commonly 
reported as being the main contributor to decarbonization efforts in 
future energy supply, suggesting that some consensus is present on 
the large potential of wind as a viable option for renewable power 
generation, especially in Europe.  

- The most studied RES of the three was hydro, which could be due to 
the importance of future water supply and availability is a critical 
discussion point in all regions. Additionally, many studies showed 
that, even with wind or solar as the main power source, hydroelec
tricity can be a stable contributor to a baseline of RES-E in future 
energy systems. 

Regarding methodologies, the application of GCMs or RCMs for 
climate projections is universal, as well as the use of IPCC scenarios, and 
although some recent studies (past 5 years) are still using older versions 
of the scenarios, they could still be viable for specific regions. Energy 
production potential calculations were also universally based on the 
same equations, suggesting a consensus on the same core approach to 
energy calculation. 

Although some consistencies are emerging from the results, for 
example, wind power in Europe, there is still a lack of studies in most 
regions, particularly in Australia and Africa. There is a large knowledge 
gap regarding the impacts of climate change on solar power, which 
despite being the second most RES selected in decarbonization strate
gies, is still understudied in terms of future variability. There is also a 
need to increase the resolution of climate simulations to a kilometre- 
scale, at the very least when studying a single country or smaller re
gion, as well as update existing datasets with recent data such as the 
IPCC SSP scenarios. These advances would aid in quantifying and 
reducing the uncertainties regarding RES projections, not only 
improving our understating of future resource variability but also 
providing valuable data for other economic activity sectors that are 
linked to energy systems. Furthermore, very few studies address the 
combined impact of climate change on RES-E, which is invaluable in 
assessing optimal decarbonization strategies to achieve future carbon 
neutrality goals. 

Due to the increasing need to decarbonize our society, quantifying 
the impacts of climate change is a central topic of research in the sci
entific community. Reviewing what has been done and what still needs 
to be addressed is critical to focusing our efforts, and steering the 
community in the right direction while continuing the debate on current 
results and significant contributions to future policies and energy 
management. 
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