

Week 7 - Exercise Set: Energy System Modeling and LCA Calculations — Detailed Solutions

Part A: Annualization and Impact Calculations

Exercise 1: Lifetime PV System Cost and Grid Reinforcement:

Solution:

(a) Year 1 production is 15,000 MWh. With a 0.5% annual degradation, the lifetime production is

$$15,000 \times \frac{1 - (0.995)^{25}}{1 - 0.995} \approx 15,000 \times 24 \approx 360,000 \text{ MWh},$$

or about 14,400 MWh/year on average.

(b) Investment cost = $10,000 \text{ kW} \times 1,200 \text{ CHF/kW} = 12,000,000 \text{ CHF}$; annualized over 25 years = 480,000 CHF/year. Annual O&M = $10,000 \times 20 = 200,000 \text{ CHF/year}$. Total = 680,000 CHF/year.

(c) Extra capacity = $10 \text{ MW} - 8 \text{ MW} = 2 \text{ MW}$; one-time grid reinforcement = $2 \times 50,000 = 100,000 \text{ CHF}$, annualized to 4,000 CHF/year.

(d) Total annual cost = $680,000 + 4,000 = 684,000 \text{ CHF}$; LCOE = $684,000 / 14,400 \approx 47.5 \text{ CHF/MWh}$.

Correct Answer: Option A.

Exercise 2: Wind versus Gas Turbine: Lifetime Cost and Emissions:

Solution:

(a) Wind: $5 \text{ MW} \times 8760 \times 0.30 \approx 13,140 \text{ MWh/year}$; Gas: $5 \times 8760 \times 0.80 \approx 35,040 \text{ MWh/year}$.

(b) Wind: Investment = $5,000 \text{ kW} \times 2,000 = 10,000,000 \text{ CHF}$; annualized = 400,000 CHF/year; O&M = $5,000 \times 30 = 150,000 \text{ CHF/year}$; total $\approx 550,000 \text{ CHF/year}$. Gas: Investment = $5,000 \text{ kW} \times 1,000 = 5,000,000 \text{ CHF}$; annualized = 200,000 CHF/year; O&M = $5,000 \times 50 = 250,000 \text{ CHF/year}$; total $\approx 450,000 \text{ CHF/year}$.

(c) Gas fuel cost = $35,040,000 \text{ kWh} \times 0.05 = 1,752,000 \text{ CHF/year}$.

(d) Gas total annual cost = $450,000 + 1,752,000 = 2,202,000$ CHF; LCOE = $2,202,000/35,040 \approx 62.9$ CHF/MWh; CO₂ emissions = $35,040,000 \times 0.4 \approx 14,000$ tonnes/year.

Correct Answer: Option B.

Exercise 3: Urban Grid Reinforcement Requirement:

Solution:

Revised numbers: PV output = 24 MW; local load = 14 MW; net export = 24 – 14 = 10 MW. Since only 5 MW is permitted, 5 MW extra must be reinforced. Reinforcement cost = $5 \times 120,000 = 600,000$ CHF, annualized over 20 years = 30,000 CHF/year.

Correct Answer: Option C.

Exercise 4: Carbon Capture for a Coal-Fired Power Plant:

Solution:

- (a) Without CCS: $500 \text{ GWh} = 500 \times 10^6 \text{ kWh}$; emissions = $500 \times 10^6 \times 0.9 = 450,000$ tonnes.
- (b) With 60% capture, residual = 40% of 450,000 = 180,000 tonnes.
- (c) Captured CO₂ = $450,000 - 180,000 = 270,000$ tonnes; cost = $270,000 \times 50 = 13,500,000$ CHF/year.

Correct Answer: Option B.

Exercise 5: Lifetime Cost and Impact of a CHP System:

Solution:

- (a) Fuel input = $100 \text{ GWh} / 0.45 \approx 222.2 \text{ GWh}$.
- (b) Fuel cost = $222.2 \text{ GWh} \times 0.06 \text{ CHF/kWh} \approx 13,333,200 \text{ CHF/year}$.
- (c) Capital = $20,000 \text{ kW} \times 1,200 = 24,000,000 \text{ CHF}$; annualized over 20 years = 1,200,000 CHF/year; O&M = 3% of 24,000,000 = 720,000 CHF/year.
- (d) Total cost $\approx 13,333,200 + 1,200,000 + 720,000 \approx 15,253,200$ CHF; electrical output = $222.2 \text{ GWh} \times 0.35 \approx 77.8 \text{ GWh}$.

Correct Answer: Option A.

Exercise 6: LCOE for a Nuclear Plant (Construction, O&M, and Decommissioning):

Solution:

- (a) Investment = $1,000,000 \text{ kW} \times 4,000 = 4,000,000,000$ CHF; annualized over 40 years = 100,000,000 CHF/year.
- (b) Decommissioning cost = 10% of 4,000,000,000 = 400,000,000 CHF; annualized = 10,000,000 CHF/year.
- (c) O&M = $1,000,000 \times 100 = 100,000,000$ CHF/year; total annual cost =

$100M + 100M + 10M = 210,000,000$ CHF. Annual energy = $1 \text{ GW} \times 8760 \text{ h} \times 0.90 \approx 7,884,000 \text{ MWh}$.

(d) LCOE = $210,000,000 / 7,884,000 \approx 26.7 \text{ CHF/MWh}$.

Correct Answer: Option C.

Exercise 7: Urban Grid Reinforcement Cost (Revisited):

Solution:

With an excess export of 5 MW, cost = $5 \times 120,000 = 600,000$ CHF; annualized over 20 years = $600,000/20 = 30,000$ CHF/year.

Correct Answer: Option A.

Exercise 8: CCS Application on a Gas-Fired Plant:

Solution:

70% of 20,000 tonnes = 14,000 tonnes captured; residual emissions = $20,000 - 14,000 = 6,000$ tonnes. CCS cost = $14,000 \times 60 = 840,000$ CHF/year.

Correct Answer: Option C.

Exercise 9: Lifecycle Construction Emissions of a Wind Farm:

Solution:

Total emissions = $10,000 \text{ kW} \times 50 = 500,000$ tonnes; average annual = $500,000/25 = 20,000$ tonnes/year.

Correct Answer: Option B.

Exercise 10: Trade-off Ratio in Multi-Objective Optimization:

Solution:

Ratio = $12\% / 8\% = 1.5$.

Correct Answer: Option A.

Exercise 11: Comparison of Battery Storage versus Pumped Hydro:

Solution:

Battery: To store 1 MWh net, gross = $1/0.9 \approx 1.111$ MWh = 1,111,000 Wh; mass = $1,111,000 / 200 \approx 5,555$ kg.

Pumped Hydro: 1 MWh = $3.6 \times 10^9 \text{ J}$; energy per $\text{m}^3 = 1000 \times 9.81 \times 100 \approx 981,000 \text{ J/m}^3$; volume $\approx \frac{3.6 \times 10^9}{981,000} \approx 3,670 \text{ m}^3$.

Note: The pump efficiency (80%) is not applied separately because the requirement is specified as 1 MWh net energy, meaning the efficiency losses have already been considered.

Correct Answer: Option B.

Exercise 12: Levelized Cost of Storage (LCOS) for a Battery System:

Solution:

Annualized capital = $300/10 = 30$ CHF/kWh-year; total annual cost = $30 + 5 = 35$ CHF/kWh-year; LCOS = $35/200 = 0.175$ CHF/kWh.

Correct Answer: Option C.

Exercise 13: Net Fossil CO₂ Emissions from a Biomass Plant:

Solution:

Only 20% of 50,000 tonnes = 10,000 tonnes over lifetime; annual net emission = $10,000/30 \approx 333$ tonnes/year.

Correct Answer: Option B.

Exercise 14: Technology Mix Optimization for Emissions:

Solution:

Let f be the fraction from System Y. Then: $0.35f + 0.20(1 - f) = 0.25 \Rightarrow 0.15f = 0.05 \Rightarrow f \approx 0.333$, i.e. about 33%.

Correct Answer: Option A.

Exercise 15: Grid Reinforcement Investment versus Savings:

Solution:

Annual saving = $50,000 \text{ kWh} \times 0.10 \text{ CHF/kWh} = 5,000 \text{ CHF/year}$; over 30 years = 150,000 CHF. Net cost = $500,000 - 150,000 = 350,000 \text{ CHF}$.

Correct Answer: Option C.

Exercise 16: LCOE Including Carbon Pricing for a Gas Plant:

Solution:

Additional cost = $0.4 \text{ t/MWh} \times 30 \text{ CHF/t} = 12 \text{ CHF/MWh}$; new LCOE = $65 + 12 = 77 \text{ CHF/MWh}$.

Correct Answer: Option B.

Exercise 17: Investment versus O&M Cost Trade-off:

Solution:

Technology A: Annualized investment = $2000/20 = 100 \text{ CHF/kW-year}$; plus O&M 50 gives 150 CHF/kW-year .

Technology B: Annualized investment = $1500/20 = 75 \text{ CHF/kW-year}$; plus O&M 100 gives 175 CHF/kW-year .

Note: Although Technology B's annual cost is 175 CHF/kW-year, it is higher than Technology A's 150 CHF/kW-year. Hence, Technology A has the lower annual cost.

Correct Answer: Option C.

Exercise 18: Annual Emission Savings from a BEV:

Solution:

Savings per km = $(200 - 100) = 100$ g CO₂; annual saving = 100 g/km \times 20,000 km = 2,000,000 g = 2 tonnes/year.

Correct Answer: Option A.

Exercise 19: CCS Retrofit Cost for a Coal Plant:

Solution:

Extra capital = 500 CHF/kW \times 500,000 kW = 250,000,000 CHF; annualized = 250,000,000/25 = 10,000,000 CHF/year.

Annual O&M = 5% of 250,000,000 = 12,500,000 CHF/year; total extra annual cost = 10,000,000 + 12,500,000 = 22,500,000 CHF/year.

Annual energy = 500 MW \times 8,000 h = 4,000,000 MWh; additional cost per MWh = 22,500,000 / 4,000,000 \approx 5.63 CHF/MWh.

Correct Answer: Option B.

Exercise 20: System-Level Optimization: Cost-to-Impact Ratio:

Solution:

Ratio = 10% / 5% = 2.

Correct Answer: Option A.

Part B: Renewable System and Climate Resilience Case Study

Exercise 21: PV Efficiency Loss Due to Temperature Increase:

Solution:

Loss = 0.5%/ $^{\circ}$ C \times 2 $^{\circ}$ C = 1%.

Correct Answer: Option B.

Exercise 22: Wind Capacity Factor Change under SSP3:

Solution:

Baseline = 2 TWh/year; 5% increase gives $2 \times 1.05 = 2.1$ TWh/year.

Correct Answer: Option C.

Exercise 23: Optimized System – Lifetime Generation:

Solution:

Solar = 3.5 TWh/year \times 25 = 87.5 TWh; Wind = 3 TWh/year \times 25 = 75 TWh.

Correct Answer: Option A.

Exercise 24: Optimized System – LCA Emissions Calculation:

Solution:

Solar emissions = $87.5 \times 10^9 \text{ kWh} \times 0.04 \text{ kg/kWh} = 3.5 \times 10^9 \text{ kg}$;

Wind emissions = $75 \times 10^9 \text{ kWh} \times 0.02 \text{ kg/kWh} = 1.5 \times 10^9 \text{ kg}$;

Total = $3.5 + 1.5 = 5.0 \times 10^9 \text{ kg CO}_2\text{-eq.}$

Correct Answer: Option B.

Exercise 25: Optimized System – LCA Water Usage Calculation:

Solution:

Solar water usage = $87.5 \times 10^9 \text{ kWh} \times 3 \text{ L/kWh} = 262.5 \times 10^9 \text{ L}$;

Wind water usage = $75 \times 10^9 \text{ kWh} \times 1 \text{ L/kWh} = 75 \times 10^9 \text{ L}$;

Total = $337.5 \times 10^9 \text{ L} \approx 3.4 \times 10^{11} \text{ L}$.

Correct Answer: Option D.

Exercise 26: Hybrid System – Annual Emission Reduction:

Solution:

Percentage change = $((5.0 - 4.0) / 4.0) \times 100\% = 25\%$ increase.

Correct Answer: Option C.

Exercise 27: Grid Reinforcement Requirement:

Solution:

Excess generation = $4 \text{ TWh/year} - 2 \text{ TWh/year} = 2 \text{ TWh/year}$.

Correct Answer: Option B.

Exercise 28: Renewable System Investment – Cost Estimation:

Solution:

Solar cost = $1 \text{ GW} \times 1200 \text{ CHF/kW} = 1.2 \times 10^9 \text{ CHF}$;

Wind cost = $0.5 \text{ GW} \times 1800 \text{ CHF/kW} = 0.9 \times 10^9 \text{ CHF}$;

Total = $1.2 + 0.9 = 2.1 \times 10^9 \text{ CHF}$.

Correct Answer: Option C.

Exercise 29: Sensitivity Analysis – Demand Variation Impact:

Solution:

Increase = $2.5 \text{ GW} \times 12\% = 0.30 \text{ GW}$; new capacity = $2.5 + 0.30 = 2.8 \text{ GW}$.

Correct Answer: Option A.

Exercise 30: Discussion – Climate Change Adaptation:

Solution:

The most effective strategy is to enhance system resilience by technological adaptations (e.g., advanced cooling for PV, robust wind turbine design).

Correct Answer: Option D.