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Energy system modeling - EnergyScope 4

Technology

Fossils & Renewables
Investments & O&M

Efficiencies & Emissions
Storage

Resources

Costs & Emissions
Annual availability

Energy demands

Technology

Technology Technology
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Technology
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Illustration of the energy system modeling principle



Primary energy*

* Liste non-exhaustive
* Auswahl

Demand

?

Intermittency
Management

Distribution

Security of supply

Energy ≠ energy
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Technologies
Fossils and renewables

Investement and O&M cost
Efficiencies, emissions

Storage 

Resources

Cost & emissions
Yearly availability

Energy demand

CCGT
20 [MW]

Electricity 20 [MW]

Heat 16 [MW]

CO2 7.92 [tCO2]

CH4 40 [MW]

Technology example: Combined Cycle gas turbine

6Energy system modeling - EnergyScope
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Technology

Fossils & Renewables
Investments & O&M

Efficiencies & Emissions
Storage

Resources

Costs & Emissions
Annual availability

Energy demands

Energy system configurations

Size F [GW] and operation Ft [GWh] of 

technologies and resources in over 1 year

Making decisions

The society minimising:

subject to
- mass and energy conservation
- Storage

Technology

Technology Technology

Technology

Technology
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Illustration of the energy system modeling principle

Energy system modeling - EnergyScope



Construction Use EoL

Energy system modeling
The life of a technology
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Construction Cost

Construction Impact

Maintenance Cost
Exploitation Cost

Exploitation Impact

Demolition and Disposal Cost

Demolition and Disposal impact

Construction Cost Maintenance Cost
Exploitation Cost Demolition and Disposal Cost

Construction Impact Exploitation Impact Demolition and Disposal impact

Installation F [GW] and operation Ft [GWh] of 

technologies and resources in over 1 year

Investment
25 kCHF

Annual Service
1000 CHF/year

Fuel
1.82 CHF/l

Disposal (Transport)
100 CHF



Energy system modeling
Technologies’ impacts within the energy system
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Schnidrig*, Souttre*, Chuat* et al. 2023, Between Green Hills and Green Bills: Unveiling the Green Shades of Sustainability and Burden Shifting through Multi-Objective Optimization in Swiss Energy System Planning, Journal of Environmental Management, 2024
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Graphical representation of the methodology followed integrating LCIA 
indicators into ES. The green steps at the bottom of the figure illustrate the 
adaptation of the Life Cycle Inventory (LCI) to the ES technologies to be split 
into variable and constant impact to allow the optimization of economic (red) 
and environmental (green) variables.

Resources

Cost & emissions
Yearly availability

Energy demand

Energy strategy

Installation F [GW] and operation Ft [GWh] of 

technologies and resources in over 1 year

Environmental impact 

𝑳𝑪𝑰𝑨𝒕𝒐𝒕 = 𝑳𝑪𝑰𝑨𝒐𝒑+ 𝑳𝑪𝑰𝑨𝒄𝒐𝒏𝒔𝒕𝒓
Economic impact

𝑪𝒕𝒐𝒕 = 𝑪𝒐𝒑+ 𝑪𝒊𝒏𝒗 + 𝑪𝒎𝒂𝒊𝒏𝒕

Optimization

Minimize

subject to: 
- mass & energy balance
- storage

Technologies

Fossils and renewables
Investement and O&M cost

Efficiencies,Storage 

Variable

𝒄𝒐𝒑

Operation

𝒍𝒄𝒊𝒂𝒐𝒑

Operational phase

Constant

𝒄𝒊𝒏𝒗 , 𝒄𝒎𝒂𝒊𝒏𝒕

Investment & maintenance

𝒍𝒄𝒊𝒂𝒄𝒐𝒏𝒔𝒕𝒓

Construction & End-of-Life



Technologies
Fossils and renewables

Investement and O&M cost
Efficiencies, emissions

Storage 

Resources

Cost & emissions
Yearly availability

Energy demand

CCGT
20 [MW]

Electricity 20 [MW]

Heat 16 [MW]

Investment costs: 1339.67 [kCHF/MW]
Maintenance costs: 40.08 [kCHF/MW]
Construction emissions: 490.88 [t CO2/MW]
Lifetime: 24 [y]
Annual operation factor: 85 [%]

CO2 7.92 [tCO2]

CH4 40 [MW]

Technology example: Combined Cycle gas turbine

11Energy system modeling - EnergyScope



§ Investment + EoL
𝐶!"# [CHF/year] = 𝑐!"#

$%&
'(

⋅ 𝐹 kW ⋅ 𝜏[ )
*+,-

]
• 𝑐"#$: specific investment cost
• 𝐹: installed size
• 𝜏 = " %&" (

%&" ('% annualization factor
• 𝑖: interest rate
• 𝑛: lifetime

§ Maintenance
𝐶56!"7

$%&
*+,-

= 𝑐56!"7
$%&

'(⋅*+,-
⋅ 𝐹[kW]

• 𝑐()"#*: specific maintenance cost
• 𝐹: installed size

§ Operation
𝐶9:

$%&
*+,-

= 𝑐9:
$%&
'(;

⋅ 𝐹7 kW ⋅ 𝑡9:[ℎ]
• 𝑐+,: specific operational cost
• 𝐹-: technology use during period 𝑡
• 𝑡./: period duration

Energy system modeling
Economic characterization
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Investment
25 kCHF

Fuel
1.82 CHF/l

Disposal (Transport)
100 CHF

Annual Service
1000 CHF/year



§ Investment + EoL

𝐶'() [CHF/year] = 𝑐'()
*+,
-.

⋅ 𝐹 kW ⋅ 𝜏[ /
0123

]
• 𝑐&'(: specific investment cost
• 𝐹: installed size
• 𝜏 = & )*& (

)*& (+) annualization factor
• 𝑖: interest rate
• 𝑛: lifetime

§ Maintenance

𝐶;<'(=
*+,
0123

= 𝑐;<'(=
*+,

-.⋅0123
⋅ 𝐹[kW]

• 𝑐,-&'.: specific maintenance cost
• 𝐹: installed size

§ Operation

𝐶?@
*+,
0123

= ∑= 𝑐?@
*+,
-.A

⋅ 𝐹= kWh
• 𝑐/0: specific operational cost
• 𝐹1: technology use during period 𝑡

§ Total Cost
𝐶=?= = ∑CDE(𝐶'() 𝑡𝑒𝑐 + 𝐶;<'(=[𝑡𝑒𝑐]) +

∑FDG 𝐶?@ [𝑟𝑒𝑠]

Energy system modeling
Economic characterization
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Investment
25 kCHF

Fuel
1.82 CHF/l

Disposal (Transport)
100 CHF

Annual Service
1000 CHF/year

Calculate the annual cost of the car given in example, assuming an annual usage 20’000 km at 
a consumption of 5l/100km. The car is leased for 4 years at 0.9% .



A. Total ≈ 9235 CHF/year
B. Total ≈ 9550 CHF/year
C. Total ≈ 9045 CHF/year
D. Total ≈ 9115 CHF/year

Annual Cost of a Fossil-Fuel Car
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A gasoline car travels 20,000 km/year with a consumption of 5 L/100 km. The 
fuel price is 1.82 CHF/L. The car’s purchase price is 25,000 CHF, financed 
over 4 years at 0.9% interest, with an annual service cost of 1,000 CHF and a 
one-time disposal fee of 100 CHF (annualized over 4 years).

(a) Calculate the annual fuel cost.
(b) Compute the annualized lease (capital) cost using the annualization factor 

𝜏 = ! "#! 9

"#! 9$"
, with P = 25’000 CHF, i = 0.9,% n = 4.

(c) Sum the fuel, lease, service, and disposal costs to obtain the total annual 
cost.



1. Step (a): Fuel Cost

§ 𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 20:000 × ;
<==

= 1000𝐿/𝑦𝑒𝑎𝑟

§ 𝐹𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 = 1000𝐿 × 1.82𝐶𝐻𝐹/𝐿 = 1820𝐶𝐻𝐹/𝑦𝑒𝑎𝑟
2. Step (b): Lease Payment
§ Calculate using the annuity formula:

• 1 + 𝑖 " = 1.009 = ≈ 1.0366

• 𝑃𝑎𝑦𝑚𝑒𝑛𝑡 ≈ 25>000 × ?.??A × ).?CDD
).?CDDE) ≈ 25>000 × ?.??ACC

?.?CDD ≈ 25>000 × 0.255 ≈ 6375𝐶𝐻𝐹/𝑦𝑒𝑎𝑟

3. Step (c): Service and Disposal
• Service = 1000 CHF/year; Disposal fee = 100 CHF over 4 years = 25 CHF/year.

4. Total Annual Cost:
• 1820 + 6375 + 1000 + 25 ≈ 9220𝐶𝐻𝐹/𝑦𝑒𝑎𝑟 (≈9235 CHF when rounded})

Correct answer: Option A

Annual Cost of a Fossil-Fuel Car
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A. (a) 2500 kWh/year; (b) ~8200 CHF/year; (c) p ~0.20 CHF/kWh

B. (a) 2500 kWh/year; (b) ~8400 CHF/year; (c) p ~0.00 CHF/kWh

C. (a) 2000 kWh/year; (b) ~8400 CHF/year; (c) p ~0.80 CHF/kWh

D. (a) 2000 kWh/year; (b) ~8200 CHF/year; (c) p ~0.50 CHF/kWh

Car Switching to BEV: Break-even Electricity Price
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A BEV is considered with the following parameters:
• Usage: 20,000 km/year; consumption: 10 kWh/100 km
• Investment: 35,000 CHF financed over 4 years at 0.9%
• Annual Service: 500 CHF; Disposal Fee: 250 CHF (annualized over 4 

years)
• Let p be the electricity price (in CHF/kWh). Determine p such that the 

BEV’s total annual cost equals the fossil car’s 9235 CHF/year.

(a) Compute the BEV’s annual energy consumption.
(b) Calculate the annualized lease cost for 30,000 CHF.
(c) Write and solve the equation for p given that total annual cost equals 
fixed costs plus electricity cost.



1. Step (a): Annual Energy Consumption
• 𝐸𝑛𝑒𝑟𝑔𝑦 = 200000 × %1

%11 = 2000 𝑘𝑊ℎ/𝑦𝑒𝑎𝑟

2. Step (b): Lease Payment for 30,000 CHF
§ Using the same annuity method, note that increasing the principal from 25,000 CHF to 30,000 CHF scales the lease by 1.2:

• 6375 234
56)7× 1.2 ≈ 7650 234

56)7

3. Step (c): Fixed Costs
§ Fixed costs = Lease + Service + Disposal:

• 7650 + 500 + 891
: = 7650 + 500 + 62.5 = 8212 𝐶𝐻𝐹/𝑦𝑒𝑎𝑟

§ Total cost equation for BEV:
• 8212.5 + 2000𝑝 = 9235

§ Solve for p:
• 2000𝑝 = 9235 − 8212.5 = 1022.5

• 𝑝 − %188.9
8111 ≈ 0.511 234

<=>

§ Thus, p ~ 0.5 CHF/kWh, indicating that the BEV will be less expensive, as long as the electricity price is ≤0.51 CHF/kWh
Correct answer: Option D

Car Switching to BEV: Break-even Electricity 
Price
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Integration of life cycle inventory
Compromises linked to sustainability

18

Schnidrig*, Souttre*, Chuat* et al. 2023, Between Green Hills and Green Bills: Unveiling the Green Shades of Sustainability and Burden Shifting through Multi-Objective Optimization in Swiss Energy System Planning, Journal of Environmental Management, 2024
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Graphical representation of the methodology followed integrating LCIA 
indicators into ES. The green steps at the bottom of the figure illustrate the 
adaptation of the Life Cycle Inventory (LCI) to the ES technologies to be split 
into variable and constant impact to allow the optimization of economic (red) 
and environmental (green) variables.

Resources

Cost & emissions
Yearly availability

Energy demand

Energy strategy

Installation F [GW] and operation Ft [GWh] of 

technologies and resources in over 1 year

Environmental impact 

𝑳𝑪𝑰𝑨𝒕𝒐𝒕 = 𝑳𝑪𝑰𝑨𝒐𝒑+ 𝑳𝑪𝑰𝑨𝒄𝒐𝒏𝒔𝒕𝒓
Economic impact

𝑪𝒕𝒐𝒕 = 𝑪𝒐𝒑+ 𝑪𝒊𝒏𝒗 + 𝑪𝒎𝒂𝒊𝒏𝒕

Optimization

Minimize

subject to: 
- mass & energy balance
- storage

Technologies

Fossils and renewables
Investement and O&M cost

Efficiencies,Storage 

Variable

𝒄𝒐𝒑

Operation

𝒍𝒄𝒊𝒂𝒐𝒑

Operational phase

Constant

𝒄𝒊𝒏𝒗 , 𝒄𝒎𝒂𝒊𝒏𝒕

Investment & maintenance

𝒍𝒄𝒊𝒂𝒄𝒐𝒏𝒔𝒕𝒓

Construction & End-of-Life



Environmental indicator
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IMPACT World+ Framework
© impactworldplus.org

DALY: 
• Disability-adjusted life years
• One DALY represents the loss of the equivalent of one year of full health. DALYs for a disease or 

health condition are the sum of the years of life lost to due to premature mortality and the years lived 
with a disability due to prevalent cases of the disease or health condition in a population. 

PDF m2 year: 
• Potentially Disappeared Fraction
• The unit for overall biodiversity impact using ecosystem quality and species density to describe 

biodiversity loss



LCIA Technology impact - RE
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The carbon cycle
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Mio.
of years

Photosynthesis

Geological Processes
Gas, Oil, Coal

Biomass

Years Millions of Years Seconds Hours/days Years Millenia

Fossil resources Global Energy System CO2 & Climate Change CCS

§ Definition: 
The carbon cycle in energy systems 
represents the movement of carbon atoms 
through sources, conversions, and sinks, 
spanning biogenic and non-biogenic origins.

§ Key Components:
• Carbon Sources:

§ Biogenic: Biomass (wood, wet biomass, 
plants).

§ Non-biogenic: Fossil fuels (natural gas, 
petroleum products, cement 
manufacturing emissions).

• Carbon Sinks:
§ Natural: Oceans, Forests, other 

vegetation etc.
§ Artificial: Carbon capture, utilization, and 

storage (CCUS).
• Intermediate Carbon Flows:

§ CO₂ emissions from energy conversion 
and utilization technologies.

§ CO₂ utilization for fuel and chemical 
synthesis.

Capture

Usage

Emission

Re-use

S
equestration

𝐶𝑂>

Direct air capture



§ Models carbon flows as interconnected “layers” 
balancing inputs and outputs. 

• CO₂ Emission Layer (CO₂A): From concentrated
sources (e.g., power plants).

• CO₂ Emission Layer (CO₂E): From decentralized
sources (e.g., transport).

• CO₂ Capture Layer (CO₂C): Captured emissions 
stored or utilized. 

• CO₂ Storage Layer (CO₂S): Sequestrated (long-term) 
• CO₂ Storage Layer (CO₂SS): Storage (short-term)

§ Mathematical Representation:
• Carbon Content:

𝐶𝑎𝑟𝑏𝑜𝑛 𝐶𝑜𝑛𝑡𝑒𝑛𝑡H =
; E

; H ⋅IJK?
§ Emission Balances:

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡 = ∑L∈N,P∈E 𝐹= 𝑗 ⋅ 𝜂(𝑗, 𝑐)
§ 𝐹* 𝑗 : Flow from technology 𝑗 in period 𝑡.
§ 𝜂(𝑗, 𝑐): Emission factor for technology 𝑗 in carbon 

layer 𝑐.

The Carbon Cycle
Modeling the Carbon Cycle in Energy Systems
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§ Carbon Conversion Technologies:
• Biomass Utilization:

§ Gasification: Converts biomass to 
syngas (CO, H₂).

§ Fischer-Tropsch Synthesis: 
Converts syngas to liquid fuels.

§ Anaerobic Digestion: Produces 
biogas (CH₄, CO₂).

• Carbon Capture and Utilization (CCU):
§ Methanation: Produces synthetic 

CH₄.
§ CO₂-to-Fuels: Diesel, jet fuel, and 

methanol synthesis.
§ Circular Carbon Flows:

• Carbon emitted by processes is captured 
and reused or stored.

• Example: CO₂ from biomass combustion 
used in synthetic fuel production.

The Carbon Cycle - Carbon Flow and Conversion
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Photosynthesis

Geological Processes
Gas, Oil, Coal

Biomass

Years Millions of Years Seconds Hours/days Years Millenia

Fossil resources Global Energy System CO2 & Climate Change CCS

Capture

Usage

Emission

S
equestration

𝐶𝑂>

Direct air capture

Re-use



§ Natural Carbon Sinks:
• Reforestation and afforestation.
• Biomass acting as a temporary carbon 

storage.
§ Artificial Carbon Sinks:

• CCS: Long-term storage in geological 
formations.

• CCU:
§ Produces fuels (methane, diesel) 

and chemicals.
§ Reduces dependency on fossil fuels 

but does not eliminate emissions.
§ Role of Negative Emissions:

• Bioenergy with Carbon Capture and 
Sequestration, Combines biomass 
combustion with CCS for net-negative 
emissions.

The Carbon Cycle - Carbon Sinks and Utilization
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Capture
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𝐶𝑂>

Direct air capture
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§ Pathways:
• Increase renewable energy use and reduce fossil fuel dependency.
• Maximize carbon recycling through CCU technologies.
• Implement large-scale CCS for unavoidable emissions.

§ Challenges:
• Balancing economic feasibility and technological limitations.
• Managing the complexity of interconnected carbon flows.

§ Take-home:
• The integration of carbon cycle modeling is essential for planning 

decarbonized energy systems.
• Optimizing carbon sources, sinks, and flows ensures minimal environmental 

impact while meeting energy demands.

The Carbon Cycle
Decarbonizing Energy Systems
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A. (a) Biogenic, (b) Fossil, (c) Carbon Capture & Storage, (d) Fugitive emission

B. (a) Fossil, (b) Biogenic, (c) Fugitive emission, (d) Carbon Capture & Storage

C. (a) Biogenic, (b) Carbon Capture & Storage, (c) Fossil, (d) Fugitive emission

D. (a) Fugitive emission, (b) Biogenic, (c) Carbon Capture & Storage, (d) Fossil

Carbon Cycle Classification
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For each scenario below, select the combination that correctly classifies 
the carbon flow in the context of the carbon cycle:

Scenarios:
(a) CO₂ emitted from burning wood in a biomass power plant.
(b) CO₂ emitted from a natural gas power plant.
(c) CO₂ captured from an industrial facility and injected underground.
(d) Methane leaking from a natural gas pipeline.



§ (a) Wood is a renewable, biogenic resource; thus, CO₂ from burning 
wood is biogenic.

§ (b) Natural gas is of geological origin; its combustion releases fossil
carbon.

§ (c) Captured CO₂ that is injected underground is classified as Carbon 
Capture & Storage (CCS).

§ (d) Methane leaking from pipelines is an unintentional, uncontrolled 
release—i.e., a fugitive emission.

Correct answer: Option A (again J)
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Carbon Cycle Classification
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The EnergyScope Framework

A G E N D A



§ Objective Function 𝑓567:
• Minimize impacts subject to constraints:

§ Energy balance
§ Resource availability
§ Technological capacities

§ Optimization Outputs:
• Technology sizing 𝐹 and operation 𝐹B
• Energy dispatch across scenarios (e.g., 

future years, renewable penetration).

The optimization framework
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min
Carbon Footprint

min
Cost

min
Fossil & Nuclear Energy Use

min
Remaining Ecosystem 

Quality Damage

min
Remaining Human Health 

Damage

min
Water Scarcity Footprint



§ Objective Function 𝑓@AB = 𝑓CDEF
@AB +𝑓@GFHIJD@K

@AB

• Minimize impacts:
§ Cost: 𝑓d9e7

9fg = 𝐶797 = 𝐶!"#797 + 𝐶56!"7797 + 𝐶9:797

= ∑hij(𝐶!"# 𝑡𝑒𝑐 + 𝐶56!"7[𝑡𝑒𝑐]) + ∑kil𝐶9: 𝑟𝑒𝑠
= ∑hij(𝑐!"# 𝑡𝑒𝑐 ⋅ 𝑭 𝑡𝑒𝑐 ⋅ 𝜏 𝑡𝑒𝑐 + 𝑐56!"7 𝑡𝑒𝑐 ⋅ 𝑭 𝑡𝑒𝑐 )

+∑kil∑h 𝑐9: 𝑟𝑒𝑠 ⋅ 𝑭𝒕 𝑟𝑒𝑠 ⋅ 𝑡9: 𝑡

§ Environmental: 𝑓njop
9fg = 𝐿𝐶𝐼𝐴 = 𝐿𝐶𝐼𝐴e767!d797 + 𝐿𝐶𝐼𝐴#6q!6frs797

= ∑hij(𝐿𝐶𝐼𝐴d9"e7q 𝑡𝑒𝑐 + 𝐿𝐶𝐼𝐴9:[𝑡𝑒𝑐]) + ∑kil 𝐿𝐶𝐼𝐴9: 𝑟𝑒𝑠
= ∑hij(𝑙𝑐𝑖𝑎d9"e7q 𝑡𝑒𝑐 ⋅ 𝑭 𝑡𝑒𝑐 + ∑h 𝑙𝑐𝑖𝑎9: 𝑡𝑒𝑐 ⋅ 𝑭𝒕 𝑡𝑒𝑐 ⋅ 𝑡9: 𝑡 )

+∑kil∑h 𝑙𝑐𝑖𝑎9: 𝑟𝑒𝑠 ⋅ 𝑭𝒕 𝑟𝑒𝑠 ⋅ 𝑡9: 𝑡

§ Optimization Outputs:
• Technology sizing 𝐹 and operation 𝑭𝒕

The optimization framework
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min
Carbon Footprint

min
Cost

min
Fossil & Nuclear Energy Use

min
Remaining Ecosystem 

Quality Damage

min
Remaining Human Health 

Damage

min
Water Scarcity Footprint



§ Energy & Mass balance in every period 𝑡 :
End-Uses: 𝐸𝑈 𝑙, 𝑡

= ∑BRS 𝑭𝒕 𝑡𝑒𝑐, 𝑡 ⋅ 𝜂 𝑡𝑒𝑐, 𝑙
+∑URV 𝑭𝒕# 𝑟𝑒𝑠, 𝑡 − 𝑭𝒕$ 𝑟𝑒𝑠, 𝑡
+∑VBW 𝑭𝒕# 𝑠𝑡𝑜, 𝑙, 𝑡 − 𝑭𝒕$ 𝑠𝑡𝑜, 𝑙, 𝑡
−𝐹BXWVV 𝑙, 𝑡

The optimization framework
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§ Resource Constraints
∑B 𝑭𝒕 𝑟𝑒𝑠, 𝑡 ⋅ 𝑡WY 𝑡 ≤ 𝑎𝑣𝑎𝑖𝑙(𝑟𝑒𝑠)

§ Technology Constraints
• Sizing: 

𝑓Z![ 𝑡𝑒𝑐 ≤ 𝑭 𝑡𝑒𝑐 ≤ 𝑓Z\] 𝑡𝑒𝑐
• Use:

𝑭𝒕 𝑡𝑒𝑐, 𝑡 ≤ 𝑭 𝑡𝑒𝑐 ⋅ 𝑐Y,B(𝑡)
• Annual Capacity:

∑B 𝑭𝒕 𝑡𝑒𝑐, 𝑡 ⋅ 𝑡WY 𝑡 ≤ 𝑭 𝑡𝑒𝑐 ⋅ 𝑐Y∑B 𝑡WY(𝑡)

The optimization framework
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Go green: minimizing Impacts
Impact assessment as compared to 2020

34

Schnidrig*, Souttre*, Chuat* et al. 2023, Between Green Hills and Green Bills: Unveiling the Green Shades of Sustainability and Burden Shifting through Multi-Objective Optimization in Swiss Energy System Planning, Journal of Environmental Management, Author’s Accepted Manuscript
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• Optimizing environomic
indicators individually

• Tracking effect of other 
indicators in comparison to 
2020

• Minimizing any 
environmental indicator 
leads to cost-reduction

• Single-Objective 
Optimization leads to 
burden-shifting

à Impact Trade-offs?

CF: Carbon Footprint
FNEU: Fossil & Nuclear Energy Use
REQD: Remaining Ecosystem Quality Damage
RHHD: Remaining Human Healt Damage
WSF: Water Scarcity Footprint

OF values comparison for SOO. Each sub-figure corresponds to an 
individual optimization. The height of the segments corresponds to the 
OF’s relative variation to the 2020 reference scenarios OFs values [%].
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§ Current System (2020 Reference Case):
• High operational costs due to 

significant reliance on imported fossil 
fuels.

§ Hypothetical Energy-Independent 
Scenarios:

• Fully self-sustained systems utilizing 
only local energy resources.

• Diverse optimization objectives lead to 
variations in system configurations.

§ Renewable Energy Deployment:
• Maximum utilization of wind and 

hydropower resources.
• Photovoltaic (PV) capacity ranges 

from 7 GW to 20 GW, except in the 
CF minimization scenario, which 
favors geothermal power (3.5 GW).

§ Energy Storage Capacity:
• Significant installation to balance 

renewable intermittency.
• Capacity details highlighted on the 

secondary axis of the figure.

§ Biomass Utilization:
• Maximized in most scenarios except 

for cost minimization.
• Highlights local resource reliance.

Single-Objective Optimization
Energy System Configurations
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Overall cost composition of energy systems for single-objective optimizations. The secondary axis highlights installed storage capacity. The 2020 scenario represents 
the current Swiss energy system, and the other six represent hypothetical scenarios for an energy-independent Switzerland in 2020 with single objective optimization. 
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Methods to derive the Pareto-Front
• Epsilon-Method

Optimize one objective while treating the other objectives as constraints bounded by 
epsilon values.

min 𝑓%
+@A 𝐹, 𝐹*

𝑠. 𝑡. 𝑓8
+@A < 𝜖

• Weighted Sum Method
Combine multiple objectives into a single objective using weighted coefficients.

min 𝑓%
+@A 𝐹, 𝐹* ⋅ 𝜔% + 𝑓8

+@A 𝐹, 𝐹* ⋅ 𝜔8
𝑠. 𝑡. 𝜔% + 𝜔8 = 1,𝜔%,8 ≥ 0

! Issues with different orders of magnitude of 𝑓"
+@A

• Weighted Epsilon-Method
Define 𝑓8

("#,()C and parametrize using weighted epsilon values

min 𝑓%
+@A 𝐹, 𝐹*

𝑠. 𝑡. 𝑓8
+@A ≤ 𝜔8 ⋅ 𝑓8()C + 1 − 𝜔8 ⋅ 𝑓8("# , 𝜔8 ≥ 0
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38Multi-Objective Optimization
Pareto-Front – 2 Dimensions

The Pareto front represents the set of all non-
dominated solutions in a multi-objective optimization 
problem, where no objective can be improved 
without worsening at least one other objective.

Choosing your holiday destination:
• Objective 1: Sunny Beach Paradise
• Objective 2: Alpine Mountain Retreat
• Infeasible: “Zermatt sur mer” (?)
• Inefficient: Foggy Lausanne
• Compromise: Sion: Sunny, alpine, beautiful, … 

When planning your holidays, finding the perfect balance between sunshine and snow activities can be a tricky optimization! Sion sits right on 
the Pareto front, offering the best of both worlds



Methods to derive the Pareto-Front
• Epsilon-Method

Optimize one objective while treating the other objectives as constraints 
bounded by epsilon values.

min 𝑓"
+@A 𝐹, 𝐹*

𝑠. 𝑡. 𝑓A
+@A < 𝜖A

• Weighted Sum Method
Combine multiple objectives into a single objective using weighted 
coefficients.

min∑" 𝑓"
+@A ⋅ 𝜔"

𝑠. 𝑡. ∑"𝜔" = 1,𝜔" ≥ 0

! Issues with different orders of magnitude of 𝑓"
+@A

• Weighted Epsilon-Method
Define 𝑓"

("#,()C and parametrize using weighted epsilon values

min 𝑓A
+@A 𝐹, 𝐹*

𝑠. 𝑡. 𝑓"
+@A ≤ 𝜔" ⋅ 𝑓"()C + 1 − 𝜔" ⋅ 𝑓"("# , 𝜔" ≥ 0
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N-Dimensions

The Pareto front represents the set of all non-
dominated solutions in a multi-objective optimization 
problem, where no objective can be improved 
without worsening at least one other objective.

Choosing your holiday destination:
• Objective 1: Sunny Beach Paradise
• Objective 2: Alpine Mountain Retreat
• Objective i: I want to minimize my CO2 footprint
• Infeasible: “Zermatt sur mer” (?)
• Inefficient: Foggy Lausanne
• Compromise: Sion: Sunny, alpine, beautiful, … 

When planning your holidays, finding the perfect balance between sunshine and snow activities can be a tricky optimization! Sion sits right on 
the Pareto front, offering the best of both worlds

Objective 𝑖
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Burden shifting?
Multi-parametric optimization of environomicindicators

40
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• Pareto-Optimal Solution Space

• Environmental Correlation
RHHD & FNEU & REQD
CF no significant correlations

• Economic: 
Negative correlation wrt sustainability
Positive correlation wrt technologies

! Correlations in the optimal solution space
• Wind always deployed at maximum
• Sub-optimal configurations & technologies not 

represented

© wikimedia commons
Abrahm Wald Problem
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Environomic Objectives
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Pareto Fronts

Strong postive Correlations

Positivenegative

CF: Carbon Footprint
FNEU: Fossil & Nuclear Energy Use
REQD: Remaining Ecosystem Quality Damage
RHHD: Remaining Human Healt Damage
WSF: Water Scarcity Footprint
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§ Integration of LCA Indicators
• Essential for balancing economic efficiency with environmental sustainability
• Environmental optimization = -15% to -33% costs compared 2020

§ Multi-Parametric Optimization for generating configurations
• Reveals positive correlation between economic and environmental objectives
• Sustainable MOO solution space = renewable energies

§ Burden shifting
• Economic optimization efficiency reduces Carbon Footprint by 63% compared to 2020 
• but shifts burdens to other environmental areas Water Scarcity, Fossil & Nuclear Energy use, due to the construction of 

technologies
§ Focus on Environomic Indicators

• Tracking potential burden shifting
• Quantifies benefits and burden associated to different dimensions of sustainability

§ Limitations
• Static LCA based on historic activities
• Not considering prospective LCA

Conclusion
How can LCA indicators be integrated into energy system models to 
optimize both environmental and economic outcomes for the energy 
transition? Jo

na
s 
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hn

id
rig
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Temperature [°C]
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District archetypes
How to characterize the Swiss decentralized energy system
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District archetypes
How to characterize the Swiss decentralized energy system
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Prosumers
Integrating Self-Consumption & Investments at District Scale
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Electricity
Gas

Electricity
Space heating
Hot water

Energy demands:

District KPI
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Adapted from Chuat 2023, Impact of renewable energy hubs configurations on the national infrastructure, Master Project EPFL
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Electricity
Gas

Electricity
Space heating
Hot water

Energy demands:

District KPI

Adapted from Chuat 2023, Impact of renewable energy hubs configurations on the national infrastructure, Master Project EPFL

Communities of Prosumers
Integrating Self-Consumption & Investments at District Scale
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District energy system archetypes
Generating configurations by parametric optimization
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• Global sensitivity analysis
• Monte-Carlo on price 

signals
• Clustering of typical 

configurations for each 
district
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Selecting regional optimal configurations from the national point of view
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50Wind-PV tradeoff & self-consumption
The transition towards a decentralized system
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PV installation parametrization.
The transparent lines represent the annual PV-LV production fractions, allowing us to compare them with the curtailment depending on the installed PV capacity. The case study represents the economic optimization of a neutral (no net emission) and independent (no import) Swiss energy system in 2050 for a population of 10 Million.
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• Minimum Cost: 
20 GW Wind & 37 GW PV

• PV: Limitation by the LV grid but more (37 GW)
• Wind: installation to its maximum potential (20 GW)

• PV 
• Wind at maximum
• Compensation by biomass resources

0-15% biomass potential
• Methane storage via power-to-methane (4.3-6.1 TWh)

• PV
• Wind reduction
• Seasonal dephasing
• Methane storage via power-to-methane (6.1-8.8 TWh)



What about the grid?
PV deployment and grid reinforcement in the transition towards a decentralized system
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Geographical deployment of LV PV and respective grid reinforcement in CH 2050. 
Case study of the economic optimization of a neutral (no net emissions) and independent (no imports) Swiss energy system in 2050.
Cost minimization

Schnidrig et al. 2024, Power to the People: Envisioning Decentralized Energy Landscapes - Synergies of Centralized and Decentralized Energy Models through Unveiling the Role of Districts and Self Consumption, Energies
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Urban areas

Urban areas

Urban areas:
• Limited PV deployment

50-250 kW/km2

• Reinforcement due to 
electrification of heating 
sector
5-21 MW km / km2

Rural areas:
• High PV deployment

1-50 MW/km2

• Self-consumption & Export to 
urban

• Low reinforcement due to 
lower energy demands
0-0.5 MW km / km2

Alpine areas:
• PV deployment to maximise 

self-consumption
15-100 kW km / km2

• No export
• No reinforcements needed

Rural areas

Rural areas

Alpine areas Alpine areas



Independence of Switzerland
Critical price of methane import price
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Independence of Switzerland
Critical price of nuclear power plants
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Swiss and decarbonized Swiss Energy by 2050? The HES-So and EPFL enlighten the question

According to my research

It is impossible!

According to ours it is possible!
less expensive

and sustainable


