
Thermodynamics of Earth systems

Lecture 8:

Gibbs Free Energy, 
Chemical Potential and 

their applications 
(Continued)



Material covered in Lecture 

Part 2: Framework

Phase Equilibria  

• Gibbs phase rule:  thermodynamic degrees of freedom, phases and 

components

• Energy in phase changes and chemical reactions

Part 3: Applications

Physical chemistry of water solutions – solution thermodynamics

• Activity and chemical potential

• Ideal solutions – Real solutions

• Equilibrium constants

• Some examples from aerosols (deliquescence and water update).

• Aerosol thermodynamic models

• The ISORROPIA-II aerosol thermodynamic model 



Applications to real problems

See “LectureNotes06.pdf”



More on the Equilibrium Constant
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Substitution and integration gives:

Enthalpy of reaction at T

molar heat capacity of products - reactants

van’t Hoff equation

where To = 298.15 K



Conceptual aerosol thermodynamic model

Assume aerosol is composed of solid, liquid and gas phases. 
Thermodynamic equilibrium attained when dG = 0 (global 
minimum).
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gas

gas



Computation of equilibrium state

Information required for obtaining 
thermodynamic solution:

• Vapour pressures (for K(T))

• Activity coefficients (for K(T))

• Reference chemical potentials (for K(T))

• Condensed phase reactions 
(phase diagram)

• Knowing which compounds are possible 
(phase diagram)



Deliquescence Relative Humidity (DRH)

The RH at which an aerosol transitions from a solid to 

an aqueous solution
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Aerosol water uptake: deliquescence
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Deliquescence: Some examples

Source: Twomey (1977)
Sea Salt Particle: DRH ~ 75%

Dust Particle: no DRH

K2SO4 particle: DRH = 98%



Mutual Deliquescence
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The presence of other dissolved salts tend to decrease 
the water activity (Gibbs Free Energy of the solution).

This means the multicomponent aerosol will deliquesce 
at a lower RH than the minimum DRH of each individual 
component.



Mutual Deliquescence (Eutectic) Point
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The lowest point (RH, composition) at which a fully 
deliquesced system can exist 

The region between the MDRH and the lowest DRH of 
the individual salts is the Mutual Deliquescence Region



Phase Diagram: species that can coexist
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Inorganic thermodynamic models 

◼ Composition (phase diagrams) well understood

◼ Chemical thermodynamics well understood

◼ Well-established models and codes, e.g.

➢SCAPE2 (Kim et al., 1993)

➢ISORROPIA (Nenes et al., 1998) 

➢EQUISOLV (Jacobson, 1997)

➢GFEMN (Ansari and Pandis, 1999)

➢AIM (Clegg et al., 1998)

➢UH-AERO (Amundson et al., 2005)

➢MESA (Zaveri et al., 2005) 



Inorganic thermodynamic models 

Models differ in the:

▪ minimization procedure 
(direct minimization vs. chemical potent.method)

▪ simplifying assumptions 

▪ the possible species in each phase 
(phase diagram)

▪ calculation method for ionic interactions 
(activity coefficients)

▪ COMPUTATIONAL SPEED.



Inorganic thermo models: classification 

❑ Direct minimization of Gibbs free energy 
(e.g.,AIM)
▪ requires search of entire domain to accommodate 

multiple local minima
▪ robust but often computationally intensive

❑ Chemical potential method using knowledge of 
aerosol system behavior (e.g.,ISORROPIA)
▪ Reduces the number of equations and variables to be 

solved.
▪ Constrained equilibrium equations may be solved or 

simplified numerically.
▪ Faster, but requires additional subroutines to be 

written for each new chemical species.



Recall:Equilibrium by direct minimization
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Recall: Chemical potential method
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Statement of chemical equilibrium 

Start from “generic” chemical reaction
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“ISORROPIA” models (Fountoukis and Nenes, 2007)

Liquid phase: Na+, 

NH4
+, H+, OH-, HSO4

-, SO4
2-, 

NO3
-, Cl-, H2O, 

HNO3(aq),HCl(aq), NH3(aq), 

Ca2+, K+, Mg2+

Species in bold were introduced in ISORROPIA II 
(Fountoukis and Nenes, 2007)

Solid phase: NaHSO4 , NH4HSO4 , Na2SO4 , NaCl, 

(NH4)2SO4, (NH4)3H(SO4)2, NH4NO3, NH4Cl, NaNO3, K2SO4, 

KHSO4, KNO3, KCl, CaSO4, Ca(NO3)2, CaCl2, MgSO4, MgCl2, 

Mg(NO3)2

http://nenes.eas.gatech.edu/ISORROPIA

Gas phase: HNO3, HCl, NH3, H2O



http://isorropia.epfl.ch



- Adopted by numerous modeling groups 
throughout the world.

- Urban-scale air quality models, chemical 

transport and global circulation models

Examples:

- NASA GISS Global Climate Model

- EPA Community Air Quality model

(CMAQ)

- Georgia Tech SAMI model

- EPRI’s CAMx model

- UAM-AERO

- Meteo-France Group

- Max Planck Institute for 

Tropospheric Research

- University of Athens, Greece

- Ford Motors - Aachen

The “ISORROPIA” models Nenes et al., 1998; 

Fountoukis and Nenes, 2007; Kakavas et al., 2023)
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The “ISORROPIA” models (Nenes et al., 1998; 

Fountoukis and Nenes, 2007)

Some reactions…



Reaction 
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Constant Expression 

Ca(NO3)2(s) ( ) ( )
−+ + aqaq NOCa 3

2 2     22

3

2

3
2 −+

−+

NOCa
NOCa   

CaCl2(s) ( ) ( )
−+ + aqaq ClCa 22     222

2 −+

−+

ClCa
ClCa   

K2SO4(s) ( ) ( )
−+ + 2

42 aqaq SOK      −+

−+
2
4

22

4

2

SOK
SOK   

KHSO4(s) ( ) ( )
−+ + aqaq HSOK 4

    −+

−+

4
4 HSOK

HSOK   

KNO3(s) ( ) ( )
−+ + aqaq NOK 3

    −+

−+

3
3 NOK

NOK   

KCl(s) ( ) ( )
−+ + aqaq ClK     −+

−+

ClK
ClK   

MgSO4(s) ( ) ( )
−+ + 2

4

2

aqaq SOMg     −+

−+
2
4

2

2

4

2

SOMg
SOMg   

Mg(NO3)2(s) ( ) ( )
−+ + aqaq NOMg 3

2 2     22

3

2

3
2 −+

−+

NOMg
NOMg   

MgCl2(s) ( ) ( )
−+ + aqaq ClMg 22     222

2 −+

−+

ClMg
ClMg   

 

The “ISORROPIA” models (Nenes et al., 1998; 

Fountoukis and Nenes, 2007)

More reactions…



Phase Diagram /ISORROPIA subroutines 
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ISORROPIA: Solving for Equilibrium

◼ Sulfate Ratios determine what salts are 
possible

◼ RH determines possible phases (solid, liquid, 
or both)

◼ Solve system of equations:

◆Equilibrium reactions

◆Conservation of mass

◆Conservation of charge (electroneutrality)

◼ Activity coefficients iterated (Bisection 
method)



“ISORROPIA” models: Solution Methodology

Five types of composition regimes are defined:

•

Solid species: NH4HSO4, NaHSO4, KHSO4, CaSO4

•

Solid species: NH4HSO4, NaHSO4, KHSO4, CaSO4, K2SO4, MgSO4, (NH4)2SO4, 

Na2SO4, (NH4)3H(SO4)2

•

Solid species: CaSO4, K2SO4, MgSO4, (NH4)2SO4, Na2SO4, NH4NO3, NH4Cl

•

Solid species: CaSO4, K2SO4, MgSO4, Na2SO4, NH4NO3, NH4Cl, NaNO3, NaCl

•

Solid species: CaSO4, K2SO4, MgSO4, NH4NO3, NH4Cl, NaNO3, NaCl, Ca(NO3)2, 

CaCl2, KNO3, KCl, Mg(NO3)2, MgCl2
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4
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4
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( ) richCr  rich, Na Cr  poor, Sulfate :2,2,2
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Phase Diagram (ISORROPIA-II subroutine map)
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Phase Diagram (ISORROPIA-II subroutine map)
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Models: comparison with data
Mexico City MILAGRO Experiment; March 2006

Particulate NH4 predicted 
to within 20%

Particulate NO3 predicted 
to within 10%

Fountoukis et al, ACP (2009)
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Models: comparison with data

Comparison of 
predicted vs. 
observed gas-
phase NH3. 

Guo et al., ACP, 2015.

SOAS: (Southern Oxidant Aerosol Study) 6/7, 2013 Centreville, AL (CTR)

29

https://acp.copernicus.org/articles/15/5211/2015/acp-15-5211-2015.html

