

Thermodynamics of Earth systems

Lecture 6:
Entropy, the Second Law
of Thermodynamics
(continued)

Material covered in Lecture

Part 2: Framework

Entropy and the 2nd law

- Entropy: reversible and irreversible processes; Clausius inequality; Boltzmann-Gibbs statistical picture of entropy
- Heat engines, Carnot Cycle and the maximum efficiency
- Applications of heat engines and Carnot Efficiency to atmosphere, ocean and deep earth
- 2nd Law of thermodynamics
- First and second laws combined; Energy functions (Gibbs and Helmholtz)

Other

- Energy functions; Maxwell Equations
- Definition of Thermodynamic Equilibrium (single component system, multicomponent system).

Phase Equilibria

- Gibbs phase rule: thermodynamic degrees of freedom, phases and components
- Energy in phase changes and chemical reactions

Thermodynamic relationships

Euler's relationship : $du = M dx + N dy$

and du is an exact differential, then

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

so: $du = -pdv + Tds \Rightarrow \frac{\partial(-p)}{\partial s} = \left(\frac{\partial T}{\partial v}\right)$

$dh = vdp + Tds \Rightarrow \left(\frac{\partial T}{\partial p}\right) = \left(\frac{\partial v}{\partial s}\right)$

$da = -pdv - SdT \Rightarrow \frac{\partial(-S)}{\partial v} = \frac{\partial(-p)}{\partial T}$

$dg = vdp - SdT \Rightarrow \frac{\partial(-S)}{\partial p} = \frac{\partial v}{\partial T}$

Maxwell's relation

Thermodynamic relationships

Also, form the definition of equilibrium:

$$du=0 = Tds - pdv \Rightarrow \left(\frac{\partial s}{\partial v}\right)_{u=\text{const}} = \frac{p}{T}$$

$$dh=0 = Tds + vdp \Rightarrow \left(\frac{\partial s}{\partial p}\right)_{h=\text{const}} = -\frac{v}{T}$$

$$da=0 = -sdt - pdv \Rightarrow \left(\frac{\partial v}{\partial t}\right)_{a=\text{const}} = -\frac{s}{p}$$

$$dq=0 = -sdt + vdp \Rightarrow \left(\frac{\partial p}{\partial t}\right)_{q=\text{const}} = -\frac{s}{v}$$

Thermodynamic relationships

Finally, from the definition of an exact diff

$$u(s, v) : du = \frac{\partial u}{\partial s} ds + \frac{\partial u}{\partial v} dv \quad \left. \begin{array}{l} \frac{\partial u}{\partial s} = T \\ \frac{\partial u}{\partial v} = -p \end{array} \right\} \quad \text{but } du = T \cdot ds - p \cdot dv \quad \left. \begin{array}{l} \frac{\partial u}{\partial s} = T \\ \frac{\partial u}{\partial v} = -p \end{array} \right\}$$

$$h(s, p) : dh = \frac{\partial h}{\partial s} ds + \frac{\partial h}{\partial p} dp \quad \left. \begin{array}{l} \frac{\partial h}{\partial s} = T \\ \frac{\partial h}{\partial p} = v \end{array} \right\} \quad \text{but } dh = T \cdot ds + v \cdot dp \quad \left. \begin{array}{l} \frac{\partial h}{\partial s} = T \\ \frac{\partial h}{\partial p} = v \end{array} \right\}$$

$$a(T, v) : da = \frac{\partial a}{\partial T} dT + \frac{\partial a}{\partial v} dv \quad \left. \begin{array}{l} \frac{\partial a}{\partial T} = -s \\ \frac{\partial a}{\partial v} = -p \end{array} \right\} \quad \text{but } da = -s \cdot dT - p \cdot dv \quad \left. \begin{array}{l} \frac{\partial a}{\partial T} = -s \\ \frac{\partial a}{\partial v} = -p \end{array} \right\}$$

$$g(T, p) : dg = \frac{\partial g}{\partial T} dT + \frac{\partial g}{\partial p} dp \quad \left. \begin{array}{l} \frac{\partial g}{\partial T} = -s \\ \frac{\partial g}{\partial p} = v \end{array} \right\} \quad \text{but } dg = -s \cdot dT + v \cdot dp \quad \left. \begin{array}{l} \frac{\partial g}{\partial T} = -s \\ \frac{\partial g}{\partial p} = v \end{array} \right\}$$

What is Thermodynamic Equilibrium?

It is the state a given system tends to reach (given enough time).

This state is characterized by:

- **Thermal** equilibrium
No net heat flux between components of the system
- **Mechanical** equilibrium
Pressure tends to become uniform
- **Diffusional** equilibrium
No net mass flux between components of a system

Formulating Thermodynamic Equilibrium

A criterion for equilibrium in terms of measurable quantities would be very useful (hard to measure S).

Gibbs Free Energy " G " is perfectly suited for this.

$$G(T, P) = U + PV - TS$$

P : pressure, V : system volume, T : temperature, S : entropy and U : internal energy

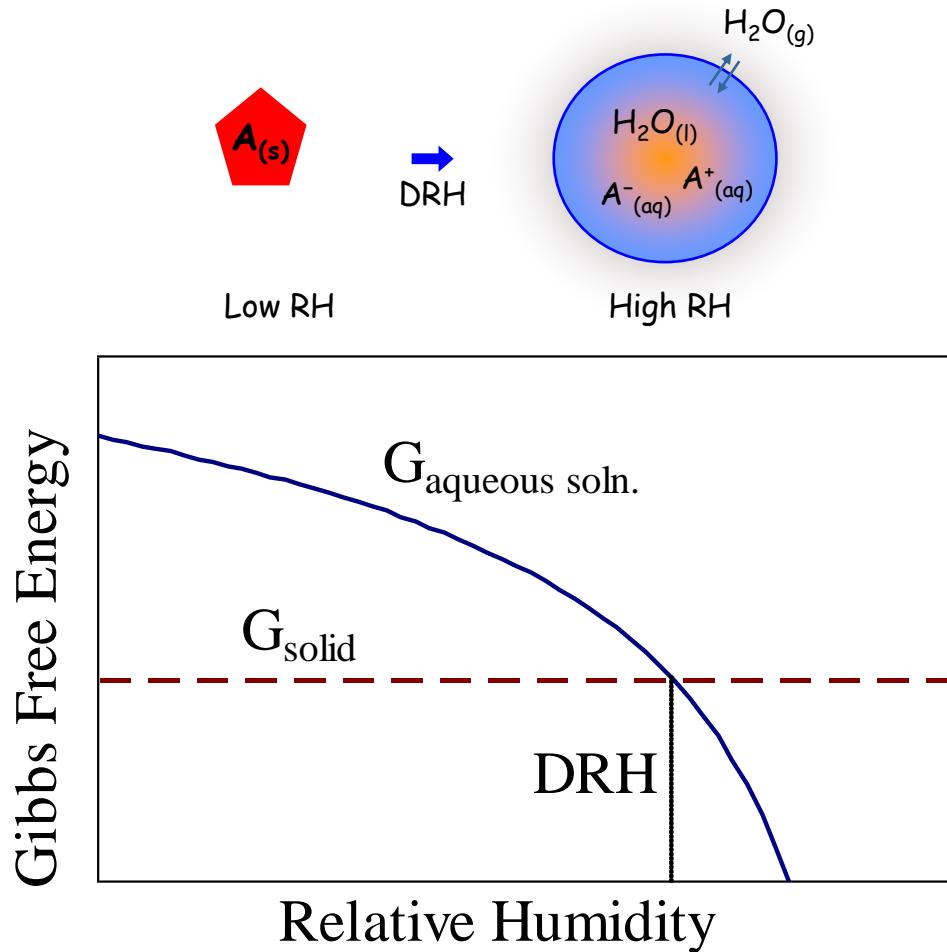
Changes in G are then expressed as:

$$dG = \boxed{dU + PdV - TdS} + VdP - SdT$$

Zero from combined First & Second Law

How useful is this criterion? Very!

Deliquescence Relative Humidity (DRH): RH at which an aerosol transitions from a solid to an aqueous solution



Formulating Thermodynamic Equilibrium

In other words,

$$dG = VdP - SdT$$

If P and T are kept constant, $dG=0$, with $d^2G > 0$

So G of a closed system at constant P,T is
minimum at equilibrium

How useful is this relationship?

Formulating Thermodynamic Equilibrium

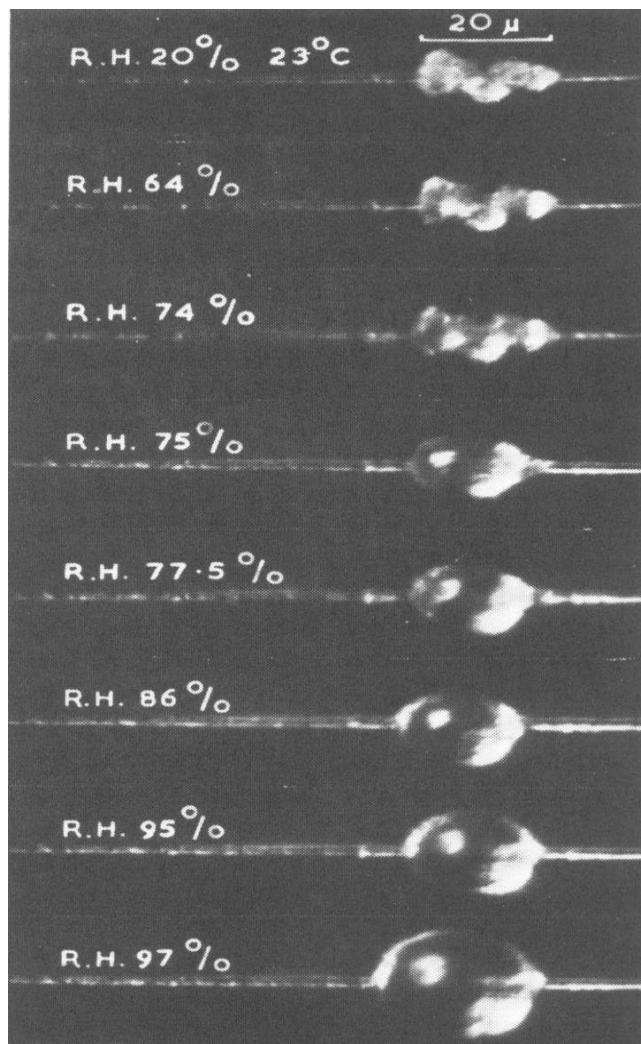
In other words,

$$dG = VdP - SdT$$

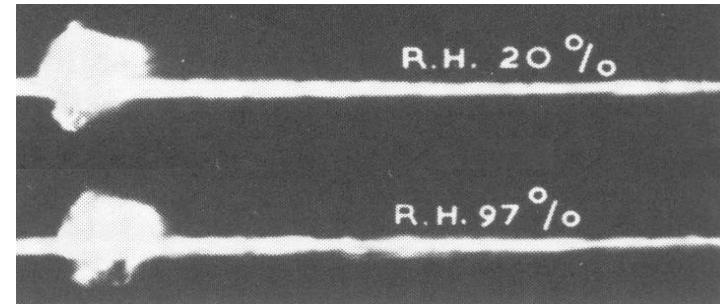
If P and T are kept constant, $dG=0$, with $d^2G > 0$

So G of a closed system at constant P,T is
minimum at equilibrium

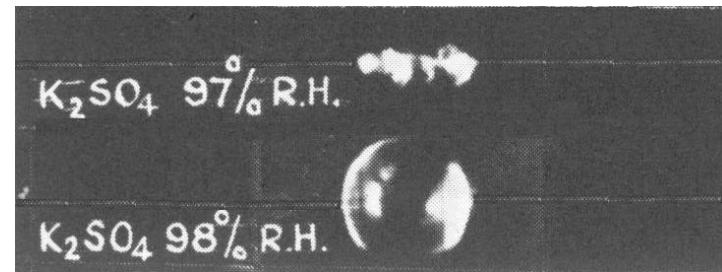
Deliquescence: Some examples



Sea Salt Particle: DRH \sim 75%

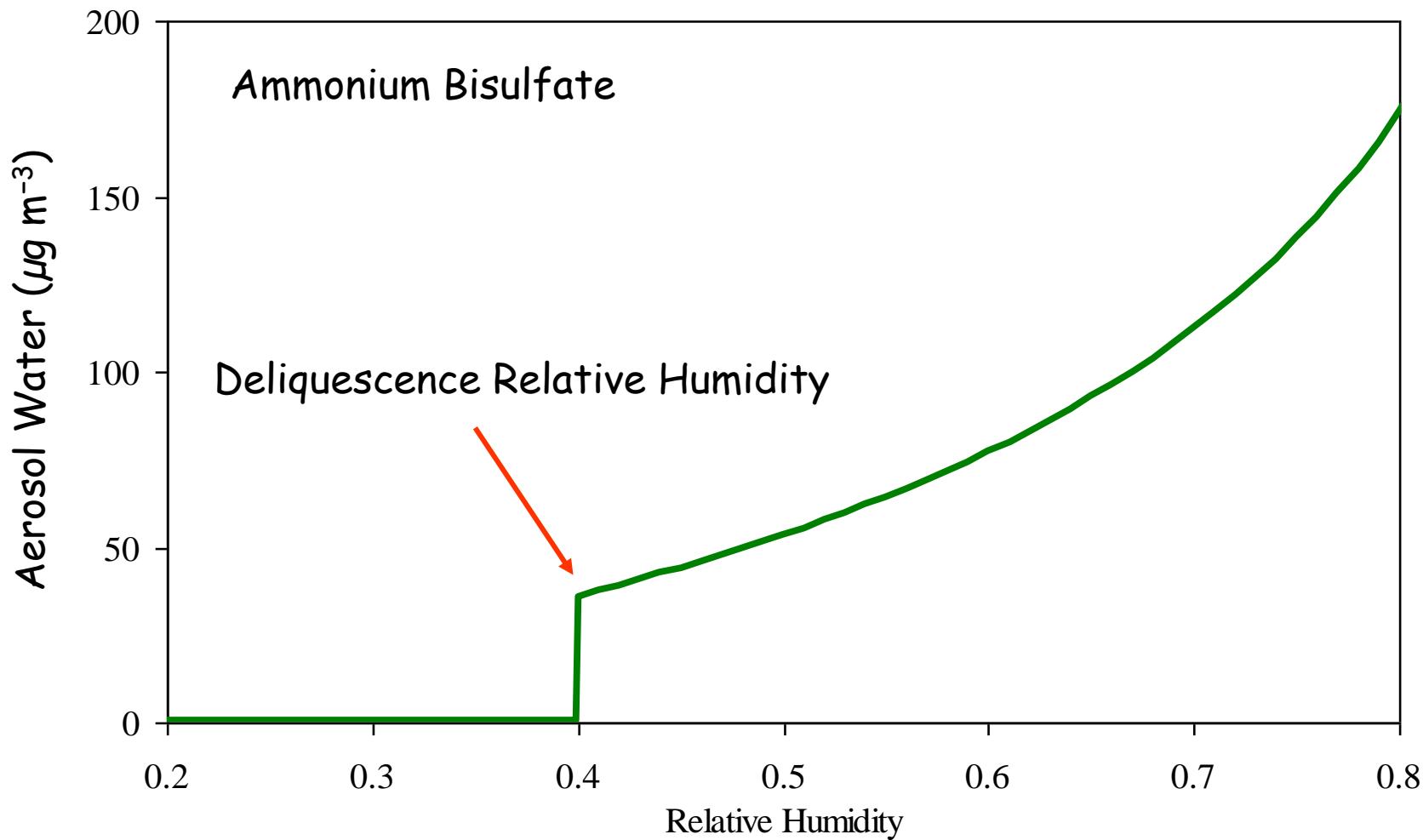


Dust Particle: no DRH



K_2SO_4 particle: DRH = 98%

Aerosol water uptake: deliquescence



Formulating Thermodynamic Equilibrium

In other words,

$$dG = VdP - SdT$$

If P and T are kept constant, $dG=0$, with $d^2G > 0$

So G of a closed system at constant P,T is
minimum at equilibrium

What happens if the system is open or it has
multiple phases and components?

We need to consider mass in the Gibbs Energy
formulation

Formulating Thermodynamic Equilibrium

In other words,

$$G(P, T, \underbrace{n_1, \dots, n_n}_{1, 2, \dots, n}) \quad \begin{matrix} \text{mass of components} \\ 1, 2, \dots, n \end{matrix}$$

Chain rule:

$$dG = \left(\frac{\partial G}{\partial T} \right) dT + \left(\frac{\partial G}{\partial P} \right) dP + \left(\frac{\partial G}{\partial n_1} \right) dn_1 + \dots + \left(\frac{\partial G}{\partial n_n} \right) dn_n$$

$-S$

V

Contribution of each component to the free energy

$\left(\frac{\partial G}{\partial n_1} \right), \dots, \left(\frac{\partial G}{\partial n_n} \right)$ are the chemical potentials μ_1, \dots, μ_n

Formulating Thermodynamic Equilibrium

So: $dG = -SdT + VdP + \mu_1dn_1 + \dots + \mu_ndn_n$

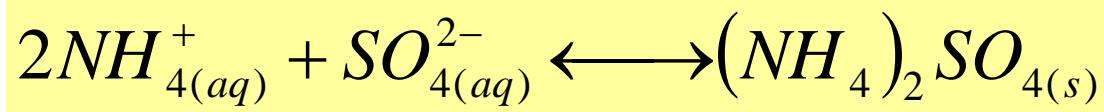
At thermodynamic equilibrium, $dG = 0$

For constant P, T this means: $\mu_1dn_1 + \dots + \mu_ndn_n = 0$

This statement is known as "chemical equilibrium" and is the basis of any aerosol thermodynamic model

Let's apply this to a chemical reaction found in aerosols:
Dissolution of ammonium sulfate in water.

Chemical Equilibrium: Example



At equilibrium ($P, T = \text{const}$):

$$\mu_{\text{NH}_4^+} dn_{\text{NH}_4^+} + \mu_{\text{SO}_4^{2-}} dn_{\text{SO}_4^{2-}} + \mu_{(\text{NH}_4)_2\text{SO}_4} dn_{(\text{NH}_4)_2\text{SO}_4} = 0$$

From stoichiometry: $dn_{\text{NH}_4^+} = 2dn_{\text{SO}_4^{2-}} = -2dn_{(\text{NH}_4)_2\text{SO}_4}$

So: $(-2\mu_{\text{NH}_4^+} - \mu_{\text{SO}_4^{2-}} + \mu_{(\text{NH}_4)_2\text{SO}_4})dn_{(\text{NH}_4)_2\text{SO}_4} = 0$

Or simply: $-2\mu_{\text{NH}_4^+} - \mu_{\text{SO}_4^{2-}} + \mu_{(\text{NH}_4)_2\text{SO}_4} = 0$

Chemical Equilibrium: General Reaction

At equilibrium, and constant P, T :

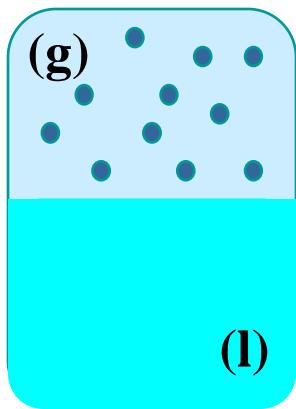
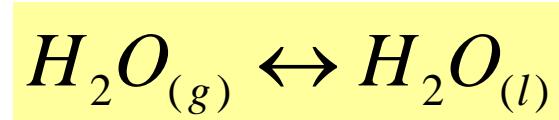
$$d\mu_D + c\mu_C - a\mu_A - b\mu_B = 0$$

$$\sum_i \nu_i \mu_i = 0$$

i.e., chemical potential of the reactants
equals chemical potential of the products

Chemical Equilibrium: Phase Equilibria

Even phase equilibria is (for thermo) a reaction:



$$\mu_{H_2O_{(g)}} - \mu_{H_2O_{(l)}} = 0 \quad \text{or} \quad \mu_{H_2O_{(g)}} = \mu_{H_2O_{(l)}}$$

when two phases are in equilibrium with each other, they share the same chemical potential

What is Thermodynamic Equilibrium?

It is the state a given system tends to reach (given enough time).

This state is characterized by:

- **Thermal** equilibrium

$dT=0$, $T=\text{constant everywhere}$

- **Mechanical** equilibrium

$dP=0$, $P=\text{constant everywhere}$

- **Diffusional** equilibrium

$\mu_i^g = \mu_i^l$ a compound i between phases shares the same chemical potential.

Some things more about G

G however is also the sum of its partial contributions. For constant T, P :

$$G = \sum g_i n_i \leftarrow \# \text{ of moles of substance } "i".$$

\hookrightarrow GFE per mole and of substance "i"

and, since we showed already that $\mu_i = g_i$.

$$G = \sum \mu_i n_i \quad \text{const } T, P.$$

Total GFE of the system is given by the sum of the chemical potentials \times # of moles of each constituent.

Is the number of species limited?

Yes. It's given by the Gibbs Phase Rule

$$F = C - P + 2$$

- ◆ F : number of independent variables
- ◆ P : number of phases
- ◆ C : Number of compounds

Components: water, ethanol, benzene, salt

Phases: gas, liquid, solid

e.g., pure water in equilibrium with its vapor:

$C=1$, $P=2$ so $F=1$ (one independent variable, e.g. T)

e.g., a water/salt mixture in equilibrium with its vapor:

$C=2$, $P=2$ so $F=2$ (two independent variables, e.g. T + n_{NaCl})