

Thermodynamics of Earth systems

Lecture 4:
Entropy, the Second Law
of Thermodynamics

Material covered in Lecture 4

Conclusion of Part 1: Introduction

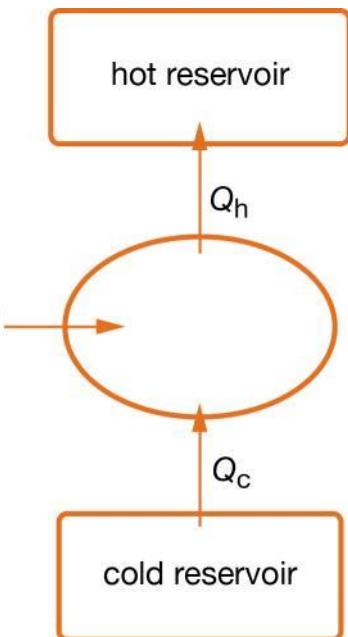
- Hydrostatic equation: application to ocean and hypothetical constant density atmosphere; solid earth
- Hypsometric equation (atmosphere)

Part 2: Framework

First Law of thermodynamics

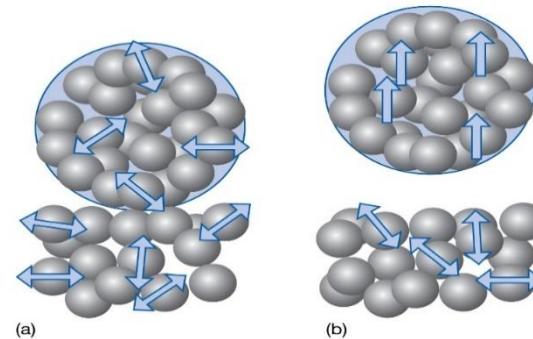
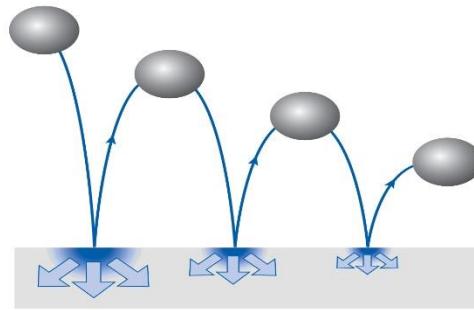
- Basic concepts & processes
- Work; expansion work
- Heat: heat capacity, basics of heat transfer mechanisms
- First law: internal energy, enthalpy, specific heats, heat capacity.
- Applications of first law to ideal gases

Entropy and the 2nd law


- Entropy: reversible and irreversible processes; Boltzmann-Gibbs statistical picture of entropy; Clausius inequality
- Heat engines
- 2nd Law of thermodynamics

Heat engine

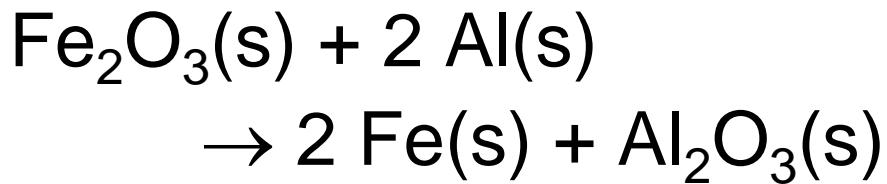
device which extracts work as thermal energy flows from a hot reservoir to a cold reservoir.



- external combustion engines
(e.g. steam or Stirling engine)
- internal combustion engine
(e.g. petrol or diesel engine, jet engine)
- refrigerators
- Clouds and weather systems
(convective clouds, hurricanes)
- Many other types

Spontaneity of processes

Some processes occurs **spontaneously** in the direction of change and need no work to occur.

- A gas expands to fill the available volume.
- A ball bouncing on the floor.
- A hot body cools to the temperature of its surroundings.
- A chemical reaction runs in one direction rather than another.



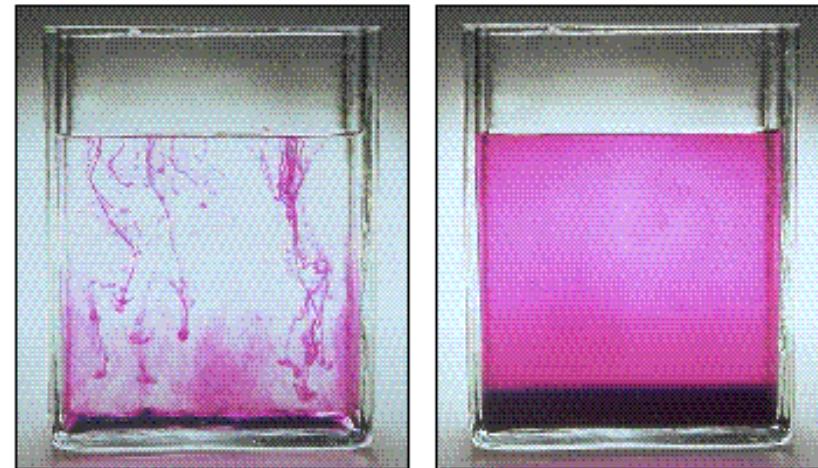
Internal energy (1st law) lets us see whether a change is *permissible*. But it cannot tell us about things being *spontaneous*. For that we need a property called entropy.

Spontaneity of processes

In general, product-favored reactions are **exothermic**.

E.g. thermite reaction

$$\Delta H = -848 \text{ kJ}$$



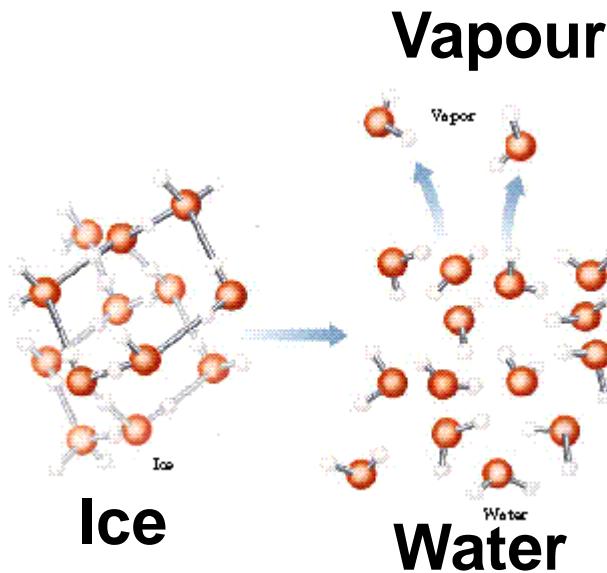
Spontaneity of processes

But many spontaneous reactions or processes are endothermic . . .

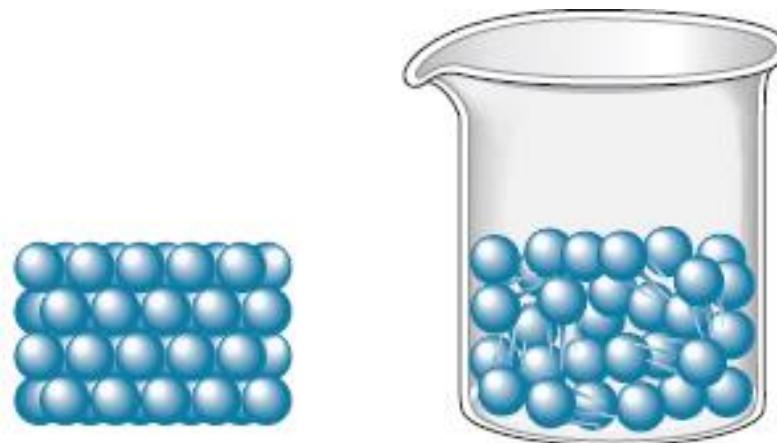
or have $\Delta H = 0$. . .

Internal energy (1st law) lets us see whether a change is *permissible*. But it cannot tell us about things being *spontaneous*. For that we need a property called entropy.

Entropy of a system, S


S is a measure of the disorder of its matter and energy.
A gas has high entropy, crystal has low entropy.

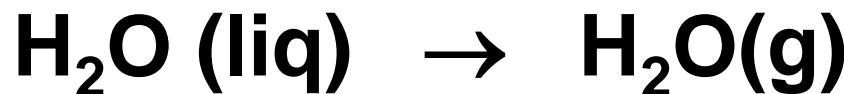
$$\Delta S = \frac{\Delta Q}{T}$$


Entropy is the thermodynamic property that emerges from heat, just like pressure emerges from work (see lecture notes).

Spontaneous processes are those for which the disorder (entropy) tends to increase – this is what the second law is all about.

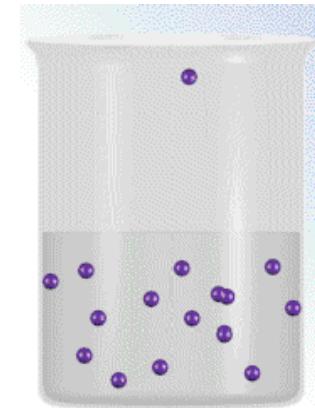
Entropy and Phase State

	S° (J/K•mol)
H_2O (gas)	188.8
H_2O (liq)	69.9
H_2O (s)	47.9


S (gases) > S (liquids) > S (solids)

Entropy Change in a Phase Change

For a phase change,


$$\Delta S = q/T$$

where q = heat transferred in phase change

For vaporization of water:

$$\Delta H = q = +40,700 \text{ J/mol}$$

$$\Delta S = \frac{q}{T} = \frac{40,700 \text{ J/mol}}{373.15 \text{ K}} = +109 \text{ J/K} \cdot \text{mol}$$

Entropy: Temperature and complexity

Increase in molecular complexity generally leads to increase in S.

S° (J/K•mol)	
CH ₄	248.2
C ₂ H ₆	336.1
C ₃ H ₈	419.4

The entropy of a substance increases with temperature.

Higher T means :

- more randomness
- larger S

- Entropy changes in the surrounding primarily determined by heat flow
- Magnitude of entropy is dependent on the temperature
- The lower the temperature, the higher the impact to the surroundings of the transfer of energy

Second Law of Thermodynamics

- "In any spontaneous process there is always an increase in the entropy of the universe"
- "The entropy of the universe is increasing"
- For a given change to be spontaneous, ΔS_{univ} must be positive

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}}$$

Application: Calculating $\Delta S(\text{universe})$

$$\Delta S^\circ_{\text{system}} = -326.9 \text{ J/K}$$

$$\Delta S^\circ_{\text{surroundings}} = \frac{q_{\text{surroundings}}}{T} = \frac{-\Delta H^\circ_{\text{system}}}{T}$$

Can calculate that $\Delta H^\circ_{\text{rxn}} = \Delta H^\circ_{\text{system}} = -571.7 \text{ kJ}$

$$\Delta S^\circ_{\text{surroundings}} = \frac{-(-571.7 \text{ kJ})(1000 \text{ J/kJ})}{298.15 \text{ K}}$$

$$\Delta S^\circ_{\text{surroundings}} = +1917 \text{ J/K}$$

Calculating $\Delta S(\text{universe})$

$$\Delta S^\circ_{\text{system}} = -326.9 \text{ J/K} \text{ (less matter dispersal)}$$

$$\Delta S^\circ_{\text{surroundings}} = +1917 \text{ J/K} \text{ (more energy dispersal)}$$

$$\Delta S^\circ_{\text{universe}} = +1590 \text{ J/K}$$

The entropy of the universe increases
so the reaction is spontaneous.

Second law: other forms

Can be stated various ways:

(Kelvin): 'No cyclic process is possible in which heat is taken from a hot source and converted completely into work.' (e.g. engine)

(Clausius): 'Heat cannot pass from a body at low temperature to one at higher temperature without work being done.' (e.g. refrigerator)